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1. Introduction

Data on “how consumers pay” are collected by consumer surveys in which consumers list all the

payment instruments they have and whether and how they use them at the point of sale (POS).

There are two types of consumer survey: Surveys that rely on memory recall (how many credit

card payments have you made during the last year or month?) and diary surveys in which con-

sumers record, either in real time or by the end of each day, all payment related activities including

dollar amount, spending type, merchant type, and payment method. For budgetary reasons, con-

sumer diaries (used in this paper) are limited to few thousands respondents thereby generating

approximately between fifteen to thirty thousand payment observations. Whereas these num-

bers are considered to be “small data” relative to payment data collected by Visa, MasterCard,

Amazon, and other retailers that collect “big data,” consumer diary surveys are more suitable for

analyzing consumer payment choice because they provide on a wide variety of spending types

using all payment methods rather than just credit and debit card payments.

The study of consumer payment choice at the point of sale involves a classification of pay-

ment methods such as cash, credit cards, debit cards, prepaid cards, paper checks, and electronic

payments withdrawn from consumers’ bank account. Because these studies focus on classification

of payment methods, researchers have traditionally relied on discrete-choice analyses using bino-

mial, multinomial, logit, and probit regression methods. These studies measure mainly the effects

of dollar transaction value (amount), demographic variables, and spending/merchant type on the

probability that a consumer chooses to pay with a particular payment method such as credit card

instead of cash.

Whereas standard regression models will remain a powerful tool for studying payment choice,

the goal of this article is to explore alternative and somewhat newer methods involving machine

(statistical) learning techniques. Machine learning methods introduce new insights to our at-

tempts to predict how a specific consumer pays for a specific transaction at a particular POS,

and these techniques become essential when using “big data.” The recent adoption and uses of

machine learning techniques in economics, marketing, and sales have been discussed in Varian

(2014), Mullainathan and Spiess (2017), and references therein. The statistical properties of these
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techniques are discussed over the Internet and in several textbooks, such as James et al. (2013).

The list below provides a description of the payment methods collected by the data that are

analyzed in this article and described in section 2. These descriptions have been provided to all

the respondents who participated in the survey of payment choice.

Electronic payment methods:

• Bank account number payment (BANP): You [the respondent] give your bank routing num-

ber and account number to a third party to authorize a deduction from your bank account.

• Online banking bill pay (OBBP): You initiate a payment at your bank’s online banking web-

site.

• Account-to-account money transfers.

• Income deduction: Your employer makes the payment for you on your behalf and deducts

the payment amount from your salary.

Card payment methods:

• Debit card: Your payments are deducted from your bank account. Also, you can use a debit

card to withdraw or deposit cash at ATMs.

• Credit card: You pay back the credit card company later. Credit cards charge interest (unless

the balance is paid by the initial due date).

• Prepaid/gift/EBT card: You store or load money on a prepaid card. Sometimes called “pre-

paid debit,” “gift cards,” “payroll cards,” or “stored value cards.”

Paper payment methods:

• Cash: Coins and paper bills.

• Check: You write a paper check to a person or business.

• Money order: You purchase a money order from a bank, post office, check-cashing store, or

retail store. At the time of purchase, you specify the amount and the person or business to

be paid.

This article is organized as follows. Section 2 describes the data and defines the variables of
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interest. Section 3 presents classification trees and shows how they can be used to visualize and

predict consumer payment choice. The predictions are then compared to predictions generated

by multinomial logistic regressions. Section 4 extends the classification tree analysis to random

forest. Section 5 introduces the k-nearest neighbors algorithm. Section 6 illustrates the support

vector machine algorithm. Section 7 concludes.

2. Data, variable selection, sample statistics, and coding

The data are taken from the 2019 Diary of Consumer Payment Choice (DCPC).1 The DCPC uses

a representative sample of U.S. (18 and older) consumers. The DCPC records transactions during

three consecutive days. Transactions include purchases, bill payments, ATM withdrawals, and de-

posits. Respondents’ three-day diaries were evenly distributed throughout the month of October

2019 in a way that resembles a three-period overlapping generations model. The DCPC collects a

large number of variables describing all sorts of demographics and transactions. For the purpose

of this article, I focus on only a small subset of variables.

Table 1 shows that out the 11,571 total payments made by 2,474 respondents, almost three-

quarters (74.1 percent) were paid “in-person” and about one-quarter (25.9 percent) were paid re-

motely. Cash payments constitute 35.5 percent of in-person payments, followed by debit card

payments (30.1 percent) and credit card payments (27.4 percent). In contrast, remote payments

are more evenly distributed among debit cards (22.1 percent), followed by BANP (22.2 percent),

credit card (18.2 percent) and paper checks (12.1 percent).

A note about terminology. In regression analysis, the explanatory variables are also called in-

dependent variables, explanatory variables, regressors, or right-hand side variables. In machine learn-

ing, the same variables are often called features, attributes, predictors, or input variables. The reader

should bear in mind that the analysis in this paper uses all these terms to mean the same thing.

1The Federal Reserve Banks of Atlanta, Boston, and San Francisco conduct the diary. The results are summarized in
Greene and Stavins (2019) and Kumar and O’Brien (2019). Similar surveys are conducted by the Bank of Canada; see
Henry, Huynh, and Welte (2018). The data and assisting documents (codebooks) are publicly available for down-
loading from the Federal Reserve Bank of Atlanta website: https://www.frbatlanta.org/banking-and-payments/
consumer-payments.aspx. The data and the R-code used in this analysis are available for downloading from the au-
thor’s web page: www.ozshy.com (click on “Recent articles”).
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The remainder of this section describes eight features.2

• Amount: Numeric payment amount ranging from $0.07 to $29,000, with median $25.00 and

mean $110.83.

• In-person: a categorical variables indicating whether the respondent paid in-person (8,570

payments or 74.1 percent) or remotely (3,001 payments or 25.9 percent). Remote payments

are generally made online, deduction from a bank account, or via the mail.

• Age: Integer-valued ranging from 18 to 101, with median 55 and mean 53.37.

• Gender: 1,351 (54.6 percent) female respondents , 1,123 (45.4 percent) male respondents.

• Marital: 1,549 (62.6 percent) married, 925 (37.4 percent) not married.

• Education: 89 (3.6 percent) have elementary or less, 1189 (48.1 percent) have high school,

747 (30.2 percent) have an associate or a college degree, and 449 (18.1 percent) have MA or

higher.

• HH income: Household income ranging from $0 to $1m with median $65,000 and mean

$78,665.

• HH size: Number of people in the household ranging from 1 to 12 with median 2 and mean

2.65.

The analysis in this article does not apply demographic sampling weights because the whole

purpose of this demonstration is to analyze the effects of demographics on payment choice (among

other variables). In addition, because the goal is to compare very different statistical methods us-

ing the same data, I made sure that all these comparisons are conducted with the same training

and testing subsamples which are sampled using the same pseudo-random number generating

function (the set.seed(N) command in R).

3. Classification trees

In the context of machine learning, a classification tree displays an optimized algorithm in the

form of an upside-down tree. The tree illustrates how the machine (software) splits and classifies

2I consolidated the number of levels within some categorical variables. For examples, the number “Education”
levels was reduced from 16 to 4 which makes it easier to interpret the results. The number of “Marital” levels was
reduced by combining divorced, separated, and widowed into “not married.”
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the data with the objective of minimizing a function of the number of classification errors among

the predicted payment methods relative to the actually used payment methods.

The data set is split into two separate subsamples: a training subsample and a testing subasm-

ple. The classification tree algorithm is designed and tuned on the training subsample using cross

validation. The cross validation procedure partitions the training subsample into k folds, where

the algorithm is constructed using k− 1 folds of data and tested on the retained k’s fold on which

the classification errors are measured. The process repeats itself k times, each with a different re-

tained k’s fold. The k error measurements are then averaged to produce the final tree algorithm.

The advantage of this method is that all observations in the training subsample are used for both

training and validation.

The resulting tree algorithm is then evaluated by measuring the classification errors generated

by predictions made on the testing subsample which was held out separately from the training

subsample and the cross validation procedure. That is, testing data constitute a subsample from

the same population but with observations that were not included in the sample used for fitting

the model. Therefore, the predictive power of a model is assessed on a subsample of the origi-

nal data set which is different from the training subsample that is used for the construction of a

classification tree; a practice sometimes referred to as the “firewall principle.”

To be able to compare the predictive power of the tree algorithm to that of logistic regressions,

I duplicate the procedure by estimating the regression coefficients using the same training sub-

sample that is used for designing the tree, and then measure the classification errors of the logistic

regression model on the same testing subsample as the tree algorithm. Therefore, the sample with

11,571 payment observations described in section 2 is randomly split so that 9,256 (80 percent) of

the payment observations are classified as training data, and the remaining 2,315 (20 percent) as

testing data. The same split is retained throughout the analysis in order to be able to compare the

efficiency (error minimization) of the various algorithms that are analyzed in this article.

In addition, the classification tree algorithm and the logistic regression are compared using

exactly the same payment method classifications and the same explanatory variables that were

described in section 2. The relationship between the choice of payment methods and the explana-
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tory variables is defined by the model

Methodt = αm + βTAmountt + βP in-persont + βAAget + βGGendert (1)

+ βMMaritalt + βEEducationt + βIHH incomet + βSHousehold sizet,

where the dependent variable “Method” is the payment method used for transaction (payment) t

in the subsample. The demographic variables reflect those of the respondent who paid for trans-

action t.

3.1 Multiple payment methods classification tree

Figure 1 displays an upside-down tree that classifies the use of eight payment methods according

to the model defined in (1). For the purpose of this illustration, the tree drawn in Figure 1 has

been excessively pruned compared with the optimal tree size. That is, the displayed tree has

been pruned to have only 5 splits whereas the tree that minimizes the average cross-validated

error (plus one standard deviation) should have about 27 splits, which are hard to fit into a single

page.3

Figure 1 shows that that the “in-person” feature is the most influential predictor for separating

BANP from cash payments. This is because cash must paid in person whereas BANP is initiated

electronically and remotely by the payee (such as a utility company). Note that the tree algorithm

selects the “In-person” feature as the top split because this feature reduces classification errors

more than a top split according dollar amount, age, or income (that are pushed to lower branches

of the tree).

The second layer of branches in Figure 1 consists of splits according the payment dollar amount.

For in-person payments, Figure 1 shows that a payment amount lower than $20 constitutes the

next-best predictor for paying with cash, which explains 40-percent of all respondents’ payment

observations. The exact splitting amount ($20 in this sample) is determined by the error “majority

rule” or some function of it in the sense that any other split would generate a lower prediction

3The classification tree displayed in Figure 1 was constructed with the rpart R package. Initially, the complexity
parameter was set to cp = 0.001, thereby generating 41 splits. For a given cp value, the program attempts only the spits
that increase the overall fit by a factor of cp or higher. Then, in order to increase prediction accuracy, the complexity
parameter was increased to cp = 0.001388889 thereby reducing the number of splits to 27.
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accuracy as measured by a function of the number of prediction errors.4 For remote payments,

large payment amounts (over $89) are predicted to be paid via BANP.

The third layer of branches in Figure 1 consists of splits according to education (for in-person

payments) and household income for remote payments. These features predict whether the pay-

ment will be made with a credit card or a debit card. Note that high household income may be cor-

related with payers’ ability to obtain and use credit cards, and this explains why high household

income (not less than $157,000) predicts credit card payments for remote payments. For in-person

payments, associate degree or college degree and above also predict credit card payments, most

likely because these are correlated with household income.

The analysis of classification trees has so far focused on the visualization aspect. The analysis

below demonstrates the predictive aspect of the classification tree algorithm. I first construct a

longer-than-optimal classification tree using cross validations restricted to the training subsample

for the purpose of determining and tuning the optimal number of splits. Then, the tree is pruned

by increasing the value of the cp parameter which reduces the number of splits to the level that

minimizes the cross-validation error.

Note that the reason why trees are pruned is to avoid the consequences of “overfitting.” That

is, longer trees reduce prediction error rates on the training data, but increase the prediction error

rates when used over the testing data, and therefore result in poor prediction power over new

data. To see that, suppose that we draw a very long tree in which each observation results in

its own terminal node. This tree achieves the maximum possible fit over the training data, but

will surely fail to provide proper predictions using the testing data. For this reason, the long tree

should be pruned according to the desired cp parameter. The pruned tree is then used to make

predictions using the testing data or any other new data from the same population.

Table 2 exhibits the confusion matrix (also called error matrix). The values on the main diagonal

are the numbers of correct predictions using the testing data. That is, the optimally-tuned tree

correctly predicted 58 BANP payments, 0 Acct2acct payments, 396 cash payments, 5 check pay-

4The reader may wonder why the tree algorithm selects the $20 payment amount as the optimal split (and not $19
or $21). This may have to do with the dollar denomination structure which causes consumers to carry $5, $10, and $20
bills in their pocket. The $20 split can also be explained by the observation that most ATMs in the U.S. dispense only
$20 bills. Discontinuities of this type have been analyzed in Shy (2020) using U.S. diary data.
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ments, 268 credit card payments, 307 debit card payments, 44 OBBP and 0 prepaid card payments.

The failure to predict any Acct2acct and prepaid card payments stems from the fact that splitting

features according to the level of use of payment methods did not yield sufficient reduction in the

error rates. This is because the data contain only a small number of Acct2acct and prepaid card

payment observations.

The off-diagonal values reflect incorrect predictions. For example, 84 predictions that con-

sumers pay with credit cards and 120 that consumers pay with debit cards were incorrect because

these consumers actually paid cash.

The bottom row in Table 2 computes the tree algorithm’s correct prediction rate for each pay-

ment method. It shows that out 602 actual cash payments in the testing data, the tree was able

to accurately predict 66 percent. Out of 571 credit card payments in the testing data, the tree pre-

dicted only 47 percent accurately. Debit card payments were correctly predicted 47 percent, and

as mentioned above, there were zero correct predictions of Acct2acct and prepaid card payments.

3.2 A comparison with multinomial regressions

Multinomial logit regressions are commonly used in payments research. Therefore, I now compare

the prediction accuracy of a multinomial logit regression to the prediction accuracy of the tree

algorithm, using the exact same model defined in equation (1).

The regression is run on exactly the same training subsample of 9,256 payments as the classi-

fication tree. The predictions are then performed on the same testing subsample with the same

2,315 payments as the classification tree. This is needed in order to be able to compare the number

of prediction errors between the two algorithms.

The table of coefficients of a multinomial regression is too long to be displayed here. Instead,

Table 3 presents the confusion matrix and the prediction accuracy rate for the multinomial logit

model.5 Comparing Table 3 with Table 2 shows that the classification tree algorithm has higher

prediction accuracy rates for BANP (43 versus 32 percent), Cash (66 versus 63 percent), and debit

card payments (47 versus 43 percent). However, the classification tree has slightly lower accurate

prediction rates of Checks (3 versus 11 percent) and OBBP (36 versus 37 percent).

5Results were obtained using the multinom function in the nnet R package.
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Therefore, we cannot conclude which algorithm predicts better at least for this sample. Classi-

fication trees have the advantage that they generate intuitive graphical presentations of payment

method classifications, such as the one shown in Figure 1. However, regression coefficients (espe-

cially marginal effects) are often easier to interpret.

4. Random forest

Random forest algorithms do not generate classification trees like the one plotted in Figure 1.

Instead, they build a large number of classification trees where each tree splits the training data

according to a randomly-selected subgroup of features on each bootstrapped sample. The number

of features in each subgroup is controlled by the researcher, and is generally chosen to be near the

square root of the total number of features. More specifically, the specification of the model in

equation (1) analyzes the data with the use of eight features. Therefore, each tree in the forest

will split the data according to three randomly-selected features. This procedure decorrelates the

sampled trees in the sense that strong features (such as “in-person” and“Amount” in our data),

will not be chosen as top splits in every tree.

Although random forest algorithms do not yield trees that can be drawn, they provide an im-

portant procedure for variable selection (in addition to improved prediction accuracy). Random

forest graphs rank the relative importance of the features for prediction purposes. Figure 2 plots

a variable importance graph using R’s randomforest package. It shows that removing the predic-

tor “In-person” from the data would increase the average number of misclassifications by 219.

Removing the predictor “Amount” from the sample would increase the average number of mis-

classifications by 198. As the figure shows, “Marital” status is the least important variable because

without it the average number of misclassifications would increase by 67 only.6

Most importantly, random forests are extremely useful for making predictions. The model

defined in (1) is now applied to the random forest algorithm. The algorithm uses exactly the

the same training subsample containing 80-percent of the observations that were used to fit the

classification tree and the multinomial regression that were analyzed in section 3. The algorithm’s

6Figure 2 provides an easy visual framework for variable selection. Other commonly used variable selection meth-
ods include Lasso and Ridge regressions and principal component analysis that can be applied via several R packages.
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prediction accuracy is then tested on the same remaining 20-percent of the data. The resulting

confusion matrix for the random forest predictions is given in Table 4.

Comparing Table 4 with Tables 2 and 3 reveals significant improvements in prediction accuracy

for all payment methods. Perhaps the most striking result is that, unlike the tree algorithm and

multinomial logit, random forest is the only prediction algorithm that generated some accurate

predictions for account-to-account transfers and prepaid card payments. More precisely, random

forest predicted correctly 2 out of 28 account-to-account transfers and 6 out of 44 prepaid card

payments whereas the classification tree and multinomial logit predicted none. Although these

prediction rates may seem to be low, the reader should bear in mind that they were made on the

testing subsample which contains totally different observations than the training subsample that

was used to fit all the classification trees in the forest.

The reason for the significant improvement in prediction accuracy is that the random forest

algorithm averages the predictions made by hundreds of trees, where each tree is constructed

based on only three out of eight features. Therefore, dominant features, such as “In-person” and

“Amount”, are not always used, thereby letting a large number of trees be split based by less-

dominant features. This is in addition to bootstrapping used for each tree prediction. This exercise

shows, perhaps paradoxically, that introducing more randomness into the prediction algorithm

tends to improve prediction accuracy.

5. k-nearest neighbors (kNN)

The k-nearest neighbors is an algorithm that inputs available observations and classifies new ob-

servations based on a similarity measure in the space of features. Similarity is determined by the

distance between the features of the observations. The kNN algorithm determines a neighborhood

in the space of features for each observation in the training data. Each neighborhood contains k

observations, where k serves as a tuning parameter to be determined by the researcher.

Predictions of which payment method will be used are based on measuring the distance in the

space of features to the k nearest neighbors, and determining the payment method associated with

the majority of these k nearest observations. For example, if k = 3, the algorithm measures the
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distance between the features of the new observation to its k = 3 closest neighbors. If two of the its

neighbors (say from the training subsample) are credit card payments and one is a cash payment,

the new observation will be classified as a credit card payment by a simple majority rule.7

One drawback of the kNN algorithm is that it can analyze only numerical features because

neighborhoods are defined according to distances among observations within each neighborhood

(such as the Euclidean distance). This is unfortunate because most of the data collected in pay-

ments research contain categorical features such as transaction type and payers’ demographic

variables. A partial solution to this drawback would be to turn categorical features into numeri-

cal. Therefore, for the kNN analysis, “In-person,” “Married,” and “Male” are assigned the value

of 1 (versus 0), and the four levels of “Education” are assigned the values of 0, 1
3 , 2

3 and 1.

Another potential problem that may arise from the fact that neighborhoods rely on distance

measurements is that changing the units in which features are measured may change the neighbor-

hoods determined by this algorithm. For this reason, all the features are normalized to take values

between 0 and 1 before running the kNN algorithm. Formally, each numerical feature, for exam-

ple, a particular household income x̂ is normalized according to [x̂ −min(x)]/[max(x) −min(x)],

for each household income x̂ in the sample.

5.1 Illustration of the kNN algorithm using two features

The grouping of training payment observations into neighborhoods in the space of features can-

not be plotted in two dimensions when there are more than two features. This is unfortunate

because the algorithm is suitable for making predictions using all the eight features that are listed

in the model defined in (1). Therefore, in order to illustrate these neighborhoods, I focus only on

two numerical features: payment dollar amount (Amount) and household income (HH income).

These two features are normalized to take values between 0 and 1 to avoid the influence of units

of measurements.

In order to avoid dealing with the categorical “In-person” feature which can take only two

7To some degree, kNN resembles clustering analysis (k-means) which partitions the space of features into clusters
according to distance (such as the Euclidean distance). Clustering analysis is useful for unsupervised data which contain
only features and no response variables. The data analyzed in this article is supervised because each observation has a
response variable which is choice of payment method.
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values, I also restrict this illustration to 8,570 in-person payments. This subsample of in-person

payments is then divided into 6,856 (80 percent) training observations and 1,714 (20 percent) test-

ing observations.

The top part of Figure 3 depicts the actual 1,714 payment observations in the test data. To avoid

cluttering, the axes are stretched by taking the logarithm of the normalized household income and

payment amounts. The top part shows that consumers with lower household income use cash

more intensively than consumers with higher income. Cash is also used more often for low dollar

amounts. Checks are used for large dollar amounts. Credit cards are used more intensively by

consumers with higher household income.

The bottom part of Figure 3 depicts 1,714 payment methods that were predicted from the two

features (Amount and HH income) in the test data, based on the neighborhoods determined by

the kNN algorithm using the training subsample. In this exercise, the optimal (error-reducing)

neighborhood size was found to be k = 34 observations. The bottom part shows that the kNN

algorithm predicts a higher number of cash payments made by respondents with lower household

income relative to the actual cash payments (depicted on the top part). It also predicts less cash

payments by respondents with very high household income. In addition, the algorithm predicts

slightly more intensive use of checks for higher dollar amounts relative to actual check payments.

5.2 kNN’s predictions of payment methods based on all eight features

I now apply the kNN algorithm to the same training subsample containing 9,256 (80-percent)

observations and test its prediction accuracy on the remaining 2,315 (20-percent) observations.8

Table 5 displays the confusion matrix for the payment method predictions made by the kNN

algorithm applied to the same testing data used for the other three algorithms that were ana-

lyzed in previous sections. Comparing Table 5 with Table 4 reveals that, with the exception of

prepaid card and check payments, the kNN predictions are less accurate than the random forest

8This analysis applies the knn function in the class R package. This function integrates the training data classification
(first step) and the prediction on the testing data (second step) into a single function. The parameter k (number of
observations in each neighborhood) is tuned by running a loop over this function for all values of k = 1, . . . , 40,
yielding kmin = 3 as the value that minimizes the classification error rate. Note that each time R runs this code may
generate a slightly different value of kmin because the kNN classification algorithm is sensitive to the arbitrary choice
of initial neighborhoods.
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predictions. However, a comparison with Table 2 (classification tree) and Table 3 (multinomial

regression) shows that the kNN algorithm generates more accurate predictions for all payment

methods with the exception of BANP , cash, and OBBP. Moreover, just like the random forest al-

gorithm, the kNN is exceptionally good in predicting payment methods that are less frequently

used, such as account-to-account and prepaid card payments, which both the classification tree

and multinomial regression algorithms failed to predict.

6. Demonstration of the support vector machine algorithm

Another commonly-used algorithm for analyzing supervised data is the support vector machine

(SVM). The SVM algorithm is limited to a classification of two payment methods in the same way

that a binomial regression is limited to a selection between only two options. Therefore, the SVM

can be used to conduct research on cash users in order predict the use of cash versus non-cash

payment methods. Similarly, the SVM can be used to research the use of card payments versus

non-card payments. However, just like a binomial regression, there are no restrictions on the

number of features (explanatory variables).

The SVM algorithm computes linear or nonlinear boundaries in the space of features. To il-

lustrate the SVM, I simplify the regression model defined in (1) by splitting all the eight payment

methods into two groups: cash payments versus non-cash payments. In addition, the number of

features is restricted to “Amount” and “Age” because additional features cannot be drawn in two

dimensions.

The black dots depicted in Figure 4 are 2,669 observed in-person cash payments. The dollar

amount of each payment is given on the vertical axis. The age of the respondent who made the

payment is given on the horizontal axis. Similarly, the red dots are 3,671 observed in-person non-

cash payments.9

The grey-shaded areas in Figure 4 are generated by the SVM algorithm. These areas are the

combinations of the respondents’ age and dollar amounts that are predicted by the SVM algorithm

to be paid with cash. The non-shaded areas are the respondents’ age and dollar amounts that are

9The analysis in this section applies radial kernel option of the svm function in the e1071 R-package.
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predicted to be paid with non-cash payment instruments.

The shaded areas in Figure 4 imply that the SVM algorithm predicts low-value in-person pay-

ments to be made with cash and high dollar amounts to be paid with non-cash methods. In

addition, in-person cash payments are more likely to be used by young consumers between the

age of 18 and 28 and for payments below $10 by consumers ages between 32 and 50. Figure 4

shows that the use of cash increases with age over 52.

Finally, the SVM algorithm predicts payments in the amount of $20 to be paid with cash. These

are illustrated by the shaded areas around $20 dollar amounts drawn in Figure 4. Recall that the

same result was predicted by the classification tree depicted in Figure 1. This happens because

many ATMs in the U.S. dispense only $20 bills. Therefore, cash users tend to carry multiples of

$20 bills in their wallets. Note also that there are shaded areas around the $40 payment amounts

that can be paid with two $20 bills. Currency denomination also impacts this behavior as reflected

by the shaded areas around the $10 payment amounts and also around the $25 and $30 payment

amounts. Footnote 4 provides a more detailed explanation for these observations.

7. Conclusion

Statistical (machine) learning algorithms provide useful tools for understanding and predicting

consumer payment choice. This article samples a few of these tools using diary survey data on

consumer payment choice.

The advantages of using these tools relative to conventional regressions are:

(a) They can be implemented on datasets containing a large number of explanatory variables

(called features in statistical learning).

(b) Do not rely on restrictive assumptions on the structure of the data for ensuring consistency of

the estimated parameters.

(c) Provide useful visualization tools of the results.

(d) Some algorithms, such as random forest, provide more accurate out-of-sample predictions.

(e) In particular, this article shows that both the random forest and the kNN algorithms are ex-

tremely useful in predicting consumers’ choice of payment methods that are not used very

14



often (such as account-to-account and prepaid card payments).

Some of the disadvantages of using these algorithms include:

(i) Loss of some interpretation power compared to the interpretability of estimated coefficients

of linear regressions.

(ii) The tools are sensitive to their tuning parameters (regularization), to some degree similar to

how regression results are sensitive to the choice of model, control of confounders, and the

choice of interactions.

Anther commonly-used algorithm for analyzing supervised data, which is not demonstrated

in this article, is neural networks. Neural network analysis attempts to mimic the way in which

information transmission and decisions are made in the human brain.10 Running neural network

algorithms generally requires heavier computational power. In addition, neural network algo-

rithms may encounter convergence problems for large number of classifications (such as eight

payment methods) and features, such as attempting to predict eight payment methods using eight

features.

To conclude, machine learning techniques and regression analyses could be viewed as com-

plements rather than as substitutes. Using tools from both disciplines could only enhance the

reliability of algorithms that predict consumer payment choice.
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10Liébana-Cabanillas and Lara-Rubio (2017) investigate which merchant characteristics affect merchants’ decision to

adopt a mobile payment system by comparing a logistic regression model with a neural network analysis. The authors
show that the neural network algorithm is the most precise tool in this research when predicting the use of mobile
payment systems in certain lines of business.

15
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Electronic payments Card payments Paper methods
Variable BANP OBBP Acct2acct Debit Credit Prepaid Cash Check All
Number of payments 700 631 94 3247 2894 206 3082 717 11571
Percentage (%) 6.0 5.5 0.8 28.1 25.0 1.8 26.6 6.2 100.0
Avg. value ($) 349.94 428.53 408.21 51.30 66.17 32.73 23.97 404.53 110.83
Med. value ($) 144.60 120.00 250.00 25.00 29.97 12.00 10.00 100.00 25.00
Number of in-person 35 24 11 2583 2349 170 3045 353 8570
In-person (%) 0.4 0.3 0.1 30.1 27.4 2.0 35.5 4.1 74.1
In-person avg. value ($) 566.06 469.56 471.94 39.37 57.40 24.51 23.83 460.89 59.77
In-person med. value ($) 150.00 145.47 250.00 22.55 27.23 11.19 10.00 90.00 19.69
Number of remote 665 607 83 664 545 36 37 364 3001
Remote (%) 22.2 20.2 2.8 22.1 18.2 1.2 1.2 12.1 25.9
Remote avg. value ($) 338.56 426.91 399.76 97.70 103.99 71.54 35.14 349.88 256.66
Remote med. value ($) 143.87 120.00 250.00 44.66 44.90 17.23 20.00 100.00 80.00

Table 1: Sample statistics by payment method.

Source: Author’s computations from the 2019 Survey and Diary of Consumer Payment Choice.
Notes: The table displays information on 11,571 payments made by 2,474 respondents. Payment methods
with less than 0.5% market share are excluded. Payment methods are described in section 1.
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Payment Method BANP Acct2acct Cash Check Credit Debit OBBP Prepaid
BANP 58 15 0 23 20 38 40 3

Acct2acct 0 0 0 0 0 0 0 0
Cash 0 0 396 11 130 161 1 20

Check 2 1 1 5 4 3 0 0
Credit 21 3 84 50 268 136 19 4
Debit 18 4 120 35 125 307 19 17
OBBP 37 5 1 27 24 15 44 0

Prepaid 0 0 0 0 0 0 0 0
Total actual 136 28 602 151 571 660 123 44

Correct predictions 58 0 396 5 268 307 44 0
Correct rate (%) 43 0 66 3 47 47 36 0

Table 2: Confusion matrix for the classification tree.

Source: Author’s computations from the 2019 Survey and Diary of Consumer Payment Choice.
Notes: Based on 9,256 training payment observations and 2,315 testing payment observations. The main
diagonal displays number of correct predictions.

Payment Method BANP Acct2acct Cash Check Credit Debit OBBP Prepaid
BANP 43 15 1 18 11 24 30 2

Acct2acct 0 0 0 0 0 0 0 0
Cash 0 0 379 24 150 233 0 17

Check 1 1 1 17 4 0 4 0
Credit 17 4 118 31 269 105 16 4
Debit 37 2 103 36 105 281 28 21
OBBP 38 6 0 25 32 17 45 0

Prepaid 0 0 0 0 0 0 0 0
Total actual 136 28 602 151 571 660 123 44

Correct predictions 43 0 379 17 269 281 45 0
Correct rate (%) 32 0 63 11 47 43 37 0

Table 3: Confusion matrix for the multinomial regression.

Source: Author’s computations from the 2019 Survey and Diary of Consumer Payment Choice.
Notes: Based on 9,256 training payment observations and 2,315 testing payment observations. The main
diagonal displays number of correct predictions.
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Payment Method BANP Acct2acct Cash Check Credit Debit OBBP Prepaid
BANP 56 12 2 19 17 26 32 2

Acct2acct 0 2 0 0 0 0 0 0
Cash 0 1 419 12 89 128 1 19

Check 6 2 1 32 15 6 16 0
Credit 17 5 85 39 363 78 10 4
Debit 27 2 94 32 64 406 10 13
OBBP 30 4 1 15 22 14 54 0

Prepaid 0 0 0 2 1 2 0 6
Total actual 136 28 602 151 571 660 123 44

Correct predictions 56 2 419 32 363 406 54 6
Correct rate (%) 41 7 70 21 64 62 44 14

Table 4: Confusion matrix for the random forest.

Source: Author’s computations from the 2019 Survey and Diary of Consumer Payment Choice.
Notes: Based on 9,256 training payment observations and 2,315 testing payment observations. The main
diagonal displays number of correct predictions.

Payment Method BANP Acct2acct Cash Check Credit Debit OBBP Prepaid
BANP 48 10 2 12 35 19 26 3

Acct2acct 5 1 0 1 1 3 3 1
Cash 1 1 328 20 84 103 0 13

Check 11 1 9 31 21 25 13 1
Credit 17 3 111 33 330 91 24 6
Debit 27 6 140 38 75 394 13 12
OBBP 26 6 3 13 18 18 44 1

Prepaid 1 0 9 3 7 7 0 7
Total actual 136 28 602 151 571 660 123 44

Correct predictions 48 1 328 31 330 394 44 7
Correct rate (%) 35 4 54 21 58 60 36 16

Table 5: Confusion matrix for the kNN.

Source: Author’s computations from the 2019 Survey and Diary of Consumer Payment Choice.
Notes: Based on 9,256 training payment observations and 2,315 testing payment observations. The main
diagonal displays number of correct predictions.
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In_person = No

Amount >= 89

HH_income >= 157000

Amount < 20

Education = Elem_or_less,High_school

Yes

 < 89

 < 157000

 >= 20

Assoc_or_college,MA_or_higher

12%

2% 12%

40%

17% 18%

BANP

Credit Debit

Cash

Debit Credit

Figure 1: Classification tree: Predicting the use of payment methods based on whether the payment is made
in-person, payment dollar amount, and some other consumer demographic variables.

Source: Author’s computations from the 2019 Survey and Diary of Consumer Payment Choice.
Notes: Based on 11,571 payment observations made by 2,474 respondents. For illustrative purposes, the
displayed tree has been pruned to have only 5 splits instead of 26 splits which minimize the
cross-validation errors.
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Figure 2: Variable importance plot (VIP) generated by random forest.

Source: Author’s computations from the 2019 Survey and Diary of Consumer Payment Choice.
Notes: Based on 9,256 training payment observations.
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Figure 3: kNN classifications of in-person payment methods in the space of two features: Amount and
household income.

Source: Author’s computations from the 2019 Survey and Diary of Consumer Payment Choice.
Notes: Based on 6,856 training in-person payment observations and 1714 testing in-person payment
observations. Top: Actual in-person payment observations. Bottom: Predicted payment methods based on
two features in the testing data.

22



Ca
sh

No
n−

ca
sh

20 30 40 50 60 70 80

10

20

30

40

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

**

*

*

*

*

*
*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

* *

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

* *
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*
*

*
*

*
*

*

*
*

*

*

**

*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*
*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

* *

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

* *

*

*

*

*
*

*

* *
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

* **

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* **
*

*
*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

**

*

**

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

**

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* * *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

**

*

*

*
*

*

*

*
*

* *

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

**

*

*

**

*

*

*

* *

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

* *

* *

*
*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

* *

*

*

*
*

*

*

*
*

*

*

**

*

*
*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

**

*

*

*

*

*

*

*
*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

* *

* *

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*
*

*
*
*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*
*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

* *

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* **

*

*

*

*

*

* *
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

* *

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

* *

*

*

**
*

*

*

*

*

*
*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
**

* *

*

*

*

*
*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

* *

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*
* *

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

* *

*

*

*

*

*

**

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*
*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*
*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

**

*
*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

**

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

* *

*

*

*

*

*

*
*

*

*
*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

** *
*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

** *

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*
*

*

*

*

*

*

*

**

**

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*
*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

***

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

*

* *

*

*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*
*

*

*

**

*

*

*

*

*

*

*

*
*

*

*

*

* *

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
* *

*

*

*

*

*

*

*

*

*

*

**

*

*

**

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

**

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
* *

*

**

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

** *

*

*

*

**

*

*
*

*

*

*

*

*

*

* *

*

*

* *

*

*

*

*

*

*
*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

* *

*

**

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

* *

*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*

*

*
*

*

*

*

*

*

* **
**

*

*

* *

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

**

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*
*

*

* * *

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

** *
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
* *

*

*

*

**

*

*
* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
* *

*

* *

*

*

*

**

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*
*

*

*

*

*

*

* *

*

*

**

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

* **

**

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

* *

*

*

*

*

*

*

*

*

*

*
* *

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*
*

*

*

*

**

*

*

*
*

*

*

**

*

*

*

***

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

* *

*

* *

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

* *

*

* *

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

**

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

**

*

*

*

*
*

*

*

*

*

*

*

*

* *

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

**
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

**

*

*

*

*
*

*

* *

**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

**

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*
*

* ***

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

** *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

**

*

*

*

*

* *

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*
*

*
*

*

*
* *

*

*
*

*

*

*

*

*

*

* **

* *

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*
*

*

*

*

*

*

*

*

*

*

SVM classification plot

Age

Am
ou

nt

Figure 4: SVM payment method classifications in the space of two features: Amount and age.

Source: Author’s computations from the 2019 Survey and Diary of Consumer Payment Choice.
Notes: Based on 6,340 (2,669 cash and 3,671 non-cash) in-person payment observations.
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