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Maximal Arbitrage
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Germany.
(e-mail: schuerg@finasto.uni-bonn.de)

Abstract. Let S = (S;), t = 0,1,...,T (T being finite), be an adapted R%-
valued process. Each component process of S might be interpreted as the price
process of a certain security. A trading strategy H = (H;), t =1,...,T,is a
predictable R%valued process. A strategy H is called extreme if it represents a
maximal arbitrage opportunity. By this we mean that H generates at time T a
nonnegative portfolio value which is positive with maximal probability. Let F*°
denote the set of all states of the world at which the portfolio value at time T,
generated by an extreme strategy (which is shown to exist), is equal to zero. We
characterize those subsets of F'¢, on which no arbitrage opportunities exist.
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1 Introduction

A remarkable result due to Dalang, Morton and Willinger (cf.[1]) says that
a finite-dimensional price process S = (S;) (¢t = 0,1,...,T) defined on some
probability space (2, F, P) admits no arbitrage opportunities iff there exists a
probability measure @) equivalent to P, under which (S;) is a martingale. This
remarkable result (the “first fundamental asset pricing theorem”), sometimes
augmented by additional equivalent conditions, has been proved in many differ-
ent ways (ct. [6], [3], [5], [2], [7]. [4))-

In order to formulate one version of the first fundamental asset pricing the-
orem (cf.[4]), let (2, F,P) be a probability space equipped with a filtration
(F), t =0,1,...,T (T being finite) such that Fr = F. Let S = (S;) be an
adapted d-dimensional process, i.e. S; = (S},...,S¢) is F;-measurable. If all
components are positive, then S; might be interpreted as the price of a cer-
tain stock i at time t. Let P be the set of all predictable R%valued processes
H = (Hy)(1 < t < T) (“trading strategies”), i.e. Hy = (H},...,H{) is F;_1-
measurable. For H € P put

t
HeS; = ZHkASk, 0<t<T (ASy:=S,—Sk_1).
k=1

The scalar product H;ASy might be interpreted as the increment (at time k) of
the value of a portfolio consisting during the time period ]k — 1, k] of H} shares
of stock i. Let P> denote the set of all H € P such that H ¢ ST > 0 a.s. Let
Lg_ denote the set of random variables which are a.s. nonnegative, and put

Ar={HeSy—¢: HEP, ¢ € LI},
LV ={¢: cell, P(E>0)<8} (0<5<).
(S;) is said to satisfy the no-arbitrage condition if
HeSr=0as. foral HeP>.

This is equivalent to the condition
_ 7(0)
(NA) ArnLy =LY

By A7 we denote the closure of A with respect to convergence in probabil-
ity.

We will need the following version of the first fundamental asset pricing the-
orem (cf. [4]):

1.1 Theorem. The following conditions are equivalent:

(a) (NA). i

) ArnL% =L and Ay = Ar.

() Arnrd=r{.

(d)  There exists a probability measure Q@ ~ P with dQ/dP € L™ such that

(St) is a Q-martingale.



Here, @ ~ P means that @) and P are equivalent (i.e. have the same null sets).
We put

(1.1.1) a(S) = sup P(H eS;>0).
HeP>

Clearly (S;) satisfies the no-arbitrage condition iff a(S) = 0.
We will be interested in strategies which are extreme according to

1.2 Definition. We say that a strategy H € P> is extreme if
(1.2.1) P(H ¢ ST > 0) = a(S).

If a(S) > 0, then we might say that an extreme strategy represents a mazimal
arbitrage opportunity. It will be shown later (cf. Theorem 2.1) that an extreme
strategy always exists, and that the set {H¢ ¢ Sy > 0} does (a.s.) not depend
on the choice of the extreme strategy H¢. In the sequel H¢ will always denote
an extreme strategy.

This paper is devoted to characterizing all subsets F' of the set F'© = {H® e
St = 0} such that (S;) satisfies the no-arbitrage condition on F' (this terminology
will be explained below). In particular we shall determine the largest subset of
F¢ with this property. In general one cannot expect that (S;) satisfies the no-
arbitrage condition on F¢ (assuming that 0 < P(F*¢) < 1). In fact, suppose
e.g. that (S;) is a P-martingale. Knowing in advance that the event F¢ occurs
may provide “too much information” on the evolution of (S;). In that case
the restriction of the process (S;) to F° is not a martingale. We will derive
conditions which are necessary and sufficient for (S;) to satisfy the no-arbitrage
condition on F*° (cf. Theorem 2.14).

We shall close this section with explaining the terminology used in the last
paragraph. If G C F is any o-algebra and § # F € F, then FNG := {FNG :
G € G} denotes the trace of G on F ; (F'NF;) is the trace of the filtration (F%)
on F. Let P(F) denote the set of R%-valued processes H = (H;) (1 <t < T)
defined on F', which are predictable with respect to (F N Fy).

If P(F) > 0, then P> (F') is the set of all H € P(F') such that

He (S|F)r >0 P(|F)—as.

(S|F = (S¢|F) denoting the process S restricted to F'). Note that S|F' is adapted
to (F'NF). Correspondingly we say that S satisfies the no-arbitrage condition
on F or (for short): NA holds on F if

Heo(S|F)r=0 P(:|F)—as. for all H € P>(F).

For sets A,B € F we write A = B ass. (A C B as.) if, for their indicator
functions 14, Ig, we have Iy = Ip a.s. (I4 < Ip as.).



2 Characterization of sets on which NA holds

We show first that an extreme strategy always exists:

2.1 Theorem. (a) An extreme strategy always exists.

(b) If H* and H** are extreme strategies, then

(2.1.1) {H" ¢Sy >0} ={H" ¢St >0} a.s.

(c) For any extreme strategy H¢ we have

(2.1.2) {HeS; >0} C {H"eS;,>0}as, HePs>.

Proof. (a) Let H™ € Ps be such that
(2.1.3) P(H(”) o8, > o) S a(S) (n— o).

Put (| - | denoting the Euclidean norm)

T
k=1

and choose numbers ¢, > 0 such that P(&, > ¢;,) < 27". The Borel-Cantelli
lemma implies that

oo

1
N = Z o |Ht(n)| <ooca.s., 1<t<T.
n=1

Let At := {m < o0}. Then A; € F;_1,

=1
HE:ZIAtZC n

n=1 "

7™

is F;_j-measurable, and H® = (Hf) € P>. Since P(H® e S; > 0) > P(H™ o
St > 0) for all n, H is extreme by (2.1.3).
(b) If (2.1.1) does not hold, then

P((H* +H*) e Sy > o) > a(9)

which is impossible since H* + H** = (H; + H;*) € P>. (c) is proved in the
same way as (b). O

In the sequel H¢ will always denote an extreme strategy. Note that, according
to Theorem 2.1(b), the set {H° ¢ S; = 0} does (a.s.) not depend on the choice
of HE.

The following example shows that, in general, an extreme strategy is not
uniquely determined (up to multiplication by positive constants).



2.2 Example. (T =d =1). Let Q = {w1,...,ws}, F = {0,1}* (the power
set of ), and suppose that P{w} > 0, w € Q. The filtration is given by Fo =
U{{wl,wg},{wg,w4}}, Fi=F. Let So = 0, S (w1) = 1, Si(ws) = S1(ws) = 0,
S1(w4) = —1. Then the strategies H*, H** given by

Hi(wi) = Hi (w2)

=1 , H{(ws)=H{(ws)=-1,
H{*(w1) = H{*(w2) =

2, Hi"(ws)=H{"(wg) = -1
are extreme, and {H* e S; > 0} = {H** ¢ S; > 0} = {w1,w4}.
Our first characterization of sets on which NA holds is given by

2.3 Theorem. Let F C {H® e Sy = 0} be such that P(F) > 0. Then the
following conditions are equivalent:

(a) NA holds on F.

(b) For every strategy H € P>(F') there exists a strategy H € P> such that

(2.3.1) H e (S|F)r = HeSy a.s. onF.

Proof. () = (a): Let H € P>(F) be given, and let H € P> satisfy (2.3.1).
Since H¢ is extreme, we have H ¢ Sp = 0 a.s. on F, which, by (2.3.1), implies
He (S|F)r =0 as. on F.

(a) = (b): Suppose that NA holds on F'. This implies that, for any He P> (F),
we have H o (S|F)7 = 0 a.s. on F. Hence (2.3.1) holds for H = He. O

2.4 Remark. Suppose that NA holds on F. Then, in general, it is not true that
for any strategy H € P> (F') there exists an extension H € P> of H. In fact, in
Example 2.2 we have that NA holds on F¢ = {H® e S7 = 0} = {w2,ws}. Let
He P> (F€) given by H, (w») = Hy(ws) = 1. The only Fy-measurable extension
H of H is given by Hy = 1, and H ¢ P>.

We shall now derive conditions for S to satisfy the no-arbitrage condition on
a given set F' C {H*® o Sp = 0}, that involve martingale measures for S.

By Mg we denote the set of all probability measures ) on F such that
Q < P (i.e. @ is absolutely continuous with respect to P), and () is a martingale
measure for S, i.e. each component process (S}) is a Q-martingale. If Mg # (),
then we put

_ dQ
(2.4.1) u(S) = Qseljas P(d—P > 0).

2.5 Definition. A probability measure () € Mg is called extreme if

(2.5.1) P(Z—g > o) = u(S).



2.6 Theorem. Suppose that Mg # ().

(a) An extreme probability measure always exists.
(b) If Q* and Q** are extreme probability measures, then

dQ* _ dQ**
(2.6.1) { o> 0} = { > 0} a.s.
(¢) For any extreme probability measure Q¢ we have
dqQ dQ°
(2.6.2) {ﬁ > 0} c { 5> 0} ws., Qe Ms.

Proof. (a) Let Q1,Q2,... € Mg be such that

dQn
(2.6.3) P( > 0) = u(S) (n— ).
Let ¢; > 0,¢c5 > 0,... be real numbers such that ¢; + ¢y + --- = 1. It is easy to

check that @ := ¢1Q1 + ¢c2@Q2 + - - - is a probability measure such that QQ < P

and
dQ <~  dQ,
dP _;C” dP

which, by (2.6.3), implies

(2.6.4) P(Z—g > o) > u(S).

Let

T d )
=14 Y ISi.

t=0 i=1

Then 1 < Eq, [¢] < oo (Eq, [¢] denoting the expectation of £, taken with respect
to ),,). Hence, for

- 1
PP S
= 2" Eq, [¢]
we have 0 < ¢ < 1. Therefore, choosing
cn = (c2" Eg, [¢]) "
implies @ € Mgs. By (2.6.4), Q is extreme. It is clear that (b) and (c) hold. O

In the sequel, Q¢ will always denote an extreme probability measure. Note
that the set {dQ°/dP > 0} does (a.s.) not depend on the choice of Q°.
Finally, we consider a third kind of extreme objects. Let

(2.6.5) B(S)= sup P(¢>0).
¢ceArnLy



Clearly,

(2.6.6) 0<a(S) <p(S) <L
Note that, by Theorem 1.1,
(2.6.7) a(S) =0 implies B3(S) =0.

2.7 Definition. A random variable ( € A7 N LY is called extreme if
(2.7.1) P(C > 0) = B(S).
0

2.8 Theorem. (a) There always exists an extreme random variable of AT0L+.
(b) If ¢* and ¢** are extreme, then

(2.8.1) {¢* >0} ={¢"™" >0} as.

(c) For any extreme random variable (¢ we have

(2.8.2) {¢>0}c{¢>0} as., (e€ArnlLy.
Proof. (a) Let (, € A7 N LY be such that

(2.8.3) P((, > 0) = B(S) (n— o0).

Choose numbers ¢,, > 0 such that P((, > ¢,,) < 27". The Borel-Cantelli lemma
implies that

e ._
¢ _nz::lchl (n <00 as
Clearly, by (2.8.3), P(¢¢ > 0) > 3(S). Since Arn LY is a closed convex cone,
¢¢ € ApNLY, and (¢ is extreme. (b) and (c) are obvious. O

In the sequel, (¢ will always denote an extreme random variable of Ap N L(jr.
Note that the set {¢¢ = 0} does (a.s.) not depend on the choice of (¢. Theorem
2.8(c) implies that

(2.8.4) (C6=0}C {H e S7 =0} as.

2.9 Theorem. Let F' € F be such that P(F) > 0. Then there is equivalence
between:

(a) NA holds on F.

(b) There exists a probability measure Q € Mg such that F' = {dQ/dP > 0}

a.s.

Proof. (a) = (b): Assume that NA holds on F. By Theorem 1.1 there exists
a probability measure @) on F' N F such that @ ~ P(:|F), and (S;|F) is a Q-
martingale (the filtration being (F'NF;)). Let @ denote the probability measure

which is defined on F by Q(A) = Q(F N A), A € F. It is easy to see that
Q € Mg, and F = {dQ/dP > 0} as.

(b) = (a): Let Q € Mg and put F = {dQ/dP > 0}. Let Q be the restriction
of @ to FNJF. Then Q ~ P(:|F), and (S| F) is a @-martingale. Hence, by
Theorem 1.1, NA holds on F'. O



2.10 Corollary. Let Q¢ € Mg be extreme. Then, for every F on which NA
holds, we have

(2.10.1) F= {%(_"';) > 0} a.s.

Proof. Let F € F be such that P(F) > 0. Clearly

dQ“(|F) _ P(F) dg*
dP(1F) ~ Q°(F) dP

Ir a.s.

which implies that
dQ° (1F) dQ°
——— 2 >0, =FNs—>0 .
{ aP(|F) ~ ap ~ U 29
Hence if NA holds on F', then (2.10.1) follows from Theorem 2.9 and Theorem
2.6(c). O
2.11 Corollary. (a) Suppose that Mg # (. Then we have

(2.11.1) {% > o} C{cc=0} as Q€ Ms.

(b) If NA holds on F, then F C {¢® = 0} a.s.
Proof. (a) Let Q € Mg and put F = {dQ/dP > 0}. It follows from Theorem
2.9 that NA holds on F. Let H™ € P and ¢, € LY be such that

& = H"™ o Sp — ¢, — ¢¢  in probability.

Applying Theorem 1.1 to the restriction of (§,) to F', we obtain that (¢ = 0 a.s.
on F. This proves (2.11.1).
(b) This follows from Theorem 2.9 and (a). O

If the definition of Arn LY is based on a probability measure P* (instead of
P) we shall write Ap N LY [P*] instead of Ap N LY.

Our main result is
2.12 Theorem. Suppose that P{(¢® =0} > 0. Then:

(a) There exists a probability measure Q* € Mg such that

dQ” e
(2.12.1) {W > 0} ={¢°=0} as.
and
aQ* .
(2.12.2) e L.

(b) If Q¢ € Mg is extreme, then

{Cg >0} ={C° =0} as.

(c) {¢¢ =0} is (a.s.) the largest set on which NA holds.




Proof. (a) Let G¢ := {¢® = 0}. In the sequel, we shall assume that P(G¢) < 1.
(If P(G°) = 1, then the desired result follows from Theorem 1.1.) First note
that

(2.12.3) ¢€ Arn LY implies that £ = 0 a.s. on G°.

Let us show that, for the probability measure P* = P(-|G¢) (defined on F), we
have

(2.12.4) (€ ArnLY[P*] implies that ( =0 P*-aus.

In order to show this, let ¢ € Ap N LY [P*] be fixed. Then ¢ > 0 a.s. on G¢, and
there exist H"™) € P and random variables ¢,, such that ¢,, > 0 a.s. on G¢ and,
for any § > 0,

(2.12.5) P({|H<"> ¢ S7 — ¢ — (| >6}0Ge) —0 (n— o0).
Choose numbers a,, > 0 such that

(2.12.6) P(HW.ST+%G<—4m‘er)§Tﬂ n>1.

Note that, by (2.12.5), for any § > 0,

(2127) P ({|H<n> o St 4 anC — b — (| > 5} N Ge) S50 (n— o).

Applying the Borel-Cantelli lemma with respect to the probability measure P=
P(-|Q\ G°) (defined on F), we obtain, by (2.12.6), that

(2.12.8) P (H(”) e St +a,(® > —1/n for all sufficiently large n) =1.

Put
(]~5 f on on G¢
T (H™ e Sp+a, )t on Q\Ge

and

i ¢ on G°

T 10 on Q)G

Let us show that
(2.12.9) (e ArnLY.

In fact, (2.12.8) implies
H™ o Sp+an(® — $n — Z P-as.
which, in turn, gives for any § > 0,

P ({|H<n> o S+ anC® — gy — (| > 5} N (Q\Ge)) 0.



Combining this with (2.12.7) and passing to a subsequence (if necessary), we
therefore arrive at

(2.12.10) H™ o Sr+an(®—¢n = C as.

There exist H(™ € P and ¢, € LY such that
P (|I§'(”) ©Sp — ¢ — anC| > 1/n) <27, n>1

Using the Borel-Cantelli lemma once more, shows that (2.12.10) entails (2.12.9)
which, combined with (2.12.3), implies { = 0 a.s. on G¢. This proves (2.12.4).
Hence, by Theorem 1.1, there exists a probability measure

(2.12.11) Q* ~ P*
such that (S;) is a @*-martingale, and
(2.12.12) dQ*/dP* € L.

Since P* < P, it follows from (2.12.11) that Q* € Mg. Finally, (2.12.1) and
(2.12.2) are easily obtained from (2.12.11) and (2.12.12). (b) follows from (a)
and Corollary 2.11. (c) is a consequence of (b) and Theorem 2.9. O

At the end of this section we shall outline an alternative proof of Theorem
2.12(a) which is based on a generalization of a certain version of Yan’s [8] theo-
rem.

2.13 Corollary. The following conditions are equivalent:

(a) Mg #0.
(b) P(¢C° = 0) > 0.

Proof. (a) = (b): This follows from Corollary 2.11.
(b) = (a): This follows from Theorem 2.12. O

2.14 Theorem. Suppose that P(H¢ ¢ Sy = 0) > 0. Then there is equivalence
between:

(a) NA holds on {H® ¢ ST = (0}.
(b) {H® e S; =0} = {¢¢ =0} a.s.
(c) Arn LY C Lf(s)) (a(S) given by (1.1.1)).

Proof. (a) = (b): Assume that NA holds on {H¢ ¢ Sy = 0}. It follows from
Theorem 2.9 and Corollary 2.11 that

{H®e ST =0} ={dQ*/dP >0} C {¢°* =0} as.
for some @Q* € Mg. This implies (b).
(b) = (a): This follows from Theorem 2.12.
(c) & (b): Note that (c) is equivalent to
P((°>0)=a(S)=P(H® ¢St >0).
By Theorem 2.8 this is equivalent to (b). O

10



The subsequent examples show that, in the case 0 < a(S) < 1, each of the
relations a(S) = £(S5), a(S) < A(S) < 1 and B(S) =1 is possible.

2.15 Example. (T'=1,d=3; 0 < a(S) < f(S) <1). Let Q =Q; U--- Uy
(a disjoint union) where Q1 = {wiy : m > 1} and Q; = {w;} (@ = 2,3,4). The
filtration is given by Fo = {0, Q}, F1 = F = {0,1}%. Let P{w} > 0, w € Q. (S;)
is given by So = (0,0,0), Si(wim) = (1/m,—=1,0) (m > 1), Si(w2) = (0,1,0),
Si(ws) = (0,0,1), Si(ws) = (0,0,—1). A strategy H belongs to P> iff H; =
(a,0,0) for some a > 0. Hence {H® e S; > 0} =y, and 0 < a(S) < 1. On
Q> UQ3UQy NA does not hold (consider H € P> (2, UQ3 USy), given by Hy =
(0,1,0)). On the other hand, NA holds on Q3 U Q4 = {dQ/dP > 0}, Q € Mg
given by Q{ws} = Q{ws} = 1/2. Hence 0 < a(S) < (S) < 1. Modifying this
example in an obvious way, gives an example for which 0 < a/S) = 8(S) < 1.

2.16 Example. (T =1,d =2; 0 < a(S) < f(S) =1). Let Q = O, UQy
(a disjoint union) where @y = {wy,, : m > 1} and Qs = {ws}. The filtration
is given by Fo = {0,Q}, 7y = F = {0,1}%. Let P{w} > 0, w € Q. (S)
is given by So = (0,0), Si(wim) = (1/m,—=1) (m > 1) and Si(w2) = (0,1).
It is easy to see that H € P> implies H ¢ .S; = (0,0) on Q,. Furthermore,
{H® e S; > 0} = Q;. On the other hand, let H™ € P and ¢,, € L} be given
by H™ = (n,1), dn(wim) = (n/m —2)* (m > 1), and ¢,(ws) = 0. Since
H™ ¢ 51(w) — ¢pn(w) = 1 (w € Q), we have P(¢° > 0) = B(S) = 1. Hence, by
Corollary 2.13, Mg = 0.

We conclude this section with outlining an alternative proof of Theorem
2.12(a). We shall use the following result which generalizes a certain version of
Yan’s [8] theorem (compare Theorem 3.1 in [6]). Using similar arguments as in
the proof of Theorem 3.1 in [6], we obtain

2.17 Theorem. Let 0 < ¢ < 1 be fized. Let K C L' be a convex cone which is
closed with respect to the norm topology on L'. Suppose that

(2.17.1) K>-Li:={¢:—¢eLl'nLf}
and

(e)
(2.17.2) KnL} cLy.

Then there exists a random variable Z such that

(2.17.3) 0<Z<1 as.,
(2.17.4) P(Z=0)<e,
and

(2.17.5) E[¢Z] <0, f€K.

11



If we have additionally that
(2.17.6) KnL. ¢ L' forall 0<6<e
then the above Z can be chosen in such a way that
(2.17.7) P(Z=0)=c¢

Proof of Theorem 2.12(a): We proceed similarly as in the proof of Theorem 1.1
in [4]. Fix any extreme random variable (¢. Choose any probability measure
P ~ P such that (¢ and the random variables S} are P-integrable, and

(2.17.8) dP/dP € L™.

Note that A7 N L[P] equals A7 N LY, and ¢ is also extreme with respect to
P. Let B(S) := P(¢¢ > 0) and K := A7 N L'(P). Then K is a closed convex
cone in Ll(ﬁ), and satisfies (2.17.1) as well as (2.17.2) and (2.17.6) for e = B(S)
According to Theorem 2.17 there exists a random variable Z satisfying (2.17.3)

and (2.17.5) with respect to P, and we have
(2.17.9) P(Z =0) = B(S).

Let Q* < P be given by dQ*/dP = Z. Then, by (2.17.8), dQ*/dP € L. By
(2.17.5), (St) is a @*-martingale, and Q* € Mg. It follows from (2.17.9) and
Corollary 2.11 that

dQ* _[dQ* e PN
{dP >0}_{dﬁ >0}—{C =0} P —as.

Since P ~ P, this shows that Q* satisfies (2.12.1). O

3 Conclusion

The main objective of this paper has been to characterize those subsets of F¢ =
{H°® e St = 0}, on which NA holds. In particular we showed that {¢° = 0}
is the largest set with this property. Theorem 2.14 gives conditions which are
necessary and sufficient for (S;) to satisfy the no-arbitrage condition on F*.

The intuitive reason for the fact that, in general, NA does not hold on F*
is the following: Knowing in advance that F'¢ occurs may provide “too much
information” on the evolution of (S;). Hence it would be interesting to find
conditions equivalent to those in Theorem 2.14, which are formulated in terms
of certain notions of information theory (e.g. entropy).
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