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Abstract

Multidimensional scaling is very common in exploratory data analysis. It is mainly

used to represent sets of objects with respect to their proximities in a low dimen-

sional Euclidean space. Widely used optimization algorithms try to improve the

representation via shifting its coordinates in direction of the negative gradient of a

corresponding fit function. Depending on the initial configuration, the chosen algo-

rithm and its parameter settings there is a possibility for the algorithm to terminate

in a local minimum.

This article describes the combination of an evolutionary model with a non-metric

gradient solution method to avoid this problem. Furthermore a simulation study

compares the results of the evolutionary approach with one classic solution method.

1 Introduction

Multidimensional scaling is very common in exploratory data analysis. It is mainly used

to represent sets of objects with respect to their proximities in a low dimensional Eu-

clidean space to get a better insight into the underlying structure of the data. The low

dimensional configuration X of the data is measured with respect to its goodness of fit

for example by a non-metric stress function S(X) (see Kruskal (1964a)). Widely used

optimization algorithms try to improve S(X) via shifting each configuration’s coordinates
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in direction of the negative gradient of S(X) (see e.g. Kruskal (1964b), Johnson (1973),

Meulman and Verboon (1993), Busing et al. (1997)). Depending on the initial configura-

tion, the chosen algorithm and its parameter settings there is a possibility of the algorithm

to terminate in a local stress minimum. Thus, the resulting final configuration may not

represent the structure of the data accordingly.

Recent publications try to address this problem by proposing algorithms which use models

like e.g. neural networks (in van Wezel et al. (2001)) or simulated annealing (Klock and

Buhmann (1997)) to overcome that problem. An often suggested alternative to avoid local

minima of the stress function is to use more than one starting configuration (see e.g. Opitz

(1980), Webb (1999), Young (1987)). The aim of this study is to explore the capabilites

of an evolutionary based algorithm with regard to this problem. Therefore a combination

of an evolutionary model using a classic non-metric gradient solution method has been

developed and implemented to

• achieve more heterogeneity on the solution search space,

• to enable configurations to exchange informations with crossover

techniques and

• to randomly change the algorithm’s parameters with mutation

and therefore prevent solutions from sticking to a local minimum.

2 The Gradient Method

We assume n multivariate data objects yi (i ∈ {1, . . . ,n}) have to be represented with

respect to their proximities in a low dimensional Euclidean space. Each iteration of the

algorithm leads to a configuration

X l =
(
xi j
)l

n,k ,

j denoting each object’s position in IRk, k usually ∈ {1,2,3} and l counting the number

of the actual iteration. X 0 will be chosen randomly and the gradient step factor of the 0th
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iteration λ0 will be initiated to a small positive real number. The original dissimilarity

matrix has the form

D =
(
di j
)

n,n ∈ IRn×n
+

. Additionally we assume that

• there are no missing values in D,

• dii = 0 ∀i ∈ {1, . . . ,n}

• (i′, j′) is more similar to (i, j)⇔ di′ j′ < di j.

The lth iteration of the algorithm can be described as follows:

1. Calculation of S(X l) (Kruskal (1964a))

• Calculation of dissimilarity d̂(i, j) with a Lp norm

• Monotonic transformation of d̂(i, j) into δ (i, j) in such a way that

d(i, j)≤ d(i′, j′)⇒ δ (i, j)≤ δ (i′, j′)

• Calculation of raw Stress function S∗(X l) and scaling it with maximal Stress

S(X l) =
S∗(X l)

Smax(X l)
=

∑
i< j

(
d̂(i, j)−δ (i, j)

)2

∑
i< j

(
d̂(i, j)− 2

n(n−1) ∑
i< j

d̂(i, j)

)2

2. Shifting points along the negative gradient of X l (∇S):

X l+1 = X l−λl∇S|X l

3. λl+1 = rλl, with r ∈ (0,1)

Iterations will be repeated till a termination criterion (e.g. minimal Stress) is fulfilled.
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3 The Evolutionary Algorithm

Evolutionary strategies are based on biologically motivated reproducing and selection

strategies and proved to be useful for solving a large range of problems which occur

with optimization algorithms (see e.g. Nissen (1997)). For the given problem we put s

MDS configurations in a population P = {I(1), I(2), . . ., I(s)}. This Population contains

individuals I(i) = {X(i),S(i)} with X(i) a randomly generated start configuration and

S(i) = {σ(i)1, . . . ,σ(i)n} as a set of normally distributed standard deviations (σ(i) j ∼

N(0,r), r ∈ IR+). We speak of a generation of this population as one iteration step of the

algorithm. Each generation passes the following steps:

1. Calculation of the fitness F(X(i))= f (S(X(i))) of each individual with a monotonic

decreasing function f : IR+ → IR+ of the stress, e.g. f (r) = r−1 or f (r) = ln−1 (r)

2. Random selection of the mating pool and the parents:

• Save the individual with the best fitness into the mating pool

• Select randomly s− 1 (with s
2 ∈ IN) individuals out of P into a mating pool

M =
{

Ĩ(1), . . . , Ĩ(s)
}

with selection probabilities

p(I(i)) =
f (I(i))

s
∑

i=1
f (I(i))

• Divide mating pool in randomly selected pairs of parents:

M =

{
I (1)pX

, I (1)pY
, . . . , I

( s
2

)

pX

, I
( s

2

)

pY

}

3. Generation of the children through

• Direct Crossover

Each pair of parents IpX and IpY exchange their configurations Xp and Yp with a

certain probability at randomly chosen crossover point(s) ci (0 < ci < n). Thus

the configurations Xc and Yc of the children IcX and IcY will be set depending

on the strategy type (see figures 1 and 2) to
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Xc(i) =

{
Xp(i), if i≥ c

Yp(i), if i < c
, Yc(i) =

{
Yp(i), if i≥ c

Xp(i), if i < c
(Strategy 1), or

Xc(i) =

{
Xp(i), if i 6= c

Yp(i), if i = c
, Yc(i) =

{
Yp(i), if i 6= c

Xp(i), if i = c
(Strategy 2)

Figure 1: Crossover Strategy 1

Figure 2: Crossover Strategy 2

• Intermediate or Discrete Recombination and Mutation

A standard deviation σ(i) j ( j ∈ {1, ...,n}) is assigned to each individual’s

point. Those standard deviations serve as a base for the random mutation

process:

(a) The Children’s standard deviations of mutation (σc(i1) j,σc(i2) j) are cal-

culated according to:

i. An intermediate recombination of the parent’s standard deviations

(σp(i1) j,σp(i2) j), e.g. σc(i1) j = σc(i2) j =
1
2

(
σp(i1) j +σp(i2) j

)
for all j ∈ {1, ...,n} or

ii. A Discrete recombination σc(i1) j = σp(i2) j and σc(i2) j = σp(i1) j for

randomly selected j ∈ {1, ...,n}

(b) randomly select points to mutate
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(c) X̃c(i) jk = Xc(i) jk +Z(i) jk with Z(i) jk ∼ N(0,σ(i) j)

• Mutation of Gradient Factor

(a) λ̃ is the gradient factor of the fittest parental individual

(b) Set the gradient factor of each child to λ (i) = λ̃ ·bZ

with Z ∼U(−1,1) and b a positive real constant

(c) Set ˜̃Xc(i) = X̃c(i)−λ (i) ·∇S|X̃c(i)

Generations will be calculated by starting over at (1) till a termination criterion has been

reached. The fittest individual, i.e. the one containing the configuration with the smallest

stress, is taken as the stress value assigned to the generation.

4 The Simulation Study

To compare both the evolutionary and the classic approach, sets of randomly generated

data objects served as a source for three simulation experiments. The representation space

was chosen to be IR2. Each experiment consisted of 500 MDS solution runs and was

terminated either by reaching a given minimal stress value or by exceeding a given time

limit. Some of the algorithm’s parameters have been set to fixed values throughout the

simulation runs (see table 1). The parameters controlled by the Monte Carlo Analysis are

set by uniformly distributed random variables (see table 2).

The input data sets for each experiment type have been generated randomly as well:

Type A: 30 normally distributed objects y with attributes y(i)∼ N(0,1),

Type B: 6 sharp clusters of 5 objects each with

y(i) = c j(i)+Z , c j(i) ∈ {0,1} , Z ∼ N(0,0.1)

Type C: 5 sharp clusters of 5 objects each and 5 wide spread objects as outliers

y(i) = c j(i)+Z j withZ j ∼

{
N(0,0.1), if j ∈ {1, ...,5}

N(0,10) , if j = 6
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Data Type

Parameter A B C

Random Mutation Jump width 0.1 0.1 0.1

Crossover Strategy 2 2 2

Recombination Type discrete discrete discrete

Mutation Probability 1 1 1

Maximal Time [sec.] 50 200 50

Initial Gradient Factor λ 0.5 0.5 0.5

Max. Factor for Gradient Change 10 10 10

Minimal Stress 6 ·10−3 6 ·10−3 1 ·10−4

Table 1: Setting of fixed parameters

Parameter data Type min max step

Population Size all 2 40 2

Classic or Evolutionary all c e -

A 0.2 1 1e-5

4λ (Classic) B 0.7 1 1e-5

C 0.7 1 1e-5

Crossover Probability all 1e-3 1 1e-4

Table 2: Monte Carlo Analysis: Uniformly Distributed Parameters
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Figure 3: Monte Carlo Simulation Results of Data Type A

(i∈ {1,2,3} denoting dimension, j ∈ {1, ...,6} number of cluster and c j center of cluster)

The dissimilarity matrix D of the generated input data is calculated by aggregating the

normed values of each attribute with a L2 norm:

di j =

√√√√√
3

∑
k=1

(
xik− x jk

)2

1
n

n
∑

i=1
(xik− x̄k)

2
, with x̄k =

1
n

n

∑
i=1

xik

5 Results

Figures 3, 4 and 5 show a histogram of the stress values reached after termination of each

run. The results of the classic runs have been collected in the grey bars, the black bars

show the results of the evolutionary based runs. The classic results show a distribution

with greater variance and larger worst case values in comparison to the evolutionary ones.

The worst, best, average and median stress values are summarized in table 3. The worst

case runs of the evolutionary approach resulted in final stress values with factor 0.12-0.35

smaller than the runs of the classic algorithm. The resulting configurations of the worst
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Figure 4: Monte Carlo Simulation Results of Data Type B

evolutionary
classic

0 0.1 0.2 0.3
0

20

40

60

80

100

120

140

160

180

Stress

N
um

be
r 

of
 R

un
s

Stress Distribution data type C

Figure 5: Monte Carlo Simulation Results of Data Type C
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case runs for 2 dimensional representations have been plotted for data type B in figures 6

and 7 and for data type C in figures 8 and 9 (see appendix, pages 14f). The 6 clusters are

distinguishable in the evolutionary result only. The corresponding plots of data type A1

have been left out because they are not expected to show a visible structure.

A interpretable dependency of the parameters varied during the Monte-Carlo analysis

could not be found. Probabely this is a result of short simulation runs and wide spread

parameter ranges.

For graphed details concerning interesting parameter pairs refer to figures 10 to 18 (see

appendix, pages 14ff). The filled circles in the plots show the evolutionary runs, the

triangles belong to the classic solution attempts.

Thereby figures 10 to 12 show the duration against the reached stress for each simula-

tion run. The abortion criterions of the algorithm explain the distribution of the result-

ing points. With data type A (see figure 10) many runs could reach the minimal stress

(6 ·10−3) but more runs failed in obtaining it because of the time limit2 (50 sec.). Data

type B shows a similar structure with the exception of many runs reaching smaller stress

values than specified. The probability for each run to make a larger progress in one algo-

rithmic step was apparently greater with data type B than with data type A. The outliers

with very large stress values in fig. 11 resulted from a unlucky initial representation and

the scaling of the gradient scaling factor with a value of 1, so the gradient scaling factor

stayed by its initial value and the (even local) minimum could never be reached. In fig-

ure 12 the minimal stress value (10−4) could never be reached so each result shows time

values around 50 seconds.

In figures 13 to 15 the change factor of the gradient scaling factor has been plotted against

the reached stress values for each run. Figure 13 shows that values from around 0.7 to 1

should be chosen to increase the probability to reach smaller stress values.

The effect of the population size, plotted against the reached stress values for the evolu-

tionary runs (figures 16 to 18), could not be detected with the given simulation.

1(30 normally distributed objects with equal mean and standard deviation)
2Time was measured after each run so the evolutionary runs with larger populations reached greater

durations
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Data Type

A B C

worst 0.070 0.092 0.089

best 0.0056 0.0019 0.00067

evolutionary average 0.015 0.014 0.015

median 0.0096 0.0042 0.0073

worst 0.20 0.78 0.25

best 0.0057 0.0020 0.00068

classic average 0.076 0.096 0.076

median 0.076 0.10 0.097

Table 3: Stress value results of simulation runs

6 Drawbacks and Outlook

One drawback of the evolutionary approach is the high computation costs at large number

of individuals in one population in comparison to the classic algorithm. If one algorithmic

termination criterion is a maximum time, a large population could result in a small number

of generations with a final stress not representing the capabilities of the algorithm. So the

number of individuals together with the maximal time limit should be chosen carefully.

Another disadvantage could lie in the direct crossover of points. Actually it leads to a

higher heterogeneity, but as long as the configurations don’t have a rotation and translation

invariant form an improvement of the configuration with direct crossover should be rather

casual.

Therefore the algorithm is planned to be improved and optimized with regards to the

following points:

• Optimization of the algorithm:

– Transform each individual into a rotation and translation invariant form.

– Set up a measure for similarity of individuals to assign a penalty function to

individuals similar to the ones already selected in the mating pool, i.e. change
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the fitness of those e.g. to

F̃(I(i)) =
F(I(i))

p
,

with p ∈ (1,∞) as a penalty coefficient.

– Individualize the evolutionary changed gradient scaling factor for each point

and adapt cross-over routines accordingly.

– Optimize the default values of the algorithm’s parameters with a larger simu-

lation study.

• Compare results with other actual algorithmic approaches (e.g. as in van Wezel

et al. (2001), Busing et al. (1997) or in Klock and Buhmann (1997))

• Include software module in a Java and R based data mining system under work

7 Conclusion

Evolutionary algorithms seem to be promising for solving non-metric multidimensional

scaling problems. With the first version of the algorithm presented with this study the

quality of the resulting configurations with respect to smaller stress values could be im-

proved significantly in comparison to one classic algorithm. A simulation study shows

that the worst case runs of the evolutionary approach result in final stress values for the

given sets of simulated data which are by factor 0.12-0.35 smaller than the classic algo-

rithm’s runs.
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Appendix: Graphics
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Figure 6: worst configuration of classic runs with data type B
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delta X = 0.990825201519691, deltaY = 0.987751451902392
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Figure 7: worst configuration of evolutionary runs with data type B
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Figure 8: worst configuration of classic runs with data Type C
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delta X = 0.992057998541236, deltaY = 0.988721140541916
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Figure 9: worst configuration of evolutionary runs with data type C
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Figure 10: duration against stress for data type A
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Figure 11: duration against stress for data type B
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Figure 12: duration against stress for data type C
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Figure 13: λ against stress for data type A
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Figure 14: λ Against Stress for data type B
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Figure 15: λ against stress for data type C

10
−3

10
−2

10
−1

0

5

10

15

20

25

30

35

40

Stress

Po
pu

lat
ion

 S
ize

data type A

Figure 16: population size against final stress for data type A

19



10
−3

10
−2

10
−1

0

5

10

15

20

25

30

35

40

Stress

Po
pu

lat
ion

 S
ize

data type B

Figure 17: population size against final stress for data type B
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Figure 18: population size against final stress for data type C
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