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1 Introduction

Decision trees are used very successfully for the identification resp. classification task of

objects in many domains like marketing (e.g. Decker, Temme (2001)) or medicine. Other

procedures to classify objects are for instance the logistic regression, the logit- or probit

analysis, the linear or squared discriminant analysis, the nearest neighbour procedure or

some kernel density estimators. The common aim of all these classification procedures is

to generate classification rules which describe the correlation between some independent

exogenous variables resp. attributes and at least one endogenous variable, the so called

class membership variable.

If there are exclusively metric scaled exogenous attributes the procedures often try to ag-

gregate these attributes in a way that the so built new quantity describes the class member-

ship as good as possible. The accuracy of this identification procedure is often measured

by variance based measurements. The regression based procedures use the least squares

approach and serve especially for the classification of binary scaled membership vari-

ables. If they are above all nominal scaled exogenous attributes the procedures divide the

objects in a way that the so generated partitions are as homogeneous as possible. The

homogeneity itself is measured by some deviation measurements like the Entropy mea-

sure or by some generalized variance based measurements like the Gini index. Only the

CHAID algorithm by Kaas (1980), a special decision tree procedure, uses a correlation

measure, the χ2 correlation measurement, to generate some classification rules in order

to describe the correlation between the involved attributes and the class membership.

Although the proper task of the classification procedures is to identify and explain the

correlation between at least one membership variable and in general several exogenous

attributes, only one algorithm actually uses a correlation measurement to do that. Fur-

thermore, it is noteworthy that this correlation measurement is symmetric in its nature

although the classification task is asymmetric: at least one exogenous attributes should

explain at least one endogenous variate and not vice versa.

Thus, the possibility to classify objects in the manner of decision trees using asymmetric

correlation measures should be analyzed. It will be shown that some well-known deci-

sion tree algorithms like ID3, C4.5 or CART can be understood as special versions of a

generalized decision tree based on asymmetric correlation measurements. But in contrast

to these procedures the measure to be proposed offers the chance to do some inferential

statistics as well.
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2 Decision Trees

The construction of decision trees is described, among others, by Breiman et al. (1984),

who present an important and well-known monograph on classification trees. A number

of standard techniques have been developed, for example like the basic algorithm ID3 by

Quinlan (1986), the C4.5 algorithm by Quinlan (1993), the above mentioned χ 2-based

algorithm CHAID by Kaas (1980) or the CART algorithm of Breiman et al. (1984). A

very interesting multi-disciplinary survey of the construction of decision trees and related

topics is presented by Murthy (1998).

Broadly speaking, a decision tree is built from a set of data having attributes X1, . . . ,Xn

and a class or membership variable Y . The result of the process is represented as a flow-

chart-like tree in which each internal node specifies a decision on an attribute and each

branch denotes an outcome of these decisions. Furthermore, each end node or leaf of the

tree corresponds to an subset of objects with the same class or to objects for which the

homogeneity is as good as requested. Thus the leaf nodes represent classes or class distri-

butions.

The basic algorithm for the induction of a decision tree itself is a "greedy algorithm that

generates decision trees in a top-down recursive divide-and-conquer manner" (Han, Kam-

ber (2001)). The basic strategy consists of the following steps:

• The tree starts with a single node, the so called root, representing the whole considered

data set.

• If the objects all belong to the same class, then the node becomes to a leaf and is la-

beled with that class.

• Otherwise, the algorithm uses a split criterion for selecting the attribute that will best

separate the set of objects into individual subsets or classes. This attribute becomes

the decision attribute for the given node. Depending on the used split criterion, all

attributes, categorical as well as continuous-valued attributes, resp. only categorical or

artificially categorized attributes could be used (Attribute Selection Measure).

• A branch is created for each known value of the decision attribute and the data set (of

the considered node) is partitioned accordingly.

• The algorithm repeats the same procedure recursively to form a decision tree for all

subsets of each partition. Once an attribute has occurred at a node, it need not be con-

sidered in any of the node’s descendents.
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• The recursive partitioning is finished when a so called stop criterion, which depends

on the used split criterion and/or the underlying type of induction procedure, is ful-

filled (Pre-Pruning).

This basic strategy could be found in most of the well-known algorithms for induction of

decision tree like for instance in ID3, C4.5 or CART as well as in CHAID. But only the

split criterion resp. the attribute selection measure and the way of pruning separate the

different algorithms.

The most important attribute selection measures are the information gain, the informa-

tion gain ratio (both are based on the well-known entropy), the Gini index, the twoing

value and the χ2-based measure of correlation. All of them attempt to partition the data

set in such a way that the resulting subsets are as homogeneous as possible with respect

to the class membership of the objects. Thus, the general aim is to minimize the so called

impurity of the partition.

When decision trees are built, many of the branches may reflect anomalies in the data

set due to noise or outliers. Tree pruning methods address this problem of overfitting the

data. Such methods typically use statistical measures to remove the least reliable branches,

generally resulting in faster classification and an improvement in the ability of the tree to

correctly classify unknown objects. To prune a tree there are two common approaches,

the so called pre-pruning technique and the so called post-pruning technique.

In the pre-pruning approach, the tree is pruned by halting its construction early, for in-

stance by deciding not to further split or partition the subset of objects at a given node.

This decision could base on measures like χ2, information gain, and so on, which are used

to assess the goodness of a split. If the partitioning of the objects of a node would result in

a split that falls below a prespecified threshold, then further dividing of the given subset is

halted. There are some difficulties, however, in choosing an appropriate threshold. High

threshold could result in oversimplified trees, while low threshold could result in trees

with a high probability of overfitting. Other possibilities to control the halting of the in-

duction are for instance the (too small) number of objects in a node, the fact that all objects

belong to the same class or that all objects are identical with respect to the given attributes.

The second approach, the post-pruning, attempts to remove branches and nodes from a

"fully grown" tree in such a way that the resulting pruned tree optimizes some special ac-

curacy measures. The best-known techniques in this framework are the error-complexity-

pruning by Breiman et al. (1984), the pessimistic-error-pruning by Quinlan (1986) and
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finally the error-based-pruning by Quinlan (1993). While the procedure of Breiman et

al. is based upon an accuracy measure that is calculated for a so called test data set, which

have to be also available, the algorithms of Quinlan only use the given (training) data set

to prune the tree.

Alternatively, pre-pruning and post-pruning may be interleaved for a combined approach.

Post-pruning requires more computation than pre-pruning, but leads to a more reliable

tree, in general.

3 Attribute Selection and Correlation Measures

The main task of all classification procedures is to explain the correlation between at least

one dependent, also called endogenous membership variable Y and in general several

independent, exogenous attributes X1, . . . ,Xn. Regarding now the induction of decision

trees, this classification task can also be seen as an iterative bivariate analysis of pairs

(Xi,Y ) for a given data set, i.e. objects belonging to a given node. To consider such pairs

(Xi,Y ) in the manner of bivariate analysis the techniques of correlation analysis are avail-

able. Following Hilbert (1998) there exist several types of correlations:

• Type 1 measures the deviation from the stochastical independence, is symmetric in the

way to use the attributes and is based on the χ2 measure.

• Type 2 compares the conditional distributions of one attribute, given the values of an-

other, distinguish between cause and effect, i.e. is asymmetric, and can be considered

as an unweighted variety of type 1.

• Type 3 considers the reduction of the prediction error for one attribute, given the value

of another attribute, is also asymmetric and known as predictive association.

• Type 4 is based on the concept of pairwise comparisons, does not distinguish between

cause and effect, and is above all suitable for at least ordinal scaled attributes.

While the correlation measures based on type 1 as for instance the χ 2 measure itself

and its derived measures like the φ coefficient, Tschuprow’s contingency measure T or

Cramer’s V are very popular, correlation measures of type 2 to 4 are not used very of-

ten. The main reason why these type 1 measures are used so often is the knowledge of

the (asymptotical) distribution of these measures and as a result the possibility for do-

ing some inferential statistics in order to test the correlation between the attributes. But

"the fact that an excellent test of independence may be based on χ 2 does not at all mean
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that χ2, or some simple function of it, is an appropriate measure of degree of association"

(Goodman, Kruskal (1954), 740). One difficulty with the use of these traditional measures

is that it is difficult to compare meaningfully their values of two pairs (Xi,Y ) and (X j,Y )

resp. to interpret their values in an operational way.

Thus, Goodman and Kruskal (1954) proposed another concept to measure the correlation

between two attributes, which is based upon an idea of Guttman (1941) and well-known

as predictive association. Their concept is able to reflect the extent of the ability of an

attribute to predict the values of another attribute, for instance of a class membership vari-

able.

To construct a correlation measurement that follows this concept the following has to be

done: Defining PE(Y ) as the prediction error of an attribute Y with values y1, . . . ,ym and

PE(Y |Xi) as the equivalent prediction error of the same attribute Y given an attribute Xi

with values xi1, . . .ximi . Then, it can easily be seen that the following equation holds:

PE(Y |Xi) =
mi

∑
j=1

PXi(x j) ·PE(Y |Xi = x j) (1)

PXi(x j) denotes the probability or (in case of a sample) the relative frequency of an at-

tribute Xi having the value x j. Using this denotation the measure of predictive association

is defined by

CMPRE
(Xi→Y ) :=

PE(Y )−PE(Y |Xi)

PE(Y )
. (2)

This quantity is a general asymmetric measurement of correlation between the two in-

volved attributes with Xi as cause and Y as effect. Because of its characteristic to reflect

the extent of the ability of an attribute to predict the values of another attribute it is also

called Proportional-Reduction-of-Error or PRE coefficient. Based upon this very general

definition of a PRE coefficient, only the operational form of PE(·) has to be specified to

obtain a concrete measurement of correlation. If considering, however, the definition and

meaning of the coefficient, it is easy to understand why every deviation coefficient is a

good choice for the prediction error PE(·): the smaller the deviation of an attribute the

better the prediction of it.

The well-known deviation coefficients for nominal scaled attributes are Shannon’s en-

tropy H (Shannon (1948)), the deviation coefficient SH by Herfindahl and a measure that

is based on the probability resp. frequency of the mode of the distribution of the consid-

ered attribute, the so called modality measurement M (Hilbert (1998), 115–122).
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Shannon’s entropy

If Shannon’s entropy H is used to declare the prediction error, under the known assump-

tion the following definition holds:

H(Y ) :=−
m

∑
k=1

PY (yk) · ld PY (yk) (3)

An equivalent definition of the entropy of Y given Xi can be obtained by the use of (1) and

(3). Both definitions consequently lead to the following PRE coefficient of correlation for

two nominal scaled attributes:

CMPRE,H
(Xi→Y )

:=

m
∑

k=1
PY (yk) · ld PY (yk)−

m
∑

k=1

mi

∑
j=1

P(Xi,Y )(x j,yk) · ld P(Y |Xi=x j)(yk)

m
∑

k=1
PY (yk) · ld PY (yk)

(4)

This predictive association coefficient is, except for the denominator, equal to the well-

known information gain measure by Quinlan (1986). The denominator which ensures

the proportional part of the coefficient has the task to normalize the measure and can be

neglected for the induction of a decision tree: the attribute Y corresponds to the member-

ship variable in a node and thus, all considered pairs (X1,Y ), . . . ,(Xn,Y ) have the same

endogenous variable resp. the same denominator while calculating the correlation coef-

ficient resp. the split criterion at a node. Thus, the information gain can be treated as an

asymmetric correlation measure and the proposed split criterion is nothing but a predic-

tive association coefficient.

The deviation coefficient by Herfindahl

If, however, the deviation coefficient SH by Herfindahl is used to define the prediction

error, the following definition holds:

SH(Y ) := 1−
m

∑
k=1

PY (yk)
2 (5)

An equivalent procedure leads to the following PRE coefficient:
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CMPRE,SH
(Xi→Y ) :=

mi

∑
j=1

PXi(x j)
m
∑

k=1
P(Y |Xi=x j)(yk)

2−
m
∑

k=1
PY (yk)

2

1−
m
∑

k=1
PY (yk)2

(6)

Similar to the above situation, the proposed PRE coefficient is equal to a well-known split

criterion, the Gini index by Breiman et al. (1984) - except again for the denominator for

standardization. Furthermore, all the above mentioned remarks are valid as well. By the

way, the standardization of the Gini index proposed by Zhou and Dillon (1991) differs

from this and should not be recommended because of the fact that their procedure gener-

ates a correlation or split measure which is not asymmetric but symmetric.

The modality measurement

Considering the information gain and the Gini index as special correlation measures it

can easily be realized that the interpretation of these quantities is very difficult and in

common without a concrete meaning. Only the relative comparison of the different mea-

sures is possible and leads to a best splitting attribute. An absolute appraisal of the values,

however, is not possible. On the other hand, this very characteristic is one of the most im-

portant advantages of the third deviation measurement, the modality measure M. The use

of this measurement to describe the prediction error for an attribute leads to a definition

according to

M(Y ) := 1− max
k=1,...,m

PY (yk) (7)
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and respectively to the following PRE coefficient:

CMPRE,M
(Xi→Y )

:=

mi

∑
j=1

max
k=1,...,m

P(Xi,Y )(x j,yk)− max
k=1,...,m

PY (yk)

1− max
k=1,...,m

PY (yk)
(8)

This coefficient is known as the predictive association coefficient λ by Goodman and

Kruskal (1954) and has some similarities to the split criterion theta by Messenger and

Mandell (1972) who propose a less known decision tree algorithm THAID based on that

theta coefficient. Also Breiman et al. (1984) analyze a similar coefficient in the framework

of reducing missclassification costs.

In contrast to the other predictive association measurements Goodman and Kruskal’s λ
can easily be interpreted. If nothing is known about the distribution of the values of an

attribute Y , the best prediction of Y is the mode ymod of the attribute with a prediction er-

ror 1−PY (ymod). Given an exogenous attribute Xi this prediction error can be calculated

according to (1) to describe the support of Xi to predict Y . Thus, λ corresponds to the pro-

portional reduction of the prediction error of Y as long as the mode is the best prediction

for an attribute. For instance, a value of 0.2 means that there is a 20 percent opportunity to

improve the prediction of an attribute Y using an exogenous attribute Xi. In other words,

the probability to make an error while predicting a value of an attribute Y by selecting

the mode of this attribute decreases by 20 percent using the exogenous attribute. Further

characteristics of λ are:

• If and only if λ = 0 then the knowledge of a value of Xi is no help for predicting the

value of Y .

• If and only if λ = 1 then the knowledge of a value of Xi leads definitely to one value

of Y .

• If Y and Xi are stochastical independent then λ = 0. The reversal doesn’t hold.

With respect to the sample form λ̂ of the coefficient, Goodman and Kruskal (1963) prove

that λ̂ is asymptotically unbiased and asymptotically normal distributed. Furthermore,

they give the following expression for the asymptotical variance of λ̂ :
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Var(λ̂ ) =

1−
mi

∑
j=1

P(Xi,Y )(x j,yk∗j
)

N ·

(

1−PY (yk∗)

)3 (9)

·

( mi

∑
j=1

P(Xi,Y )(x j,yk∗j
)+PY (yk∗)−2 ·

mi

∑
j=1

k∗j =k∗

P(Xi,Y )(x j,yk∗j
)

)

N is the sample size (at a node), P(·) the known probability or the sample estimator of

the unknown probability of the (common) distribution of Y and/or Xi, k∗ the index of the

mode of Y and k∗j the index of the mode of Y given Xi = x j. Using these sampling prop-

erties it is now possible to calculate some confidence intervals for λ (Xi →Y ), to do some

one- or two-sided inferential tests for λ (Xi →Y ) or to test λ (Xi →Y ) against λ (X j →Y )

for some i, j.

Comparison of the different split criteria

Beside this very interesting and important property to do some inferential statistics for this

correlation measure resp. split criterion it has to be analyzed which further advantages or

disadvantages – compared to the Gini-index or the information gain measure – Goodman

and Kruskal’s λ has. To do so, it is useful to have a look at the functional form of the

measurements, described for a binary membership attribute Y (figure 1).

10

PSfrag replacements Herfindahl’s SH

Modality Measure M

Shannon’s entropy H

Fig. 1. Deviation measures for a binary attribute Y

First of all, it can be seen that Shannon’s entropy H and Herfindahl’s deviation measure-

ment SH are very similar. This also explains why the results of the induction of a decision

tree using the Gini-index (which uses SH) and the information gain measure (which uses

H) are often identical. Furthermore, H and SH assess all distributions, which are more
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or less similar to an equal distribution, in the same manner. Here, differences are very

difficult to analyze. The modality measure M, however, reacts in such a situation much

more sensitive. On the other hand, M has some difficulties in the discrimination of dis-

tributions which are similar to an extrem unbalanced one. Here, the other measures have

the advantage to react very sensitive to a variation of the probabilities. This also means

that the modality measure, taken as a split criterion, does not prefer the so called end-cut

splits. But if this is an advantage or disadvantage can not easily be answered, even though

Breiman et al. (1984) do not feel very well about a decision tree algorithm which has not

this end-cut-split feature. Here, some further research and simulation studies are neces-

sary. Finally, it can be shown that the modality measure M and the measures H and SH

generate a different order with respect to the deviation of two distributions. While, for

instance, the entropy measurement and Herfindahl’s deviation measure resp. their analog

split version both prefer the distribution on the right-hand side in figure 2 (see also table

1), the modality measure prefers the left-hand distribution which is – in the author’s opin-

ion – much more desirable in the framework of decision trees.
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Fig. 2. Distributions of Y given two different values of an exogenous attribute X

Another critical situation arises by using the entropy resp. Herfindahl’s measure if the dis-

tributions to compare with are more or less equal. Figure 3 shows two such distributions.

Four of the six probabilities of Y |X = x1 and Y |X = x3 are equal, only the conditional

probability of Y = 2 and Y = 3 differs. Even though the structure of the distributions are

similar, H und SH prefer the one on the right-hand side (see also table 1). Thinking about

a slice changing in the frequency of a node, depending for instance on the drawn sample,

the induction of a decision tree will lead by using SH or H to two different classification

rules – a situation that looks like the problem of overfitting the tree. In contrast to this

behavior, both distributions of Y are assessed in the same manner when using the modal-

ity measure M. A variation of non-mode probabilities has no effect to the quantity of M.

Thus, M resp. Goodman and Kruskal’s λ leads to an induction of much more stable trees,
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which are less dependent on small variations in the probabilities caused by random effects

of the drawn sample.
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Fig. 3. Two similar distributions of Y given an exogenous attribute X

In summary it may be said that the modality measure has the ability to induct a decision

tree which differs from the ones produced by the Gini-index or the information gain mea-

sure. And in contrast to the opinion of Breiman et al. (1984) the modality measure seems

to have some advantages for which it is worthwhile to analyze this measure in more de-

tail. Considering as well the opportunity to do some inferential statistics the introduction

of Goodman and Kruskal’s λ as a split criterion is a chance to get an algorithm for the

induction of a decision tree which might generate trees and classification rules which are,

probably, much more adequate than the known ones.

Y |X = x1 Y |X = x2 Y |X = x3

Modality measure M 0.50 0.60 0.50

Herfindahl’s SH 0.70 0.67 0.69

Entropy H 1.49 1.33 1.48

Table 1. Deviation measures of Y given X = x1, X = x2 resp. X = x3
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4 The procedure ASCAID

Based upon these remarks about the predictive association measure λ , a new algorithm for

the induction of a decision tree should be proposed in the following. This algorithm takes

care of the asymmetric character of the classification task, in contrast to the well-known

CHAID algorithm, and nevertheless allows to do some inferential statistics, in contrast to

the other asymmetric versions of decision tree algorithms like ID3 or CART. And accord-

ing to the first algorithm for the induction of classification rules, the AID procedure by

Sonquist et al. (1971), this procedure should be called ASCAID: Using an ASymmetric

Correlation Measure for Automatic Interaction Detection.

Like all the other induction procedures, ASCAID is a top-down approach as well and

consists of the following steps:

• STARTING: All objects are assigned to the root node.

• MERGING and SPLITTING: Using the split criterion λ the set of objects at a node

will be divided in further, but not necessarily all subsets which will be assigned to

further nodes as well.

• STOPPING: The new generated nodes will be treated in the same manner until nodes

will be created for which at least one of some well-defined stop criteria is true. These

nodes will be called leaves.

• LABELING: Each leaf will be labeled with the corresponding mode of the member-

ship attribute in the leaf.

To prevent the problem of overfitting the well-known techniques of pre- and post-pruning,

which have to be adopted to λ , will be used, too.

The Merging Step

The aim of this optional stage is to merge the categories of the exogenous attributes to pre-

vent a partitioning with too many subsets and/or to prevent the creation of subsets which

are too similar. Both approaches lead to a decision tree which is much more suitable to be

used for other data sets (less overfitting). The procedure itself is similar to the one of the

CHAID procedure and consists of the following steps:

• Instead of the χ2 measure to analyze the correlation of Y given X = xi and Y given

X = x j, Goodman and Kruskal’s λ should be used.
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• The decision for the fusion of two categories of an attribute will be made by using

the PRE coefficient λ and a well-drawn threshold λ ∗. The assessment by using the

significance level of the sample quantity of λ , however, is not directly possible. This

is due to the degeneration of the distribution of λ̂ (Goodman, Kruskal (1963)). Here,

some further work is necessary, like for instance in the manner of solving the same

problem for the coefficient of determination.

The Splitting Step

Based upon the suitably merged categories of all exogenous attributes Xi, now the assess-

ment of these attributes with respect to their discrimination power for the membership

attribute Y should be analyzed. Therefore, the following steps are necessary:

• The coefficient λ̂ should be calculated for all possible pairs (Xi,Y ), i.e. λ̂ (Xi →Y ) : =

λ̂ (i).

• All exogenous attribute Xi with a value λ̂ (i) > λmin, which have to be well-drawn as

well, will be chosen as a potential split criterion.

• If there is more than one potential split criterion, three different procedures are possi-

ble.

– If there is only one attribute Xi∗ with a large value λ̂ (i) (relative to the others), then

that attribute will be chosen as split criterion.

– If there are two such attributes, a test with the null hypothesis H0 : λ (i) = λ ( j) (or

< resp. > as well) will be analyzed. The corresponding test statistic T is asymp-

totically normal distributed and defined as follows (Goodman and Kruskal (1963)):

T : =
λ̂ (i)− λ̂( j)

√

Var(λ̂(i))+Var(λ̂( j))
(10)

If then the adequate null hypothesis can not be rejected, there are strong hints for

the overfitting of the tree. Another sample, drawn from the same population, could

lead to another tree, the induction will be very unstable. In such a case the in-

duction of the tree, however, should be continued, for instance by choosing the

attribute with the largest sample value λ̂ as split criterion, but handled with care.

– If there are more than two such potential split attributes, say X1, . . ., Xk, an adopted

test for the null hypothesis H0 : λ (i1) = . . . = λ (ik) should be analyzed. The cor-
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responding test statistic T is now asymptotically χ2 distributed with k−1 degrees

of freedom and defined as follows (Goodman and Kruskal (1963)):

T : =
k

∑
i=1

(

λ̂ (i)−λ
)2

Var(λ̂(i))
with λ : =

k
∑

i=1

λ̂ (i)

Var(λ̂ (i))

k
∑

i=1

1
Var(λ̂ (i))

(11)

For the treatment of the results of this test, the same rules as for the two attribute

case above are valid as well.

The Stopping Step

Based upon the best chosen split attribute, a new partition of the sample (of a node) fol-

lows. These subsets have to assess if they have to be treated as well or if they become to

an end-node or leaf. This decision is made by using some well-known pre-pruning tech-

niques and should help to generate a decision tree which is able to explain the correlation

between the involved attributes as good as for the considered sample. The dividing of a

node will terminate if for instance at least one of the following, most important rules is

valid:

• All objects of a node belong to the same class of the membership attribute.

• All objects of a node have the same values of the considered exogenous attributes.

• The number of objects at a node is smaller than a pre-defined threshold.

If at least one of these rules is valid for a node, then this node becomes a leaf. If all nodes

are leaves, the algorithm stops. The fully developed tree should then be treated with some

post-pruning techniques to ensure the adaptability to other samples.

The Accuracy of the Tree

To measure the accuracy of the inducted tree, once again the PRE measure λ can be used.

Defining the leaves of the tree as values of a dummy attribute X0, the predictive association

λ̂ (X0 → Y ) of that X0 and the membership attribute Y can be calculated. Additionally, all

tests with respect to λ are possible and useful. Thus, different inducted decision trees can

be compared as well by using the known test statistics (10) and (11). Furthermore, the

value of λ̂ can be interpreted as (estimated) missclassification rate of the decision tree for

the identification of the class membership attribute Y .
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5 Outlook

With ASCAID, a decision tree algorithm is proposed which takes care of the asymmetric

character of the classification task, allows to do some inferential statistics and is easy to

interpret. Furthermore, the accuracy of the whole tree is based on the same measure as

the splits of the nodes. Besides these very promising but also very theoretical features of

the algorithm some intensive empirical studies are necessary to show what ASCAID is

really able to perform. Furthermore, comparisons with the other well-known algorithms

are needful as well as studies about the thresholds in the merging and splitting steps.

But also some theoretical work has to be done. Here, the problem of the degeneration of

the distribution of λ has to be mentioned as well as the consideration of missclassification

costs as well as the consideration of an ordinal endogenous attributes resp. membership

attribute. Nevertheless, the new algorithm could offer a chance to solve the classification

tasks maybe better than the known ones.
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