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Abstract

This paper introduces a little known category of estimators – Linear Non-
Gaussian vector autoregression models that are acyclic or cyclic – imported
from the machine learning literature, to revisit a well-known debate. Does
exporting increase firm productivity? Or is it only more productive firms that
remain in the export market? We focus on a relatively well-studied country
(Chile) and on already-exporting firms (i.e. the intensive margin of export-
ing). We explicitly look at the co-evolution of productivity and growth, and
attempt to ascertain both contemporaneous and lagged causal relationships.
Our findings suggest that exporting does not have any causal influence on
the other variables. Instead, export seems to be determined by other dimen-
sions of firm growth. With respect to learning by exporting (LBE), we find
no evidence that export growth causes productivity growth within the period
and very little evidence that exporting growth has a causal effect on subse-
quent TFP growth.
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1 Introduction
Effective economic policy requires a causal understanding of the relationships
between variables. However, the toolkit of causal estimators available to econo-
metricians is limited, and not all estimators are appropriate for certain research
contexts. For example, instrumental variables analysis can be problematic if there
are no suitable instruments that satisfy the exogeneity requirements. Regression
discontinuity design cannot be applied if the data are not arranged in a certain way,
e.g. if the quality of applications, whose causal effects are object of study, is not
ranked. Randomized controlled trials can be prohibitively difficult to implement
in economic contexts with large numbers of interconnected actors and over long
time periods (but see the pioneering efforts by Atkin et al., 2017).

This paper introduces a little known category of estimators – Linear Non-
Gaussian vector autoregression models that are acyclic or cyclic – imported from
the machine learning literature, to complement the existing literature with new
results on the causal relationship between exporting and productivity.

Our identification strategy applies Independent Components Analysis (ICA)
to generate a set of SVAR residuals, generated from the reduced-form VAR resid-
uals, that are maximally statistically independent. The statistical independence
of these SVAR residuals allows us to arrange the variables in a causal ordering,
exploiting the simple consideration that independent exogenous shocks can si-
multaneously affect different sets of variables precisely because of the presence
or absence of causal links among the variables. The LiNGAM estimator (Linear
Non-Gaussian Acyclic Model) assumes acyclicity - i.e. that there are no causal
feedback loops that take place within the same year (although lagged causal ef-
fects can go in both directions between variables). The LiNGAM estimator has
already been featured in previous econometric work (e.g. Moneta et al., 2013;
Brenner et al., 2018). We also present the LiNG estimator (Lacerda et al., 2008)
which – to our knowledge – has not yet been introduced to economics. The LiNG
estimator relaxes LiNGAM’s acyclicity condition, and allows for simultaneous
causal feedback loops between variables even within a single year. LiNG there-
fore relaxes the assumption of an acyclic causal structure, although it introduces
a new set of computational complexities, that we discuss.

Our new estimators provide new insights to a vibrant debate, because we can
complement previous results with new perspectives obtained from a new method
of identification. In the context of increasing concerns about the replicability and
rigour of causal estimates, our results can help triangulate between existing re-
sults.

Our empirical application focuses on the causal relationship between export-
ing and productivity. Do firms take advantage from trade? Or is exporting a game
that only the best firms can play, and once they export there is little else they can
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learn? Since the 1990s economists have used micro data to study how firms take
advantage from exporting, in both low income and high income countries (see
e.g. Cirera et al., 2012). The seminal work of Bernard and Jensen (1995) started
a very prolific field of enquiry, using firm and plant survey data from a large
number of different countries. The results from this literature relatively unam-
biguously indicate that exporting firms, on average, do better than non-exporting
firms on different performance measures (see for example surveys by Greenaway
and Kneller, 2007; International Study Group on Exports and Productivity, 2008;
Wagner, 2007). However, Bernard and Jensen (1999) subsequently highlighted
that, in order to enter the global market, firms need to be more productive than
average. On the one hand, firms need to increase productivity before entering the
export market – because of trade costs, stronger competition, and investments re-
quired to increase the scale. On the other hand, firms may increase productivity
while exporting – because of learning from foreign buyers, use of excess capacity,
or stronger competition. What comes first, the chicken (growth of exports) or the
egg (productivity growth)?

Two crucial aspects distinguish our work from previous studies on the ef-
fect of export on productivity. First, we focus on the small number of firms
(Bernard et al., 2007) that have already accessed the export market, and we anal-
yse changes in export and productivity, rather than levels. In the literature, most
studies have looked at the extensive margin of exporting (entering the foreign
markets), whereas only few focus on the intensive margin (increasing exports).
Increases in exports may have implications for firm productivity (in the short or
long run) through a number of mechanisms: larger number of clients and/or mar-
kets from which the firm could learn; increased technology/knowledge transfer
from buyers; greater incentives to increase productivity and compete in markets
with higher quality; learning about new market opportunities; less vulnerability
and dependence on a single market; having a larger scale of output; and improved
utilisation of existing production capacity.

Focussing on export growth rather than on entry, we can ignore the problem of
self-selection into exporting,1 and focus on the identification of whether (i) firms
that export more improve their performance (productivity) or (ii) the other way
round: firms must improve their productivity in order to be able to export more.

Second, in order to identify the causal order of the mechanisms between ex-
porting and productivity growth, we use Independent Component Analysis to find
independent residuals from SVAR estimations. The proposed method uncovers
the causal structure within the same period, providing a unique understanding of
the short term relation between export and productivity growth.

1As summarised by Park et al. (2010, p. 822): “conceptually, the fundamental problem is that
nonexporters are an inappropriate counterfactual for exporters.”
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The proposed method can be useful for situations in which matching estima-
tors and instrumental variables are problematic. Indeed, in many empirical cases,
finding settings that resemble the randomized control trial setting may be difficult.
A crucial strength of our method is that it avoids both theoretical restrictions and
it contains general assumptions of the possible causal structure at a minimum. We
are able to identify whether firms simultaneously decide to invest to increase pro-
ductivity and to export (Aw et al., 2011), or whether one decision precedes (and
induces) the other, by investigating the causal effect in the same time period.

In order to better identify the methodological and empirical contribution, we
focus on Chile, a small country, with a small domestic market, an open economy,
a well-tested firm survey, and large evidence on the relation between exporting
and productivity (e.g. Alvarez and Crespi, 2007; Alvarez and López, 2005, 2008;
López, 2009; Pavcnik, 2002).

Our main results suggest that in the short run export growth follows growth in
productivity, and not the other way round. There is no evidence of export growth
causing productivity growth. The dynamic seems to be driven by employment,
which has a contemporaneous negative effect on productivity, which in turn affects
export. This means that, once Chilean firms enter the foreign market, changes
in exporting have no detectable effect on productivity in the short run. On the
contrary, Chilean firms need to improve their performance in order to increase
exports. We should also note that Chilean firms, on average, choose between the
domestic and the foreign market: when export increases, domestic sales decrease.
This seem to confirm that for a given level of output there is an explicit choice to
increase export, following other changes in the firm.

Our results are relevant for industrial and trade policy. They seem to suggest
that exporting firms in a small open economy, which has been open for a few
decades, are not managing to learn a lot in the short period, at least in the short
run. This might be because most firm’s sectors are not technology intensive, and
most competition is based on price. Small changes in labour costs can boost
productivity and increase exporting. Whether this dynamics brings about a longer
term effect on technological learning and upgrading is left for future research.

Our paper contributes to the literature attempting to identify the effect of firm
specific changes in exporting on changes in productivity. Park et al. (2010) find
that firm specific export shocks have a positive effect on productivity growth in
China. To identify the effect of exports the authors instrument export growth
with shocks in the currency exchange rate of the destination country. Berman
and Rebeyrol (2010), using data on French firms, find that entry and persistence
in the export market has no significant effect on productivity. In contrast, they
find positive effects of export growth on subsequent productivity growth. More
generally, we also contribute to the literature that has focussed on export intensity,
rather than entry in the export markets (e.g. Castellani, 2002; Fernandes and Isgut,
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2005; Antolín et al., 2013).
In the rest of the paper we first discuss the heterogeneous evidence on export-

ing and productivity (Section 2). Next, Section 3 discusses the core of the paper:
the methodological contribution. Section 4 presents the dataset and discusses the
measurement of productivity in this paper. We then present and discuss the results
in Section 5. In Section 6 we discuss implications for future research in this and
similar topics.

2 The relation between exporting and firm produc-
tivity

A large amount of research has attempted to identify the direction of causality be-
tween exports and growth at the firm level. Wagner (2007) conducts a systematic
literature review and finds that: (i) exporting firms are always more productive
than non-exporters; (ii) exporters very often are more productive even before en-
tering the export market; (iii) results on learning-by-exporting (LBE) are very
mixed, and when matching estimators are used no significant effect of exporting
emerges; and (iv) firms that exit the export market tend to reduce productivity.
In a parallel review of empirical literature, Greenaway and Kneller (2007) also
report that results on LBE are not conclusive. Wagner (2012) updates his pre-
vious review, suggesting that the relation between exporting and productivity is
influenced by export destination: self-selection is stronger when exporting to high
income countries, but results on LBE are still mixed, firms are more likely to
increase productivity by exporting when they export to high income countries.
Similar inconclusive results on LBE are found when analysing the service sector.

For instance, Girma et al. (2004), who introduce matching techniques to this
strand of literature, find a significant positive effect of export on productivity for
UK manufacturing firms. Tsou et al. (2008), using a census of Taiwanese firms
repeated for three different periods, find that firms staying in the export market
experience a larger increase in productivity than non-exporters. Similarly, Bald-
win and Yan (2012) find that, following changes in the real exchange rate, firms
that are already in the export market experience a relatively larger gain in produc-
tivity than new entrants. Manjón et al. (2013) find evidence of LBE for Spanish
manufacturing firms. De Loecker (2013) proposes a different method for com-
puting productivity, which includes export in firm decision (and therefore as a
determinant of productivity) and finds significant LBE for Slovenian firms.

A number of studies fail to find a significant positive effect of exporting on
productivity. Using Indian data, Mukim (2011) finds that there is no sustained
effect of learning from exporting. Eliasson et al. (2012) find similar results when
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focussing on small and medium firms: evidence of learning to export, but no
significant effect of exporting on learning. The International Study Group on Ex-
ports and Productivity (2008) use panel data from 14 different countries, finding
no evidence of LBE. Arnold and Hussinger (2005) use matching techniques to
investigate the LBE on German firms, but also find no significant effect. Damijan
and Kostevc (2006) find similar results on Slovenian firms. Tsou et al. (2008)
find mixed evidence for the LBE hypothesis in the case of Taiwanese firms, while
evidence for self-selection is much stronger.

Heterogeneous effects seem to explain part of the difference in findings. We
have already mentioned the ‘distance-to-frontier’ effect of the country of desti-
nation: firms may learn more from industrialised countries. Martins and Yang’s
(2009) meta-analysis on LBE finds that, relative to high income countries, firms
in developing countries enjoy a stronger impact of exporting on productivity.
Younger firms may benefit more from exporting (Alvarez and López, 2005; Girma
et al., 2004; Fernandes and Isgut, 2005), as well as larger firms (Damijan et al.,
2010). Harris and Cher Li (2011) observe heterogeneous effects across industry
sectors as well as within sectors. Firms with a higher export intensity (with respect
to domestic sales) also tend to profit more from exporting (Girma et al., 2004).

Garcia-Marin and Voigtländer (2019) observe a lack of growth of revenue pro-
ductivity in the years after plants start to export, but show that this can be decom-
posed into a decrease in marginal costs which occurs alongside a commensurate
decrease in prices. Hence, efficiency gains appear to be transmitted to consumers
via lower prices, rather than leading to higher markups. This reconciles the two
suggestions that plants enjoy efficiency gains after starting to export, but that these
efficiency gains do not translate into productivity growth when this latter is mea-
sured in terms of revenue productivity.

Time is crucial for productivity increases via technological learning (Fernan-
des and Isgut, 2005). Although younger firms benefit more, the increase in pro-
ductivity may last for a few years (Blalock and Gertler, 2004; De Loecker, 2007;
Hosono et al., 2015), which is consistent with the notion of diminishing returns
to export experience (Fernandes and Isgut, 2015). Trade may also not have an
immediate effect on productivity: Crespi et al. (2008) use learning measures to
estimate the effect of export on learning, which may affect productivity only in a
second stage, and find evidence of LBE.

Timing is relevant also because specific investments may be a necessary con-
dition to benefit from exporting. Firms may not rely on LBE solely, as they would
be selected out of the international market early on. Decisions to innovate and to
export may thus be complementary (Ito and Lechevalier, 2010), as suggested also
by Aw et al. (2011).

For instance, Dai and Yu (2013) use matching estimators to study the effect of
pre-export R&D on LBE in Chinese firms and find that firms with higher R&D in-
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vestment enjoy significant improvements in productivity after exporting, contrary
to firms that do invest before. Aw and Song (2013) show that for Korean firms the
level of productivity plays a crucial role in determining their investment in future
R&D and in entering export markets. They also find evidence that the decision to
improve productivity and to export are simultaneous and have additional effects
on productivity.

Only a handful of studies look at changes in exports. The already cited Park
et al. (2010) use exogenous shocks on the demand for exporting firms (exchange
rates shocks), and find evidence of LBE for Chinese firms, especially when the
destination is a high income country. Berman and Rebeyrol (2010), using data on
French firms, find that entry and persistence in the export market has no significant
effect on productivity. In contrast, they find positive effects of export growth on
subsequent productivity growth. They explain this effect with an incentive for
firms to innovate more and with more access to finance for investment. Although
they focus on levels and not on changes, Fernandes and Isgut (2005) are relatively
close to our work. They focus on the level of export (“export experience”), rather
than on export participation, finding a positive effect of LBE for Colombian firms
exporting to high income markets.

Summarising, first, it is important to distinguish between short and long term
LBE. Some mechanisms – such as market size, scale, vulnerability, use of exist-
ing capacity – may have an immediate effect on firm productivity, whereas other
mechanisms – such as learning from buyers, and from markets – may take longer
to show in growth of productivity. In this case we should observe some effect of
exporting on productivity in the long term, and some effect in the medium and
long term.

Second, some firms may decide to invest in order to improve productivity
before they increase their sales on a more competitive foreign market. In this case,
we should observe an increase in productivity that precedes growth in export (or
export intensity).

Third, considering that most existing estimates (including ours) use yearly
data, we should acknowledge that within the same year a firm takes many de-
cisions. They may decide on measures to increase productivity and export si-
multaneously, as complementary activities. This is where the existing empirical
evidence is silent, and where we make our main contribution.
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3 Econometric method

3.1 VAR and SVAR models
Consider the following structural vector autoregressive (SVAR) model that fea-
tures a vector of two variables, exports growth (EXPit) and productivity growth
(PRODit), for firm i at time t.2 For clarity, we omit the other variables and in-
clude only one time lag.

EXPit = b12PRODit + γ11EXPi,t−1 + γ12PRODi,t−1 + eexpit ,

PRODit = b21EXPit + γ13EXPi,t−1 + γ14PRODi,t−1 + eprodit (1)

Denoting by yit = (EXPit, PRODit)
′ and εit = (eexpit , eprodit )′, and using

matrix notation, the same model can be rewritten as:

yit = Byit + Γ1yi,t−1 + εit (2)

As long as we do not attempt to estimate the matrix of instantaneous effects
B, then we estimate a reduced-form vector autoregressive (VAR) model by rear-
ranging (2):

yit = (I −B)−1Γ1yi,t−1 + (I −B)−1εit (3)

Or, equivalently,
yit = A1yi,t−1 + uit, (4)

in which A1 = (I−B)−1Γ1 and uit = (I−B)−1εit. Notice that the reduced-form
VAR model in (4) does not allow estimating the matrix of instantaneous causal
effects B, and – importantly – nor does it allow to properly estimate the matrix of
lagged causal effects Γ1. In order to estimate this latter, we would need to isolate
it from the term (I − B)−1. However, by identifying the matrix of instantaneous
causal effects B, we can also properly estimate the matrix of lagged causal effects
Γ1.

By referring to equation (1), the matrix of instantaneous effects B can be writ-
ten as follows:

B =

(
0 b12
b21 0

)
(5)

In equation (1), the contemporaneous causal effect of PRODit on EXPit is
represented by b12, while the contemporaneous causal effect ofEXPit on PRODit

2A similar didactic approach is in Coad and Grassano (2019).
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is represented by b21. Notice, however, that equation (1) cannot be consistently
estimated through linear regression techniques, due to the endogeneity problem.
Assuming that the model is acyclic (i.e. that there are no feedback loops), then we
can impose that B is a lower-triangular matrix (or that it can be row-permuted to
become lower-triangular), such that either b12 or b21 must be equal to zero. But
knowing the presence of an acyclic contemporaneous structure, without know-
ing which coefficient between b12 and b21 is zero, is not sufficient to consistently
estimate equation (1).

The standard textbook definition of endogeneity asserts that, in a regression
equation of the type yit = axit + eit, the explanatory variable xit is endogenous
if it is correlated with the error term eit (see for example Wooldridge, 2010, p.
50). If, however, xit is uncorrelated with eit, then xit is seen to be exogenous, and
therefore the causal channel goes from x to y.

Further developments in statistical theory regarding the concept of causality
has put forward that, in a non-Gaussian setting (or, alternatively, in a non-linear
setting), xit must not only be uncorrelated with eit, but fully statistically inde-
pendent of eit in a structural model representing a causal relationship from x to
y. This is because a zero correlation is a sufficient condition for statistical inde-
pendence only in a linear Gaussian setting and is a flawed indicator of statistical
independence in more general contexts3 (Mooij et al., 2009; Peters et al., 2017).

A key problem affecting causal inference in social science, though, is that “ev-
erything correlates to some extent with everything else” – which has been dubbed
the ‘crud factor’ by Meehl (1990, p. 204). Our approach to unravel the direc-
tions of causal influence, combines independent component analysis (ICA) with
SVAR analysis. The goal is to recover both the SVAR residuals eit that are statis-
tically independent of the explanatory variables and the coefficients of the matrix
that ‘mixes’ them to form the reduced-form VAR residuals ut. ICA is a proba-
bilistic method for finding a linear transformation of the data that are maximally-
independent and non-Gaussian4 (Hyvärinen, 2013).

Thus, the idea here is to apply ICA to the reduced form residuals uit, which
can be estimated from equation (4). ICA will deliver a linear combinations of the
elements of uit that are maximally independent and non-Gaussian. Under some

3In general, zero correlation is only a necessary (but not sufficient) condition for statistical
independence.

4The microphone analogy can be helpful (Stone, 2004, p.204). Consider the case of two mi-
crophones, one which records voice A, and the other which records A and B. ICA would lead to
identify two independent components: the signal of voice A; as well as the independent component
corresponding to voice B which is a function of the recorded message on the second microphone,
adjusted to remove the signals coming from voice A. In the case of the first microphone, the
recorded signal corresponds to one of the two extracted independent components. Note that the
assumption of acyclicity rules out that both microphones record both voices (Coad and Grassano,
2019).

9



mild identifying assumptions (see section 3.2), from these mixtures we will be
able to recover the terms eexpit and eprodit of equation (1) and the matrix Γ0 = (I−B)
such that Γ0uit = εt. In this manner, one is able to recover all the structural
coefficients of the SVAR model in equation (2). This framework can be easily
extended to the case in which the number of variables is greater than two and the
number of lags is greater than one. In our empirical analysis, yit will comprise
four variables, and we will estimate both one-lag and two-lag models.

3.2 Identification strategy
Let us consider the general framework in which yit comprises k variables. Since,
in our application, firms (indexed by i) are pooled together under the assumption
that different firms undergo similar structural patterns in their growth process,
we omit henceforth the subscript i. The ‘unmixing’ matrix Γ0, which relates the
k−dimensional vector of the structural residuals (shocks) εt to the k−dimensional
vector of reduced-form residuals (errors) ut, is an invertible k×k matrix such that

ut = Γ−10 εt, (6)

Γ−10 is called the ‘mixing’ matrix.
As in Moneta et al. (2013), our identification strategy is based on a method in

which we first estimate the reduced-form VAR model

yt = µ+ A1yt−1 + . . .+ Apyt−p + ut (7)

(the model is analogous to equation 4 with the addition of a constant term vector
µ), and then we search for Γ0 such that

Γ0yt = Γ0µ+ Γ0A1yt−1 + . . .+ Γ0Apyt−p + Γ0ut (8)

or, in more compact form

Γ0yt = ξ + Γ1yt−1 + . . .+ Γpyt−p + εt, (9)

where Γi = Γ0Ai for i = 1, . . . , p. Assuming that the k elements of εt are mu-
tually independent and (at least k − 1 of them) non-Gaussian, i.e. non-normally
distributed, the method is able to identify Γ0 and, consequently (having estimated
all coefficient matrices of equation 7), all the coefficient matrices of equation (9).
The underlying idea is to search for a mixture of the elements of ut such that
the resulting components are minimally dependent and maximally non-Gaussian
(cfr. Hyvärinen and Oja, 2000; Hyvärinen et al., 2001). Since there are different
measures of statistical dependence and non-Gaussianity, and different optimiza-
tion methods, there are correspondingly different ICA algorithms. In our appli-
cation we use FastICA, which is a fixed-point algorithm for maximum likelihood
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estimation and measures non-Gaussianity with an approximation of negentropy
(Hyvärinen and Oja, 2000).

No matter which algorithm is used, ICA leaves undetermined the scale, sign,
and order of the latent sources or structural shocks. In other words, Γ−10 is iden-
tified up to the post multiplication by CD, where C is a permutation matrix5 and
D is a diagonal matrix with non-zero diagonal elements (Eriksson and Koivunen,
2004; Lanne et al., 2017; Gouriéroux et al., 2017). Further steps are needed to
fully identify Γ0 and εt. We adopt here two different ICA-based search methods
to identify the shocks and more generally the structural VAR model. The first was
proposed by Shimizu et al. (2006) and named LiNGAM (for linear, non-Gaussian,
acyclic model), and when applied to VAR models, it is known as VAR-LiNGAM
(Hyvärinen et al., 2008; Moneta et al., 2013; Coad et al., 2017). The second was
proposed by Lacerda et al. (2012) and was named LiNG (for linear, non-Gaussian
model). To our knowledge, this is the first time that the LiNG algorithm has
been applied either in a VAR context (i.e. “VAR-LiNG”) or in the discipline of
economics. The algorithms VAR-LiNGAM and VAR-LiNG are described in the
frames below.

Both algorithms, after having estimated the reduced-form VAR (step 1), run
an ICA algorithm (e.g. FastICA) on the estimated residuals obtaining a mixing
matrix P (≡ Γ−1ICA) which is able to generate a vector of independent components
(step 2). But the order and scaling of these independent components is arbitrary.

Algorithm 1 (VAR-LiNGAM) solves the order indeterminacy by assuming
that the underlying causal structure among the contemporaneous variables con-
tains no cycle (in other words can be represented by a directed acyclic graph).
This assumption, jointly with the fact that the diagonal elements of Γ0 must be
nonzero (and should be normalised to one), ensures that if we find an ordering
of the components ε̂1t, . . . , ε̂kt (output of the ICA algorithm) that produces a cor-
respondence with the data ε̂t = Γ̃0ût such that Γ̃0 has non-zero elements in its
main diagonal, this ordering must be the correct one.6 Exploiting this fact, step 3
is devoted to find the permutation of the matrix ΓICA generating the independent
components from ût which produces a correct matching between structural and
reduced-form shocks. Step 4 solves the scale indeterminacy. This is simply done

5A permutation matrix is a square matrix in which exactly one entry in each row and column
is equal to 1 and all other entries are 0 (see e.g. Horn and Johnson, 2012).

6In other words, under acyclicity Γ0 and Γ−10 are essentially triangular (i.e. ZΓ0Z
′ is triangular

for some permutation matrix Z). ICA identifies Γ−10 DC, where D is a diagonal matrix and C is
an arbitrary permutation matrix. Since Γ−10 is essentially triangular any permutation C (different
from I) will yield a matrix Γ−10 DC with some zeros on the main diagonal. To find out C is
sufficient to search for a permutation C ′ such that Γ−10 DCC ′ has no zeros on the main diagonal.
Notice that row-permuting Γ0 through C is equivalent to column-permuting (in the same way)
Γ−10 or row-permuting (in the inverse way) the rows of εt, since from CΓ0ut = εt it follows that
ut = Γ−10 C ′εt.
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by normalising the rows of Γ̃0 (the correctly row-permuted version of ΓICA), so
that all diagonal elements equal unity. Let Γ̂0 denote this row normalised matrix
and B̂ = I−Γ̂0 (step 5). Since it is assumed that there are no causal loops or feed-
back, there is a permutation (applied equally to columns and rows) of Γ̂0 which
should be lower triangular. The same can be said for Γ̂−10 and B̂. In practice,
however, even under the correct assumptions, these matrices are not exactly lower
triangular, because the ICA algorithm applied to finite data sets yields estimates
with errors. Therefore step 6 searches for an approximate lower triangularity.
This step is not essential for the sake of estimation of the structural model and is
run only for identifying the contemporaneous causal order. Step 7 estimated the
matrices of the lagged coefficients of the structural model.

Algorithm 2 (VAR-LiNG) solves the order indeterminacy by simply exploiting
the assumption that Γ0 has a zeroless diagonal, which is valid in the structural VAR
model by construction. Step 3 tests which entries of the ΓICA are significantly
different from zero. This can be done through a bootstrap procedure. Step 4
finds the permutation of the matrix ΓICA which produces a matrix Γ̃0,j which has
a zeroless diagonal. There might be several of such a matrix: we index each
of them with j = 1, . . . ,m. Thus, the algorithm will output m possible causal
structures. However, some of them can be excluded a priori by excluding unstable
contemporaneous causal structures, i.e. Γ̃0,j such that Γ̃−10,j has eigenvalues whose
modulus is greater than one. Step 5 and 6 solve the indeterminacy of scaling in
the same way as algorithm 1. Step 7 is also analogous to step 7 in algorithm 1.

To recapitulate, both algorithms are able to identify the structural model (or
a class of possible structural models) from the estimated reduced form model.
The assumptions which permit such an inference are, for both algorithms, non-
Gaussianity and independence of the structural shocks. As regards the first al-
gorithm, a further assumption is acyclicity, i.e. the assumption that there are no
feedbacks or loops. The second algorithm relaxes this assumption, but the class of
admissible models is now broader, which leads us to assume stability to restrict the
number of causal structures. It should also be noted that an implicit assumption
of both algorithms is causal sufficiency, i.e. the assumption that all the causally
relevant variables have been modelled.

Algorithm 1: VAR-LiNGAM

1. Estimate the reduced form VAR model of equation (7), obtaining estimates
Âi of the matrices Ai for i = 1, . . . , p. Denote by Û the k × T matrix of the
corresponding estimated VAR residuals (T is the number of observations),
that is each column of U is ût ≡ (û1t, . . . , ûkt)

′, (t = 1, . . . , T ). Check
whether ujt (for each row j = 1, . . . , k of U ) is indeed non-Gaussian, and
proceed only if this is the case.

12



2. Use FastICA or any other applicable ICA algorithm (Hyvärinen et al., 2001)
to obtain a decomposition Û = PÊ, where P is k × k and Ê is k × T ,
such that the rows of Ê are the estimated independent components of Û .
Then validate non-Gaussianity and (at least approximate) statistical inde-
pendence of the estimated components before proceeding.

3. Let ΓICA = P−1. Find Γ̃0, the row-permuted version of ΓICA which minimizes∑k
j=1 1/|Γ̃0jj | with respect to the permutation. Note that this is a linear

matching problem which can be easily solved even for high k (Shimizu et al.,
2006).

4. Divide each row of Γ̃0 by its diagonal element, to obtain a matrix Γ̂0 with all
ones on the diagonal.

5. Let B̃ = I − Γ̂0.

6. Find the permutation matrix Z which yields a matrix B̂ = ZB̃Z ′ which is
as close as possible to strictly lower triangular. This can be formalized as
minimizing the sum of squares of the permuted upper-triangular elements,
and minimized using a heuristic procedure (Shimizu et al., 2006). Set the
upper elements of B̂ to zero.

7. Calculate estimates of Γ̂i for lagged effects using Γ̂i = (I − B̂)Âi, for i =
1, . . . , p.

Algorithm 2: VAR-LiNG

1. Same as step 1 in algorithm 1.

2. Same as step 2 in algorithm 1.

3. Let ΓICA = P−1. Test which entries of ΓICA are zero. This can be done using
a bootstrap procedure.

4. Find all admissible row-permuted matrices Γ̃0,1, . . . , Γ̃0,m of ΓICA such that
each Γ̃0,h has zeroless diagonal for h = 1, . . . ,m.

5. Divide each row of Γ̃0,h by its diagonal element, to obtain a matrix Γ̂0,h with
all ones on the diagonal, for each h = 1, . . . ,m.

6. Let B̃j = I − Γ̂0,j , for each j = 1, . . . ,m.

7. Calculate estimates of Γ̂i,j for lagged effects using Γ̂i,j = (I − B̂h)Âi, for
i = 1, . . . , p, for h = 1, . . . ,m.
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4 Data
We use the annual survey of manufacturing plants (Encuesta Nacional Industrial
Manufacturera – ENIA) collected by the Chilean Statistical Institute (Instituto
Nacional de Estadísticas – INE). The ENIA covers the universe of Chilean plants
in the manufacturing sector and has been widely used by researchers (see e.g.
Alvarez et al., 2016; Crespi et al., 2019). We use the database that covers the
period from 2001 to 2007.7 The database includes all firms with more than 10
employees that have registered some activity for at least one semester during an
year, divided by manufacturing sector (ISIC version 3, at the 4-digit level). For
more information on the database see INE (2006, 2009a).

After some preliminary data cleaning,8 we create our SVAR variables. The
variables used for the SVAR are size, proxied by employment (empl); output,
which is proxied by total sales (output), and can be sub-divided into domestic
sales (domsales) and exports (exp); and also productivity. Sales, exports, and
employment are easily derived from the ENIA database, while the estimation of
productivity requires assumptions that are explained in what follows.

All variables in the ENIA are in nominal values. We thus deflate the variables
used in this paper to real values before computing the productivity. For output and
material inputs we use the deflators computed by the INE for each of the 4-digit
(ISIC) sectors INE (2009b). Unfortunately the report includes deflators only until
2006. Although we could use deflators from other sources for 2007, we prefer
to drop the year 2007 from the data instead of having constant price variables
computed from different sources. Also, INE (2009b) does not include deflators
for a number of 4-digit sectors. We attempted some aggregations to avoid losing
firms in those sectors, but the differences among sectors were too large, leading
to an increase in the error of the computation of constant price variables, which
seems less desirable than dropping a few observations across the years.

The INE computes different deflators for the gross value of production, used
for total sales (output) and exports (exp), for overall input costs, used for variable
inputs (Material), i.e. excluding capital, and for material inputs not completely
transformed in the production process, used to compute beginning of the year and
end of the year raw and input materials (respectively Privap, Privaf , Matvap

7Data are available since 1979, but the INE changed the data collection and in particular the
registration of firms in 2001, which, at the time of our analysis, does not allow to correctly track
plants/firms across the pre- and post-2000 periods. Attempts to match the two periods and build a
longer panel are part of future work.

8We first check for inconsistencies in the data (Benavente and Ferrada, 2004) i.e. plants that
report 0 days in operation, a negative gross value of production, 0 or negative number of employ-
ees, labour cost equal or less than 0, sales lower than exports, value added larger than sales and an
ISIC code lower than 1500. A non significant number of observations need to be dropped across
the 7 years.
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and Matvaf ). To compute value added at constant prices (V a) we use the gen-
erally preferred method of double deflation, and we remove initial inputs and add
left overs at the end of the year: V a = output−Material−(Privap+Matvap)+
(Privaf +Matvaf).

To compute the value of capital at constant prices we follow, in part, Crespi
(2004) and use the implicit deflator for gross fixed capital formation released by
the Central Bank (Banco Central de Chile, 2004, 2006, 2009). For our purposes,
we did not consider estimating different deflators for different types of capital
(machinery, buildings land and vehicles), because we could not find accounting
information available for vehicles and land.

Finally, we deflate the input variables used to compute productivity with the
gross value of production (output): primary inputs, input materials purchased,
primary and material inputs from other plants (of the same firm), office material
– deflator for non-completely transformed inputs – and fuel – deflator for com-
pletely transformed inputs.

We then proceed to estimate total factor productivity (TFP) employing the
Levinsohn and Petrin (2003) method (see also Petrin et al., 2004), and using the
quantity of consumed electricity as an intermediate input. It is worth nothing that
estimations of the TFP using value added and the whole sample of firms is highly
correlated with labour productivity with a Spearman’s correlation index of 0.96.
However, for the sake of comparability with most other studies on the relation
between export and productivity we use TFP estimations.

Although differences are again quite small, we choose to estimate TFP using
output rather than value added. The main advantage of using output is that there
is a non-negligible number of firms that in some years have negative value added
(at constant prices), requiring a further drop of observations.

Arguably, plants may differ quite substantially in their production technology.
It follows that using one single production function with labour and capital (and
one intermediate input) may produce biased estimates. To overcome this problem
we attempt a large number of estimations, taking into account different combina-
tions of the following dimensions: size, labour, and sector.

Using the ISIC Rev3 2-digit classification we create the following relatively
homogeneous sectors: (1) Manufacture of Food, Beverages and Tobacco; (2) Tex-
tile, Wearing Apparel and Leather Industries, traditional industries; (3) Manufac-
ture of Wood and Wood Products, Including Furniture ; (4) Manufacture of Chem-
icals and Chemical, Petroleum, Coal, Rubber and Plastic Products; (5) Manufac-
ture of other non-metallic mineral products and basic metals; (6) Manufacture of
fabricated metal products, except machinery and equipment; (7) Manufacture of
machinery and equipment, office, accounting and computing machinery, electri-
cal machinery and apparatus, radio, television and communication equipment and
apparatus, medical, precision and optical instruments, watches and clocks, motor
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vehicles, trailers and semi-trailers, and other transport equipment; (8) Publishing,
printing and reproduction of recorded media; (9) Manufacture of paper and paper
products; and (10) Other manufacturing sectors.

We create sub-samples for different size categories, based on number of em-
ployees: small (< 50), medium (50 ≤ empl < 250) and large (≥ 250) firms.
Furthermore, we attempt different measures of labour skills as variable inputs in
the production function.

As expected, TFP estimations, as well as returns to scale, differ significantly
when computed for different sectors and plant sizes. The distinction between dif-
ferent types of workers also significantly affects TFP and returns to scale. We
leave the discussion on these significant differences for a different paper. For this
paper it suffices to say that we consider as our most reliable estimates those ob-
tained separating the different sectors and including in the production function
‘blue collars’, ‘white collars’, material inputs, and capital (tfp). However, in this
paper we also attempt some robustness checks, using a TFP estimated with no dis-
tinction between different types of employment (tfp2), leading to no significant
differences in the relation between exporting and productivity.

Finally, we remove firms that we consider outliers. For each of the VAR series
– growth of sales, employment, exports and productivity – we impose a thresh-
old for outliers corresponding to tenfold growth/decline in the space of one year.
Observations beyond this threshold are dropped.

Table 1 summarises the variables used for the analysis.

Table 1: Summary statistics

Variable Description Obs Mean Std. Dev. Min Max
gr_empl Employees 2303 0.027 0.284 -2.223 2.137
gr_exp Export sales 2303 -0.011 0.606 -2.256 2.254
gr_tfp TFPb 2303 -0.011 0.266 -1.507 2.030
gr_tfp2 TFPc 2303 -0.015 0.270 -1.793 2.243
gr_domsales Domestic market

sales
2303 0.003 0.543 -4.196 5.059

b Estimated for different sectors, and differentiating between blue white collars
c Estimated for different sectors, without differentiating between blue and white collars
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Table 2: Correlation matrix. Lower triangle: Pearson correlation coefficients;
upper triangle (and italics): Spearman’s rank correlation coefficients. 4021 obser-
vations. All correlations significant at the 1% level, except for the Spearman rank
correlation between gr_domsales and gr_exp (ρ=-0.0132, p-value=0.4029)

gr_domsales gr_empl gr_exp gr_tfp
gr_domsales 1 0.1343 -0.0132 0.4283
gr_empl 0.0924 1 0.1436 -0.1881
gr_exp -0.0717 0.0915 1 0.1605
gr_tfp 0.3327 -0.2599 0.0836 1

5 Results

5.1 Correlations
In this section, we present the results using our identification method. To em-
phasize the difference between causal and descriptive analysis, Table 2 shows
the correlations (both Pearson and Spearman’s coefficients) between the variables
of interest. Our four main variables are significantly correlated between them
- although the magnitudes of the correlations are far below the typical values of
around 70% that are associated with problems of multicollinearity (e.g. Hair et al.,
1998). The relationship between growth of exporting and growth of TFP, which is
the main object of our analysis, displays a significantly negative correlation. The
problem with a correlation analysis, of course, is that it cuts off many possible
channels of interactions among variables, especially between lagged values.

5.2 VAR analysis
This particular aspect is, on the contrary, accounted for in the VAR analysis. Table
3 presents the reduced-form VAR results, which describe the intertemporal associ-
ations between the variables. The coefficient matrices are estimated with median
regression, also called least absolute deviation (LAD) regression. This is in line
with suggestions in Moneta et al. (2013) in the context of non-Gaussian data with
the motivation of improving the robustness to outliers. Table 3 presents both the
model estimated with one lag (upper part) and the model estimated with two lags
(bottom part).9

As noted in the previous sections, the reduced-form model delivers coeffi-
cients that, although being consistent (under stationarity of the series), and imply-
ing meaningful relations of statistical dependence, cannot be interpreted in causal

9We also repeated our analysis using OLS regression (see appendix B).
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terms, given the fact that possible contemporaneous influences among the vari-
ables are omitted. Of interest to our analysis is that the autocorrelation coefficients
(i.e. the entries of the main diagonal of each matrix) are always negative in both
models, with the exception of one coefficient in the second matrix of the two-
lags model. This suggests that the hypothesis of increasing returns and sustained
growth is not supported by these data. We also notice that lagged growth of ex-
ports is positively associated with subsequent growth of TFP in the one-lag model
(coefficient = 0.0098 with standard error 0.0047) and two lags model (coefficient
= 0.0093 with standard error 0.0045).

5.3 SVAR analysis
Before applying our identification method, which allows us to recover the co-
efficients of the SVAR model, we investigate whether the assumption of non-
Gaussian shocks is plausible. Previous research has shown that the distribution of
firm growth rates is heavy-tailed and non-Gaussian (Bottazzi et al., 2002; Capasso
et al., 2013). In our data, the evidence from the quantile-quantile plots suggests
that the VAR reduced-form residuals are far from Gaussian (see Figure 1), pro-
viding support for our econometric strategy. This is also confirmed by a battery
of tests, in which the common null hypothesis is normality (of the reduced-form
residuals): the Shapiro-Wilk, the Shapiro-Francia, and the Jarque-Bera tests reject
the null hypothesis at the 0.01 level of significance.

We present now the results from our identification procedure. Table 4 presents
the mixing matrix P for both the 1-lag and the 2-lag model. The matrix P is the
output of the FastICA algorithm (Hyvärinen et al., 2001) applied to the reduced-
form residuals. Producing the matrix P , after having estimated the reduced form
VAR with its residuals, is one of the steps which is common to both the algorithms
presented in section 3.2, namely step 2 of VAR-LiNGAM and VAR-LiNG. The
matrix P is a (4 × 4) matrix such that Û = PÊ, where Û is the (4 × T ) matrix
of the estimated reduced-form residuals and Ê is a (4× T ) matrix of independent
components. We recall that the scale (sign) and order of these components, and
therefore of the columns of the matrix P , is undetermined. The columns of P
are rescaled in order to produce components with unit variance. Although the
order of the columns is completely arbitrary, the order of the rows is determined
by the order of the variables entering in yt.10 We note that some entries of this
matrix are close to zero. For each column we can easily identify a coefficient (in
absolute value) that is maximally loading on a particular variable. For example,

10In other words, each time we run fastICA we get a (randomly) column-permuted version of P
with, in addition, random changes of sign for each column. A part from column permutation and
changes of sign, all the entries of the output matrices from multiple (1000) realisations of fastICA
are identical, which confirms a stable convergence of the algorithm.
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Figure 1: Quantile-quantile plots of the distributions of the four reduced-form
residuals, for the 2-lag model.
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looking at the fourth column of P for the 1-lag model (left part of the table) we
see that there is an entry which has the highest value (among the column-entries,
in absolute value) for exporting growth (0.9466). Looking at the third row, we
also see that this is the maximum value (among the row-entries). This means
that the shock labelled as e4 (in the 1-lag model) is mostly loading on exporting
growth. The same shock has a minimal impact on productivity growth (0.0017),
which is the smallest entry both in the fourth column and in the fourth row. If we
look at the matrix P of the 2-lag model (right part of table 4), the impact of the
shock labelled as e3 has very similar characteristics (and almost equal values) to
the shock labelled as e4 in the 1-lag model. In both cases, this strongly suggests
that the exporting growth shock does not transmit (within the one year period)
to productivity growth, or, in other words, there is no contemporaneous causal
relationship from exporting to productivity growth.

Table 4: Mixing matrix P , 1-lag and 2-lag model.

1-lag model 2-lag model
e1 e2 e3 e4 e1 e2 e3 e4

gr_domsales -0.1341 0.5872 0.0457 -0.0581 0.0357 -0.5783 -0.0518 -0.1561
gr_empl -0.0058 0.0171 0.3061 0.0098 0.3036 -0.0164 0.0099 -0.0161
gr_exp -0.1063 -0.0124 0.0692 0.9466 0.0452 0.0101 0.9168 -0.1219
gr_tfp -0.2968 0.0472 -0.0887 0.0017 -0.0950 -0.0436 0.0023 -0.2723

The algorithms we use (VAR-LiNGAM and LiNG) aim at inferring the causal
relationships, such as the one just elicited, in a more formal and rigorous way.
As mentioned, VAR-LiNGAM assumes that there is a recursive causal-structure.
This means that the mixing matrix P contains at least k(k − 1)/2 entries (in our
case 6 zeros since k = 4) that are (statistically close to) zero. Recursiveness
also implies that if any entry (i, j) of P is (significantly) different from zero, then
the entry (j, i) must be (statistically close to) zero. This is something that VAR-
LiNGAM does not check empirically, rather it is simply assumed a priori and this
constitutes an objective weakness of this method. In order to overcome this is-
sue and improve the empirical reliability of our causal inference, we first identify
the model through VAR-LiNGAM, and then use a bootstrap procedure in order to
check whether the causal directions found are robust under resampling. It turns
out that most of the causal directions are robust, but some of them are are actually
reversed in artificial samples. We finally apply VAR-LiNG, which does not as-
sume recursiveness, to see whether causal loops emerge. The causal relationship
we are interested in, namely between productivity and exporting growth, emerges
as robustly identified.

Table 5 shows the coefficients of structural VAR matrices (see equation 9)
estimated through VAR-LiNGAM (algorithm 1 in section 3.2). The upper (lower)
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part of the table refers to the 1-lag (2-lag) model. The first block of 4 columns
corresponds to the estimated coefficients of matrix B (contemporaneous effects)
(recall B = I − Γ0), the second block (columns 5-8) refers to the coefficients of
matrix Γ1 (one-period-lag causal effects), while the third block (columns 9-12)
presents the estimated coefficients of Γ2 (two-period-lag causal effects).

As the literature on algorithmic causal inference has demonstrated (Spirtes
et al., 2000; Pearl, 2009; Peters et al., 2017), structural models can be represented
as directed graphs, and directed acyclic graphs (DAGs) in case of recursive struc-
ture. We thus represent the SVAR model, output of the VAR-LiNGAM algorithm,
as a DAG, in order to improve the causal interpretation of the model. The DAG is
built on the criterion that a non-zero entry in the (i, j) position of B corresponds
to a directed edge (i.e. arrow) from the jth to the ith variable in the sub-graph
referring to the contemporaneous values. Analogously, a (statistically significant)
non-zero entry in the (i, j) position of the Γ1 corresponds to a directed edge (i.e.
arrow) from the jth variable at time t − 1 to the ith variable at time t.11 Figure 2
shows the resulting DAG for the 1-lag model.

Both the 1-lag and 2-lag models in Table 5 show that the primus motor is
employment growth, which has large positive effects on growth of domestic sales
and growth of exports. These can both be interpreted as sheer scale effects –
employment growth leads to subsequent increases in outputs. Note that the sum
of these two coefficients is close to unity (0.4787 + 0.4369 = 0.9156 in the 1-lag
model; and 0.5323 + 0.4345 = 0.9668 in the 2-lag model), which implies that
the elasticity of employment growth to combined growth of outputs (i.e. domestic
sales + exports) is close to unity when considering instantaneous effects.

Another main result is that employment growth has a negative effect on con-
temporaneous growth of TFP, presumably because productive efficiency is at-
tained when fewer inputs (i.e. employees) produce a given output. Downsizing
firms might be better able to improve their productivity than firms that invest in
recruiting and training new employees.

Growth of TFP has positive impacts on growth of domestic sales, and to a
lesser extent, growth of exporting. Firms that experience an increase in their pro-
ductivity are therefore more likely to grow in terms of domestic and export sales.
This might suggest that firms would be better off pursuing productivity growth as
a prerequisite for subsequent sales growth, instead of vice versa.

Growth of exporting has a negative impact on growth of domestic sales. This
no doubt reflects the tension between domestic vs. exporting sales strategies, that

11Since the asymptotic distribution of the VAR-LiNGAM-estimated coefficients is unknown,
we cannot rely on a formal significance test. As rule of thumb, we do not represent a causal arrow
if the corresponding coefficient is significantly close to zero according to a standard t statistic,
where the standard errors are calculated following a bootstrap procedure. In Table 5 coefficients
significantly different from zero are represented in bold.
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Figure 2: Causal graph resulting from VAR-LiNGAM, 1-lag model
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Blue edge = positive effect, red edge = negative effect.

was already visible in the negative correlations between these variables in Table 2.
However, it is interesting to observe that exporting seems to determine domestic
sales rather than vice versa. This could be because internationalized firms have
already ‘conquered’ their home markets and become ‘outward-focused’ in the
sense that they pay more attention to how they fare in the more competitive export
markets.

With regards to the causal link between TFP and exporting, our results suggest
that it is TFP that causes exporting, rather than vice versa. Our VAR-LiNGAM es-
timates therefore provide an interesting perspective on the exporting-productivity
debate. Note however that the first lag of exporting growth has a positive impact
on subsequent TFP growth.

5.4 SVAR robustness analysis
We run a robustness analysis to check whether the causal links depicted in Figure
2 are stable over 1000 bootstrap samples, which were created by resampling with
replacement from the original data. We focus here only on the contemporaneous
causal structure. As Figure 3 shows, all the causal links found by VAR-LiNGAM
are very robust across bootstrap samples except the link between growth of domes-
tic sales (DS in figure 3) and growth of exporting sales (EX in figure 3), which is
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Figure 3: Bootstrap robustness analysis on the contemporaneous causal struc-
ture. VAR-LiNGAM is applied to each bootstrap iteration. Numbers associated
to edges indicate the percentage each causal link is inferred out of 1000 bootstrap
iteration.
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reversed almost half of the time.

5.5 VAR-LiNG
Table 6 reports the estimates of the application of algorithm 2 (VAR-LiNG, i.e. the
algorithm which allows the possibility of feedback loops in the contemporaneous
structure) as regards the model with one lag. We do not report here the results of
the two-lag model, which are qualitatively similar, for reasons of space. Figure
4 depicts the contemporaneous causal structure, while Figure 5 shows the lagged
causal influence. The estimated causal structure presents now, within the period
of estimation, a bi-directional link between growth of domestic sales and growth
of exporting sales. The possibility of such bi-directionality was already suggested
by the robustness results shown in Figure 3. Feedback loops emerge also between
growth of domestic sales and growth of productivity and between growth of do-
mestic sales and growth of employment in the contemporaneous causal structure.
Nevertheless, the main findings about the causal nexus between productivity and
exporting growth which resulted from the application of the first algorithm are
confirmed: there is no causal influence from exporting to productivity (growth)
in the contemporaneous causal structure. The coefficient which measures the in-
stantaneous influence from productivity (growth) to exporting is very close to the
coefficient obtained from the first algorithm: 0.3782 vs. 0.4023 (standard errors

25



Figure 4: Contemporaneous causal graph resulting from VAR-LiNG 1 lag
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are also very similar: 0.0773 vs. 0.0707). However, the empirical evidence re-
sulting from the second algorithm is even more consistent with the theoretical
hypothesis which denies the existence of a “learning-by-exporting” phenomenon:
while the results from algorithm 1 showed some (weak) influence from lagged
exporting (growth) to current productivity (growth), the results from algorithm 2
showed no such causal link (see Figure 5 for the lagged effects).

Table 6: VAR - LiNG estimates, 1-lag model.

gr_domsales gr_empl gr_exp gr_tfp l_gr_domsales l_gr_empl l_gr_exp l_gr_tfp
gr_domsales 0 0.2981 -0.0653 0.4620 -0.2240 0.0939 -0.0066 0.1925

0 0.0478 0.0131 0.1115 0.0062 0.0197 0.0038 0.0126
gr_empl 0.0292 0 0.0000 0.0000 0.0137 -0.0249 0.0085 0.0141

0.0083 0 0.0077 0.0122 0.0062 0.0197 0.0038 0.0126
gr_exp -0.0615 0.3449 0 0.3782 -0.0274 -0.0208 -0.1426 0.1080

0.0199 0.0602 0 0.0773 0.0170 0.0462 0.0374 0.0530
gr_tfp 0.0914 -0.3058 0.0000 0 0.0205 -0.0648 0.0116 -0.2757

0.0234 0.0291 0.0077 0 0.0111 0.0200 0.0045 0.0239

6 Discussion
In this paper we revisit a well-known debate, which has grown exponentially in
the last two decades. Does exporting activity increase firm performance, in par-
ticular productivity, as it is expected from some case study evidence? Or is it only
more productive firms that enter and remain in the export market? We choose a
rather different strategy from previous papers, while exploring a relatively well-
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Figure 5: Lagged causal structure resulting from VAR-LiNG 1 lag
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studied country. First, we focus on exporting firms. Second, we do not compare
them with non-exporting firms, but with other firms whose exports grow more
or less (i.e. become more or less competitive in the international market). Third,
we explicitly look at the co-evolution of the the two variables, productivity and
growth, including the causal relation within the period and with up to two lags.

Our most interesting finding is in relation with the extensively investigated
LBE hypothesis. Applying VAR-LiNGAM and VAR-LiNG, a class of SVAR
models that estimates causal networks, it seems that exporting does not have any
direct and instantaneous causal impact on firm performance. Instead, it seems to
be determined by other dimensions of firm growth. Of interest to the inconclusive
literature on LBE is that we find no evidence that it causes productivity growth
within the period. However, a result from VAR-LiNGAM is that the first lag
of exporting growth does have a small causal effect on subsequent TFP growth.
But when we apply VAR-LING, the algorithm which allows the possibility of
feedback loops in the contemporaneous structure, this lagged causal effect van-
ishes. Instead, we observe that TFP growth has a direct causal effect on exporting
growth within-the-period, which is robust under the application of the different
algorithms.

Our results are estimates of causal effects (rather than mere associations) and
therefore have interesting implications for policy. In particular, it appears that
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firms should focus on improving their productivity before attempting to increase
their exports, because it is productivity growth that drives growth of exports. For
example, firms should first improve their productivity through e.g. redesigning
their production routines, and upgrading their capital and IT systems, alongside
appropriate organizational innovations (e.g. Cruz et al., 2018), and as a result, they
will be in a better position to experience growth of exports. There is negligible
influence of exporting on TFP growth, however – only with a lag does exporting
feed back into TFP growth, and moreover this effect is relatively small.

Our study is not without limitations. First, although we have no reason to ex-
pect that our data is unrepresentative, it is nevertheless not clear how our results
can be generalized to other countries and other periods. However, we are inter-
ested and curious to check how our method would change earlier LBE results in
other countries where the hypothesis has been tested.

Second, we focus on exporting undertaken by firms that have already taken the
binary decision of whether to export. There may be differences in the exporting-
productivity relationship at the time when a firm first decides to transform from a
non-exporter to an exporter.

To conclude, this paper has shown how data-driven techniques for causal in-
ference can be introduced from the machine learning community into economics,
and adapted to time-series and VAR contexts, to provide new evidence on the
causal relations governing economic systems. Our application has shed new light
on the LBE controversy by showing that the causal direction runs from produc-
tivity growth to exporting in our panel of exporters. Future work could apply the
family of techniques developed here to a broad range of contexts to get valuable
new evidence for academics, practitioners and policymakers.
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Appendix A: Impulse response analysis
In the standard SVAR analysis, dynamic causal effects are studied through im-
pulse response functions (see e.g. Kilian and Lütkepohl, 2017). In this study,
we have focused on contemporaneous and short-run causal effects, given also
the relatively short time window of our data set. We report nevertheless results
from impulse response analysis. Ignoring the constant term µ (which is irrelevant
for the impulse response analysis) a stable (stationary) reduced-form VAR model
(equation 7) can be written as

yt =
∞∑
j=0

Φjut−j,

where Φ0 = I and Φj =
∑j

i=1 Φj−iAi, for j = 1, 2, . . .. Since Γ0ut = εt we can
also write:

yt =
∞∑
j=0

ΦjΓ
−1
0 Γ0ut−j =

∞∑
j=0

ΦjΓ
−1
0 εt−j =

∞∑
j=0

Ψjεt−j.

The matrix Ψj = ΦjΓ
−1
0 contains the marginal effects of the structural shocks

εt on the variables over time. In particular the (m,n) element of Ψj contains
the reaction of the variable ym,t to a shock εn,t, after j periods. Since we have
4 variables, we obtain 16 impulse response functions. Figure 6 reports impulse
response functions, while Figure 7 show cumulated impulse response functions.
We can see that in both cases the productivity shock εP has a greater impact on
exporting (growth and levels) than the other way around (εEX → P ), which is in
tune with the other results so far.
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Figure 6: Impulse response functions with 90% confidence intervals obtained
through bootstrap.
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εDS → P εL → P εEX → P εP → P

εDS → EX εL → EX εEX → EX εP → EX

εDS → L εL → L εEX → L εP → L
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Figure 7: Cumulated impulse response functions with 90% confidence intervals
obtained through bootstrap.
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Appendix B: Further robustness checks
We perform several robustness studies. We report here below only results con-
cerning the contemporaneous causal structure, which we summarise in a very
schematic way. Notice that across several and diverse specifications productivity
causally precedes exporting and not the other way around. Complete robustness
results are available upon request.

Alternative TFP indicator
Our baseline productivity indicator sums up the productivity estimation in each
sector, using Gross Value of Production and one overall material input variable
for a sector sample with different employment categories (blue and white collar
employees).
In this subsection, we use an alternative productivity variable that sums up the
productivity estimation in each sector, using Gross Value of Production and one
overall material input variable for the total sector sample.
The causal output of the VAR-LiNGAM algorithm is identical to the main study
(see Figure 2) as regards the contemporaneous causal structure (L −→ P −→
EX −→ DS), both for the 1-lag and 2-lag model. As regards the output of the
VAR-LiNG algorithm, the contemporaneous causal matrix turns out to be almost
full (which does not seems to be very informative): both for the 1-lag and 2-lag
model there is only one zero (i.e. lack of contemporaneous causal relationship),
from P to L.

Sector disaggregation
Firms are allocated into macro-sectors according to their technological content.
These macro-sectors follow the Ferraz taxonomy of sectors, which is itself an
adaptation of the Pavitt taxonomy to Latin American industries (following Ferraz,
Kupfer and Haguenauer). Ferraz macrosector 1 corresponds to ‘commodities’ and
’food commodities.’ Ferraz macrosector 2 corresponds to ‘durables’ and ‘auto in-
dustry.’ Ferraz macrosector 3 corresponds to ‘traditional sectors.’ Ferraz macro-
sector 4 corresponds to ‘technology diffusers/suppliers.’ We begin with estima-
tions on subsamples of these four macro-sectors. However, one possible problem
is that each macro-sector, taken individually, contains too few observations for
a meaningful SVAR analysis. We therefore continue this sector disaggregation
exercise (part 2, below) using a trick in Balasubramanian and Sivadasan (2011),
which involves dropping one macro-sector at a time and performing robustness
analysis on the remaining macro-sectors grouped together, in order to ensure that
each subsample contains enough observations.
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Ferraz macro-sector 1
VARLiNGAM output (1-lag model), contemporaneous causal structure: L −→
P −→ EX −→ DS (identical to Figure 2).
VARLiNGAM output (2-lag model), contemporaneous causal structure: L −→
P −→ EX −→ DS (identical to Figure 2).
VARLiNG output (1-lag model), zeros in the contemporaneous causal structures
(i.e. lack of causal influence): from DS to EX and P , from EX to P , and from
P to L. VARLiNG output (2-lag model): zeros in the contemporaneous causal
structures (i.e. lack of causal influence): from DS to EX and P , from EX to
P , and from P to L (but the algorithm is not completely stable under change of
initial conditions).
Ferraz macro-sector 2
Not enough observations to run the analysis (sample size only 69).
Ferraz macro-sector 3
VARLiNGAM output (1-lag model), contemporaneous causal structure: L −→
P −→ DS −→ EX .
VARLiNGAM output (2-lag model), contemporaneous causal structure: L −→
P −→ DS −→ EX .
VARLiNG output (1-lag model), zeros in the contemporaneous causal structures
(i.e. lack of causal influence): from DS to EX and P , from EX to P , and from
P to L. VARLiNG output (2-lag model), zeros in the contemporaneous causal
structures (i.e. lack of causal influence): from EX to P and L, and from P to L.
Ferraz macro-sector 4
VARLiNGAM output (1-lag model), contemporaneous causal structure: L −→
P −→ DS −→ EX .
VARLiNGAM output (2-lag model), contemporaneous causal structure: DS −→
L −→ P −→ EX .
VARLiNG output (1-lag model): not stable under variations of initial conditions.
VARLiNG output (2-lag model): not stable under variations of initial conditions
(sample size 231).

Sector disaggregation, part 2
Excluding Ferraz macro-sector 1
VARLiNGAM output (1-lag model), contemporaneous causal structure: L −→
P −→ DS −→ EX .
VARLiNGAM output (2-lag model), contemporaneous causal structure: L −→
P −→ DS −→ EX .
VARLiNG output (1-lag model) contemporaneous causal structure: same as Fig-
ure 4, except for the presence of an extra arrow from DS to EX . VARLiNG
output (2-lag model), only one zero in the contemporaneous causal structure: L is
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not affected by any other variable (included therefore P ).
Excluding Ferraz macro-sector 2
VARLiNGAM output (1-lag model), contemporaneous causal structure: L −→
P −→ EX −→ DS (identical to Figure 2).
VARLiNGAM output (2-lag model), contemporaneous causal structure: L −→
P −→ DS −→ EX .
VARLiNG output (1-lag model) only one zero in the contemporaneous causal
structure: L is not affected by any other variable. VARLiNG output (2-lag model):
output not stable across algorithm initial conditions.
Excluding Ferraz macro-sector 3
VARLiNGAM output (1-lag model), contemporaneous causal structure: L −→
P −→ EX −→ DS (identical to Figure 2).
VARLiNGAM output (2-lag model), contemporaneous causal structure: L −→
P −→ EX −→ DS (identical to Figure 2).
VARLiNG output (1-lag model), zeros in the contemporaneous causal structures
(i.e. lack of causal influence): from DS to EX and P , from EX to P , and from
P to L. VARLiNG output (2-lag model): same as in the 1-lag model.
Excluding Ferraz macro-sector 4
VARLiNGAM output (1-lag model), contemporaneous causal structure: L −→
P −→ EX −→ DS (identical to Figure 2).
VARLiNGAM output (2-lag model), contemporaneous causal structure: L −→
P −→ DS −→ EX .
VARLiNG output (1-lag model), zeros in the contemporaneous causal structures
(i.e. lack of causal influence): from EX to P , and from P to L. VARLiNG output
(2-lag model): zeros in the contemporaneous causal structures (i.e. lack of causal
influence): from EX to P , and from P to L (but the algorithm is not completely
stable under change of initial conditions).

Size disaggregation
In this subsection, firms are sorted according to whether their initial size (i.e. in
the year 2001) is small (fewer than 50 employees), medium (50 to 249 employees)
or large (250 or more employees).
Small initial size
VARLiNGAM output (1-lag model), contemporaneous causal structure: L −→
P −→ EX −→ DS (identical to Figure 2).
VARLiNGAM output (2-lag model), contemporaneous causal structure: L −→
P −→ EX −→ DS (identical to Figure 2).
VARLiNG output (1-lag model): a part from a causal feedback from DS to L, it
is confirmed the recursive causal structure of VAR-LiNGAM. VARLiNG output
(2-lag model): unstable.
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Medium initial size
VARLiNGAM output (1-lag model), contemporaneous causal structure: L −→
P −→ DS −→ EX .
VARLiNGAM output (2-lag model), contemporaneous causal structure: L −→
P −→ DS −→ EX .
VARLiNG output (1-lag model): unstable.
VARLiNG output (2-lag model): unstable.
Large initial size
VARLiNGAM output (1-lag model), contemporaneous causal structure: L −→
P −→ EX −→ DS (identical to Figure 2).
VARLiNGAM output (2-lag model), contemporaneous causal structure: L −→
P −→ EX −→ DS (identical to Figure 2).
VARLiNG output (1-lag model): unstable.
VARLiNG output (2-lag model): unstable.

Other checks
Firms are also sorted into subsamples according to their relative productivity (ei-
ther above-median or below-median) in the initial year (i.e. 2001).
Below-median productivity
VARLiNGAM output (1-lag model), contemporaneous causal structure: L −→
P −→ DS −→ EX .
VARLiNGAM output (2-lag model), contemporaneous causal structure: L −→
P −→ DS −→ EX .
VARLiNG output (1-lag model): unstable.
VARLiNG output (2-lag model): unstable.
Above-median productivity
VARLiNGAM output (1-lag model), contemporaneous causal structure: L −→
P −→ EX −→ DS (identical to Figure 2).
VARLiNGAM output (2-lag model), contemporaneous causal structure: L −→
P −→ EX −→ DS (identical to Figure 2).
VARLiNG output (1-lag model): unstable.
VARLiNG output (2-lag model): unstable.

OLS estimation
We also estimated the model using standard OLS regression instead of LAD. As
regards the model with one lag, VAR-LiNGAM produces the same result as the
one obtained from LAD estimation (L −→ P −→ EX −→ DS). As regards

35



the model with two lags, the contemporaneous causal structure output of VAR-
LiNGAM is L −→ P −→ DS −→ EX .
VAR-LiNG output (1-lag): same as LAD, with the addition of an edge from EX
to L.
VAR-LiNG output (2-lag): same result as 1-lag model.
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