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1 Introduction

The risk-return relationship challenging the traditionally widely accepted principle of no pre-

dictability of returns has been studied much more intensively on equity markets as compared to

sovereign bond markets. Despite large number of empirical studies, there is no clear consensus

on the existence or nature of the inter-temporal risk-return relationship as the results were often

ambiguous or even contradictory.

Starting from a very general asset pricing principle, as comprehensively summarized by

Cochrane (2009), price of an asset must be equal to the present value of future cash flows

arising out of holding the asset. An investor always compares future payoffs related to an asset

discounted to present value in order to reflect her impatience in consumption and aversion to

risk. This consumption-based model has been serving as a starting point to most factor asset

pricing models since they are in essence trying to tie the discount factor to various variables

trying to capture the risk of future cash flows.

However, existing empirical literature on risk-return trade-off appears to lead to ambiguous

and often even contradictory results. Primary motivation of this paper is to address potential

sources of these inconsistencies and to provide with comprehensive analysis of risk-return trade-

off on sovereign markets. First, we address measuring the risk and we aim to add to the very

scarce literature on the predictability of government bonds returns going beyond the standard

mean-variance dimension. With respect to the different nature and risk profile of bond invest-

ments as compared to equities, different sensitivities towards risk of bondholders and significant

proportion of bonds in investors’ portfolios, the proper study of the predictability of returns

using realized moments minimizing ex-ante estimation errors is highly relevant. Second, we be-

lieve that assumption of constant relationship between risk factors and returns does not reflect

the real situation on the market. Thus, conclusions on the presence and nature of the predictive

power of risk factors are extremely sensitive on choice of the time period covered in the analysis

as well as the actual length of the period. Therefore, we assess the return predictability using

time-varying coefficient analysis on 12 years of daily data in order to address the potentially

dynamic nature of the relationship. Further, we examine the risk-return relationship over the

entire term structure of all available tenors on U.S. and German sovereign bond futures market.

Since the short-end and long-end tenors represent largely different investment propositions, we

expect also the nature and dynamics of the risk-return relationship to differ.

Classic literature related to predictability of bond returns challenging the expectation hy-

pothesis include significant portion of literature claiming that term spreads carry significant

predictive power for bond returns. These influential works such as Fama (1976), Fama (1984),

Fama and French (1989) or Campbell and Shiller (1991) are built upon the hypothesis that

the term spread reflects the term risk premium compensating investors for their exposure to

interest rate (or discount rate) and duration risks. In addition to the term spread, Fama and

French (1989) find bond market default spread to contribute to stock and bond returns predic-

tions. Further, Fama and Bliss (1987) found certain predictive power of spread of forward rates

and one-year yields for bond excess returns. In the past decade, number of studies surged as

a reaction on the work by Cochrane and Piazzesi (2005) who show the predictability of U.S.

bond returns using a tent-shaped linear combination of forward rates on monthly data. Since
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their work became to a large extent a benchmark study in this field, multiple authors enhanced

the Cochrane-Piazzesi approach by adding additional factors improving the predictive power

such as Wright and Zhou (2009) who augmented the original model by multiple volatility mea-

sures (e.g. realized volatility, implied volatility, jumps-related measures) and concluded that

jump-related measures improved the excess bond return predictability significantly. More recent

works challenging the study by Cochrane and Piazzesi (2005) include the work by Adrian et al.

(2013) who introduce a three-step ordinary least squares estimator to the pricing of interest

rates and claim to outperform the benchmark by Cochrane and Piazzesi (2005).

As already mentioned the empirical literature of the risk-return trade-off is significantly

dominated by the studies of equity markets often leading to ambiguous results. The fact that

the literature has not reached a consensus regarding the existence and nature of the risk-return

relationship on equity markets might be also caused by the concept of risk taken into account in

the respective analyses. Bali and Peng (2006) argued that since conditional volatility of returns

is unobservable, different approaches to its estimation might be responsible for differences in

the empirical evidence. Therefore, incorporation of realized measures appears as a natural next

step to mitigate at least one potential source of inconsistencies of the empirical literature.

Since Andersen and Bollerslev (1998) or Andersen et al. (2003) made volatility observable

by introduction of realized volatility concept, authors such as Bali and Peng (2006) confronted

the intertemporal risk-return analysis using both latent- and observable-volatility approaches

and inspected risk-return tradeoff using high-frequency S&P 500 cash index data. Further, a

comprehensive analysis of high-frequency causality between equity returns and volatility was

carried out by Dufour et al. (2012). With respect to clear lack of consensus in empirical evidence

of existence and nature of the link between return and risk, i.e. whether there is a causal link

from return to volatility (also called leverage effect in literature), from volatility to return (also

called volatility feedback phenomenon) or whether the link is instantaneous, Dufour et al. (2012)

started his study with a complex inspection of Granger-causality of risk and return measures

with varying conclusions according to different volatility measures used.

Further, Mueller and Whelan (2017) performed an empirical analysis of relationship between

volatility risk and expected returns both in case of equities and U.S. bond market with a

conclusion that neither implied nor realized variance did not exhibit a predictive ability for

returns, but their spread (variance risk premia) did.

There were also works exploring the role of various volatility components or volatility-related

state variables in explaining future excess returns. Among others, Adrian and Rosenberg (2008)

documented that excess stock returns are not only governed by covariation of the assets returns

with the market returns but there is also a contribution of state variables related to volatility.

Adding to the academic debates a practitioners’ angle, Amromin and Sharpe (2012) conducted

a survey among stock investors and showed that the risk-return link was perceived differently

under different macroeconomic conditions. For example, in case of macroeconomic expansion

investors tend to expect high returns and low volatility (i.e. that risk and return are inversely

correlated), which is in contradiction to standard theory that high volatility is remunerated by

higher expected returns.

In addition to traditional risk-return trade-off, there has been a surge of literature exploring
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relationship between equity returns and higher moments of return distributions (namely skew-

ness and kurtosis). Early work connecting skewness and stock returns was the theory of Kraus

and Litzenberger (1976) who claimed coskewness to determine cross-section of stock returns.

Recently, there were multiple empirical works focusing on relationship between skewness and

expected returns predominantly on equity markets elaborating on later theoretical concepts

claiming negative relationship between skewness and expected returns.

One of these is the work by Mitton and Vorkink (2007) who take into account also be-

havioural biases of investors, meaning that investors’ preferences are heterogeneous. The au-

thors argue that in addition to ”traditional” investors there are also ”lottery-type” investors

preferring assets with positively skewed return distributions, and therefore, returns to these

lottery-type stocks deteriorate due to overpricing. According to Mitton and Vorkink (2007),

the overpricing is not arbitraged due to short-selling restrictions.

Similarly, theory by Barberis and Huang (2008) arrives to similar conclusions though by

different reasoning. The authors revisit the cumulative prospect theory by Kahneman and

Tversky (1979) which states that investors’ utility functions are concave over gains and convex

over losses. Barberis and Huang (2008) amend the theory in terms of its probability weighting

component reflecting the tendency of investors to overshoot the probability of extreme outcomes.

This again leads to willingness of investors to overpay for the positively skewed assets, in other

words, that a stock’s skewness is priced and affects excess returns. Other theoretical pieces

of work supporting risk-averse investor’s preference for positively skewed assets include Scott

and Horvath (1980), Kimball et al. (1990) or Ebert and Wiesen (2011). Theoretical works

assessing relation of higher moment (i.e. kurtosis) and investors’ preferences are even more

scarce, most referenced works include Kimball et al. (1990), Dittmar (2002) or Haas (2007)

suggesting investor aversion to kurtosis.

In contrast to theoretical consensus of negative effect of skewness on (equity) returns, em-

pirical evidence is rather ambiguous. Negative effect of skewness on future equity returns was

documented by Kumar (2009) who confirms the lottery-type stocks to underperform or by Bali

et al. (2011). Bali et al. (2011) find significant negative effect of occurence of extreme (lottery-

type) returns on future returns and by that succeed to explain puzzling negative return-volatility

effect found by Ang et al. (2006) or Ang et al. (2009). Further, negative correlation between

expected idiosyncratic skewness and stock returns was demonstrated by Boyer et al. (2009), and

effect of ex ante moments on expected stock returns was inspected by Conrad et al. (2013). Fur-

ther, significant effect of skewness (or gambling preference) on equity option returns was found

by Bali and Murray (2013), Boyer and Vorkink (2014) or Byun and Kim (2016). Informational

content of realized moments for future stock return were examined by Amaya et al. (2015) who

found significant power of realized skewness to predict cross-section of equity returns. From

the relevant recent studies, Jondeau et al. (2019) found that monthly average return skewness

across firms performs well in future market return predictions. As far as other than equity

market is concerned, Fernandez-Perez et al. (2018) detected skewness to be valuable predictor

of commodity futures returns. In contrast, some studies find also positive relationship between

skewness and stock returns (e.g. Rehman and Vilkov (2012)). Recently, Shen et al. (2018) re-

visits the explanatory power of higher moments on stock returns on daily frequency concluding
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that skewness lacks any explanatory power for future returns. As compared to skewness, kur-

tosis has attracted less attention. Recently, Chen et al. (2019) finds empirical evidence against

expected positive relationship between kurtosis and expected returns on stock market. The

authors explain the detected negative effect of kurtosis on stock returns by lottery preference

of the investors.

Also for sovereign bonds, enhancing the risk-return relationship by inclusion of higher mo-

ments (such as skewness and kurtosis) are likely to add additional explanatory power for future

returns. As noted by Fujiwara et al. (2013), the asymmetry of government bond returns implies

that mean and variance are not sufficient to describe risk.

To our best knowledge, Kinateder and Papavassiliou (2019) is the only work analyzing

the predictability of bond returns by realized moments. However, the authors use different

methodology and focus on returns of European sovereign 10-year bonds over a 2-year period

and conclude that the only moment valuable for return prediction is kurtosis.

With an ambition to provide the readers with a comprehensive and robust study which will

bring results valid beyond short periods or a concrete maturity we approach the task as follows.

First, having on hand an extensive high-frequency dataset, we start with careful inspection of

statistical properties of government bond returns over the entire term structure on the U.S.

and German market. Second, we analyze how the return and realized moments co-move across

the markets and maturities. Third, we estimate whether and how the realized moments help to

predict the excess returns, and how the conclusions differ across markets, maturities, sub-periods

and data frequencies.

The rest of the paper is organized as follows. Section 2 outlines the methodology of con-

struction of the realized moments and introduces the form of the model analyzing the link

between realized moments and future bond returns both in static and dynamic settings. Sec-

tion 3 presents the dataset along with detailed descriptive and correlation analysis of both U.S.

and German sovereign markets. The estimation results are discussed in Section 5 and Section

6 concludes.

2 Methodology

As Cochrane (2009) reminds, the recent empirical literature revisiting expectation hypothesis

gradually arrived to broader application of multi-factor models for explanation of future returns

(rather than models relying on market betas of the respective assets). In fixed income context,

more recent works show bond returns to be predictable to some extent. Cornerstone of asset

pricing is the reflection of investors’ concerns about states of world which have impact on their

returns in their investment decisions. In other words, that investors face the trade-off between

average returns and (bad) states of the world. In case of factor pricing models, the factor

variables should be the indicators of these bad states of world (Cochrane, 2009).

Since the relevant literature is nearly silent on this topic, we perceive the rigorous analysis

of link between return moments and bond prices to be meaningful adding to the bond-related

literature. We also believe that analysis of risk-return relationship for bonds across different

maturities is contributive since bonds with different maturities are traded on different market
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segments and the respective risk-return relationship might be perceived (and also grounded)

differently.

2.1 Realized moments

2.1.1 Realized variance

Inspecting (and also modeling and forecasting) volatility is complicated by the fact that the ac-

tual volatility is not directly observable. Therefore, researchers developed multiple approaches

relying on strict parametric assumptions to capture the latency of volatility. These methodolo-

gies include autoregressive conditional heteroskedasticity (ARCH) or stochastic volatility (SV)

models, or alternatively, option-based implied volatility measures. As Andersen and Teräsvirta

(2009) summarize, in order to approximate current and future levels of volatility, some litera-

ture also employs historical volatility measures (i.e. backward-looking sample return standard

deviation), which generally do not provide with outcomes consistent with basic properties of

volatility (such as mean reversion).

Thanks to availability of high-frequency data on various financial assets and to increas-

ing computational power needed for efficient processing of large-scale datasets, we can observe

stronger presence of model-free data-driven volatility measurements to the detriment of para-

metric conditional volatility models. As Andersen and Bollerslev (1998) or Andersen et al.

(2003) show realized volatility measures based on intra-day data bring significant reduction in

noise and improve stability of the results as compared to the measures relying on daily return

observations.

We use medRV estimator as formulated by Andersen et al. (2012) constructed as:

medRVt =
π

6− 4
√

3 + π

(
N

N − 2

)N−1∑
i=2

med(|rt,i−1|, |rt,i|, |rt,i+1|)2 (1)

where rt,i generally represents the i−th return on trading day t and N is the number

of equispaced returns on the trading day. We work also with associated volatility measure

medRV ol referring to square root of medRV .

As discussed in Andersen et al. (2012), medRV performs better compared to bi-power or

multi-power RV measures in terms of robustness in finite sample with respect to jumps and

occurrence of spurious zero returns caused by quote or trade price duplicates.

Within robustness checks we also employ realized variance measure as formulated by An-

dersen et al. (2003):

RVt =

N∑
i=1

rt,ir
′
t,i (2)

where rt,i generally represents the i−th return on trading day t and N is the number of equis-

paced returns on the trading day. Analogously, measure RV ol refers to square root of RV .
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2.1.2 Realized skewness

As Jondeau et al. (2019) recalls, skewness reflecting occurrence of extreme events can be as-

sociated with concepts such as tail risk (e.g. Bollerslev et al. (2015)) or disaster risk (e.g.

Kozhan et al. (2013)). Motivated also by up-to-date practice to include skewness of returns

as an additional risk factor, we include its realized measure to our fixed income risk-return

analysis.

Similarly as in case of volatility measure, we suspect varying approaches to skewness esti-

mation as one of the possible sources of result inconsistencies of empirical analyses of skewness-

return relationship. Therefore, thanks to availability of high-frequency data we use realized

skewness measure which was first introduced by Neuberger (2012). Specifically, we construct

the measure following Amaya et al. (2015):

rSkewt =

√
N
∑N

i=1(rt,i)
3

RV
3/2
t

(3)

in which rt,i generally represents the i−th return on trading day t, N is the number of equispaced

returns on the trading day and RVt refers to realized variance.

2.1.3 Realized kurtosis

Similarly as in case of lower moments, problematic measurement (or estimation) of the fourth

moment might be responsible for scarceness and ambiguity of empirical literature testing mo-

ment predictive power with respect to future asset returns. Again, having high-frequency data

at our disposal, in construction of realized kurtosis we follow the pioneering work by Amaya

et al. (2015):

rKurtt =
N
∑N

i=1(rt,i)
4

RV 2
t

(4)

in which rt,i generally represents the i−th return on trading day t, N is the number of equispaced

returns on the trading day and RVt refers to realized variance.

2.1.4 Constant-coefficient model

Before we move to the core time-varying analysis, we start with constant-coefficient model of

risk-return relationship on sovereign bond markets. Majority of the aforementioned literature

studies cross-section of asset returns. We focus on time series analysis of importance of re-

alized moments in predicting bond futures excess returns across maturities and markets. We

hypothesise, individual realized moments to be risk factors which are priced separately. In order

to filter out the effects already priced in traditionally used risk factors, we augment our basic

model by multiple control variables. For final model specification we have decided to use similar

logic to traditional Fama-French bond factors being able to capture business cycle fluctuations.

We restrict ourselves to additional two control variables which proved to be priced in (bond)

excess returns - term spread and default spread. The former is in our case defined as difference

between yields on 10-year Treasury bond and 3-month Treasury bill, whereas the default spread

is calculated as difference between yields on BAA-rated and AAA-rated U.S. corporate bonds.
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Following Bali and Peng (2006), we extend the basic model with a lagged return to mitigate

the potential spurious effect due to serial correlation in returns. Thus, final full-scope model

with all the control variables is constructed as follows:

rt+1 = α+ β1RV olt + β2RSkewt + β3RKurtt + γ1rt + γ2∆Termt + γ3∆Deft + εt (5)

where rt+1 is bond excess return and the explanatory variables refer to realized measures of

volatility, skewness and kurtosis, respectively, as defined in the preceding section. The control

variables refer to lagged excess return, first-differenced term spread and first-differenced default

spread, respectively.

2.1.5 Time-varying coefficient model

In order to inspect the time variation of the effect of individual risk factors on future returns, we

use the time-varying linear regression, which is attracting more and more attention in financial

research. As mentioned above, our ambition is to challenge the findings in previous risk-return

relationship studies which appear to be largely dependent on selection of the particular asset and

time period. We hypothesise that assumption of risk-return parameters to be constant might not

be true and the relationships between the variables might vary, especially in case of our extensive

data set covering 12 years. Non-parametric models robust to the functional misspecification of

the relationships between the analyzed variables would be natural candidates to tackle this

issue. However, these are vulnerable to ”curse of dimensionality” (Casas and Fernandez-Casal,

2019) and often do not provide the recipients with a straightforward inference. Therefore,

semi-parametric models where the coefficients change over time in a specified manner allow for

more flexibility than parametric linear model without the drawbacks of the fully non-parametric

methods.

Generally, the time-varying coefficient linear model (TVC) is specified as follows:

yt = xᵀt β(zt) + ut, t = 1, ..., T (6)

where yt is the dependent variable, xt is the vector of independent variables, and ut is

the disturbance term with E(ut|xt) = 0 and E(u2t |xt) = σ2. As compared to the constant-

coefficient linear model, β(zt) represent the regression coefficients being the unknown functions

of time or of a random variable changing with time. In our work, we will focus on the former

case1, where the smoothing variable corresponds to the time rescaled to interval [0, 1], i.e.

zt = τ = t/T . Pioneering work in this field was Robinson (1989) who analysed the time-varying

parameter linear models using stationary variables. The framework was extended also for non-

stationary case among others by Cai (2007). Recently, the time-varying coefficient methodology

was applied by Chen et al. (2019) who enhanced the Heterogenous Autoregressive Model for

realized volatility forecasting developed by Corsi (2009).

In our case, we employ time-varying OLS using the local constant kernel method (in the

literature known as Nadaraya-Watson estimator). In this case, β(t) is approximated by a

constant at each point in time (t) and the local constant Nadaraya-Watson estimator solves the

1Comprehensive literature review on the latter approach can be found in Casas and Fernandez-Casal (2019).
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following minimization problem:

arg min
θ

T∑
t=1

[yt − xᵀt θ]2Kb(zt − z) (7)

where the kernel Kb(zt−z) = 1
bK( zt−zb ) weights the local regressions within a chosen bandwith,

and the optimized θ∗ represents the local constant estimator of β(zt). Details on the theoretical

framework of the estimation procedure can be found in Cai (2007). The set of dependent and

independent variables is identical as in case of the constant-coefficient model as presented above.

Therefore, our time-varying coefficient model is expressed by:

rt+1 = αt + β1tRV olt + β2tRSkewt + β3tRKurtt + γ1trt + γ2t∆Termt + γ3t∆Deft + εt (8)

where rt+1 is bond excess return and the explanatory variables refer to realized measures of

volatility, skewness and kurtosis, respectively, as defined above. The control variables refer to

lagged excess return, first-differenced term spread and first-differenced default spread, respec-

tively, and α, β, and γ coefficients are time-varying.

3 Data

3.1 US Treasury and German sovereign bond futures prices

For our analysis we use 1-minute U.S. Treasury and German futures data (active contracts)

from Tick Data, Inc.2 database. We examine contracts for each U.S. Treasury and German

benchmark tenors traded at the world’s leading electronic platform CME Globex and Eurex,

respectively. The corresponding tickers and tenors are summarized in the following table.

CME Global ticker Eurex ticker Underlying tenor

TU BZ 2 years
FV BL 5 years
TY BN 10 years
US BX 30 years

Table 1: Summary of analyzed bond futures

There are multiple benefits of analyzing futures instead of cash market in order to examine

the risk-return relationship. First, as long as this paper applies data-driven methodology in

order to estimate volatility (as well as higher moments), immediate availability of clean 1-

minute high-frequency futures data from renowned database is extremely beneficial. Second,

observing situation on U.S. bond market in past decade, futures market has been gaining relative

importance to the cash market3. Third, due to delivery mechanism of U.S. Treasury futures

contracts, futures prices are tightly linked to underlying bond prices (and yields), and moreover,

also due to lower transaction costs, futures market was detected to be dominant to cash market

in reaction to news and price discovery process (see e.g. Brandt et al. (2007), Andersen et al.

2http://www.tickdata.com/
3See The New Treasury Market Paradigm, CME Group, June 2016, available at

https://www.cmegroup.com/education/files/new-treasury-market-paradigm.pdf.
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(2007) or Engle (1998)). Panzarino et al. (2016) found that volatility on the futures market

tends to spread to cash market, whereas the reverse flow is rather much weaker.

For our analysis we restrict ourselves to futures price observations in the period from Septem-

ber 2005 to November 2017. The selection of the inspected timeframe is beneficial, as long as

throughout the entire period the U.S. futures contracts have consistent specifics and delivery

conditions especially in terms of annual coupon rate of the underlying bond contract which

changed to 6% in 2000. Further, for this period we gain a complete series for all tenors both

on the U.S. and German markets. We believe that 12 years of 1-minute high-frequency obser-

vations covering also turbulent period of the 2007-2009 financial crisis represent wide variety

possible market situations reflected in various risk-return regimes on the respective markets.

The raw high-frequency data on futures prices are clean and validated by TickData in-

house system. However, we need to perform several more steps in order to acquire solid and

representative time series for meaningful calculation of realized moments and open-close log-

returns used for the analysis. First step is to exclude non-active days such as weekends or public

holidays. We also drop days having only a single unique futures price observation during the

trading day. This procedure leaves us with 3,099 days. Due to operation of trading electronic

platform CME Globex, significant trading activity is observable also outside the CME trading

hours (07:20 - 14:00 CT). Therefore, we decide to extend the interval for purposes of realized

moments calculation by two hours on each pole and to define the trading day for our purposes

from 05:20 CT to 16:00 CT in order to include all significant activity to our calculations.

Moreover, this window includes the regular announcements issued by Federal Reserve System,

European Central Bank and other relevant authorities which represent significant determinants

of changes on the sovereign market.

Based on the findings in the relevant literature (summarized in e.g. Liu et al. (2015), Hansen

and Lunde (2006)), we aggregate our data to 5-minutes sampling interval in order to benefit

from optimal trade-off between bias and variance, which leaves us with final number of 1,083,527

and 892,102 observations for the U.S. and German markets, respectively.

Using the final dataset, we calculate open-close log-returns and realized moments (variance,

skewness and kurtosis) for each tenor. It should be noted that the moments were satisfacto-

rily tested for stationarity in order to reject the unit-root contamination of the regressions.

Descriptive statistics of the daily returns and realized moments are provided in the Table 2.

Both mean daily returns and mean realized volatility of the U.S. Treasury futures are in-

creasing with maturity. Mean of the realized skewness is clearly negative for all maturities and

increasing in absolute value with maturity. For all maturities we observe significant autocor-

relation in realized volatility corresponding to the known concept of volatility clustering and

standard deviation of realized volatility series increasing with the underlying tenor.

Similar observations apply also for the German futures. Mean daily returns, mean realized

volatility as well as standard deviation of realized volatility increase with the maturity. Corre-

lation with the first lag is even more pronounced in the realized volatility of the German futures

returns as compared to the U.S. Treasury. However, mean realized skewness does not show any

common trend with the maturity of the underlying bonds.

Open-close returns and realized moments in weekly frequency of the 10-year U.S. and Ger-
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man bond futures prices are summarized in Figures 4 and 5, respectively. Despite our basic

model is estimated on daily data, we aggregate the variables also to weekly and monthly fre-

quency for better detection of dynamics of the moments over the inspected period. Whereas

weekly log-returns and realized volatility are aggregated by summations of the respective daily

observations, weekly measures of realized skewness and kurtosis correspond to weekly means.

As mentioned above, instead of explaining real returns we comply with best practice in the

literature and work with excess returns earned above risk-free three-month T-bill rate.

Mean Median Std Skew Kurt AR(1)

Panel A: U.S. Treasury

Daily returns
2-year (TU) 0.001 0.000 0.086 -0.866 14.881 -0.075
5-year (FV) 0.002 0.000 0.228 -0.308 6.217 -0.048
10-year (TY) 0.004 0.000 0.346 0.056 4.912 -0.034
30-year (US) 0.008 0.013 0.607 1.064 17.826 -0.015
Realized volatility
2-year (TU) 0.082 0.075 0.047 2.377 11.416 0.551
5-year (FV) 0.187 0.174 0.103 1.580 5.532 0.506
10-year (TY) 0.303 0.280 0.150 1.434 5.065 0.463
30-year (US) 0.532 0.520 0.246 1.322 8.550 0.377
Realized skewness
2-year (TU) -0.104 0.000 2.601 -0.929 14.701 0.003
5-year (FV) -0.217 -0.033 3.144 -0.856 8.870 0.013
10-year (TY) -0.225 -0.046 2.894 -0.880 9.648 0.012
30-year (US) -0.243 -0.050 2.526 -1.308 12.319 0.003
Realized kurtosis
2-year (TU) 18.570 6.210 34.044 4.449 23.754 -0.030
5-year (FV) 22.425 8.055 39.518 3.734 16.071 -0.036
10-year (TY) 20.033 7.653 35.718 3.996 17.997 -0.048
30-year (US) 17.489 7.652 30.753 4.645 25.426 -0.054

Panel B: Germany

Daily returns
2-year (BZ) 0.002 0.000 0.081 -0.289 9.538 -0.040
5-year (BL) 0.005 0.008 0.233 -0.840 8.126 -0.015
10-year (BN) 0.009 0.012 0.384 -0.267 3.146 -0.006
30-year (BX) 0.015 0.020 0.817 0.046 3.588 -0.001
Realized volatility
2-year (BZ) 0.071 0.059 0.037 2.381 8.250 0.859
5-year (BL) 0.182 0.162 0.079 1.861 5.714 0.811
10-year (BN) 0.310 0.283 0.119 2.831 27.615 0.711
30-year (BX) 0.654 0.602 0.270 1.874 7.319 0.717
Realized skewness
2-year (BZ) -0.088 -0.025 2.090 -1.369 22.781 0.015
5-year (BL) -0.069 -0.028 2.514 -0.923 17.375 -0.004
10-year (BN) -0.137 -0.066 2.477 -1.218 13.805 -0.004
30-year (BX) -0.095 -0.021 2.263 -0.371 7.648 0.015
Realized kurtosis
2-year (BZ) 14.245 7.757 25.806 6.607 51.116 0.056
5-year (BL) 17.323 9.048 3.254 5.968 40.945 0.024
10-year (BN) 17.820 9.776 28.890 5.744 38.911 0.002
30-year (BX) 19.298 12.444 22.245 4.667 29.915 0.040

Table 2: Descriptive statistics of returns and realized moments of U.S. Treasury and German
bond futures
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The upward sloping term structure of realized volatility valid for both U.S. and German

securities is apparent also in Figure 1 where we show monthly median realized volatilities for

individual tenors on both markets. The monthly aggregations exhbit similiar pattern across

maturities differing in rather in levels.

(a) USA

(b) Germany

Figure 1: Monthly median realized volatility. Note: Monthly median realized volatility calcu-
lated as summation from daily non-overlapping data.

We further inspect comovement in terms of intra-market correlations of individual moments

but also comovement of the moments on the U.S. and German market or across maturities.

The detailed correlation table of daily data is provided in Appendix (Table 8). First, we look

at the correlation of individual moments of U.S. Treasury futures returns across maturities.

As expected, the returns are strongly correlated across maturities with the intensity of the

link decreasing with increasing maturity differential. The same observation applies also for

median realized volatilities (as already suggested by common trends in Figure 1) as well as for

realized skewness and realized kurtosis. Further, we observe practically zero (or very weak)

correlation between returns and volatility as well as between volatility and realized kurtosis.

On the contrary, the correlation between returns and realized skewness is relatively strong (with

the strongest relationship within corresponding tenors). The identical conclusions apply also

for German futures. The significant postive correlation between returns and realized skewness

is even stronger than in case of U.S. Treasury futures (by ca. 10-15 percentage points). Finally

we also inspect the cross-market correlations. Returns are strongly positively correlated across
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maturities with the strongest positive correlation of 10-year tenors. The link between U.S. and

German sovereign market is even stronger in terms of volatility with correlation decreasing with

increasing maturities differential. Correlation of higher moments across the markets is much

weaker as compared to returns and volatility achieving appprox. 20-30% and 10-20% for realized

skewness and realized kurtosis, respectively.

(a) Open-close return return (b) Realized volatility

(c) Realized skewness (d) Realized kurtosis

Figure 2: Dynamic correlation between returns and realized moments of 10-year U.S. and
German bond futures. Rolling correlation coefficients calculated from rolling windows of 250
days.

Figure 2 illustrates 1-year (250-day) rolling correlation coefficients of returns and individual

moments for the 10-year tenors on both markets. We observe very strong correlation of open-

close return throughout the entire period with a slightly decreasing trend. On the other hand,

the dynamic correlation of realized volatility is more variable over the period, but most of the

time well-above 50%. For the sake of completeness, we show also rolling correlations of higher

moments. We find the dynamic correlation of skewness to be rather decreasing in time with

correlation over 50% present in 2007 (i.e. at start of global financial crisis). Realized kurtosis

does not reveal any clear conclusion since the dynamic 1-year correlation remains week over the

entire period.
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With respect to our inter-temporal analysis, as outlined in Equation 2.1.4, we also inspect

the 250-day dynamic correlations of the realized moments with the next day open-close returns.

For illustration we provide the time series of the rolling correlation for the 10-year Treasury in

Figure 3 whereas the identical plots for remaining assets are shown in the Appendix.

Before we move to description of control variables, we show the sample of dependent and

independent variables, i.e. returns and the second, the third and the fourth moments. All

moments for 10-year tenors (i.e. TY and BN tickers) on both markets are plotted in Figures 4

and 5 (for better illustration we aggregate the daily data to weekly frequency).

(a) TY: rt+1 and mRV olt (b) TY: rt+1 and RSkewt

(c) TY: rt+1 and RKurtt

Figure 3: 10-year U.S. Treasury futures: Dynamic correlations of realized moments with next
day open-close return.
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From Figure 5b is evident, that the German 10-year tenor futures (as well as the underlying

bonds) experienced multiple turbulent periods as compared to the U.S. Treasury, which were

shorter but not much less intense as compared to the 2007-2009 financial crisis. First, we

observe significant increase in volatility in 2012 as an effect of ”whatever-it-takes” message of

the European Central Bank4. Most recent spikes in volatility in 2015 correspond to the period

when ECB (similarly as other central banks) initiated a quantitative easing (by asset purchase

programmes) in order to address the long period of very low inflation. The asset purchase

programme extended the existing programmes of ECB of private sector assets purchases by

purchases of sovereign bonds.

(a) Open-close return return (b) Realized volatility

(c) Realized skewness (d) Realized kurtosis

Figure 4: 10-year U.S. Treasury futures (weekly). Note: Note: Weekly log-returns and realized
volatility are aggregated by summations of the respective daily observations, weekly measures
of realized skewness and kurtosis correspond to weekly means.

4Speech by Mario Draghi, President of the European Central Bank at the Global Investment Conference in
London 26 July 2012: https://www.ecb.europa.eu/press/key/date/2012/html/sp120726.en.html
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(a) Open-close return (b) Realized volatility

(c) Realized skewness (d) Realized kurtosis

Figure 5: 10-year German bonds futures (weekly). Note: Weekly log-returns and realized
volatility are aggregated by summations of the respective daily observations, weekly measures
of realized skewness and kurtosis correspond to weekly means.

3.2 Control variables

As mentioned earlier, we include control factors proved in the bond return literature to have a

certain explanatory power for future returns - term spread and default spread. We follow Bali

and Peng (2006) who define the spreads as difference between yields on the 10-year Treasury

bond and 3-month T-bill, and difference in long-term Moodys BAA-rated and AAA-rated cor-

porate bond yields,respectively. The respective daily yields were obtained from Federal Reserve

Bank of St. Louis5. Control variables for German market were constructed identically and ob-

tained from Bloomberg database6. Term spreads and default spreads for the U.S. and German

markets are displayed in Figures 6 and 7 (for better illustration in weekly frequency).

It is apparent that the spread developments have been reflecting business conditions in

the country. Significant flattening of U.S. yield curve (i.e. term spread decreasing to - or

even below - zero) has been usually a signal for a forthcoming economic slowdown (Estrella,

2005). Since term spreads are proxy for (unobservable) term premiums investors require for

their exposure to longer maturity, term spreads tend to follow the business cycle (Domian and

Reichenstein, 1998). Thus, term premiums (and term spreads) increase under poor business

conditions and decrease in prosperity. Similarly, default spreads widen during recessions since

5Link to databank: https://fred.stlouisfed.org/categories/22. Weekly and monthly observations were in line
with FRED practice constructed as averages. Possible missing observations completed by linear interpolations.

6Tickers: GTDEM3MO Corp (3-month), GTDEM10YR Corp (10-year), ER10 (EURO AAA Corporate
yields), ER40 (EURO BBB Corporate yields)
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investors’ demand for safer bonds pushes the top-rated yields down. On contrary, when the

economy starts to recover and investors trust increases they again shift their interest also to

lower-rated bonds which again narrows the default spread7. In order to ensure stationarity of

the series, we employ first-differenced term and default spreads in our model (refer to Equation

2.1.4).

(a) Term spread (b) Default spread

Figure 6: U.S. market control variables: Term spread and default spread (weekly)

(a) Term spread (b) Default spread

Figure 7: German market control variables: Term spread and default spread (weekly)

4 Results

This section sets forth empirical evidence of (time-varying) inter-temporal risk-return relation-

ship on the sovereign markets in the USA and Germany. We start with standard constant-

coefficient approach and discuss explanatory power of realized moments for next-day open-close

excess returns for U.S. Treasury futures prices over the whole sample. The U.S. market findings

are further confronted with empirical evidence of German data. Subsequently we move to the

7It is worth noting that the same economic conditions are captured by dividend yields (Fama and French,
1989).
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key focus of our empirical analysis - the time-variability of explanatory power of individual fac-

tors for next day excess returns. Finally, we discuss our findings in the context of the evidence

found by existing relevant literature.

4.1 Constant-coefficient model

4.1.1 US Treasury

Table 3 summarizes the estimation results of model specified in Equation 2.1.4 based on daily

frequency for all inspected tenors. Except for the shortest maturity, the negative effect of

median realized volatility on the next-day open-close return was found for all the tenors. The

contribution of volatility on future returns is not captured by the control variables which proved

to be significant for future returns as concluded by existing studies. Consistently with the

existing evidence, the effect of changes in term spread is significant in explaining the next-

day returns while the default spread turns out to be insignificant. Unsurprisingly, we find

significantly negative link between today’s and tomorrow’s open-close return which is usually

found in the higher frequency data due to random flow of sales and purchases of the asset

causing a bounce between the bid and ask prices8.

2-year 5-year 10-year 30-year
TU FV TY US

(Intercept) -0.003 0.016 0.041 ** 0.057 *
(0.003) (0.008) (0.014) (0.026)

mRVol -0.015 -0.105 ** -0.144 *** -0.102 *
(0.030) (0.037) (0.038) (0.041)

RSkew 0.000 -0.001 -0.002 -0.002
(0.001) (0.001) (0.002) (0.005)

RKurt 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Ret -0.066 *** -0.060 ** -0.063 ** -0.066 **
(0.020) (0.021) (0.022) (0.022)

∆Term spread -0.039 -0.191 ** -0.441 *** -1.009 ***
(0.024) (0.070) (0.111) (0.197)

∆Default spread 0.005 0.111 -0.178 0.098
(0.073) (0.192) (0.291) (0.510)

R2 0.7% 0.8% 1.2% 1.0%

(Standard errors in parentheses)
∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05

Table 3: Effect of realized moments and control variables on one-day ahead open-close excess
returns (daily).

Similarly as Bali and Peng (2006), we note that with respect to the noisiness of the daily

data, R2 oscillating around 1% is satisfactory and consistent with other empirical studies of

daily asset returns.

Contrary to some recent studies, we do not find any significant evidence of contribution of

the higher realized moments. We assign this to multiple factors. First, the studies concluding a

predictive power of realized higher moments (mainly skewness) focus on cross-section analysis

of equities (e.g. Amaya et al. (2015) or Jondeau et al. (2019)). Second, it is evident that data

frequency matters since we also detect a certain predictive power of higher moments (concretely

8We also performed the estimation at lower frequencies (weekly and monthly). In these cases the past-return
lacked an explanatory power for future returns.
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realized kurtosis) on future returns on weekly frequency9. Here we comply with Shen et al.

(2018) who also found evidence against significant explanatory power of realized skewness for

future returns as the authors performed their analysis on daily data.

2-year 5-year 10-year 30-year
TU FV TY US

(Intercept) -0.004 0.058 0.109 * 0.097
(0.015) (0.036) (0.049) (0.070)

mRVol -0.028 -0.213 * -0.259 ** -0.183 *
(0.088) (0.102) (0.097) (0.090)

RSkew -0.004 -0.002 -0.005 0.000
(0.003) (0.006) (0.009) (0.015)

RKurt 0.000 * 0.001 0.001 0.002
(0.000) (0.000) (0.001) (0.001)

Ret -0.064 -0.043 -0.007 0.023
(0.047) (0.048) (0.049) (0.049)

∆Term spread 0.014 0.044 -0.027 -0.151
(0.059) (0.136) (0.198) (0.288)

∆Default spread -0.019 0.266 -0.434 0.073
(0.204) (0.457) (0.650) (0.939)

R2 2.5% 1.9% 2.0% 1.7%

(Standard errors in parentheses)
∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05

Table 4: Effect of realized moments and control variables on one-day ahead open-close excess
returns (daily): subsample April 1, 2007 - March 31, 2009.

Motivated by most probably different extent of return predictability during the global fi-

nancial crisis period (Kinateder and Papavassiliou, 2019), we estimate the model outlined in

Equation 2.1.4 using a subsample starting April 1, 2007 and ending March 31, 2009 and sum-

marize the results in Table 4.

Again, we observe negative effect of median realized volatility on the next-day excess return

in case of all tenors except for the 2-year T-Bills. In the crisis period, volatility remains to be the

only significant predictor as the contribution of the control variables turns to be insignificant.

Here we comply with Kinateder and Papavassiliou (2019) who found European bond returns to

be more predictable during crisis periods, however we differ in the realized moment detected to

be a valuable predictor10.

When we look at the post-crisis subsample from April 2009 to November 2017 (as summa-

rized in Table 5), control variables - past return and first-differenced term spread - turn out to

be significant across all maturities. But also in this case, median realized volatility remains to

show significantly negative impact on future excess returns for all tenors this time except the

longest one.

It is worth noting, that we do not find any evidence of significant informative contribution

of higher realized moments for future returns in any of the analyzed sub-samples.

4.1.2 Germany

Having the corresponding dataset covering the same maturities also for German sovereign mar-

ket at our disposal, we perform the similar analysis of the inter-temporal risk-return relationship

9In this paper we focus on daily model. Estimation results on weekly frequency are available upon request.
10Kinateder and Papavassiliou (2019) found realized kurtosis to be the best predictor for European 10-year

bond returns over the inspected 2-year period.
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2-year 5-year 10-year 30-year
TU FV TY US

(Intercept) 0.006 0.023 * 0.046 ** 0.057
(0.004) (0.009) (0.016) (0.032)

mRVol -0.097 * -0.143 ** -0.154 ** -0.089
(0.045) (0.049) (0.049) (0.053)

RSkew 0.000 -0.001 -0.001 -0.001
(0.001) (0.001) (0.003) (0.006)

RKurt 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Ret -0.078 ** -0.131 *** -0.197 *** -0.182 ***
(0.028) (0.029) (0.031) (0.029)

∆Term spread -0.099 *** -0.607 *** -1.443 *** -2.833 ***
(0.029) (0.111) (0.194) (0.360)

∆Default spread 0.026 -0.008 -0.022 -0.065
(0.069) (0.227) (0.359) (0.694)

R2 1.0% 1.8% 2.8% 2.5%

(Standard errors in parentheses)
∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05

Table 5: Effect of realized moments and control variables on one-day ahead open-close excess
returns (daily): subsample April 1, 2009 - November 30, 2017.

as in case of the U.S. Treasury market. Estimation results are presented in the Table 6. Con-

trary to the U.S. market, we found no evidence of the independent variables outlined in the

Equation 2.1.4 having any explanatory power for next-day excess returns.

2-year 5-year 10-year 30-year
BZ BL BN BX

(Intercept) -0.002 -0.009 0.000 0.030
(0.003) (0.011) (0.020) (0.041)

mRVol 0.025 0.062 0.016 -0.055
(0.041) (0.054) (0.059) (0.055)

RSkew 0.000 0.002 0.004 0.013
(0.001) (0.002) (0.004) (0.008)

RKurt 0.000 0.000 0.000 0.001
(0.000) (0.000) (0.000) (0.001)

Ret -0.029 -0.032 -0.035 -0.048
(0.024) (0.028) (0.027) (0.026)

∆Term spread 0.025 -0.028 -0.220 -0.607 *
(0.027) (0.084) (0.148) (0.306)

∆Default spread 0.059 -0.109 -0.287 -0.011
(0.044) (0.127) (0.210) (0.446)

R2 0.3% 0.1% 0.2% 0.3%

(Standard errors in parentheses)
∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05

Table 6: Effect of realized moments and control variables on one-day ahead open-close excess
returns (daily).

4.2 Time-varying coefficient model

In the previous section, we observe that the detected relationship is most probably distinctly

variable in time which might lead to inconsistencies and ambiguity of the existing empirical

evidence performed on shorter periods. Therefore, we take advantage of our unique dataset,

especially in terms of the length of the covered period, and look at the variability of the risk-

return tradeoff in more detail. As described previously, we employ the time-varying coefficient

model as specified in Equation 2.1.5. Time-varying coefficients including 90% confidence band

for the U.S. Treasury 10-year tenor are plotted in Figure 8 together with the constant OLS

estimate (red line).

We recall that in the classic OLS setting, only median realized volatility, excess return

and differenced term spread were detected as significant for the next day excess return of
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10-year Treasury bonds futures. As we see in Figure 8a, the time-varying effect of realized

volatility is negative (with minor exceptions) throughout the sample period. In line with the

crisis subsample analysis presented earlier, we observe the crisis period of 2007 - 2009 to show

significant effect, i.e. the 90% confidence band is entirely below zero. Then, after 5-year period

of no evidence of significantly negative return-volatility relationship, the time-varying coefficient

incl. its confidence band return to negative values in 2014. Since then, the mid point estimate

has been declining (but with widening confidence band).

(a) β̂1: Median realized volatility (b) β̂2: Realized skewness

(c) β̂3: Realized kurtosis (d) γ̂1: Excess return

(e) γ̂2: ∆Term spread (f) γ̂3: ∆Default spread

Figure 8: Time-varying coefficients for 10-year Treasury returns. Dotted lines represent 90%
confidence bands. Red line indicates constant-coefficient OLS estimate.

Even in TVC setting, realized skewness does not show any significant contribution to the

next day return. The coefficient estimate is oscillating around zero over the entire sample

period. On the other hand, in case of realized kurtosis, time-varying coefficient methodology

reveals a lot more than standard OLS. Figure 8c shows that in the 12-year sample period

there are extensive periods of positive and negative effects of realized kurtosis on the next day

excess return. We see that around the year 2009 there is a significantly positive effect of the
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realized kurtosis on the next day return. On the contrary, since 2013 we found significantly

negative effect of kurtosis, moreover with relatively narrow 90% confidence band. We conclude

that especially in case of the fourth moment, the insignificance of the constant-coefficient OLS

estimate over the entire period 2005-2017 is misleading.

As far as the control variables are concerned, we observe significantly negative autoregressive

effect of excess returns since 2010. Similarly, the first-differenced term spread has significantly

negative effect on future returns since 2010. The remaining control variable, the first-differenced

default spread, does not show any significant effect since the confidence band always includes

zero.

Summary of the results for all tenors is provided in Table 7 and plots of time-varying

coefficients for the remaining tenors are provided in the Appendix.

TU: 2-year (daily) Min 1st quartile Median Mean 3rd quartile Max

Intercept -0.031 -0.005 0.001 -0.002 0.007 0.167
mRVol -0.276 -0.096 -0.038 -0.041 0.046 0.179
RSkew -0.003 -0.001 0.000 0.000 0.000 0.001
RKurt 0.000 0.000 0.000 0.000 0.000 0.000
Ret -0.156 -0.132 -0.078 -0.086 -0.056 0.005
∆ Term spread -0.140 -0.072 -0.050 -0.050 -0.036 0.060
∆ Default spread -0.160 -0.032 -0.004 -0.003 0.030 0.182

R2 2.1%

FV: 5-year (daily) Min 1st quartile Median Mean 3rd quartile Max

Intercept -0.022 0.009 0.019 0.023 0.037 0.062
mRVol -0.411 -0.199 -0.118 -0.136 -0.068 0.058
RSkew -0.003 0.000 0.000 0.000 0.000 0.002
RKurt -0.001 0.000 0.000 0.000 0.000 0.001
Ret -0.204 -0.154 -0.114 -0.103 -0.038 0.015
∆ Term spread -0.669 -0.555 -0.505 -0.354 -0.076 0.153
∆ Default spread -0.731 -0.371 -0.072 -0.059 0.349 0.530

R2 2.2%

TY: 10-year (daily) Min 1st quartile Median Mean 3rd quartile Max

Intercept -0.019 0.025 0.045 0.050 0.075 0.118
mRVol -0.461 -0.234 -0.162 -0.165 -0.082 0.028
RSkew -0.005 -0.002 0.000 -0.001 0.001 0.004
RKurt -0.001 0.000 0.000 0.000 0.001 0.001
Ret -0.308 -0.232 -0.184 -0.137 -0.205 0.010
∆ Term spread -1.900 -1.458 -1.155 -0.910 -0.170 0.175
∆ Default spread -1.510 -0.684 -0.139 -0.327 0.041 0.456

R2 2.8%

US: 30-year (daily) Min 1st quartile Median Mean 3rd quartile Max

Intercept -0.020 0.029 0.060 0.062 0.087 0.196
mRVol -0.363 -0.152 -0.126 -0.109 -0.034 0.061
RSkew -0.014 -0.007 -0.003 -0.001 0.004 0.013
RKurt -0.002 -0.001 0.000 0.000 0.001 0.002
Ret -0.387 -0.166 -0.101 -0.121 -0.029 0.004
∆ Term spread -4.947 -2.982 -2.022 -1.941 -0.349 0.262
∆ Default spread -2.524 -0.538 0.156 -0.154 0.581 1.195

R2 2.8%

Table 7: Summary statistics of time-varying coefficients (US Treasury)

Interestingly, the results both in terms of value development as well as significance devel-

opment in time, is similar across the tenors of U.S. Treasury bond futures. Effect of realized

volatility on future returns is significantly negative in the period of global financial crisis of

2007-2009 in case of longer tenors, i.e. 10-year and 30-year. A bit weaker outcome was detected

in case of the 5-year tenor, where the upper limit of the confidence band oscillates very close to

zero around the year 2009. For the shortest tenor (2-year) we observe results consistent with

OLS estimation on the 2007-2009 subsample and conclude that no significant effect of volatility

on next day return was detected. However, since 2014, we observe negative effect of realized
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volatility on future returns and this effect appears to be significant for all the tenors. Further,

the absence of any significant effect of realized skewness on next day return is valid for all

the tenors. On the contrary, we find very interesting results in case of realized kurtosis with

coefficients switching from positive (approximately between 2007 and 2009) to negative values

(after 2013). Furthermore, we find the negative effect of the fourth moment on next day open-

close return to steadily amplify in absolute value. Despite its changing nature throuhghout the

sample, we agree with conclusions of Kinateder and Papavassiliou (2019) who found realized

kurtosis to be an important predictor of future sovereign bond returns.

Our results indicate that if there is a evidence of a risk-return trade-off, the priced ”risk” el-

ement in the risk-return trade-off is most probably dominantly defined by volatility and kurtosis

(on top of the standard control variables). Importance of higher moments for the general notion

of risk is something which was already described in the literature. However, compared to other

studies we benefit for an extraordinarily long period covered in our analysis which allows us to

inspect the time variability of the pricing of the risk factor in future returns. The observations

made on the 12-year series of time-varying coefficients are in line with the recent works focused

shorter periods or different assets. We remind that different nature of the link between realized

moments and future returns was also found by Chen et al. (2019) on the Chinese stock mar-

ket since the investor’s behaviour tend to change in time of crisis period. Similarly, Kinateder

and Papavassiliou (2019) find more profound results when they separate crisis and non-crisis

subsamples when evaluating predictability of European bond returns.

Last but not least we are turning to the control variables. Here again, we find similar

patterns across the term structure with the exception for the 2-year tenor which is perceived to

resemble rather the cash market. For the medium and long tenors we find significantly negative

auto-regressive effect since approximately 2010. Further, we observe significant contribution of

differenced term spread on next day returns since 2010. We observe that in periods where the

term spread proved to be significant, the true value is most probably well below the classic OLS

estimate. And finally, consistent with the constant-coefficient OLS, default spread lacks any

explanatory power over the entire sample.

We performed the same estimation of time-varying coefficients for the German bond fu-

tures11. As compared to the U.S. Treasury, the periods of significance of individual realized

moments for next day open-close excess returns are substantially shorter as compared to the

U.S. Treasury (see plot in the Appendix). Interestingly, volatility is not significant in case of

any maturity. From the realized moments, skewness appears to be the most promising. Equally

for all maturities, there is a period around 2008, where we can observe the 90% confidence

band below zero. However, later the sign of the effect significantly changes and around 2012 we

observe on the contrary positive effect of realized skewness on the next day return. Further, for

the shorter tenors (2-year and 5-year) we can see the negative effect of kurtosis around 2007-

2008. From the control variables, only the differenced default spread appears to be contributive

approx. in the period 2011-2013.

11Summary statistics of time-varying coefficients are provided in the Appendix.
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5 Conclusion

We extend the existing literature of bond return predictability in multiple dimensions. We

introduce additional factors having a significant effect on next day excess returns which is not

already explained by traditionally used predictive variables. Further, we detect strong time-

variability of risk-return relationship on sovereign markets which might be probably responsible

for inconsistencies of the existing empirical evidence covering different time periods and sample

sizes.

We show that realized moments are valuable predictors of next day open-close excess returns

of U.S. Treasury bond futures. Namely, realized volatility and realized kurtosis carry significant

information for subsequent returns which is not priced by commonly used factors such as term

and default spreads. Over the whole period, we find significant (negative) predictive power of

realized volatility whereas the effect of realized kurtosis changes from positive (around 2008)

to significantly negative impact detected between 2013 and 2017. Interestingly, the dynamics

of bond futures return predictability evolves similarly over the entire term structure of the

U.S. Treasury futures (except for 2-year underlying tenor). Surprisingly, we cannot extend the

conclusions also to German market where we found no robust evidence of predictability of the

bond futures returns.

Besides bond return predictability, we find the moments to be strongly correlated over the

entire term structure on each market. Moreover, we reveal significant (dynamic) positive cor-

relation of returns German and U.S. sovereign market as well as respective realized volatilities.

Interestingly, we also find that realized volatility forms upward-sloping term structure on both

markets.
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Appendix

(a) β̂1: Median realized volatility (b) β̂2: Realized skewness

(c) β̂3: Realized kurtosis (d) γ̂1: Excess return

(e) γ̂2: ∆Term spread (f) γ̂3: ∆Default spread

Figure 9: Time-varying coefficients for 2-year Treasury returns. Dotted lines represent 90%
confidence bands. Red line indicates constant-coefficient OLS estimate.
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(a) β̂1: Median realized volatility (b) β̂2: Realized skewness

(c) β̂3: Realized kurtosis (d) γ̂1: Excess return

(e) γ̂2: ∆Term spread (f) γ̂3: ∆Default spread

Figure 10: Time-varying coefficients for 5-year Treasury returns. Dotted lines represent 90%
confidence bands. Red line indicates constant-coefficient OLS estimate.
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(a) β̂1: Median realized volatility (b) β̂2: Realized skewness

(c) β̂3: Realized kurtosis (d) γ̂1: Excess return

(e) γ̂2: ∆Term spread (f) γ̂3: ∆Default spread

Figure 11: Time-varying coefficients for 30-year Treasury returns. Dotted lines represent 90%
confidence bands. Red line indicates constant-coefficient OLS estimate.
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(a) β̂1: Median realized volatility (b) β̂2: Realized skewness

(c) β̂3: Realized kurtosis (d) γ̂1: Excess return

(e) γ̂2: ∆Term spread (f) γ̂3: ∆Default spread

Figure 12: Time-varying coefficients for 2-year German bond returns. Dotted lines represent
90% confidence bands. Red line indicates constant-coefficient OLS estimate.
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(a) β̂1: Median realized volatility (b) β̂2: Realized skewness

(c) β̂3: Realized kurtosis (d) γ̂1: Excess return

(e) γ̂2: ∆Term spread (f) γ̂3: ∆Default spread

Figure 13: Time-varying coefficients for 5-year German bond returns. Dotted lines represent
90% confidence bands. Red line indicates constant-coefficient OLS estimate.
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(a) β̂1: Median realized volatility (b) β̂2: Realized skewness

(c) β̂3: Realized kurtosis (d) γ̂1: Excess return

(e) γ̂2: ∆Term spread (f) γ̂3: ∆Default spread

Figure 14: Time-varying coefficients for 10-year German bond returns. Dotted lines represent
90% confidence bands. Red line indicates constant-coefficient OLS estimate.
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(a) β̂1: Median realized volatility (b) β̂2: Realized skewness

(c) β̂3: Realized kurtosis (d) γ̂1: Excess return

(e) γ̂2: ∆Term spread (f) γ̂3: ∆Default spread

Figure 15: Time-varying coefficients for 30-year German bond returns. Dotted lines represent
90% confidence bands. Red line indicates constant-coefficient OLS estimate.
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(a) TU: rt+1 and mRV olt (b) TU: rt+1 and RSkewt

(c) TU: rt+1 and RKurtt

Figure 16: 2-year U.S. Treasury futures: Dynamic correlations of realized moments with next
day open-close return.
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(a) FV: rt+1 and mRV olt (b) FV: rt+1 and RSkewt

(c) FV: rt+1 and RKurtt

Figure 17: 5-year U.S. Treasury futures: Dynamic correlations of realized moments with next
day open-close return.
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(a) US: rt+1 and mRV olt (b) US: rt+1 and RSkewt

(c) US: rt+1 and RKurtt

Figure 18: 30-year U.S. Treasury futures: Dynamic correlations of realized moments with next
day open-close return.
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(a) BZ: rt+1 and mRV olt (b) BZ: rt+1 and RSkewt

(c) BZ: rt+1 and RKurtt

Figure 19: 2-year German bond futures: Dynamic correlations of realized moments with next
day open-close return.
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(a) BL: rt+1 and mRV olt (b) BL: rt+1 and RSkewt

(c) BL: rt+1 and RKurtt

Figure 20: 5-year German bond futures: Dynamic correlations of realized moments with next
day open-close return.
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(a) BN: rt+1 and mRV olt (b) BN: rt+1 and RSkewt

(c) BN: rt+1 and RKurtt

Figure 21: 10-year German bond futures: Dynamic correlations of realized moments with next
day open-close return.
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(a) BX: rt+1 and mRV olt (b) BX: rt+1 and RSkewt

(c) BX: rt+1 and RKurtt

Figure 22: 30-year German bond futures: Dynamic correlations of realized moments with next
day open-close return.
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BZ: 2-year (daily) Min 1st quartile Median Mean 3rd quartile Max

Intercept -0.048 -0.015 -0.005 -0.008 -0.002 0.012
mRVol -0.076 0.080 0.129 0.129 0.182 0.472
RSkew -0.004 -0.002 0.000 0.000 0.003 0.005
RKurt 0.000 0.000 0.000 0.000 0.000 0.000
Ret -0.212 -0.072 -0.051 -0.053 -0.025 0.003
∆ Term spread -0.119 -0.018 0.009 0.005 0.034 0.094
∆ Default spread -0.391 -0.070 0.027 0.035 0.137 0.721

R2 2.9%

BL: 5-year (daily) Min 1st quartile Median Mean 3rd quartile Max

Intercept -0.114 -0.041 -0.024 -0.022 -0.004 0.039
mRVol -0.136 0.037 0.166 0.165 0.266 0.601
RSkew -0.009 -0.003 0.001 0.002 0.006 0.013
RKurt -0.001 0.000 0.000 0.000 0.000 0.001
Ret -0.151 -0.053 -0.022 -0.028 0.003 0.049
∆ Term spread -0.335 -0.185 0.017 -0.020 0.111 0.306
∆ Default spread -1.084 -0.446 -0.073 -0.102 0.205 1.479

R2 1.7%

BN: 10-year (daily) Min 1st quartile Median Mean 3rd quartile Max

Intercept -0.160 -0.026 0.008 -0.002 0.028 0.074
mRVol -0.192 -0.058 0.009 0.038 0.086 0.564
RSkew -0.021 -0.007 0.003 0.003 0.014 0.024
RKurt -0.001 0.000 0.000 0.000 0.000 0.001
Ret -0.131 -0.057 -0.031 -0.032 -0.008 0.042
∆ Term spread -0.603 -0.401 -0.199 -0.225 -0.103 0.444
∆ Default spread -1.609 -0.809 -0.101 -0.198 0.216 1.880

R2 1.5%

BX: 30-year (daily) Min 1st quartile Median Mean 3rd quartile Max

Intercept -0.153 -0.026 0.039 0.034 0.110 0.173
mRVol -0.227 -0.125 -0.077 -0.060 0.014 0.171
RSkew -0.015 0.000 0.019 0.016 0.033 0.050
RKurt -0.002 0.000 0.001 0.001 0.002 0.003
Ret -0.144 -0.091 -0.056 -0.053 -0.016 0.032
∆ Term spread -1.587 -0.899 -0.706 -0.733 -0.497 0.290
∆ Default spread -3.765 -0.897 0.372 0.089 0.738 3.991

R2 1.3%

Table 9: Summary statistics of time-varying coefficients (Germany)
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