

INSTITUTE OF ECONOMIC STUDIES Faculty of Social Sciences Charles University

$$\frac{n}{n} \binom{n}{n} p^{m} \binom{1}{m} p^{m} \binom{1}{m} \binom{m=1}{m-1} \binom{m-1}{n} \binom{m-1}{n} \binom{m-1}{n-1} \binom{m-1}{n-1}$$

$$\frac{1}{1!!}p^{m-1}(1-p)^{n-m} = p\sum_{\ell=0}^{n-1} \frac{\ell+1}{n} \frac{(n-1)!}{(n-1-\ell)! \ell!}p^{\ell}$$

 $\frac{1)!}{(n-1)!}p^{m-1}(1-p)^{n-m} = p\sum_{i=0}^{n-1}\frac{\ell+1}{n}\frac{(n-1)!}{(n-1-\ell)!}\frac{\ell!}{\ell!}p^{\ell}(1-p)^{n-1-\ell} = p\frac{n-1}{n}\sum_{i=1}^{m-1}\left[\frac{\ell}{n-1} + \frac{1}{n-1}\right]\frac{(n-1)!}{(n-1-\ell)!}\frac{\ell!}{\ell!}p^{\ell}(1-p)^{n-1-\ell} = p^2\frac{n-1}{n}$

Institute of Economic Studies, Faculty of Social Sciences, Charles University in Prague

[UK FSV - IES]

Opletalova 26 CZ-110 00, Prague E-mail: ies@fsv.cuni.cz http://ies.fsv.cuni.cz

Institut ekonomických studií Fakulta sociálních věd Univerzita Karlova v Praze

> Opletalova 26 110 00 Praha 1

E-mail: ies@fsv.cuni.cz http://ies.fsv.cuni.cz

Disclaimer: The IES Working Papers is an online paper series for works by the faculty and students of the Institute of Economic Studies, Faculty of Social Sciences, Charles University in Prague, Czech Republic. The papers are peer reviewed. The views expressed in documents served by this site do not reflect the views of the IES or any other Charles University Department. They are the sole property of the respective authors. Additional info at: ies@fsv.cuni.cz

Copyright Notice: Although all documents published by the IES are provided without charge, they are licensed for personal, academic or educational use. All rights are reserved by the authors.

Citations: All references to documents served by this site must be appropriately cited.

Bibliographic information:

Brož V. and Kočenda E. (2019): "Mortgage-Related Bank Penalties and Systemic Risk Among U.S. Banks" IES Working Papers 25/2019. IES FSV. Charles University.

This paper can be downloaded at: http://ies.fsv.cuni.cz

Mortgage-Related Bank Penalties and Systemic Risk Among U.S. Banks

Václav Brož^a Evžen Kočenda^a

^aInstitute of Economic Studies, Faculty of Social Sciences, Charles University
Opletalova 26, 110 00, Prague, Czech Republic
Email (corresponding author): vaclav.broz@gmail.com

September 2019

Abstract:

We analyze link between mortgage-related regulatory penalties levied on banks and the level of systemic risk in the U.S. banking industry. We employ a frequency decomposition of volatility spillovers to draw conclusions about system-wide risk transmission with short-, medium-, and long-term dynamics. We find that after the possibility of a penalty is first announced to the public, long-term systemic risk among banks tends to increase. In contrast, a settlement with regulatory authorities leads to a decrease in the long-term systemic risk. Our analysis is relevant both to authorities imposing penalties as well as to those in charge of financial stability.

JEL: C14, C58, G14, G21, G28, K41

Keywords: Bank, financial stability, global financial crisis, mortgage, penalty, systemic risk

Acknowledgements: We benefited from helpful comments from Jozef Baruník, Laure de Batz, Martin Hodula, Matthias Pelster, and Martina Jašová. The following research support is acknowledged: SVV 260 463 project of the Charles University and GAUK project no. 1250218 (Brož), GAČR grant no. 19-15650S (Kočenda). The views presented in this paper do not represent the official views of the Czech National Bank. The usual disclaimer applies.

1. Introduction and motivation

In this study, we analyze the link between mortgage-related regulatory penalties levied on banks in the United States and the level of systemic risk in the U.S. banking industry. In recent years, oversight and enforcement bodies in the U.S. have levied substantial penalties on banks in connection to their (mis)conduct during the pre-crisis years (Koester and Pelster, 2018; Flore et al., 2018). This pertains especially to global banks that are perceived by many as prime suspects responsible for the global financial crisis, the largest crisis since the Great Depression (Kalemli-Ozcan et al., 2013; McConnell and Blacker, 2013). A sizable share of the penalties levied by U.S. authorities has been linked to how banks behaved related to mortgages and foreclosures (European Systemic Risk Board, 2015). We focus on this type of penalty and show how it contributes to the propagation of risk in the U.S. banking industry.¹

While bank penalties aim to establish a corrective to the inflicted social harm and to serve as a deterrent for other banks, it is likely that such actions might create systemic risk in the banking sector (European Systemic Risk Board, 2015). First, negative publicity surrounding the policy actions can destabilize the offender's business operations, jeopardizing its stock price as well as investors' and clients' trust (Murphy et al., 2009). Second, the troubles of one market player may spill over to the operations of its competitors as the banking sector is highly interconnected (Morgan, 2002; Anginer et al., 2014). As a result, the penalties imposed on banks might ultimately create various negative externalities in the financial markets as well as in the real economy.

In our analysis, we focus on publicly-traded banks operating in the United States that have been subject to financial penalties regarding their (mis)conduct related to mortgages and

¹ Typically, banks received penalties for the handling of subprime mortgages, misleading investors over mortgage backed securities, unlawful mortgage securitization, improper foreclosure processing allegations, securities law violations in connection with mortgage-backed securities sales to Fannie Mae and Freddie Mac, or misleading investors about collateralized debt obligations tied to mortgage securities. A special case was the so-called National Mortgage Settlement in February 2012, when several banks agreed to pay more than 25 billion USD to address their "mortgage servicing, foreclosure, and bankruptcy abuses" (National Mortgage Settlement, 2017).

foreclosures from U.S. authorities. Based on the publicly available data from the Financial Times and the Wall Street Journal, we construct a unique hand-crafted dataset on bank penalties that covers the period from 2010 to 2016. Most notably, our dataset includes information on two types of events related to a penalty: the announcement date, when the possibility of a penalty is first publicly released, and the settlement date, when an agreement about the penalty is reached between the bank and the relevant U.S. authority.

Following Diebold and Yilmaz (2014), we model systemic risk as system-wide connectedness and we analyze and employ volatility spillovers derived in the spirit of Diebold and Yilmaz (2009, 2012). The connection between the above approach based on volatility spillovers and systemic risk is straightforward. Diebold and Yilmaz (2014) argue that the spillovers capturing the contribution of an individual network element to the system-wide connectedness (*to*-spillovers) can be seen as an analogy to the conditional value at risk (CoVaR) approach towards measuring systemic risk, as introduced in Adrian and Brunnermeier (2016). Similarly, the measure of the spillovers, expressing the extent to which individual network elements are exposed to system-wide events (*from*-spillovers) can be related to the marginal expected shortfall (MES) approach towards measuring systemic risk pioneered in Acharya et al. (2010).

In terms of our working hypotheses, we examine the extent of risk that banks discharge and receive (in the form of high volatility spillovers) in response to an announcement of a potential penalty or to a settlement. Further, we follow the approach of Baruník and Křehlík (2018) and examine volatility spillovers at various frequencies that can be understood as different investment horizons. This allows us to distinguish system-wide risk transmission with short-, medium-, and long-term persistence. In other words, we are able to assess whether the effect of bank penalties is persistent or short-lived.

Despite of importance of the systemic risk propagation among banks, research on the link between penalties and systemic risk is negligible; so far (to the best of our knowledge) it is represented by Koester and Pelster (2018) and Flore et al. (2018). Our analysis makes a new contribution to the literature and specifically provides assessment of the link between mortgage-related regulatory penalties levied on banks and the level of systemic risk in the U.S. banking industry. By employing a frequency decomposition of volatility spillovers, we are able to deliver evidence about system-wide risk transmission with short-, medium-, and long-term dynamics. Our key result is robust evidence on the differences between the penalty announcement and penalty settlement effects. We show that after the possibility of a penalty is first announced to the public, long-term systemic risk in the U.S. banking sector tends to increase. In contrast, a settlement with regulatory authorities leads to a decrease of the longterm risk. Since penalties are reflected in the behavior of investors with longer investment horizons, our results carries implications for portfolio selection and investment strategies on financial markets. Further, our analysis is relevant to authorities imposing the penalties as well as those in charge of financial stability. While penalties are likely to affect both the performance and valuation of the receiving bank, they might also influence other (innocent) banks. The outcome casts doubts on the corrective effect of the penalties. Hence, our results also have direct policy implications for financial stability.

The paper is structured as follows. Section 2 offers a review of the previous research on bank penalties and their connection to systemic risk. In Section 3, we describe the methodological approach based on volatility spillovers. Section 4 presents the data, variables, and testable hypotheses. We display our results and inferences in Section 5. The last section concludes.

2. Literature review

The impact of bank penalties on stock prices and/or profitability is a focus of much research in the field and recent applications include Koester and Pelster (2017), Tilley et al. (2017), and De Batz (2018). On the other hand, the link between penalties imposed on banks and systemic risk has been so far analyzed only by Koester and Pelster (2018) and indirectly also by Flore et al. (2018).

Koester and Pelster (2018) focus on the link between penalties to internationally listed banks and two measures of systemic risk: dynamic MES and daily Δ CoVaR. The authors collect a large dataset on penalties (almost 700 cases) from 2007 to 2014 and employ panel estimation with time and fixed effects. In terms of results, it is shown that there is a positive statistical association between financial penalties and the level of systemic risk exposure of banks (captured by the MES measure) but not between financial penalties and the level of systemic risk contribution of banks (proxied by the daily Δ CoVaR). In other words, financial penalties make banks more vulnerable to market downturns but there is no evidence of the transmission of shocks between banks. In our approach, we focus on system-wide risk transmission with short-, medium-, and long-term dynamics as we assume a frequency decomposition of volatility spillovers.

Flore et al. (2018) focus on market reactions (stock, bond, credit default spreads) to both the announcements of penalties and settlements of banks and interpret their results in terms of systemic risk. Using a dataset covering the cases of large global banks, they find that uncertainty decreases following the settlement. This event is perceived by the market as good news. This is also reflected in a positive market reaction (valuation effect) for banks under investigation with the same regulatory authority. Thus, the authors conclude that settlements do not contribute to a build-up of systemic risk in the economy.

In terms of the literature related to the methodological approach, we draw inspiration from seminal papers on systemic risk by Adrian and Brunnermeier (2016), Acharya et al.

(2010), and Diebold and Yilmaz (2014), along with recent papers on volatility spillovers by Baruník et al. (2016) and Baruník and Křehlík (2018).

Specifically, Baruník et al. (2016) introduce a method that allows disentangling asymmetries in volatility spillovers (good and bad volatility spillovers, i.e. spillovers due to positive and negative returns). The authors examine the connectedness in the U.S. stock market using data on liquid stocks in several sectors and show asymmetric spillovers of stocks in different sectors that vary over time. One of the studied sectors is the financial sector, represented by three major U.S. banks (Bank of America, Citigroup, Wells Fargo). In terms of bank-specific results, Baruník et al. (2016; p. 63). note that "positive spillovers flowing from individual banks to the rest of the sector diminished with the coming signs of the sub-prime mortgage crisis in 2007". Indeed, there is some evidence for the transmission of bad volatility spillovers from banks to other stocks in the crisis and the post-crisis years; at the same time, there is some evidence, although not robust, that banks also received bad volatility from the system consisting of all other stocks.

Further, Baruník and Křehlík (2018) derive a general frequency-based method to decompose a measure of connectedness and apply it to the U.S. banking sector. Specifically, this method allows distinguishing the evolution of systemic risk at short-term, medium-term, and long-term horizons. The authors argue that such a distinction is useful as shocks might create linkages with different levels of persistence. Their empirical findings show that connectedness at high frequencies points to calm periods in markets while connectedness at low frequencies is especially pronounced during the global financial crisis and the European sovereign debt crisis. These distinct results underscore the usefulness of the frequency-based approach towards analyzing systemic risk.

We aim to build on the surveyed literature by incorporating the motivation of Koester and Pelster (2018) and Flore et al. (2018) into a framework designed by Baruník and Křehlík

(2018). In doing so, we aim to provide a comprehensive assessment of the propagation of risk in the U.S. banking industry in connection to the announcement of penalties and their settlements.

3. Methodology

We use a methodology based on the concept of volatility spillovers introduced in Diebold and Yilmaz (2009, 2012, 2014). Further, we assume the frequency decomposition of volatility spillovers as in Baruník and Křehlík (2018). In the end, we work with time series of bank-specific spillovers at various frequencies capturing to what extent a bank contributes to the system-wide connectedness/systemic risk (*to*-spillovers) and to what extent a bank receives shocks from the banking industry (*from*-spillovers).

A starting point of the analysis are time series of daily total volatility measures derived from banks' stock prices. Because we do not work with high-frequency data, we compute the daily volatility of stock prices by following the approach introduced by Parkinson (1980) and used by Diebold and Yilmaz (2012).² We compute daily variance based on the deviation between high and low stock prices as:

$$\widehat{PV}^2 = \frac{1}{4ln^2} (h - l)^2,\tag{1}$$

where h and l stand for high and low prices, respectively, and \widehat{PV}^2 is the estimator of daily variance. To obtain the annualized daily percentage volatility, we further compute:

$$PV = 100 \times \sqrt{252 \times \widehat{PV}^2}.$$
 (2)

where 252 represents the number of trading days in a year as in Shu and Zhang (2003) and Taylor et al. (2010).

 $^{^2}$ The other possibility, suitable primarily for very high-frequency data, is to quantify volatility in terms of the realized variance (RV) introduced by Andersen et al. (2001) and Barndorff-Nielsen (2002) and used in Diebold and Yilmaz (2014).

The spillover measures by Diebold and Yilmaz (2009) rely on variance decomposition from vector autoregressions (VARs) that captures how much of the future error variance of a variable j is due to innovations in another variable k. For N assets, we consider an N-dimensional vector of daily volatilities, $PV_t = (PV_{1t}, ..., PV_{Nt})'$, to measure total volatility spillovers.

Let us model the *N*-dimensional vector PV_t by a weakly stationary VAR(p) as $PV_t = \sum_{l=1}^p \Phi_l PV_{t-l} + \epsilon_t$, where $\epsilon_t \sim N(0, \Sigma_\epsilon)$ is a vector of *iid* disturbances and Φ_l denotes p coefficient matrices. For the invertible VAR process, the moving average representation has the following form:

$$PV_t = \sum_{l=0}^{\infty} \Psi_l \epsilon_{t-l}.$$
 (3)

The $N \times N$ matrices holding coefficients Ψ_l are obtained from the recursion $\Psi_l = \sum_{j=1}^p \Phi_j \Psi_{l-j}$, where $\Psi_0 = I_N$ and $\Psi_l = 0$ for l < 0. The moving average representation is useful for describing the dynamics of the VAR system as it allows isolating the forecast errors that can be used for the computation of the connectedness of the system. Diebold and Yilmaz (2012) further assume the generalized VAR of Koop et al. (1996) and Pesaran and Shin (1998) to obtain forecast error variance decompositions that are invariant to variable ordering in the VAR model, and it also explicitly accommodates the possibility of measuring directional volatility spillovers.³

In order to define the total spillovers index of Diebold and Yilmaz (2012), we consider the H-step-ahead generalized forecast error variance decomposition matrix having the following elements for H = 1, 2, ...:

$$\theta_{jk}^{H} = \frac{\sigma_{kk}^{-1} \sum_{h=0}^{H-1} (e_j' \Psi_h \Sigma_{\epsilon} e_k)^2}{\sum_{h=0}^{H-1} (e_j' \Psi_h \Sigma_{\epsilon} \Psi_h' e_k)}, \qquad j, k = 1, ..., N,$$
(4)

³ The generalized VAR allows for correlated shocks; hence, the shocks to each variable are not orthogonalized.

where Ψ_h are moving average coefficients from the forecast at time t, Σ_{ϵ} denotes the variance matrix for the error vector ϵ_t , σ_{kk} is the kth diagonal element of Σ_{ϵ} , and e_j and e_k are the selection vectors, with one as the jth or kth element and zero otherwise. Normalizing elements by the row sum as $\tilde{\theta}_{jk}^H = \theta_{jk}^H/\sum_{k=1}^N \theta_{jk}^H$, Diebold and Yilmaz (2012) then define the total connectedness as the contribution of connectedness from volatility shocks across variables in the system to the total forecast error variance:

$$S^{H} = 100 \times \frac{1}{N} \sum_{\substack{j,k=1\\j \neq k}}^{N} \tilde{\theta}_{jk}^{H}.$$
 (5)

Note that $\sum_{k=1}^{N} \widetilde{\theta_{jk}^{H}} = 1$ and $\sum_{j,k=1}^{N} \widetilde{\theta_{jk}^{H}} = N$, hence, the contributions of connectedness from volatility shocks are normalized by the total forecast error variance. To capture the spillover dynamics, we use a 300-day rolling window running from point t - 299 to point t. Further, we assume a forecast horizon H = 10 and a VAR lag length of 2 based on the AIC.

The total connectedness indicates how shocks to volatility spill over throughout the system. Further, directional spillovers allow us to decompose the total spillovers to those coming from, or to, a particular asset in the network. Diebold and Yilmaz (2012) propose to measure the directional spillovers received by asset j from all other assets k (from-spillovers) as:

$$S_{N,j\leftarrow \bullet}^{H} = 100 \times \frac{1}{N} \sum_{\substack{k=1\\j\neq k}}^{N} \tilde{\theta}_{jk}^{H}, \tag{6}$$

i.e., we sum all numbers in rows j, except the terms on the diagonal that corresponds to the impact of asset j on itself. The N in the subscript denotes the use of an N-dimensional VAR.

In a similar fashion, the directional spillovers transmitted by asset j to all other assets k (to-spillovers) can be measured as:

$$S_{N,j\to\bullet}^H = 100 \times \frac{1}{N} \sum_{\substack{k=1\\j\neq k}}^N \tilde{\theta}_{kj}^H.$$
(7)

Having introduced the directional spillovers that constitute a crucial dimension of our analysis, we further assume frequency decompositions of *to-* and *from-*volatility spillovers into those that reflect short-term (up to 5 days), medium-term (up to 20 days), and long-term (up to 300 days) dynamics. Importantly, these intervals correspond to connectedness within a business week, a business month, and a business year, respectively.

A natural way to describe the frequency dynamics (whether long, medium, or short term) of connectedness is to consider the spectral representation of variance decompositions based on frequency responses to shocks instead of impulse responses to shocks. As a building block, Baruník and Křehlík (2018) consider a frequency response function, $(e^{-i\omega}) = \sum_h e^{-i\omega h} \Psi_h$, which can be obtained as a Fourier transform of coefficients Ψ_h with $i = \sqrt{-1}$. The spectral density of RV_t at frequency ω can then be conveniently defined as a Fourier transform of the $MA(\infty)$ filtered series:

$$S_{RV}(\omega) = \sum_{h=-\infty}^{\infty} E(RV_t RV'_{t-h}) e^{-i\omega h} = \Psi(e^{-i\omega}) \Sigma \Psi'(e^{+i\omega}).$$
 (8)

The power spectrum $S_{RV}(\omega)$ is a key quantity for understanding frequency dynamics since it describes how the variance of RV_t is distributed over frequency components ω . Using the spectral representation for covariance, i.e., $E(RV_tRV'_{t-h}) = \int_{-\pi}^{\pi} S_x(\omega)e^{i\omega h}d\omega$, Baruník and Křehlík (2018) naturally define the frequency domain counterparts of variance decomposition.

The spectral quantities are estimated using standard discrete Fourier transforms. The cross-spectral density on the interval d=(a,b): $a,b\in(-\pi,\pi)$, a< b is estimated as $\sum_{\omega}\widehat{\Psi}(\omega)\widehat{\Sigma}\,\widehat{\Psi}'(\omega) \ \text{for} \ \omega\in\left\{\left[\frac{aH}{2\pi}\right],...,\left[\frac{bH}{2\pi}\right]\right\}, \ \text{where} \ \widehat{\Psi}(\omega)=\sum_{h=0}^{H-1}\widehat{\Psi}_h\,e^{-2i\pi\omega/H} \ , \ \text{and} \ \widehat{\Sigma}=0$

 $\hat{\epsilon}'\hat{\epsilon}/(T-z)$, where z is a correction for a loss of degrees of freedom and depends on the VAR specification.

The decomposition of the impulse response function at the given frequency band can be estimated as $\widehat{\Psi}(d) = \sum_{\omega} \widehat{\Psi}(\omega)$. Finally, the generalized variance decompositions at a desired frequency band are estimated as:

$$\widehat{\boldsymbol{\theta}}_{j,k}(d) = \sum_{\omega} \widehat{\Gamma}_{j}(\omega) \frac{\widehat{\sigma}_{kk}^{-1} (e_{j}' \widehat{\boldsymbol{\Psi}}(\omega) \widehat{\Sigma} e_{k})^{2}}{e_{j}' \widehat{\boldsymbol{\Psi}}(\omega) \widehat{\Sigma} \widehat{\boldsymbol{\Psi}'}(\omega) e_{j}}, \tag{9}$$

where $\widehat{\Gamma}_{j}(\omega) = \frac{e'_{j}\widehat{\Psi}(\omega)\widehat{\Sigma}\widehat{\Psi'}(\omega)e_{j}}{e'_{j}\Omega e_{j}}$ is an estimate of the weighting function, where $\Omega = \sum_{\omega}\widehat{\Psi}(\omega)\widehat{\Sigma}\widehat{\Psi'}(\omega)$.

Then, the connectedness measure at a given frequency band of interest can be readily derived by substituting the $\hat{\theta}_{j,k}(d)$ estimate into the traditional measures outlined above.⁴

4. Data, variables, and hypotheses

4.1 Sample of banks and bank penalties

In this paper, we compute volatility spillovers based on the stock prices of 17 key banks operating in the United States. The analyzed network is comprised of publicly-traded banks that were given a penalty for their (mis)conduct related to mortgages and foreclosures by various U.S. oversight and enforcement authorities.⁵ The sample of banks includes: the largest U.S. banks operating nationwide (Bank of America, JPMorgan Chase, Citigroup, Wells Fargo, Goldman Sachs, and Morgan Stanley), U.S.-domiciled banks with a more regional

⁴ The entire estimation is done using the package *frequencyConnectedness* in *R* software. The package is available on CRAN or at https://github.com/tomaskrehlik/frequencyConnectedness. So far, frequency connectedness has been empirically assessed by Baruník and Křehlík (2018), Baruník and Kočenda (2018), and Tiwari et al. (2018).

⁵ The authorities that reached a settlement with banks include the Department of Housing and Urban Development, the Department of Justice, the Federal Deposit Insurance Corporation, the Federal Housing Finance Agency, the Federal Reserve, the National Credit Union Administration, the Office of the Comptroller of the Currency, the Securities and Exchange Commission, several state attorneys, and the Attorney General. For an overview of major U.S. law enforcers and regulators, see Flore et al. (2018).

focus (SunTrust, PNC, U.S. Bancorp, Flagstar Bank, and Fifth Third Bancorp), and several major non-U.S. banks operating in the United States (Deutsche Bank, Credit Suisse, Royal Bank of Scotland, HSBC, UBS, and Barclays). The inclusion of non-U.S. banks is warranted by the fact that many of them received very large (volumes of) penalties when compared to some U.S. banks with a more regional focus, as we later present in Figure 1. Daily stock price data were downloaded from Yahoo Finance and stock price volatility is estimated using the ranged-based estimator in Parkinson (1980). Descriptive statistics of the volatility data are shown in Table A1.

Our analysis covers the years from 2010 to 2016 as we examine regulatory action taken *after* the global financial crisis based on the banks' behavior before the crisis. For our analysis, we construct a unique handcrafted dataset of the penalties imposed on banks operating in the United States. The core of the dataset was collected by Financial Times reporters.⁶ However, the core of the dataset does not contain any data after July 2015 and, more importantly, it does not provide any information about when the possibility of a penalty was first publicly announced. Thus, we use the Factiva database to cross-check the accuracy of the dataset and we further extend it until the end of 2016. Most importantly, for each penalty we further add a date when the possibility of a penalty (that eventually materialized) was first publicly announced in the Wall Street Journal.⁷ It needs to be stressed that the announcement date is, in fact, the very first public announcement related to the penalty as during our news search we did not find any previous indication about a penalty. Thus, the first announcement of a possibility of a penalty should be indeed unanticipated by the general public. As for the settlement, there might be available (but not necessarily) some news about

 $^{^6 \} The \ data \ can \ be \ downloaded \ at \ \underline{http://ig-legacy.ft.com/content/e7fe9f25-542b-369f-83b2-5e67c8fa3dbf}.$

⁷ In our analysis we consider cases of penalties that eventually materialized. We do not consider cases when banks were acquitted after an announcement of an investigation related to mortgages or foreclosures. We admit that such an analysis could yield insights about if markets can foresee whether a case is relevant (i.e. leads to a penalty). However, our search in the Wall Street Journal shows that the number of such cases is negligible and immaterial with respect to the analysis.

the development in the case before the settlement itself. However, as we have identified only handful of unresolved cases, the settlement is not a question of "whether it happens" but rather "when it happens". This makes it quite distinct from the first announcement of the possibility of a penalty.

Figure 1 shows the gross volumes of penalties related to mortgage and foreclosure misconduct that several banks in the United States had to pay in the period from 2010 to 2016. The total amount stands at almost 140 billion USD.8 The outlay of the single largest receiver – Bank of America – constitutes around 40% of the total volume. In general, the U.S. banks paid in penalties significantly more than their European counterparts. In terms of the yearly dispersion of penalties, Figure 2 illustrates that a decisive share of the penalties was levied between 2012 and 2014 (around 110 billion USD). After a quiet 2015, U.S. authorities collected almost 24 billion USD in 2016.9 A detailed overview of the penalties is presented in Tables A2a and A2b, which contain precise information on the announcement date, the settlement date, the name of the bank that received a penalty, the name of the regulator who imposed the penalty, and the value of the penalty (in million USD). 10 Interestingly, the same announcement date applies for several cases that were, however, settled at various dates. The size of the penalties typically ranges between 0.1 and 0.5 billion USD, as Figure 3 shows; still, there are several cases of very large penalties over 5 billion USD. Further, Figure 4 reveals that the enforcement process (i.e. the time span from the announcement date to the settlement date) takes in most cases more than 2 years.

4.2 The link between bank penalties and systemic risk

_

⁸ This amounts to almost 1% of the 2016 U.S. GDP.

⁹ The heat wave of penalties has not receded after that, as the Trump administration levied penalties on Barclays and the Royal Bank of Scotland in 2017 and 2018.

¹⁰ There are a few cases when the announcement dates are unavailable. This means that the announcement of the settlement was also the first time when the possibility of the penalty was first announced. We classify these cases as settlement dates (and not announcement dates). A similar approach is used in Tilley et al. (2017).

Our working hypotheses are focused on system-wide connectedness after the announcement date and the settlement date. Indeed, such events have a potential to create systemic risk in the banking sector (European Systemic Risk Board, 2015) as investors' trust might evaporate quickly (Murphy et al., 2009) and the troubles of a specific bank might swiftly transfer to its competitors (Morgan, 2002; Anginer et al., 2014). However, in terms of empirical evidence, Koester and Pelster (2018) do not find that a bank's contribution to a build-up of systemic risk is higher after a penalty is imposed. Also, Flore et al. (2018) conclude that the settlement has a rather calming effect on markets. Thus, in our working (null) hypotheses, we ask if a bank's contribution/exposure to systemic risk is higher after the announcement/settlement date or not:

Hypothesis #1: A bank's contribution to systemic risk does not increase after the announcement date or settlement date.

Hypothesis #2: A bank's exposure to systemic risk does not increase after the announcement date or settlement date.

We expect that the announcement date might lead to a build-up of systemic risk due to its unexpected nature. By construction, the announcement date is the first time when the possibility of a penalty (which was eventually imposed) was announced publicly. On the other hand, the settlement date might come as a relief for markets after a protracted period of uncertainty. Moreover, prior to the settlement, banks might disclose that they created provisions for legal matters, giving markets some indication that the penalty was already internally accounted for (Flore et al., 2018). In terms of the three measures of connectedness, the long-term measure in particular might be affected by penalty-related

_

¹¹ Such behavior would be also consistent with the requirements grounded in the International Financial Reporting Standards (IFRS) that banks are obliged to follow and that are enforced by the IAS 39.

events, as it represents shifts in investors' preferences and beliefs considered by Murphy et al. (2009). On the other hand, short-term and medium-term connectedness might also appear relevant if penalties were perceived by markets as one-time events. Finally, it might be insightful to assess Hypotheses #1 and #2 from two angles: to distinguish if there is any difference in a specific bank's contribution/exposure to systemic risk depending on whether the specific bank was the target of the penalty or one of its competitors was the target.

To assess both hypotheses empirically, we develop a testing strategy in the spirit of Doners and Vorst (1996), Clayton et al. (2005), and Uhde and Michalak (2010). As a tool we use the test of Wilcoxon (1945) to examine if two (paired) samples share the same distribution. The Wilcoxon test is quite effective for our purpose as it is especially suited to assess non-normal data (Gibbons and Chakraborti, 2011).

Initially, for each bank in our sample, we form two types of vectors of penalties for both the announcement and the settlement date. The first two vectors capture all the dates when a bank has its own penalty announced or settled; the two vectors are labelled as "own penalties". The other two vectors capture all the dates when all the other banks have their penalties announced or settled; these two vectors are labelled as "other banks' penalties". Note that all four vectors contain mutually exclusive information.

Second, for each bank in our sample, we collect median values of *to-* and *from-*spillovers with the short-, medium-, and long-term dynamics around the announcement date and the settlement date with the intervals indicated in Figure 5.¹² Note that the length of the intervals corresponds to how all three connectedness measures are defined: the short-term measure captures spillovers of up to 5 days (one business week), the medium-term measure up to 20 days (one business month), and the long-term measure up to 300 days, which is the

300 days].

_

¹² For the short term connectedness measure, we assume the time intervals [-5 days, 0 days] and [0 days, 5 days] before and after the announcement or settlement dates. For the medium term we consider the intervals [-20 days, 0 days] and [0 days, 20 days], and for the long term we work with the intervals [-300 days, 0 days] and [0 days,

length of the rolling window (one business year), similar to the approach of Baruník and Křehlík (2018).

Third, we obtain tables of median values of *to-* and *from-*spillovers across banks with the short-, medium-, and long-term dynamics before and after the announcement or settlement date. The median values are obtained for each of the type of vectors of penalties ("own penalties" or "other banks' penalties"). Consequently, we employ the Wilcoxon test to determine if the distribution of penalties before and after the announcement/settlement date is the same or not. Specifically, we examine if the median difference between the values of spillovers before and after the announcement/settlement is statistically different from 0. Finally, we use boxplots to illustrate in a graphical way the relationship between pairs of values of spillovers before and after the announcement/settlement date.

Finally, for the sake of easier interpretation, in quadrants Q1 – Q4 of Table 1 we discuss four types of results we can obtain from the perspective of a specific bank. First, we obtain two types of results that seem of primary interest: Q2 – the extent of the contribution of a specific bank after it has its own penalty announced/settled (while nothing happens to its competitors), and Q4 – the extent to which a specific bank is exposed to systemic risk after one of its competitors has its own penalty announced/settled. The above two options are captured in bold in Table 1. However, the other two options that might be equally interesting – a specific bank's contribution to systemic risk after its competitors are targeted (Q1) and a specific bank's exposure to systemic risk after it is targeted but its competitors are not (Q3).

Specifically, if we find that the results for a specific bank are similar regardless of whether it was targeted or its competitor was, we can argue that *any* penalty affects the entire banking system. Thus, rather than having a desired corrective impact on a particular financial institution, a penalty increases the systemic risk, potentially making the banking sector less stable and more vulnerable.

5. Results

5.1 Total and frequency connectedness

As a preliminary step, we briefly comment on the total and frequency connectedness of our network of 17 banks. Corresponding spillovers are shown in Figure 6. Total connectedness stands at more than 80% throughout the entire sample period (2009–2017), except for the period after mid-2012 when it temporarily recedes after the "whatever it takes" speech by ECB President Mario Draghi (2012). ¹³ In terms of frequency connectedness, the dynamics of short- and long-term components differs substantially. First, the long-term component prevails in the aftermath of the subprime mortgage crisis in 2009 and then briefly from mid-2011 to mid-2012. The result for our sample of banks exhibits a very similar pattern as that shown by Baruník and Křehlík (2018; Figure 1) for long-term frequency connectedness among eleven major financial firms representing the financial sector of the U.S. economy. The starting point of the latter period is likely associated with the downgrading of U.S. bonds on August 5, 2011, while the end point can be again related to the "whatever it takes" speech by ECB President Mario Draghi. After that, the long-term connectedness recedes and shortand medium-term connectedness become relatively more influential. As shown in Figure 6, the short- and long-term connectedness are almost perfectly negatively correlated. This is in line with the argument of Baruník and Křehlík (2018) that short-term connectedness characterizes periods of calm markets while long-term connectedness dominates in times of heightened investor uncertainty.

5.2 Contribution to systemic risk

⁻

¹³ The end of the EU sovereign debt crisis coincides with a remarkable statement by the ECB President Mario Draghi (2012) at the Global Investment Conference in London on July 26, 2012: "Within our mandate, the ECB is ready to do whatever it takes to preserve the euro. And believe me, it will be enough". Fiordelisi and Ricci (2016) show that the European financial markets started to rally immediately after this statement and that the economic situation began to improve.

In Hypothesis #1, we ask if a contribution of a bank to systemic risk (expressed by to-spillovers) is higher after the announcement/settlement date and if so, at which frequencies. Figure 7 reveals the results. First, we assume a reaction in cases when a specific bank receives its own penalty (Figure 7a). It seems that the first public announcement of the possibility of a penalty leads to a realignment of the relative importance of the three frequency connectedness measures. The levels of the short-term and medium-term risk measures decline. However, after a penalty is announced, the receiving bank's contribution to long-term systemic risk rises. In other words, a penalty-receiving bank begins to make the system more interconnected over a long period of time. The opposite case is presented after a settlement between a receiving bank and a U.S. authority is reached. In these circumstances, the long-term systemic risk decreases while the two measures capturing the effects at shorter frequencies do not record any statistically significant change. This pattern might be interpreted as a relief experienced by financial markets once the enforcement process is over; such an interpretation is in line with Flore et al. (2018).

Interestingly, similar findings are also obtained when we work with the "other banks' penalties" vector of announcement/settlement dates (Figure 7b). This means that a specific bank – which is not mentioned in the announcement – radiates higher long-term spillovers after some other bank has a possible penalty announced. In other words, an event that occurred to a competitor induces a comparable reaction as if the penalty was granted to the specific bank. Similarly, after another bank settles, the contribution of a bank not receiving a penalty to long-term systemic risk decreases. The effects for short- and medium-term systemic risk vary but are generally smaller than for the long-term counterpart.

5.3 Exposure to systemic risk

In the previous subsection, we established that a bank's contribution to long-term systemic risk is higher (lower) after the announcement (settlement) date, regardless of if the bank received its own penalty or if a competitor was targeted. Now, we are interested in whether for a specific bank, *from*-spillovers differ after other banks have a penalty announced/settled, as outlined in Hypothesis #2. Figure 8b then reveals that a specific bank – which does not have a penalty announced – receives higher long-term systemic risk from the banking sector after a penalty is announced for a competitor. Similarly, after the competitor of the specific bank – which does not face its own the settlement – settles, the bank faces lower systemic risk exposure with long-term persistence.

Next, the specific bank is also exposed to higher long-term systemic risk after it has its own penalty announced (Figure 8a). This signals that other banks in the system react even if they do not face the possibility of their own penalties. As a result, the system becomes more interconnected over a long period of time. However, after a settlement is reached the specific bank begins to receive less long-term systemic risk from its competitors.

Overall, it can be concluded that systemic risk is higher after the announcement of a penalty and systemic risk is lower after the settlement (Figure 7 and 8). Interestingly, this result is related to the long-term connectedness measure: the transmission of shocks through the system with higher persistence reflects high uncertainty on the market, which affects the beliefs of investors (Baruník and Křehlík, 2018; Baruník and Kočenda, 2018). After the announcement of a penalty, both long-term *from*- and *to*-spillovers increase, indicating an elevated level of long-term connectedness of the system. On the contrary, we see the opposite development after a settlement – both types of spillovers tend to decrease. Thus, the increased level of connectedness after the announcement of a penalty is not permanent.

Finally, some banks were affected by penalties simultaneously. However, from Table A2, it can be observed that such events constitute a minority of cases as the parallel events

relate solely to the National Settlement in early 2012 or the settlement of several banks in January 2013. Nevertheless, parallel events are included in aggregate results when considering the vector of own penalties (and employing both *from*- and *to*-spillovers). On the other hand, parallel events are not included when considering the vector of other banks' penalties (for both *from*- and *to*-spillovers) as the vectors are mutually exclusive. The key observation is that the results based on both types of vectors are very similar, which indicates that occurrence of few parallel events does not compromise the results.

5.4 Robustness checks

We perform several types of robustness checks to consider: (i) a restricted set of penalties, (ii) different interval bounds for long-term spillovers, and (iii) an extended control sample of financial institutions.

First, we revisit the baseline estimation but restrict the set of penalties to include only larger penalties over 325 million USD (the median penalty value in the sample). As we show in Figures A1 and A2, the key findings remain intact. The finding means that our baseline results are invariant to the penalty size and are not driven by relatively small penalties.

We further assess whether the results substantially differ if we assume larger relative penalties instead of absolute ones; larger relative penalties are defined with respect to the total assets of a given bank in the quarter preceding the penalty. In this case, the median value is 0.04% (the absolute value of the penalty divided by the total assets of the bank). The results are very similar to those presented for absolute penalties in Figures A1 and A2; these are not reported but are available upon request. Hence, we conclude that our results are invariant to whether a penalty is measured in absolute or relative terms.

Second, we test the robustness of the results in terms of long-term spillovers, which constitute a vital part of our analysis. 300 days is the boundary for long-term spillovers used

in related studies (e.g. Baruník and Křehlík, 2018; Baruník and Kočenda, 2018). Still, it could be argued that over such a period of time, the distribution of the median values of long-term spillovers can change due to other factors than penalties, for example due to earnings announcements. Therefore, we lower the interval boundary to 80 days, which represents approximately one third of a business year and thus sufficiently accounts for quarterly earnings announcements. Further, the 80-days boundary is proportionally as much more than the medium-term spillovers interval (20 days) as the medium-term spillovers boundary is to the short-term spillovers boundary (5 days). The results are presented in panel (a) of Table 2. The magnitude of the coefficients with respect to the baseline case presented in Figures 7 and 8 somewhat decreased. However, the coefficients associated with both *to*-spillovers and *from*-spillovers are statistically significant. We conclude that the reduction of the length of the long-term spillovers interval does not affect our baseline results and penalties represent key factors affecting risk propagation among banks.

Third, we extend our sample of 17 banks with additional 17 other publicly-traded financial firms operating in the U.S. that are not involved in the mortgage business with data available for the period 2008–2017. These financial firms could not have received a penalty related to mortgage or foreclosure and constitute a suitable control group. We consider all the dates when one of the 17 banks from our baseline sample had a penalty announced or settled. Then we inspect *from*- and *to*-spillovers after the announcement and settlement dates only for the control group of financial institutions. Our prior is that *to*-spillovers should not materialize as the additional financial institutions are not engaged in the mortgage business. The results

¹⁴ The extended sample includes following companies: American Express Company (AXP), The Bank of New York Mellon Corporation (BK), MetLife, Inc. (MET), Mizuho Financial Group, Inc. (MFG), Capital One Financial Corporation (COF), State Street Corporation (STT), Sun Life Financial Inc. (SLF), Northern Trust Corporation (NTRS), KB Financial Group Inc. (KB), Torchmark Corporation (TMK), Western Alliance Bancorporation (WAL), Sterling Bancorp (STL), American Equity Investment Life Holding Company (AEL), Hilltop Holdings Inc. (HTH), Berkshire Hills Bancorp, Inc. (BHLB), Banco Latinoamericano de Comercio Exterior, S.A (BLX), and Citizens, Inc. (CIA). The extended sample includes not only banks but also other financial institutions because there were not enough banks that are not engaged in the mortgage business with data available for the entire period 2008–2017.

are presented in Table 2, panel (b) and provide a very clear picture. The control group of financial firms unrelated to mortgages receives more long-term spillovers from the system of financial institutions (*from*-spillovers) that contains also 17 banks from our baseline sample that did receive mortgage-related penalties; coefficients associated with *from*-spillovers are statistically significant. However, non-mortgage-related financial firms do not increase long-term systemic risk (*to*-spillovers) after an announcement of a mortgage-related penalty; the coefficients associated with *to*-spillovers are statistically insignificant. Similarly, the contribution of the non-mortgage-related financial firms to long-term systemic risk is not lower after a settlement is announced for a bank that received a penalty related to mortgages or foreclosures.

6. Conclusions

In this study, we analyze the link between mortgage-related regulatory penalties levied on banks and the level of systemic risk in the United States. It is generally known that the subprime mortgage crisis evolved into a global financial crisis, with only the Great Depression being a larger crisis in U.S. history. While the main objective of any penalty is arguably to correct the harm caused by a bank's behavior, it can be argued that such action by oversight and enforcement authorities can also destabilize the banking sector if the impact of the penalty travels across the sector and also affects innocent banks.

In this sense, our paper contributes to the recent wave of interest in how banks respond to penalties within the industry. Originally, a detailed assessment was prevented by the lack of adequate techniques. However, recent advances in the econometric literature enable a quantitatively new level of assessment. Thus, we build on seminal papers on systemic risk such as Diebold and Yilmaz (2009, 2012, 2014), Adrian and Brunnermeier (2016), and Acharya et al. (2010). Moreover, we assume the frequency decomposition of volatility

spillovers – recently introduced by Baruník and Křehlík (2018) – which allows us to draw conclusions about the propagation of penalties in terms of volatility with short-, medium- and long-term dynamics within the U.S. banking sector. We develop a testing procedure based on Wilcoxon (1945) and in the spirit of Doners and Vorst (1996), Clayton et al. (2005), and Uhde and Michalak (2010) that takes into account the construction of the frequency measures of connectedness. Finally, we use a hand-crafted dataset on mortgage-related penalties imposed on banks operating in the United States that includes both the date when the possibility of a penalty is first announced and the date when the bank reached a settlement with the relevant U.S. authority. We hypothesize that systemic risk might evolve in a different way after each type of event.

We find that after the possibility of a penalty is first publicly announced, long-term systemic risk in the U.S. banking sector tends to increase, indicating high uncertainty among investors. In contrast, a settlement with regulatory authorities leads to a decrease in the long-term connectedness in the system. This latter pattern is in line with Flore et al. (2018) and might be interpreted as a relief that financial markets experience once the enforcement process is over. Interestingly, we show the same pattern in terms of the contribution/exposure of a given bank to systemic risk regardless if this bank had a penalty announced/settled or one of its competitors did. Thus, rather than having the desired corrective impact on a particular financial institution, the penalty increases systemic risk, potentially making the banking sector less stable and more vulnerable. In terms of robustness checks, we find that our baseline results are not driven by relatively smaller penalties or interval boundaries for the long-term spillovers. We also perform a robustness exercise that demonstrates that financial institutions that are not engaged in the mortgage business do not emanate higher (lower) long-term spillovers after an announcement (settlement) related to a mortgage or a foreclosure penalty of their competitors.

As any propagation of risk affects investment decisions, the impact at low frequencies hints that penalties are reflected in the behavior of investors with longer investment horizons. Thus, our results offer implications for portfolio selection and investment strategies on financial markets. Further, our analysis is relevant to authorities imposing the penalties as well as those in charge of financial stability. Based on the experience from the period after the global financial crisis, banks have faced several legal settlements that have frequently resulted in sizable penalties. Our results show that while these penalties might especially affect both the performance and valuation of the receiving bank, they might also influence other banks. Without doubt the original objective of the penalties – to correct the social harm inflicted by banks – the potential ramifications related to the stability of the banking sector can give oversight and enforcement authorities pause about imposing penalties in the first place.

•

References

- Acharya, V. V., Engle, R., Richardson, M. (2012). Capital shortfall: a new approach to ranking and regulating systemic risks. *American Economic Review Papers and Proceedings* 102 (May), 59–64.
- Adrian, T., Brunnermeier, M. (2016). "CoVaR." American Economic Review, 106 (7): 1705-41.
- Andersen, T. G., Bollerslev, T., Diebold, F. X., Labys, P. (2001). The distribution of realized exchange rate volatility. *Journal of the American Statistical Association*, 96(453), 42–55.
- Anginer, D., Demirgüç-Kunt, A., Zhu, M. (2014). How does deposit insurance affect bank risk? Evidence from the recent crisis. *Journal of Banking & Finance*, 48, 312–321.
- Barndorff-Nielsen, O. E. (2002). Econometric analysis of realized volatility and its use in estimating stochastic volatility models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 64(2), 253–280.
- Baruník, J., Kočenda, E., (2018). Total, asymmetric and frequency connectedness between oil and forex markets. arXiv WP 1805.03980
- Baruník, J., Kočenda, E., Vácha, L. (2016). Asymmetric connectedness of stocks: How does bad and good volatility spill over the U.S. stock market? *Journal of Financial Markets*, 27(1), 55-78.
- Baruník, J., Křehlík, T. (2018). Measuring the frequency dynamics of financial connectedness and systemic risk. *Journal of Financial Econometrics*, 16(2), 271–296.
- Clayton, M. C., Hartzell, J. C., Rosenberg, J. (2005). The impact of CEO turnover on equity volatility. *Journal of Business*, 78(5), 1779–1808.
- De Batz, L. (2018). Financial Impact of Regulatory Sanctions on French Listed Companies. IES Working Paper 10/2018.
- Diebold, F. X., Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. *The Economic Journal*, 119(534), 158–171.
- Diebold, F. X., Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. *International Journal of Forecasting*, 28(1), 57–66.
- Diebold, F. X., Yilmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. *Journal of Econometrics*, 182(1), 119–134.
- Donders, M. W., Vorst, T. C. (1996). The impact of firm specific news on implied volatilities. *Journal of Banking & Finance*, 20(9), 1447–1461.
- European Systemic Risk Board (2015). Report on misconduct risk in the banking sector.
- Fiordelisi, F., Ricci, O. (2016). "Whatever it takes": An Empirical Assessment of the Value of Policy Actions in Banking. *Review of Finance*, 20(6), 2321–2347.
- Flore, C., Degryse, H., Kolaric, S., Schiereck, D. (2018). Forgive Me All My Sins: How Penalties Imposed on Banks Travel Through Markets. SSRN Working Papers.
- Gibbons, J. D., Chakraborti, S. (2011). Nonparametric statistical inference. In International encyclopedia of statistical science (pp. 977-979). Springer Berlin Heidelberg.
- Kalemli-Ozcan, S., Papaioannou, E., Perri, F. (2013). Global banks and crisis transmission. *Journal of International Economics*, 89(2), 495–510.
- Koester, H., Pelster, M. (2017). Financial penalties and bank performance. *Journal of Banking and Finance*, 79, 57–73.
- Koester, H., Pelster, M. (2018). Financial penalties and banks' systemic risk. *The Journal of Risk Finance*, 19(2), 154–173.
- Koop, G., Pesaran, M. H., Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. *Journal of Econometrics*, 74 (1), 119–147.

- McConnell, P., Blacker, K. (2013). Systemic operational risk: Does it exist and, if so, how do we regulate it? *The Journal of Operational Risk*, 8(1), 59–99.
- Morgan, D. P. (2002). Rating banks: Risk and uncertainty in an opaque industry. *American Economic Review*, 92(4), 874–888.
- Murphy, D. L., Shrieves, R. E., Tibbs, S. L. (2009). Understanding the penalties associated with corporate misconduct: An empirical examination of earnings and risk. *Journal of Financial and Quantitative Analysis*, 44(1), 55–83.
- National Mortgage Settlement (2017). Department of Justice.
- Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. *Journal of Business*, 61–65.
- Pesaran, H. H., Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. *Economics letters*, 58 (1), 17–29.
- Shu, J., Zhang, J. E. (2003). The relationship between implied and realized volatility of S&P 500 index. *Wilmott magazine*, 4, 83–91.
- Taylor, S. J., Yadav, P. K., Zhang, Y. (2010). The information content of implied volatilities and model-free volatility expectations: Evidence from options written on individual stocks. *Journal of Banking & Finance*, 34(4), 871–881.
- Tilley, S. V., Byrne, B., Coughlan, J. (2017). An Empirical Analysis of the Impact of Penalties on Bank Reputation in the US and UK. SSRN Working Papers.
- Tiwari, A. K., Cunado, J., Gupta, R., Wohar, M. E. (2018). Volatility spillovers across global asset classes: Evidence from time and frequency domains. *The Quarterly Review of Economics and Finance*, 70, 194–202.
- Uhde, A., Michalak, T. C. (2010). Securitization and systematic risk in European banking: Empirical evidence. *Journal of Banking & Finance*, 34(12), 3061–3077.
- Wilcoxon, F. (1945). Individual comparisons by ranking methods. *Biometrics Bulletin*, 1(6): 80–83.

Table 1: Interpretation of results from the perspective of a specific bank

Vector of	To-spillovers	From-spillovers
penalties\Type		
of spillovers		
Own penalties	Q2: To what extent does a specific bank	Q1: To what extent is a specific bank exposed
	contribute to systemic risk after it has	to systemic risk after it has its own penalty
	its own penalty announced/settled (while	announced/settled (while nothing happens to
	nothing happens its competitors)?	its competitors)?
Other banks'	Q3: To what extent does a specific bank	Q4: To what extent is a specific bank
penalties	contribute to systemic risk after its	exposed to systemic risk after its
	competitors (and not a specific bank) have	competitors (and not a specific bank) have
	their own penalty announced/settled?	their own penalty announced/settled?

Note: The vectors of own penalties and other banks' penalties are mutually exclusive.

Table 2: Robustness tests – long-term spillovers

(a) 80-days boundary

Type of spillovers\	Own pe	nalties	Other banks' penalties			
Vector of penalties	Announcement	Settlement	Announcement	Settlement		
From-spillovers	0.25***	-0.12***	0.05***	-0.04***		
To-spillovers	0.18***	-0.12***	0.04**	-0.03***		

(b) Financial firms unrelated to mortgages and foreclosures (control group)

Type of spillovers\ Vector of penalties	All mortgage- and foreclosure-related penalties		
	Announcement	Settlement	
From-spillovers	0.07**	-0.04**	
To-spillovers	0.02	-0.02	

Note: Tables show the median difference between the value of the spillover before and after the announcement/settlement based on the Wilcoxon test. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Figure 1: Gross volumes of penalties to banks in the United States (2010–2016)

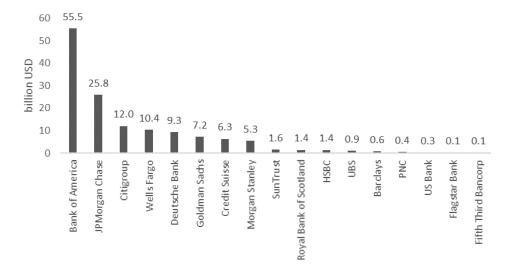


Figure 2: Yearly distribution of penalties to banks in the United States (2010–2016)

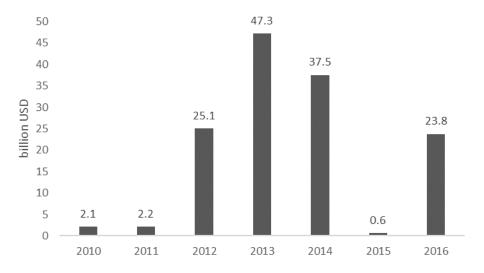


Figure 3: Size of penalties (2010–2016)

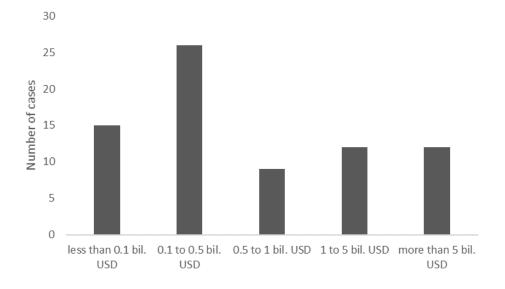


Figure 4: Length of the enforcement process (2010–2016)

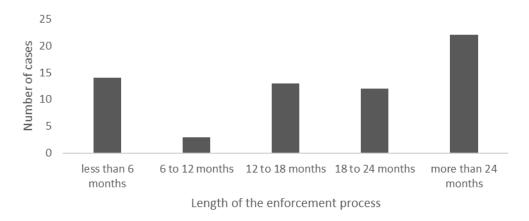


Figure 5: Test for the effect of penalties (in days)

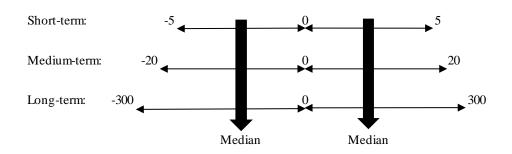
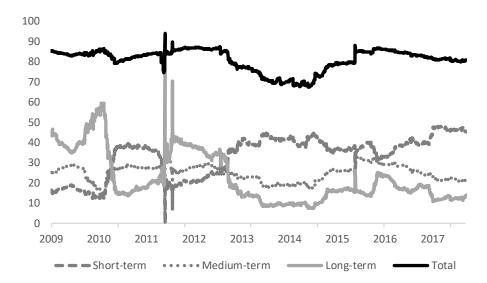
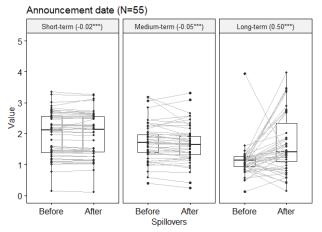
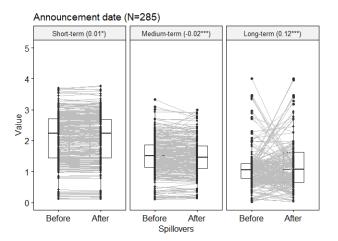
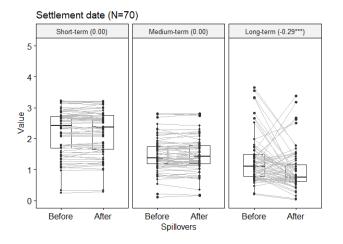
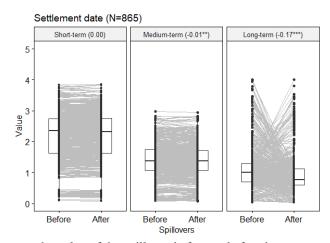


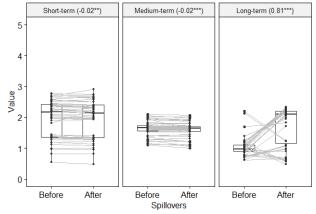
Figure 6: Total and frequency connectedness (2009–2017)


Figure 7: Contribution to systemic risk (to-spillovers)


(a) Own penalties

(b) Other banks' penalties

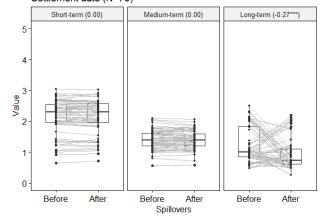


Note: The number in the brackets above each boxplot shows the median difference between the value of the spillover before and after the announcement/settlement based on the Wilcoxon test. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

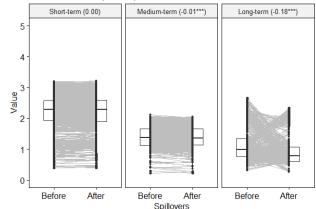
Figure 8: Exposure to systemic risk (from-spillovers)

(a) Own penalties

Announcement date (N=55)



(b) Other banks' penalties


Announcement date (N=285)

Settlement date (N=70)

Settlement date (N=865)

Note: The number in the brackets above each boxplot shows the median difference between the value of the spillover before and after the announcement/settlement based on the Wilcoxon test. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Appendix

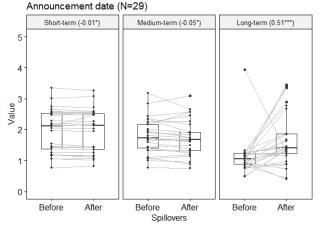
Table A1: Summary statistics of the daily volatility data

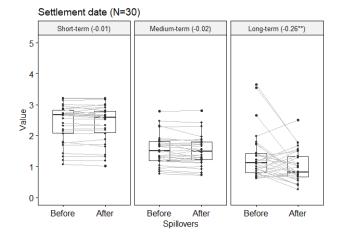
Bank	Ticker	Mean	Median	St. dev.	Skewness	Kurtosis
Bank of America	BAC	0.314	0.216	0.322	4.044	25.210
Barclays	BCS	0.251	0.175	0.261	4.737	35.700
Citigroup	С	0.321	0.209	0.373	4.912	37.321
Credit Suisse	CS	0.208	0.155	0.184	3.802	21.657
Deutsche Bank	DB	0.231	0.177	0.186	3.211	15.612
Fifth Third Bancorp	FITB	0.351	0.220	0.432	5.007	38.245
Flagstar Bank	FBC	0.531	0.340	0.565	3.931	27.998
Goldman Sachs	GS	0.247	0.183	0.229	4.747	35.093
HSBC	HSBC	0.140	0.106	0.117	3.419	17.612
JPMorgan Chase	JPM	0.253	0.180	0.238	3.495	16.786
Morgan Stanley	MS	0.330	0.233	0.373	7.163	85.800
PNC	PNC	0.256	0.174	0.272	5.419	56.983
Royal Bank of Scotland	RBS	0.260	0.184	0.285	7.035	90.872
SunTrust	STI	0.326	0.220	0.333	3.784	20.847
UBS	UBS	0.213	0.153	0.196	3.418	16.745
U.S. Bancorp	USB	0.233	0.159	0.242	4.075	24.704
Wells Fargo	WFC	0.262	0.172	0.277	3.426	14.886

Table A2a: List of penalties (2010–2016)

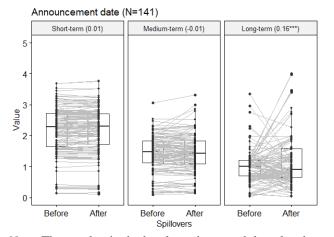
Announcement	Settlement	Bank	Regulator	Value (mil. USD)	Announcement	Settlement	Bank	Regulator	Value (mil. USD)
n/a	2010-06-25	Morgan Stanley	SA/AG	102.7	2011-04-05	2013-01-07	JPMorgan Chase	COMP	1958
2010-04-16	2010-07-15	Goldman Sachs	SEC	550	2011-04-05	2013-01-07	PNC	COMP	180
2009-05-28	2010-07-29	Citigroup	SEC	75	2011-04-05	2013-01-07	US Bancorp	COMP	208
2010-12-15	2010-12-31	Bank of America	FMCC	1350	2011-04-05	2013-01-07	Wells Fargo	COMP	1991
2010-12-15	2011-01-03	Bank of America	FNMA	1520	2011-09-02	2013-01-07	Bank of America	FNMA	11600
2011-04-04	2011-04-05	Wells Fargo	SEC	11	2011-04-05	2013-01-16	Goldman Sachs	FED	330
2011-04-14	2011-06-21	JPMorgan Chase	SEC	153.6	2011-04-05	2013-01-16	Morgan Stanley	FED	227
2011-09-15	2011-10-19	Citigroup	SEC	285	2011-04-05	2013-01-18	HSBC	COMP	249
2011-03-23	2011-11-15	Citigroup	NCUA	20.5	2011-03-23	2013-03-29	Bank of America	NCUA	165
2011-03-23	2011-11-15	Deutsche Bank	NCUA	145	2011-09-02	2013-05-28	Citigroup	FHFA	250
n/a	2011-11-28	Royal Bank of Scotland	SA/AG	52	2011-09-02	2013-07-01	Citigroup	FNMA	968
2011-04-13	2012-02-09	Wells Fargo	HUD	5350	2011-07-28	2013-07-23	UBS	FHFA	885
2011-04-13	2012-02-09	Citigroup	HUD	2205	2011-03-23	2013-07-31	UBS	SEC	50
2011-04-13	2012-02-09	JPMorgan Chase	HUD	5290	n/a	2013-09-10	Barclays	SA/AG	36.1
2011-04-13	2012-02-09	Bank of America	HUD	11820	2011-09-02	2013-09-25	Citigroup	FMCC	395
2012-02-29	2012-08-14	Wells Fargo	SEC	6.5	2011-09-02	2013-09-27	Wells Fargo	FMCC	869
2012-02-29	2012-11-16	Credit Suisse	SEC	120	2011-04-13	2013-10-10	SunTrust	HUD	968
2012-02-29	2012-11-16	JPMorgan Chase	SEC	296.9	2012-06-07	2013-10-10	SunTrust	FNMA	373
2011-04-05	2013-01-07	SunTrust	FED	163	2012-06-07	2013-10-10	SunTrust	FMCC	65
2011-04-05	2013-01-07	Bank of America	COMP	2886	2011-09-02	2013-10-25	JPMorgan Chase	FNMA	670
2011-04-05	2013-01-07	Citigroup	COMP	794	2011-09-02	2013-10-25	JPMorgan Chase	FHFA	4000

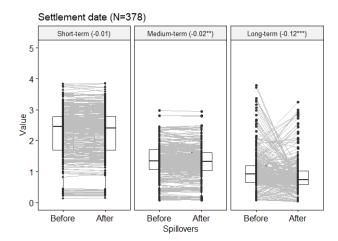
Source: Financial Times, Wall Street Journal, Factiva; SA/AG = state attorney / attorney general, SEC = Securities and Exchange Commission, FMCC = Federal Home Loan Mortgage Corp. (Freddie Mac), FNMA = Federal National Mortgage Association (Fannie Mae), NCUA = National Credit Union Administration, HUD = Department of Housing and Urban Development, FED = Federal Reserve, COMP = Office of the Comptroller of the Currency, FHFA = Federal Housing Finance Agency; DofJ = Department of Justice, FDIC = Federal Deposit Insurance Corporation.


Table A2b: List of penalties (2010–2016)

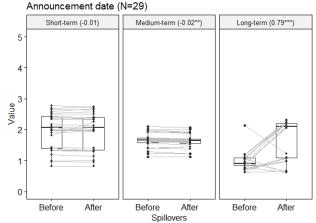

Announcement	Settlement	Bank	Regulator	Value (mil. USD)	Announcement	Settlement	Bank	Regulator	Value (mil. USD)
2011-09-02	2013-10-25	JPMorgan Chase	FMCC	480	2011-09-02	2014-03-21	Credit Suisse	FHFA	885
2011-09-02	2013-11-06	Flagstar Bank	FNMA	121.5	2011-09-02	2014-03-26	Bank of America	FHFA	9330
2011-09-02	2013-11-06	Wells Fargo	FHFA	335.23	2011-09-02	2014-04-24	Barclays	FHFA	280
2013-09-23	2013-11-19	JPMorgan Chase	SA/AG	298.9	2011-09-02	2014-06-19	Royal Bank of Scotland	FHFA	100
2013-09-23	2013-11-19	JPMorgan Chase	SA/AG	19.7	2011-09-02	2014-06-30	HSBC	DofJ	10
2013-09-23	2013-11-19	JPMorgan Chase	DofJ	6000	2014-04-25	2014-07-14	Citigroup	DofJ	7000
2013-09-23	2013-11-19	JPMorgan Chase	FDIC	515.4	2014-02-25	2014-07-24	Morgan Stanley	SEC	275
2013-09-23	2013-11-19	JPMorgan Chase	FHFA	4000	2014-02-25	2014-08-20	Bank of America	DofJ	16650
2013-09-23	2013-11-19	JPMorgan Chase	SA/AG	100	2011-09-02	2014-08-21	Goldman Sachs	FHFA	1200
2013-09-23	2013-11-19	JPMorgan Chase	SA/AG	34.4	2011-09-02	2014-09-12	HSBC	FHFA	550
2013-09-23	2013-11-19	JPMorgan Chase	NCUA	1400	n/a	2015-10-06	Fifth Third Bancorp	DofJ	85
2013-09-23	2013-11-19	JPMorgan Chase	SA/AG	613.8	n/a	2015-10-19	Barclays	NCUA	325
2013-11-06	2013-11-22	Fifth Third Bancorp	FMCC	26	n/a	2015-12-10	Morgan Stanley	NCUA	225
n/a	2013-12-10	US Bancorp	FMCC	56	2015-06-05	2016-01-15	Goldman Sachs	DofJ	5100
2013-08-01	2013-12-12	Bank of America	SEC	131	n/a	2016-02-02	Morgan Stanley	FDIC	63
n/a	2013-12-12	PNC	FMCC	89	2015-06-05	2016-02-04	Wells Fargo	DofJ	1200
2011-09-02	2013-12-20	Deutsche Bank	FHFA	1925	2015-06-05	2016-02-05	HSBC	DofJ	470
2011-09-02	2013-12-27	Flagstar Bank	FMCC	10.75	2015-06-05	2016-02-11	Morgan Stanley	DofJ	3200
2011-09-02	2013-12-30	PNC	FNMA	140	n/a	2016-09-28	Royal Bank of Scotland	NCUA	1100
2011-09-02	2013-12-30	HSBC	FNMA	83	n/a	2016-10-03	Royal Bank of Scotland	SA/AG	120
2011-09-02	2013-12-30	Wells Fargo	FNMA	591	2015-06-05	2016-12-23	Credit Suisse	DofJ	5300
2011-09-02	2014-02-04	Morgan Stanley	FHFA	1250	2016-09-16	2016-12-23	Deutsche Bank	DofJ	7200

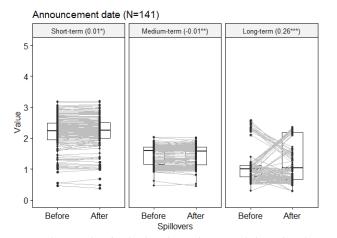
Source: Financial Times, Wall Street Journal, Factiva; SA/AG = state attorney / attorney general, SEC = Securities and Exchange Commission, FMCC = Federal Home Loan Mortgage Corp. (Freddie Mac), FNMA = Federal National Mortgage Association (Fannie Mae), NCUA = National Credit Union Administration, HUD = Department of Housing and Urban Development, FED = Federal Reserve, COMP = Office of the Comptroller of the Currency, FHFA = Federal Housing Finance Agency; DofJ = Department of Justice, FDIC = Federal Deposit Insurance Corporation.

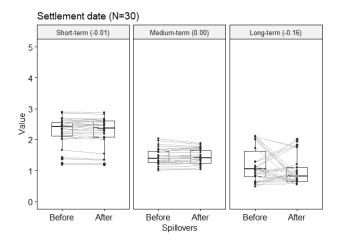

Figure A1: Contribution to systemic risk (to-spillovers): penalties over 325 million USD

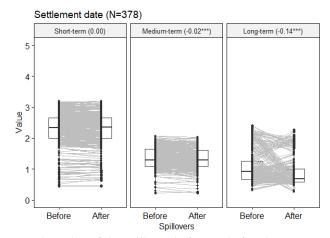

(a) Own penalties

(b) Other banks' penalties




Note: The number in the brackets above each boxplot shows the median difference between the value of the spillover before and after the announcement/settlement based on the Wilcoxon test. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.


Figure A2: Exposure to systemic risk (from-spillovers): penalties over 325 million USD


(a) Own penalties

Note: The number in the brackets above each boxplot shows the median difference between the value of the spillover before and after the announcement/settlement based on the Wilcoxon test. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

IES Working Paper Series

2019

- 1. Davit Maskharashvili: Duopolistic Competition On a Plane
- 2. Petr Hanzlík, Petr Teplý: Key Determinants of Net Interest Margin of EU Banks in the Zero Lower Bound of Interest Rates
- 3. Barbora Máková: Bank-Sourced Transition Matrices: Are Banks' Internal Credit Risk Estimates Markovian?
- 4. Peter Kudela, Tomas Havranek, Dominik Herman, Zuzana Irsova: *Does Daylight Saving Time Save Electricity? Evidence from Slovakia*
- 5. Dominika Kolcunová, Simona Malovaná: *The Effect of Higher Capital Requirements on Bank Lending: The Capital Surplus Matters*
- 6. Jaromír Baxa, Tomáš Šestořád: *The Czech Exchange Rate Floor: Depreciation without Inflation?*
- 7. Karel Janda, Binyi Zhang: Renewable Energy Financial Modelling: A China Case Study
- 8. Anna Alberini, Olha Khymych, Milan Ščasný: *Estimating Energy Price Elasticities When Salience is High: Residential Natural Gas Demand in Ukraine*
- 9. Anna Alberini, Olha Khymych, Milan Ščasný: *The Elusive Effects of Residential Energy Efficiency Improvements: Evidence from Ukraine*
- 10. Jozef Baruník, Matěj Nevrla: Tail Risks, Asset Prices, and Investment Horizons
- 11. Barbora Malinska: Realized Moments and Bond Pricing
- 12. Hamza Bennani, Nicolas Fanta, Pavel Gertler, Roman Horvath: Does Central Bank Communication Signal Future Monetary Policy? The Case of the ECB
- 13. Milan Ščasný, Šarlota Smutná: Estimation of Price and Income Elasticity of Residential Water Demand in the Czech Republic over Three Decades
- 14. Mykola Babiak, Olena Chorna, Barbara Pertold-Gebicka: Minimum Wage Increase and Firm Profitability: Evidence from Poland
- 15. Martin Stepanek: Sectoral Impacts of International Labour Migration and Population Ageing in the Czech Republic
- 16. Milan Ščasný, Iva Zvěřinová, Alistair Hunt: Nature-Based, Structural, or Soft Measures of Adaptation? Preferences for Climate Change Adaptation Measures to Limit Damages from Droughts
- 17. Milan Ščasný, Iva Zvěřinová, Vojtěch Máca: Consumer Preferences for Sustainable and Healthy Lifestyle: Five-Country Discrete Choice Experiments
- 18. Jaroslav Pavlícek, Ladislav Kristoufek: Modeling UK Mortgage Demand Using Online Searches
- 19. Josef Bajzik, Tomas Havranek, Zuzana Irsova, Jiri Schwarz: Estimating the Armington Elasticity: The Importance of Data Choice and Publication Bias
- 20. Vít Macháček, Martin Srholec: Predatory Publications in Scopus: Evidence on Cross-Country Differences
- 21. Barbara Pertold-Gebicka: Parental Leave Length and Mothers' Careers: What Can Be Inferred from Occupational Allocation?

- 22. Laure de Batz: Financial Crime Spillovers. Does One Gain to Be Avenged?
- 23. Dominika Spolcova, Barbara Pertold-Gebicka: Does Income Increase the Well-Being of Employees?: Evidence from Europe
- 24. Barbara Pertold-Gebicka, Dominika Spolcova: Family Size and Subjective Wellbeing in Europe: Do More Children Make Us (Un)Happy?
- 25. Václav Brož, Evžen Kočenda: Mortgage-Related Bank Penalties and Systemic Risk Among U.S. Banks

All papers can be downloaded at: http://ies.fsv.cuni.cz.

Univerzita Karlova v Praze, Fakulta sociálních věd Institut ekonomických studií [UK FSV – IES] Praha 1, Opletalova 26

E-mail: ies@fsv.cuni.cz http://ies.fsv.cuni.cz