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Abstract 

 

 

In this study, we examined various forms of mathematical models that are relevant for the 

containment, risk analysis and features of COVID-19. Greater emphasis was laid on the 

extension of the Susceptible-Infectious-Recovered (SIR) models for policy relevance in the 

time of COVID-19. These mathematical models play a significant role in the understanding 

of COVID-19 transmission mechanisms, structures and features. Considering that the disease 

has spread sporadically around the world, causing large scale socioeconomic disruption 

unwitnessed in contemporary ages since World War II, researchers, stakeholders, government 

and the society at large are actively engaged in finding ways to reduce the rate of infection 

until a cure or vaccination procedure is established. We advanced argument for the various 

forms of the mathematical models of epidemics and highlighted their relevance in the 

containment of COVID-19 at the present time. Mathematical models address the need for 

understanding the transmission dynamics and other significant factors of the disease that 

would aid policymakers to make accurate decisions and reduce the rate of transmission of the 

disease. 

Keywords: Mathematical Models, SIR Models, COVID-19, COVID-19 confirmed cases, 

COVID-19 attributable deaths 
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1.0 Introduction 

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), a novel β-coronavirus is 

the pathogen responsible for the coronavirus disease 2019 (COVID-19) (Li et al., 2020). The 

novel coronavirus has spread across the globe with the attendant consequences felt in about 

203 countries. As at the time of writing (June 18, 2020), there are about 8,061,550 confirmed 

COVID-19 cases with 440,290 attributable deaths (WHO, 2020). The Americas (North and 

South) account for close to 50% of global cases with values standing at 3,899,859 confirmed 

cases and 205,555 deaths. In Europe, there are about 2,452,247 confirmed cases with about 

189,582 attributable deaths. In the Eastern Mediterranean region, cases have soared to 817, 

458 with fatalities around 18,057. In the Southeastern Asia region, about 503,034 cases have 

been recorded with around 15,498 deaths. Down in the western pacific, there are about 

200,586 cases with about 7,239 attributable deaths. Across the African region, the number of 

confirmed cases stood at 187,625 with 4,346 deaths  (WHO, 2020). Since the emergence of 

the virus in Wuhan, China in December 2019, the aerosolised pathogens have spread 

exponentially, causing a large scale and unprecedented socio and economic disruptions, 

threat to global public health systems, poverty, undesirable psychological depression, more 

considerable uncertainties among many other deep-rooted issues (Sameni, 2020). The viral 

genome sequence of the SARS-CoV-2 suggests the close relatedness to SARS-like bat CoVs, 

but most genomic encoded proteins of the SARS-CoV-2 are similar to the SARS-Covs with 

differences in two of the non-structural proteins (NSP2 and NSP3), spike protein and the 

receptor-binding domain (RBD) (Wu et al., 2020). Studies have shown that the SARS-CoV-2 

is capable of mutation with two types being majorly classified as the L-type and the S-type 

(Tang et al., 2020). The S-type has been reported to have evolved when jumping from animal 

to man while the L-type evolved later. Although both are currently involved in the pandemic, 

the L-type has been reported to be more prevalent than the S-type (Guo et al., 2020). How 

mathematical models explain these chain reactions and transmission mechanisms forms the 

core of the foregoing.  

Severity, features, structures risk analysis and containment of the virus have been studied 

along with various disciplines and dimensions. A notable consensus has been the adoption of 

social distancing and practice of good hygiene as a measure to deter virus proliferation and 

flatten the epidemic growth curve such that fast-rising number of COVID-19 attributable 

deaths can be reduced (Sameni, 2020). However, empirical ambiguity still persists on the 

mechanical (mathematical) nature of the transmission pattern. Mathematical models are well-
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positioned to explain the evolutionary nature of epidemic outbreaks and the spread pattern. A 

review of the mathematical models with attendant structural evolution for the transmission 

dynamics of COVID-19 could be an essential finding in the containment, risk analysis and 

search for the cure of the disease.  

With the global pandemic leading to the increase in morbidity and mortality of the global 

population, socioeconomic and public health disarray (Zandvoort et al., 2020), the agonising 

consequences of the novel coronavirus on public health are influencing new waves of 

research on the relevance of mathematical models in predicting the sequence of the virus and 

its propagation pattern. With the proper understanding of the evolutionary and dynamic 

growth pattern of COVID-19 using mathematical models, public health officials, government 

and the society at large can take a giant step forward in their fight against COVID-19 amidst 

global uncertainties (Nandal, 2020). Several researchers in the scientific community have 

carried out interdisciplinary studies in order to understand the virus propagation pattern using 

various mathematical models (see Ivorra, Ferrández, Vela-Pérez, & Ramos, 2020; Kim, Seo, 

& Jung, 2020; Ndaïrou, Area, Nieto, & Torres, 2020; Torrealba-Rodriguez, Conde-Gutiérrez, 

& Hernández-Javier, 2020 for some examples). However, a holistic approach of 

mathematical instrumentalisation models in the analysis of COVID-19 growth curve and its 

containment strategies remains grossly understudied in extant literature. The intricacies of 

this unobserved factor underpin this study. We complement available studies on the subject 

matter and extend the SIR models and rely on inferences drawn from available studies using 

the extensions of SIR models. The application of these models consists of the use of 

mathematical tools and a specific language to explain and predict the behaviour of the 

infectious viral disease. These models could be deterministic, non-deterministic or could 

contain branching processes that aid the prediction of the infectious disease. 

2.0 Mathematical Models 

Mathematical models help to make mental models quantitative; it involves writing down a set 

of equations that mimics reality which is then solved for specific values of the parameters 

within the equations (Panovska-Griffiths, 2020; Revathi & Rangnathan, 2020). Mathematical 

modelling simplifies reality and answers questions using subsets of data (Panovska-Griffiths, 

2020). Predictive mathematical models are essential for understanding the course of an 

epidemic. One of the most commonly used models is the Susceptible-Infectious-Recovered 

(SIR) models for the human to human transmission (Giordano et al., 2020). However, 
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modellers need to acquire at least one dataset with relevant data points before developing or 

validating a model (Nandal, 2020). Predictive models for large countries could be 

problematic because they aggregate heterogeneous sub-epidemics (Jewell et al., 2020). 

Various factors, such as individual characteristics and population distribution, have a 

significant contribution, thus affecting the model prediction (Jewell et al., 2020).  

 

2.1 Models for Airborne Viral Diseases 

a) Susceptible – Infectious – Recovered (SIR) 

The underlying mathematical model which has been developed as far back in the 1920s is 

still in use today, and this basic model is referred to as the SIR model (Freiberger, 2014). The 

SIR model divided the population into three groups as in Shil (2016); the susceptible (S), the 

infectious (I) and the recovered (R). It was developed by Kernack and McKendrick to 

describe an influenza epidemic (Bauer, 2017). It assumes the introduction of an infected 

individual into a population where the members have not been previously exposed to the 

pathogen. Therefore all are susceptible (S), each infected individual (I) transmits to 

susceptible members of the population with a mean transmission rate β. At the end of the 

infectious period, individuals who recover from the infections are referred to as the recovered 

(R) member of the population, if the mean recovery rate is α, then the mean transmission 

period in any individual is given by 1/α. The differential equations describing the 

transmission as per the basic SIR model is given by  

     
𝑑𝑆(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡)     (1) 

 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡) −  𝛼𝐼(𝑡)    (2) 

     
𝑑𝑅(𝑡)

𝑑𝑡
=  𝛼𝐼(𝑡)      (3)

     

Where 𝑆(𝑡) and 𝐼(𝑡) represents the number of individuals in the susceptible and infectious 

states respectively at any time 𝑡, while the rates of change of S(t) and I(t) with time is 

represented by 𝑑𝑆(𝑡) and 𝑑𝐼(𝑡) respectively.  

If the population is considered constant with no agent leaving or coming into the system, the 

equation is given by:  

𝑁 =  𝑆(𝑡)  +  𝐼(𝑡)  +  𝑅(𝑡)    (4)
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The number of susceptible individuals decreases as the number of incidences increases, so 

also the epidemic declines, as more individuals recover from the disease (Shil, 2016). Basic 

reproduction number is a phenomenon where the average number of secondary infections 

generated by one infectious individual when introduced into a fully susceptible population is 

measured, 𝑅0 denotes it. The severity of an epidemic and rate of progression depends on the 

value of the basic reproduction number, so if  𝑅0 is greater than 1, the epidemic will continue, 

but if it is less than 1 then the epidemic would fade out (Delamater et al., 2019). The basic 

reproduction number can be calculated from the growth rate (𝑟) of the epidemic obtained 

from the cumulative incidences data in the initial growth phase of the outbreak as   

𝑅0 = (1 +
𝑟

∝
)     (5) 

The numerical solutions of the ordinary differential equations can be obtained with an 

appropriate application using computer simulations, and this model has been used to explain 

the transmission and repeated outbreaks of measles in New York between 1930 and 1962. 

The SIR model can be further modified considering demographics and weather/seasonal 

variations. Modified SIR has been used to explain viral epidemics such as Influenza 

justifying its applicability to the COVID-19 context. 

b) Susceptible – Exposed – Infectious – Recovered (SEIR) 

Certain infectious diseases have an incubation period or exposed state in an individual 

following infection until the symptoms are observed. In other words, the SEIR account for 

the exposed or latent stage (Shil, 2016). Here each individual who receives the virus exist in 

the exposed or latent state (𝐸) during which the virus is incubated but do not transmit the 

infection to anyone, so with the onset of symptoms the individual makes a transition to the 

infectious state. Considering the constant population size  

𝑁 =  𝑆 +  𝐸 +  𝐼 +  𝑅     (6) 
and the set of differential equations as;  

 

   Recall Equ(1) 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡) 

and  

Equ(2)
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡) −  𝛼𝐼(𝑡) 

to generate  
𝑑𝐸(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡) −  𝑘𝐸(𝑡)                 (7) 

While  

Equ(3) remains as    
𝑑𝑅(𝑡)

𝑑𝑡
=  𝛼𝐼(𝑡) 
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The basic reproduction of the SEIR model can be determined using the formula 

𝑅0 = (1 +
𝑟

∝
) ( 1 +

𝑟

𝑘
)    (8) 

Where the mean infective period is 1/𝛼 while the mean incubation period is 1/𝑘 

The SEIR model with suitable adaptations has been widely applied for various disease 

epidemics such as chickenpox and SARS, and its relevance has been advanced for the 

analysis of the dynamic transmission of COVID-19 in this context.  

 

c) Susceptible – Exposed – Infectious – Asymptomatic – Recovered (SEIAR) 

This is a simple model for viral epidemics involving asymptomatic individuals in the 

population in a situation without any interventions. Individuals testing positive in serological 

tests or blood tests for disease without symptoms is referred to as asymptomatic and is 

denoted as A in the SEIAR model, so considering a constant population; 

   𝑁 = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝐴(𝑡) + 𝑅(𝑡)    (9) 

This indicates the total population was susceptible, and there was no transmission from 

individuals at the latent state and a fraction of the proceeds to the infectious state. In contrast, 

other fractions (𝐼 − 𝑝) proceed to the asymptomatic state at the same time (k) with the 

asymptomatic individuals having a reduced ability to transmit the infection. If 𝑞 is the factor 

that determines transmissibility in asymptomatic individuals, then 0 < 𝑞 < 1. The ordinary 

differential equation of the transmission process can be described as the following.   

𝑑𝑆

𝑑𝑡
=  −𝛽𝑆(1 + 𝑞𝐴)    (10) 

𝑑𝐸

𝑑𝑡
=  𝛽𝑆(1 + 𝑞𝐴) − 𝑘𝐸   (11) 

𝑑𝐼

𝑑𝑡
=  𝑝𝑘𝐸 −  𝛼𝐼    (12) 

𝑑𝐴

𝑑𝑡
= (1 − 𝑝)𝑘𝐸 −  Ƞ𝐴   (13) 

𝑑𝑅

𝑑𝑡
=  𝛼𝐼 +  Ƞ𝐴    (14) 

𝑑𝐶

𝑑𝑡
=  𝛼𝐼     (15) 

C denotes the cumulative number of infectives. This model was used to explain the 

transmission dynamics of the swine flu outbreak in 2009 at a residential school in 

Maharashtra, India (Shil et al., 2011). 
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d) Complex SEIAR (Hospitalisation) 

This model describes the incorporation of the hospitalisation of a fraction of infectious 

individuals. Here the population is classified into SEIAR with 𝐽(𝑡) and 𝐷(𝑡) denoting the 

hospitalised and dead respectively. Considering the total population is constant at any time,  

𝑁 = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝐴(𝑡) + 𝐽(𝑡) + 𝐷(𝑡)    (16) 

The ordinary differential equation of the transmission process is described as the following 

𝑑𝑆

𝑑𝑡
=  𝜇𝑁(𝑡) −  

𝛽𝑆(𝑡).𝐼(𝑡)+𝐽(𝑡)+𝑞𝐴(𝑡)

𝑁
− 𝜇𝑆(𝑡)   (17) 

 

𝑑𝐸

𝑑𝑡
=

𝛽𝑆(𝑡).(𝐼(𝑡)+𝐽(𝑡)+𝑞𝐴(𝑡))

𝑁
− (𝑘 + µ)𝐸(𝑡)   (18) 

𝑑𝐴

𝑑𝑡
= 𝑘(1 − 𝑝)𝐸(𝑡) − (ƴ1 + µ)𝐴(𝑡)    (19) 

𝑑𝐼

𝑑𝑡
= 𝑘𝑝𝐸(𝑡) − (𝛼 + ƴ1 + µ)𝐼(𝑡)    (20) 

𝑑𝐽(𝑡)

𝑑𝑡
= 𝛼𝐼(𝑡) − (δ + ƴ2 + µ) J(t)    (21) 

𝑑𝑅(𝑡)

𝑑𝑡
=  ƴ1 (𝐴(𝑡) + 𝐼(𝑡)) +  ƴ2 𝐽(𝑡) − µ𝑅(𝑡)  (22) 

𝑑𝐷(𝑡)

𝑑𝑡
=  𝛿𝐽(𝑡)       (23) 

𝑑𝐶(𝑡)

𝑑𝑡
=  𝛼𝐼(𝑡)       (24) 

The µ represents the rate of birth and natural death, while the cumulative number of 

infections is represented by C(t). Epidemic data of the Spanish Flu pandemic in Geneva was 

obtained using the Complex SEIAR model, and all parameters of the model were determined. 

The SEIR and SEIAR models have been further extended by involving various parameters to 

play crucial roles in public health interventions, quarantine, travel restrictions, vaccination or 

dosage of antivirals (Shil, 2016). 

 

3.0 Modelling the COVID-19 pandemic 

Globally, radical alteration with rapidly changing socioeconomic dynamics has been 

occurring due to the COVID-19 Pandemic, Several countries have been on full or partial 

lockdown while adhering to social distancing measures as they wait for a specific treatment 

modality such as vaccines (Sinha, 2020). Public information such as incidence or prevalence 

of infection, morbidity or mortality due to COVID-19 could be used to solve mathematical 
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models, solutions from these models are then recalibrated repetitively until it is suitable for 

prediction of the future behaviour of SARS-CoV-2 (Panovska-Griffiths, 2020).   

The COVID-19 Pandemic has been modelled by various researchers with the aim of 

stimulating the infections within the population (Shaikh et al., 2020). Most models represent 

individual to transition between compartments in a given community, these compartments are 

based on each individual’s infectious state, and related population sizes with respect to time 

(Shaikh et al., 2020).  Lin et al. had suggested a conceptual model for COVID-19, this model 

effectively catches the timeline of the disease epidemic while Chen et al. (2020) examined a 

model based on stage based transmissibility of the SARS-CoV-2 (Chen et al., 2020; Lin et 

al., 2020). Whereas Khan et al. (2020) formulated a model of people versus COVID 19, the 

model is given as 

   𝐷𝑡𝑆(𝑡) = ∆ −⋋ 𝑆 −
𝑎𝑆(𝐼+𝛽𝐴)

𝑁
− 𝛾𝑆𝑄,   (25) 

   𝐷𝑡𝐸(𝑡) = ∝
𝑆(𝐼+𝛽𝐴)

𝑁
+  𝛾𝑆𝑄 − (1 − 𝜙)𝛿𝐸 − 𝜙𝜇𝐸 −⋋ 𝐸, (26) 

   𝐷𝑡𝐼(𝑡) = (1 − 𝜙)𝛿𝐸 − (𝜎 +⋋)𝐼,    (27) 

   𝐷𝑡𝐴(𝑡) = 𝜙𝜇𝐸 − (𝜌 + ⋋)𝐴,     (28) 

   𝐷𝑡𝑅(𝑡) = 𝜎𝐼 + 𝜌𝐴 −⋋ 𝑅,     (29) 

   𝐷𝑡𝑄(𝑡) = 𝜅𝐼 + 𝜐𝐴 − 𝜂𝑄,     (30) 

 

Where N represents the total population and is further divided into five subclasses which 

include susceptible people 𝑆(𝑡), exposed people 𝐸(𝑡), Infected people 𝐼(𝑡), 

Asymptomatic people 𝐴(𝑡) and Recovered people𝑅(𝑡), The reservoir population is 

denoted as 𝑄(𝑡). 

Since most mathematical models utilise ordinary differential equations with integer order for 

understanding dynamics of biological systems, every model depending on such classical 

derivatives has been discovered to have restrictions (Shaikh et al., 2020). These restrictions 

could be overcome using fractional calculus, as recommended by Caputo and Fabrizio. 

Researchers such as Shaikh et al. (2020) applied the Caputo-Fabrizio fractional derivative 

operator to study the dynamics of COVID-19 using the mathematical model suggested by 

Khan et al. (2020) in the form of the system of nonlinear differential equations involving the 

Caputo-Fabrizio operator (Khan & Atangana, 2020; Shaikh et al., 2020). The model is given 

as  
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   CF𝐷𝑡
𝜏𝑆(𝑡) = ∆ −⋋ 𝑆 −

𝑎𝑆(𝐼+𝛽𝐴)

𝑁
− 𝛾𝑆𝑄,   (31) 

   CF𝐷𝑡
𝜏𝐸(𝑡) = ∝

𝑆(𝐼+𝛽𝐴)

𝑁
+  𝛾𝑆𝑄 − (1 − 𝜙)𝛿𝐸 − 𝜙𝜇𝐸 −⋋ 𝐸,  (32) 

   CF𝐷𝑡
𝜏𝐼(𝑡) = (1 − 𝜙)𝛿𝐸 − (𝜎 +⋋)𝐼,    (33) 

   CF𝐷𝑡
𝜏𝐴(𝑡) = 𝜙𝜇𝐸 − (𝜌 + ⋋)𝐴,    (34) 

   CF𝐷𝑡
𝜏𝑅(𝑡) = 𝜎𝐼 + 𝜌𝐴 −⋋ 𝑅,     (35) 

   CF𝐷𝑡
𝜏𝑄(𝑡) = 𝜅𝐼 + 𝜐𝐴 − 𝜂𝑄,                 (36) 

With initial conditions  

𝑆 (0)  =  𝜃1, 𝐸 (0)  =  𝜃2, 𝐼 (0)  =  𝜃3, 𝐴 (0)  =  𝜃4, 𝑅 (0)  =  𝜃5, 𝑄 (0)  =  𝜃6. 

 

Early dynamics of COVID-19 transmission were studied by researchers such as Kucharski et 

al. (2020), where a combination of a stochastic transmission model with data on both cases in 

Wuhan and international cases that originated from Wuhan were used to estimate how 

transmission had varied between January to February 2020, these estimates were then used to 

calculate the probability  of new cases that might generate outbreaks in new areas (Kucharski 

et al., 2020). Their findings estimated that daily reproduction number (Rt) in Wuhan declined 

from 2.35 to 1.05 between 1 week before and after travel restrictions were introduced 

respectively (Kucharski et al., 2020). based on these estimates, locations with similar 

transmission potential to Wuhan have at least a 50% chance of an outbreak for very four 

independently introduced cases (Kucharski et al., 2020).  

Several modelling studies have used the Susceptible-Exposed-Infectious-Recovered (SEIR) 

model to study the transmission dynamics of COVID-19. Wu et al. (2020) used the SEIR 

model to describe the transmission dynamics and forecast the spread of the disease using 

reported data between December 31, 2019, to January 28, 2020. The study also estimated the 

basic reproductive number to be 2.68 (Wu et al., 2020). Another study by Read et al. (2020) 

using the SEIR model reported a basic reproductive number value of 3.1 using an assumption 

of Poisson-distributed daily time increments (Read et al., 2020). In contrast, Tang et al. 

(2020) obtained a basic reproductive number value as high as 6.47 when the clinical 

progression of the disease, individual epidemiological status and intervention measures were 

incorporated into a deterministic compartmental model based on the SEIR model (Tang et al., 

2020). A different approach was used by Zandvoort et al. (2020), An age-stratified SEIR 

model was used to study the effectiveness of non-pharmaceutical interventions in three 

African countries (Zandvoort et al., 2020). Most African countries have resource-limited 
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settings and have fewer means to suppress virus propagation, and the study observed that 

isolating infected individual is the most effective way of reducing transmission in African 

countries (Zandvoort et al., 2020). All these studies are based on the human-to-human 

transmission and did not take in to account the significance of the environment in COVID-19 

transmission (Yang & Wang, 2020). Yang and Wang examined proposed an SEIR model that 

describes multiple transmission pathways in the infection dynamics. It also emphasised the 

role of the environmental reservoir in the propagation of COVID-19 (Yang & Wang, 2020). 

The model employed non-constant transmission rates that change with the epidemiological 

status and environmental conditions while reflecting the impact of the on-going control 

measures. Using public data, the study concluded that COVID-19 would remain endemic, 

and this demands long term prevention and intervention measures (Yang & Wang, 2020).  

A different mathematical model approach was employed by Li et al. (2020) where a 

Susceptible-Exposed-Infectious-Quarantined-Diagnosed-Recovered (SEIQDR) based model, 

which is an expansion of the SEIR model was used (Li et al., 2020). This six-chambered 

model was used to study the transmission mechanism of COVID-19 and the implemented 

prevention and control measures, with the aid of time series and kinetic modal analysis, a 

basic reproductive number value of 4.01 was obtained (Li et al., 2020). The findings of the 

study suggested that while recovered individuals might not be re-infected due to the presence 

of antibodies to COVID-19, bodies of deceased individuals should be well treated to prevent 

viral transmission (Li et al., 2020). Kim et al. (2020) also used a SEIQR model that factored 

in behavioural changes to study the transmission of COVID-19 in Korea and predict the 

likely size and end of the epidemic (Kim et al., 2020). The model predicted over 10,000 cases 

over time until June, so it was suggested that a sustainable long term non-pharmaceutical 

interventions would significantly reduce transmission among the population (Kim et al., 

2020).  

Although the mathematical models for the COVID-19 have majorly forecast few areas 

relating to pathogen spread such as the basic reproductive number of the SARS-CoV-2, 

population control measures, percentage of asymptomatic people (Nandal, 2020). There is 

still a paucity of modelling studies focusing on predicting the magnitude of the global spread 

of the virus, duration of the pandemic and possible effective interventions (Nandal, 2020). 

Nevertheless, consumers of these models such as the public, media and politicians; have the 

need for this predictions in order to plan for various interventions that would be reliable in 

combating the disease (Jewell et al., 2020). 
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Models are very useful tools particularly for short term accurate predictions, and it helps 

policymakers to make decisions and allocate adequate resources towards disease control 

through predictions of disease spread and infected population (Kucharski et al., 2020; Revathi 

& Rangnathan, 2020).  Mathematical models can be used to understand how and where the 

disease is most likely to spread while avoiding so many trial experiments or random guesses 

with the real population. Most mathematical models used during this epidemic are extensions 

of the Susceptible-Exposed-Infected-Recovered (SEIR) model, a compartmental model based 

on the behaviour of the population which enabled the simulation of how non-pharmaceutical 

prevention and intervention measures such as lockdowns, social distancing, self-isolation; can 

significantly affect the morbidity and mortality of the population over time (Sameni, 2020). 

 

4.0 Conclusion 

Although mathematical models mimic the actual reality using an equation that is solved for 

specific values of the user parameters within the equations, a mathematical model is as good 

as the data it uses. However, mathematical models are potent tools for understanding the 

transmission dynamics of an infectious viral disease. In other climes, there is no gainsaying to 

aver that the Susceptible-Exposed-Infected-Recovered (SEIR) model seems the most reliable 

extension of the SIR models during this pandemic due to its plausibility in explaining 

heterogeneous changes in features, structures, containment and risk analysis of the virus 

transmission. Since infectious diseases have an incubation period or exposed state in an 

individual following infection until the symptoms are observed, the SEIR account for the 

exposed or latent stage which is concomitant with real-time observation across various 

geography and population. During the COVID-19 Pandemic, mathematical models have 

played significant roles in policymaking and social life generally. Through various models, 

different scenarios have been explored to understand the transmission of COVID-19, basic 

reproductive number, case-fatality rate, duration of epidemic and significance of various 

prevention and intervention measures among the population. Although mathematical models 

rely on predictions and estimations, they are handy tools that could significantly guide the 

implementation of public health decisions when properly expressed and estimated.  
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