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Abstract  
 

In this study, we examine how insurance affects income inequality in sub-Saharan Africa, 

using data from 42 countries during the period 2004-2014. Three inequality variables are 

used, namely: the Gini coefficient, the Atkinson index and the Palma ratio. Two insurance 

premiums are employed, namely: life insurance and non-life insurance. The empirical 

evidence is based on the Generalized Method of Moments (GMM). Life insurance increases 

the Gini coefficient and increasing life insurance has a net positive effect on the Gini 

coefficient and the Atkinson index. Non-life insurance reduces the Gini coefficient and 

increasing non-life insurance has a net positive effect on the Palma ratio. The analysis is 

extended to establish policy thresholds at which increasing insurance premiums completely 

dampen the net positive effects. From the extended analysis, 7.500 of  life insurance 

premiums (% of GDP) is the critical mass required for life insurance to negatively affect 

inequality, while 0.855 of non-life insurance premiums (% of GDP) is the threshold required 

for non-life insurance to negatively affect inequality. Policy thresholds are provided at which 

insurance penetration decreases income inequality in sub-Saharan Africa.  
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Keywords: Insurance; Inclusive development; Africa; Sustainable Development 

 

 

 

 

 

 



3 

 

1. Introduction 

The motivation for assessing the relevance of insurance on inequality in sub-Saharan Africa 

(SSA) is threefold, notably: (1) growing exclusive development and challenges to the post-

2015 development agenda; (2) the potential for insurance penetration on the continent; and (3) 

gaps in the literature. Elements of the motivation are expanded in the same order as they are 

highlighted. 

 First, in the light of Sustainable Development Goals (SDGs) pertaining to inequality, 

the recent evidence of growing exclusive development in Africa represents a policy syndrome 

in the global challenge of reducing inequality and promoting shared economic prosperity
2
. In 

essence, inequality is crucial in the objective of enhancing shared economic development for 

the attainment of most goals enshrined in the post-2015 development agenda. For instance, in 

order to curtail extreme poverty to a below 3% threshold by 2030, inequality has to be 

mitigated because the response of extreme poverty to growth decreases with growing levels of 

inequality (Asongu & Kodila-Tedika, 2017). It has become apparent that inequality in SSA 

represents a very challenging policy syndrome if most inequality-related SDGs are to be 

achieved for the continent. The foundations of this assertion are threefold: (1) the established 

evidence that the response of poverty to growth is a negative function of inequality (Fosu, 

2015); (2) Africa has been enjoying more than two decades of growth resurgence (Tchamyou, 

2019, 2020); and (3) about 50% of African countries did not attain the Millennium 

Development Goals (MDGs) extreme poverty target (Asongu & le Roux, 2019).   

 Two main insights from the above account merit critical examination. On the one 

hand, the fact that the numerical value of the population still living in extreme poverty has 

consistently increased in Africa is clear evidence that the economic prosperity has not largely 

benefited the poor segments of the population. The role of inequality in decreasing the effect 

of economic growth on poverty reduction can explain why poverty levels in Sub-Saharan 

Africa are still high despite the recent two decades of economic growth resurgence. Hence, 

with consideration to the importance of inequality in poverty-growth relationship: “Output 

may be growing, and yet the mass of the people may be becoming poorer” (Lewis, 1955). On 

the other hand, even in a scenario where 2000-2010 growth levels are maintained in order to 

achieve the SDGs poverty targets as argued by a stream of the literature (Ravallion, 2013), 

inequality will need to be dealt with in order to avoid growing extreme poverty and slowing 

                                                           
2
Policy syndrome within the framework of this study is inequality. This conception and understanding of a 

policy syndrome is consistent with recent inclusive development (Asongu & Nwachukwu, 2017a) and inequality 

(Tchamyou et al., 2019a) literature.   
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down of economic prosperity (Chandy et al., 2013; Yoshida et al., 2014). The contemporary 

relevance of addressing inequality in order to achieve most 2030 targets for Africa is 

consistent with the conclusions of Bicaba et al. (2017): “This paper examines its feasibility for 

Sub-Saharan Africa (SSA), the world’s poorest but growing region. It finds that under 

plausible assumptions extreme poverty will not be eradicated in SSA by 2030, but it can be 

reduced to low levels through high growth and income redistribution towards the poor 

segments of the society” (p. 93). This assertion on Sub-Saharan Africa is relevant to North 

African countries (Ncube et al., 2014). The purpose of this research is to assess how the 

policy syndrome of inequality can be addressed with enhanced insurance penetration.  

 Second, a high potential for insurance penetration in Africa represents a policy 

instrument with which some macroeconomic and human development outcomes can be 

achieved. As maintained by Kyerematen (2015), the penetration of insurance in Africa is 

substantially low relative to other regions of the world. The author supports the perspective by 

articulating that, with the exception of South Africa, only about 5% of the population in 

Africa has access to insurance services. Enhanced insurance penetration can potentially 

reduce inequality because as recently documented by the OECD (2017), insurance policies 

that are complemented with simplified claims and wide coverage can improve access to 

financial protection for hitherto underserved segments of society. Unfortunately, the extant 

literature has failed to examine the relevance of enhancing insurance in the development of 

poor segments of society in Africa. 

 Third, as expanded in section 2, the bulk of the literature on insurance penetration in 

Africa has focused on two main strands, notably:  (1) connections between insurance 

penetration and development outcomes (Ioncică et al., 2012; Akinlo, 2015; Alhassan & 

Biekpe, 2015, 2016a; Asongu & Odhiambo, 2020a); and (2) determinants of insurance 

penetration (Zerriaa et al., 2017; Guerineau & Sawadogo, 2015; Alhassan & Biekpe, 2016b; 

Asongu & Odhiambo, 2020b). This research extends the former strand of the literature by 

investigating the relevance of enhancing insurance on inequality because of an apparent gap 

in the inequality literature. Accordingly, the contemporary inequality literature on Africa has 

focused  on inter alia: the nexuses between finance, education and inequality (Meniago & 

Asongu, 2018; Tchamyou, 2019, 2020); the reinvention of foreign aid for inclusive 

development (Page & Söderbom, 2015; Jones & Tarp, 2015; Asongu, 2016); the relationships 

between inequality and corruption (Sulemana & Kpienbaareh, 2018); the nexuses between 

income, consumption and wealth of poor segments of society (De Magalhães & Santaeulàlia-
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Llopis, 2018);  and the connection between inequality and foreign investment (Kaulihowa & 

Adjasi, 2018). 

 We fully understand the risk involved in doing measurement without firmly 

established theoretical underpinnings. However, we also argue that applied econometrics 

should not exclusively be contingent on the rejection and acceptance of established theoretical 

models. According to the study, applied econometrics, even in the absence of a formal 

theoretical framework, is a useful scientific research because the findings could provide the 

basis for theoretical-building. This argument is in accordance with the attendant literature on 

the relevance of applied econometrics in academic and policy-making circles (Costantini & 

Lupi, 2005; Narayan et al., 2011; Asongu & Nwachukwu, 2016a). The intuition for the 

connection between insurance and inequality is based on the perspective that insurance 

provides leverage against negative household and economic shocks, which can substantially 

diminish the quality of wellbeing and livelihood. Furthermore, like inflation, this negative 

shock is more likely to be unfavorably borne by poorer factions of the population, compared 

to their rich counterparts. Accordingly, improved access to insurance services has the prospect 

of reducing inequality because it offers financial protection to all segments of society, 

including the previously underserved categories (OECD, 2017). 

The above intuition motivating the study is assessed using a panel of 42 countries in 

Sub-Saharan Africa. The findings of the study reveal that life insurance has a positive impact 

on the Gini coefficient whereas increasing life insurances engenders a net positive impact on 

both the Atkinson index and the Gini coefficient. While non-life insurance mitigates the Gini 

coefficient, the incidence of increasing non-life insurance on the Palma ratio is positive. An 

extended analysis is performed to establish policy-relevant thresholds of insurance at which 

the established positive net impacts on inequality are nullified. From the extended analysis, it 

is established that: (i) 7.500 of life insurance premium (% of GDP) is the threshold needed for 

life insurance to influence inequality negatively and (ii) 0.855 of non-life insurance premium 

(% of GDP) is the threshold required for non-life insurance to impact inequality negatively in 

the sampled countries.  

The rest of the study is structured as follows. Section 2 contains a review of the extant 

literature while the data and methodology are discussed in section 3. Section 4 discloses the 

empirical results whereas section 5 concludes with future research directions.  
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2. Literature review  

 Consistent with the highlighted literature in the introduction, the extant contemporary 

literature on insurance in Africa (which has not focused on the nexus between inequality and 

insurance) can be discussed in two main strands
3
. One has focused on the determinants of life 

insurance in the continent, while the other has been concerned with linkages between 

insurance penetration and development outcomes.  

 In the first strand on determinants of insurance penetration, Guerineau and Sawadogo 

(2015) assess drivers of life insurance in sub-Saharan Africa (SSA) with focus on twenty 

countries in SSA and data for the period 1996-2011. The empirical strategy adopted by the 

authors (i.e. an instrumental variable technique) enables them to account for potential issues 

of endogeneity. The findings show a positive relationship between income per capita and life 

insurance premium. The improvement of life insurance schemes is negatively linked with 

young dependency and life expectancy ratios whereas the following determinants are 

positively associated with life insurance, namely: government stability, old dependency ratio 

and the protection of property. The study also maintains that life insurance is still viewed as a 

luxury commodity in the sub-region. 

 Motivations for the demand for life insurance have also been investigated by Zerriaa et 

al. (2017). Focusing on Tunisia using annual data for the period 1990-2014, the authors find 

that inflation and interest rates do not significantly determine the outcome variable. 

Conversely, pension expenditures have a negative effect whereas life expectancy, 

dependency, urbanization, income and financial development positively drive life insurance.  

Characteristics that are convenient for the development of life insurance are assessed 

by Alhassan and Biekpe (2016b) in thirty-one African countries for the period 1996-2010. 

The corresponding findings reveal that relative to financial determinants, demographic factors 

are associated with a higher explanatory power. In addition, the findings also reveal that life 

insurance consumption is diminished by dependency, inflation and life expectancy while 

positive associations are apparent from the following determinants: institutional quality, 

financial development and health expenditure.   

In the second strand, the causal linkage between insurance and economic prosperity 

has been examined by Akinlo (2015) in a sample of thirty countries in SSA over the period 

                                                           
3
The papers engaged in this section do not specifically deal with inequality. The purpose of the section is to 

substantiate the highlighted literature in the introduction. Accordingly, the study is being positioned on 

inequality because of the absence of literature focusing on the nexus between insurance and inequality in Africa.  
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1995-2011. Using a panel heterogeneous causality analytical technique, the findings reveal 

evidence of bidirectional causality between insurance and economic prosperity.  

In another study on the relationship between the penetration of insurance and 

economic development, linkages between efficiency, productivity and scale economies in the 

non-life insurance market are examined by Alhassan and Biekpe (2015) using data from 

South Africa over the period 2007-2012. With logistic, bootstrapped and data envelopment 

analysis, the results show that: approximately 20% of insurers optimally perform their 

operations whereas non-life insurers are associated with about 50% inefficiency. The findings 

reveal that improvements in productivity are contingent on technological ameliorations as 

well as evidence of a non-monotonic impact of size on constant returns to scale and 

efficiency. Furthermore, the findings confirm the relevance of leverage, reinsurance and 

product line diversification in determining constant returns to scale and efficiency.  

 Alhassan and Biekpe (2016a) in another research have examined the nexus between 

economic prosperity and the development of insurance in eight African countries (Algeria, 

Gabon, Kenya, Madagascar, Mauritius, Morocco, Nigeria and South Africa) for the period 

1990-2010. Employing an autoregressive distributed lag (ARDL) empirical strategy; the 

authors establish a long term linkage between economic growth and the insurance market in 

South Africa, Kenya, Nigeria, Morocco and Mauritius. Moreover, from a vector error 

correction model (VECM) empirical setting, evidence of bidirectional causality is revealed in 

Morocco, mixed findings are apparent for Gabon whereas a unidirectional causality is found 

in Madagascar and Algeria. 

 

 

3. Data and methodology 

3.1 Data  

 The study is focused on 42 countries in Sub-Saharan Africa over the period 2004-

2014
4
. The corresponding temporal and geographical scopes of the study are restricted by 

constraints in data availability at the time of the study. The data come from three main 

sources, notably:  (i) World Development Indicators (WDI) of the World Bank for a control 

variable (i.e. remittances) ; (ii) the Financial Development and Structure Database (FDSD) of 

                                                           
4The 42 countries include: “Angola, Benin, Botswana, Burundi, Cabo Verde, Cameroon, Central African 
Republic, Chad, Comoros, Congo Democratic Republic, Congo Republic, Côte d’Ivoire, Djibouti, Ethiopia, 
Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritius, 

Mozambique, Namibia, Niger, Nigeria, Rwanda, Sao Tome & Principe, Senegal, Seychelles, Sierra Leone, 

South Africa, Sudan, Swaziland, Tanzania, Togo, Uganda and Zambia”.  
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the World Bank for the insurance premiums (i.e. life insurance and non-life insurance) and a 

control variable (i.e. financial depth); (iv) the Global Consumption and Income Project 

(GCIP) for the inequality variables (i.e. the Gini coefficient, the Atkinson index and the Palma 

ratio). 

 Consistent with the contemporary literature on inequality, three main inequality 

indicators are adopted by the study (Tchamyou et al., 2019a; Meniago & Asongu, 2018). The 

indicators include: (i) the Gini coefficient which reflects the distribution of wealth across the 

population. However, the main drawback in the indicator is that it fails to capture extreme 

values in the inequality distribution (Naceur & Zhang, 2016). Hence, in order to control for 

tails of the inequality distribution, the Gini coefficient is complemented with two more 

inequality indicators that are designed to capture extreme values of the inequality distribution, 

namely: the Palma ratio and the Atkinson index. (ii) The Atkinson index is an indicator of 

income inequality which measures the percentage of total income that a specific society 

would forego in an attempt to have more income equality among citizens. (iii) The Palma 

ratio denotes national income shares of the top 10% of households to the bottom 40%.  

 All the insurance premiums provided by the FDSD of the World Bank are considered 

in the analysis, notably: life insurance and non-life insurance. The choice of these two 

premiums is also motivated by the engaged literature in section 2 (Ioncică et al., 2012; 

Akinlo, 2015; Guerineau & Sawadogo, 2015; Alhassan & Biekpe, 2015, 2016a, 2016b; 

Zerriaa et al., 2017; Asongu & Odhiambo, 2020a, 2020b)
5
. 

 Two control variables are adopted in order to account for variable omission bias, 

namely: remittances and government expenditure.  Variables in the conditioning information 

set are limited to two because a preliminary analysis shows that accounting for more control 

variables generates estimations that fail to pass post-estimation diagnostic tests in the 

Generalized Method of Moments (GMM) results. Accordingly, even when instruments are 

collapsed in the specification process, the involvement of more than two control variables still 

leads to instrument proliferation. The limitation to two control variables is not an issue for the 

robustness of the GMM specifications because there is a strand of the GMM literature that 

                                                           
5
The adoption of life and non-life insurance premiums is based on a review of the attendant literature. For 

instance Ioncica (2012), who focuses on the insurance market in Romania, broadly confirms the two types of 

insurance classifications “Formal education is also associated with status and with a demand for security and 

protection of life, health and properties of the individual through insurance” (Ioncica, 2012, p. 4155 ). Hence, 
when reviewing the literature, we are not exclusively concerned with phraseological mentions of the types of 

insurance premiums used in the study. We delve deeper to understand whether the insurance discussion can be 

classified into the life and non-life insurance premiums used in the study. 
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does not employ control variables in order to limit instrument proliferation and avoid 

inefficient estimates (Osabuohien & Efobi, 2013; Asongu & Nwachukwu, 2017b).   

 Among the selected control variables, remittances are expected to averagely reduce 

income inequality. However, when the whole distribution of income distribution is 

considered, such that wealthy and less wealthy factions of the population as articulated in the 

modeling exercise, it is likely for remittances to increase inequality. Hence, in the light of the 

definitions, conceptions and measurements of the inequality indicators, remittances can 

reduce the Gini coefficient and have the opposite effect on the Atkinson index and Palma 

ratio. This discourse on the contingency of the effect remittances on the heterogeneity of 

inequality indicators is consistent with the attendant inequality literature. According to 

Anyanwu (2011) and Meniago and Asongu (2018), most of the population remitting funds to 

Africa are from wealthier factions of the African society. This is essentially because those 

migrating abroad are largely from wealthy backgrounds which, have the associated financial 

resources for visa processing and related administrative travel expenses.  

 Financial depth in the perspective of money supply has been established to be pro-

poor in recent African inequality literature (Tchamyou et al., 2019a). The definitions and 

sources of variables are provided in Appendix 1 whereas the summary statistics is disclosed in 

Appendix 2. The correlation matrix is covered by Appendix 3.  

 

3.2 Methodology 

 Consistent with contemporary literature (Asongu & Minkoua, 2018; Zhang et al., 

2019; Li et al., 2014, 2016; Kou et al., 2012, 2014, 2016, 2019a, 2019b), the adopted 

estimation technique is consistent with data behaviour. The GMM estimation approach is 

adopted for four fundamental reasons. First, the number of cross sections (i.e. sampled 

countries) is higher compared to the number of time periods appearing in each cross section. 

Therefore, since 42 (i.e. number of countries) is substantially higher than corresponding 

number of years (i.e. 11 or 2004 to 2014) in each cross section, the adopted estimation 

strategy is appropriate.  It follows that the N(42)>T(11)  condition for the employment of the 

GMM approach is fulfilled. Second, given that persistence is also a condition for the adoption 

of the GMM technique, we explore the nexuses between the identified inequality indicators 

and their first lags to confirm that the corresponding correlations are higher than the rule of 

thumb threshold of 0.800 used to ascertain the persistence of an outcome variable in the 

extant GMM and inequality literature (Tchamyou et al., 2019b). Accordingly, the study finds 

that the corresponding correlations for the Atkinson index, the Palma ratio and the Gini 
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coefficient are respectively, 0.958, 0.964 and 0.918. Third, the panel nature of the data 

structure allows the estimation approach to account for cross-country differences in the 

specifications. Fourth, the concern of endogeneity is addressed from two main perspectives. 

On the one hand, the issue of reverse causality or simultaneity is tackled by using internal 

instruments. On the other hand, by involving time invariant indicators in the conditioning 

information set, the estimation captures the unobserved heterogeneity.  

 In the light of narratives that traditional GMM approaches produce less efficient 

estimated coefficients, this study adopts the  Roodman (2009a, 2009b) extension of Arellano 

and Bover (1995) because it has been established to produce more efficient estimates and 

restrict instrument proliferation (Love & Zicchino, 2006; Baltagi, 2008; Asongu & 

Nwachukwu, 2016b; Boateng et al., 2018). 

The following equations in level (1) and first difference (2) summarise the standard 

system GMM estimation procedure.  
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where, tiI , is an inequality indicator (i.e. Gini coefficient, Atkinson index and Palma ratio)  of  

country i in  period t , 0
 
is a constant, IS  entails insurance  (life insurance and non-life 

insurance), ISIS  denote  quadratic interactions between insurance premiums (“life insurance” 

× “life insurance”, “non-life insurance” × “non-life insurance”),   W  is the vector of control 

variables (remittances and financial depth),  represents the coefficient of auto-regression 

which is one within the framework of this study because a year lag is enough to capture past 

information, t  
is the time-specific constant, i

 
is the country-specific effect and ti ,  the error 

term.  

 Consistent with the attendant literature, the study discusses identification and 

exclusion restrictions properties underpinning the GMM strategy (Tchamyou & Asongu, 

2017; Tchamyou et al., 2019). These are essential for robust GMM estimations. All 

explanatory variables are considered as predetermined variables and the years or time 

invariant variables are considered as strictly exogenous, in accordance with recent empirical 

literature, notably: Boateng et al. (2018) and Asongu and Nwachukwu (2016c). The 
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identification strategy is also supported by Roodman (2009b)
6
  who has argued that it is 

unfeasible for the time invariant variables to become endogenous after a first difference.  

 In the light of the above identification process, in the empirical results section of this 

study, the exclusion restriction assumption is examined with the Difference in Hansen Test 

(DHT) for instrument exogeneity. Like in the empirical literature  based on the standard 

instrumental variable (IV) approach (see Beck et al., 2003; Asongu & Nwachukwu, 2016d), a 

rejection of the null hypothesis of the over-identifying restrictions test is an indication that the 

strictly exogenous variables or instruments explain the outcome variable beyond the proposed 

channels or endogenous explaining variables. Hence, the validity of the exclusion restriction 

assumption is validated when the null hypothesis of the DHT is not rejected.  

 

4. Empirical results  

4.1 Presentation of results  

The results are disclosed in this section. While Table 1 focuses on life insurance, Table 2 is 

concerned with non-life insurance. For either table, three specifications are apparent for each 

of the three inequality indicators used in the study. The specifications are tailored such that 

there is a primary non-quadratic specification and a secondary quadratic specification (i.e. 

involving the interaction of insurance premiums).  While the primary specification is meant to 

assess the effect of insurance on inequality, the secondary specification investigates the 

relevance of increasing insurance on inequality. For all specifications, four information 

criteria are employed to assess the validity of the GMM model with forward orthogonal 

deviations
7
. Based on these criteria, all the estimated models are valid. 

 

“Insert Table 1 here” 

 

Given that the main objective of this study is linked to the secondary specifications, the 

overall effect of enhancing insurance on inequality is assessed by computing the net effect 

from unconditional and conditional or marginal effects of insurance penetration. For instance 

in the third column of Table 1, the net impact from increasing life insurance is 0.0026 (2×[-

                                                           
6
Hence, the procedure for treating ivstyle (years) is ‘iv (years, eq(diff))’ whereas the gmmstyle is employed for predetermined variables. 

7
 “First, the null hypothesis of the second-order Arellano and Bond autocorrelation test (AR (2)) in difference for the absence of 

autocorrelation in the residuals should not be rejected. Second the Sargan and Hansen over-identification restrictions (OIR) tests should not 

be significant because their null hypotheses are the positions that instruments are valid or not correlated with the error terms. In essence, 

while the Sargan OIR test is not robust but not weakened by instruments, the Hansen OIR is robust but weakened by instruments. In order to 

restrict identification or limit the proliferation of instruments, we have ensured that instruments are lower than the number of cross-sections 

in most specifications. Third, the Difference in Hansen Test (DHT) for exogeneity of instruments is also employed to assess the validity of 

results from the Hansen OIR test. Fourth, a Fisher test for the joint validity of estimated coefficients is also provided” (Asongu & De Moor, 

2017, p.200). 
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0.0002× 0.881] + [0.003]).  In the computation, the mean value of life insurance is 0.881, the 

unconditional effect of life insurance is 0.003 while the conditional effect from enhancing life 

insurance is -0.0002. The net impact on the Gini coefficient is robust to the effect on the 

Atkinson index.   

In the same vein, in the last column of Table 2, the net impact from increasing non-life 

insurance is 0.0587 (2×[-0.445× 0.798] + [0.761).  In the computation, the mean value of non-

life insurance is 0.798, the unconditional effect of life insurance is 0.761while the conditional 

effect from enhancing non-life insurance is -0.445. 

 

“Insert Table 2  here” 

 

The following findings can be established in Tables 1-2. Life insurance increases 

inequality (see the Gini coefficient) and increasing life insurance has a net positive effect on 

inequality (see, the Gini coefficient and the Atkinson index). Non-life insurance reduces 

inequality (see the Gini coefficient) and increasing non-life insurance has a net positive effect 

on inequality (see the Palma ratio). The significant control variables have the expected signs. 

 

 

4.2 Extension with policy thresholds 

 An extension with threshold analysis is relevant in the perspective that, while the net 

effects are consistently positive on inequality, the corresponding marginal effects used to 

compute the net effects are consistently negative. This implies that, there is a diminishing 

effect on inequality from increasing insurance. It further implies that at a certain threshold of 

insurance penetration, the net effect of increasing insurance penetration on inequality is zero, 

such that above the threshold, increasing insurance has a negative effect on inequality. In 

other words, increasing insurance above the threshold should completely dampen the positive 

unconditional effect of insurance on inequality. However, in order for the thresholds to be 

economically meaningful and policy-relevant, they should be situated within acceptable limits 

disclosed by the summary statistics, notably: between the minimum and maximum limits in 

the corresponding summary statistics.  

 The above conception and definition of threshold are consistent with the attendant 

literature , notably: critical masses at which further carbon dioxide emissions can compromise 

inclusive development (Asongu, 2018); minimum requirements for desired effects (Cummins, 

2000); critical masses for favorable findings (Roller & Waverman, 2001; Batuo, 2015) and 

conditions for U-shaped and inverted U-shaped patterns (Ashraf & Galor, 2013).  
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 From Table 1, the negative threshold of life insurance is 7.500 (0.003/ [2×0.0002]). 

Hence, 7.500 of life insurance premium (% of GDP) is the minimum value required for life 

insurance to negatively affect inequality in sampled countries. This threshold makes economic 

sense and has policy relevance because it is within the maximum limit of 12.220 % of life 

insurance imposed by the summary statistics. Policy makers should therefore increase life 

insurance penetration above the computed threshold in order for insurance to reduce 

inequality.  

In the same vein, the negative threshold of non-life insurance is 0.855 (0.761/ 

[2×0.445]). Hence, 0.855 of non-life insurance premium (% of GDP) is the minimum value 

required for non-life insurance to negatively affect inequality in the sampled countries. This 

threshold makes economic sense and has policy relevance because it is within the maximum 

limit of 2.774% of non-life insurance provided in the summary statistics. Policy makers 

should therefore increase non-life insurance penetration above this threshold in order for non-

life insurance to reduce inequality.  

 The findings can be elucidated with the concept informal insurance in the light of 

attendant literature (Ligon et al., 2002; Dupas & Robinson, 2013; De Magalhaes & 

Santaeulalia 2018; De Magalhaes et al., 2019). Accordingly, understanding the main 

difference between life insurance and other insurance schemes (e.g. non-life insurance) is 

important in elucidating the findings. In essence, life insurance works as savings and is a way 

for the rich to accumulate assets. This is relevant because, given that there are savings 

constraints, life insurance provides a way of slackening these savings constraints. Hence, the 

results that life insurance increases inequality is broadly consistent with studies supporting the 

perspective that life insurance is used by the rich to accumulate assets (De Magalhaes & 

Santaeulalia 2018; Dupas & Robinson, 2018) and, by extension, ceteris paribus, the 

accumulation of more wealth by the rich naturally increases income inequality. Moreover, the 

findings that non-life insurance decreases inequality is traceable to perspective of non-life 

insurance smoothing consumption over the lifecycle (De Magalhaes et al., 2019). This 

clarification on non-life insurance should also be understood in the perspective that since most 

of the sampled countries are poor countries, informal forms of savings or insurance are quite 

substantial (Carroll, 1997; Kaplan & Violante, 2010) even to consumption and income 

distributions in such poor economies (Ligon et al., 2002).  
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5. Conclusion and future research directions 

  

 In order to complement the extant literature on insurance penetration in sub-Saharan 

Africa, this study has investigated how inequality is affected by insurance penetration. 

Contingent on data availability constraints at the time of the study, the research examines a 

panel of 42 countries in the sub-region over the period 2004-2014.  Three inequality variables 

(i.e. the Gini coefficient, the Atkinson index and the Palma ratio) and two insurance premiums 

(i.e. life insurance and non-life insurance) are used for the purpose of the study. The GMM is 

used as empirical strategy. The findings show that life insurance has a positive impact on the 

Gini coefficient while increasing life insurance induces a positive overall incidence on both 

the Atkinson index and the Gini coefficient. The incidence of non-life insurance on the Gini 

coefficient is negative and boosting non-life insurance leads to an overall net positive impact 

on the Palma ratio. 

 In order to provide the room for policy implications, the study is extended by 

establishing critical masses at which boosting insurance can completely eliminate the overall 

positive net impacts on inequality. The extended analyses show that a threshold of 7.500 life 

insurance premiums (% of GDP) is required for life insurance to affect inequality negatively, 

whereas a threshold of 0.855 non-life insurance premiums (% of GDP) is needed for non-life 

insurance to negatively impact inequality. These thresholds make economic sense and have 

policy relevance because they are within the acceptable ranges of life and non-life insurance. 

 Future studies can use relevant empirical strategies to established country-specific 

policy thresholds. This recommendation is motivated by the fact that country-specific cases 

are eliminated from the GMM specification in order to control for endogeneity.  
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Table 1: Inequality and Life Insurance   
       

 Dependent variable: Inequality dynamics   
    

 Gini Coefficient  Atkinson Index Palma Ratio 
       

Constant  0.012 0.055*** -0.012 0.022* 0.098 0.248** 

 (0.470) (0.000) (0.570) (0.067) (0.678) (0.023) 

Gini  Coefficient (-1) 0.986*** 0.926*** --- --- --- --- 

 (0.000) (0.000)     

Atkinson Index (-1) --- --- 1.031*** 0.990*** --- --- 

   (0.000) (0.000)   

Palma Ratio(-1) --- --- --- --- 1.054*** 1.022*** 

     (0.000) (0.000) 

Life Insurance (LI) 0.002* 0.003** 0.0003 0.003* -0.017 0.035 

 (0.086) (0.037) (0.779) (0.097) (0.631) (0.424) 

LI×LI --- -0.0002**  -0.0002** --- -0.001 

  (0.036)  (0.033)  (0.613) 

Financial Depth  -0.0001 -0.0004*** -0.0002 -0.0004*** -0.011** -0.010*** 

 (0.491) (0.000) (0.247) (0.000) (0.010) (0.000) 

Remittances  -0.0004*** -0.0005*** -0.00005 -0.00002 -0.001 -0.001 

 (0.001) (0.000) (0.823) (0.745) (0.736) (0.596) 
       

Time Effects  Yes Yes Yes Yes Yes Yes 
Net Effects  na 0.0026 na 0.0026 na na 
AR(1) (0.093) (0.098) (0.095) (0.076) (0.095) (0.092) 
AR(2) (0.217) (0.197) (0.835) (0.845) (0.392) (0.385) 
Sargan OIR (0.876) (0.926) (0.025) (0.035) (0.407) (0.374) 
Hansen OIR (0.883) (0.344) (0.725) (0.180) (0.812) (0.352) 
       

DHT for instruments       
(a)Instruments in levels       
H excluding group (0.719) (0.623) (0.567) (0.643) (0.623) (0.696) 
Dif(null, H=exogenous) (0.812) (0.215) (0.677) (0.085) (0.762) (0.195) 
(b) IV (years, eq(diff))       
H excluding group (0.910) (0.809) (0.725) (0.936) (0.574) (0.833) 
Dif(null, H=exogenous) (0.679) (0.115) (0.569) (0.024) (0.793) (0.111) 
       

Fisher  5244.31*** 105832.47*** 4256.60*** 235044.14*** 2507.20*** 79103.27*** 
Instruments  28 32 28 32 28 32 
Countries  35 35 35 35 35 35 
Observations  261 261 261 261 261 261 
       

***,**,*: significance levels at 1%, 5% and 10% respectively. DHT: Difference in Hansen Test for Exogeneity of Instruments Subsets. Dif: 

Difference. OIR: Over-identifying Restrictions Test. The significance of bold values is twofold. 1) The significance of estimated coefficients 

and the Wald statistics. 2) The failure to reject the null hypotheses of: a) no autocorrelation in the AR(1) & AR(2) tests and; b) the validity of 

the instruments in the Sargan and Hansen OIR tests. The mean of Life Insurance is 0.881. na: not applicable because at least one  

estimated coefficient necessary for the computation of the net effect is not significant. 
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Table 2: Inequality and Non-Life Insurance   
       

 Dependent variable: Inequality dynamics   
    

 Gini Coefficient  Atkinson Index Palma Ratio 
       

Constant  0.052*** 0.025** -0.010 -0.015 0.654** -0.021 

 (0.003) (0.013) (0.719) (0.303) (0.011) (0.931) 

Gini  Coefficient (-1) 0.927*** 0.963*** --- --- --- --- 

 (0.000) (0.000)     

Atkinson Index (-1) --- --- 1.043*** 1.036*** --- --- 

   (0.000) (0.000)   

Palma Ratio(-1) --- --- --- --- 0.974*** 1.049*** 

     (0.000) (0.000) 

Non Life Insurance (NLI) -0.005* 0.008 -0.010 0.017 -0.054 0.761** 

 (0.083) (0.407) (0.109) (0.295) (0.824) (0.028) 

NLI×NLI --- -0.006 --- -0.013** --- -0.445*** 

  (0.115)  (0.032)  (0.003) 

Financial Depth  -0.0002 -0.0001 -0.0003 -0.0003** -0.016*** -0.016** 

 (0.108) (0.139) (0.118) (0.019) (0.007) (0.000) 

Remittances  0.0002 -0.0002*** 0.0003 0.0002 0.033* 0.011** 

 (0.103) (0.007) (0.547) (0.400) (0.064) (0.048) 

       
Time Effects  Yes Yes Yes Yes Yes Yes 
Net Effects  na na na na na 0.0587 
AR(1) (0.100) (0.098) (0.087) (0.085) (0.098) (0.097) 
AR(2) (0.237) (0.220) (0.943) (0.966) (0.432) (0.455) 
Sargan OIR (0.873) (0.879) (0.041) (0.039) (0.655) (0.606) 
Hansen OIR (0.749) (0.674) (0.863) (0.951) (0.472) (0.727) 
       

DHT for instruments       
(a)Instruments in levels       
H excluding group (0.669) (0.708) (0.594) (0.658) (0.427) (0.585) 
Dif(null, H=exogenous) (0.640) (0.518) (0.853) (0.953) (0.456) (0.673) 
(b) IV (years, eq(diff))       
H excluding group (0.505) (0.449) (0.455) (0.736) (0.253) (0.470) 
Dif(null, H=exogenous) (0.754) (0.734) (0.924) (0.944) (0.626) (0.788) 
       

Fisher  1251.46*** 9467.04*** 326.19*** 2503.93*** 531.59*** 1936.34*** 
Instruments  28 32 28 32 28 32 
Countries  36 36 36 36 36 36 
Observations  279 279 279 279 279 279 
       

***,**,*: significance levels at 1%, 5% and 10% respectively. DHT: Difference in Hansen Test for Exogeneity of Instruments Subsets. Dif: 

Difference. OIR: Over-identifying Restrictions Test. The significance of bold values is twofold. 1) The significance of estimated coefficients 

and the Wald statistics. 2) The failure to reject the null hypotheses of: a) no autocorrelation in the AR(1) & AR(2) tests and; b) the validity of 

the instruments in the Sargan and Hansen OIR tests. The mean of Non Life Insurance is 0.798. na: not applicable because at least 

one  estimated coefficient necessary for the computation of the net effect is not significant.  
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Appendices 

 

Appendix 1: Definitions of Variables  

Variables  Signs Definitions of variables  (Measurements) Sources 
    

 

 

 

Income Inequality  

Gini 

Coefficient  

“The Gini coefficient is a measurement of the income 

distribution of a country's residents”. 
GCIP 

   

Atkinson 

Index 

“The Atkinson index measures inequality 

bydetermining which end of the distribution 

contributed most to the observed inequality”. 

GCIP 

   

Palma Ratio “The Palma ratio is defined as the ratio of the richest 

10% of the population's share of gross national income 

divided by the poorest 40%'s share”. 

GCIP 

    

Insurance  LifeIns Life Insurance Premium Volume to GDP (%) FDSD 
   

NonLifeIns Non-life Insurance Premium Volume to GDP (%) FDSD 
    

Financial Depth   FinD Money Supply (% of GDP) FDSD 
    

Remittances Remit Remittance inflows to GDP (%) WDI 
    

    

WDI: World Bank Development Indicators of the World Bank. FDSD: Financial Development and Structure 

Database of the World Bank. GCIP: Global Consumption and Income Project. 

 

 

 

 

Appendix 2: Summary statistics (2004-2014) 
      

 Mean SD Minimum Maximum Observations 
      

Gini Coefficient   0.586 0.034 0.488 0.851 461 

Atkinson Index  0.705 0.058 0.509 0.834 461 

Palma Ratio  6.457 1.477 3.015 14.434 461 

Life Insurance  0.881 2.126 0.0006 12.220 346 

Non Life Insurance   0.798 0.536 0.005 2.774 367 

Financial Depth   32.022 19.431 4.383 99.958 440 

Remittances  4.313 6.817 0.00003 50.818 416 
      

S.D: Standard Deviation.   

 

Appendix 3:Correlation matrix (uniform sample size: 342) 
        

Gini Atkinson Palma LifeIns NonLifeIns Fin.D Remit  

1.000 0.857 0.952 0.038 0.084 -0.249 0.010 Gini 

 1.000 0.925 0.028 0.159 -0.212 0.159 Atkinson 

  1.000 0.055 0.112 -0.226 0.079 Palma 

   1.000 0.747 0.186 -0.019 LifeIns 

    1.000 0.517 0.156 NonLifeIns 

     1.000 0.131 Fin.D 

      1.000 Remit 
        

Gini :the Gini Coefficient. Atkinson :the Atkinson Index. Palma: the Palma Ratio. LifeIns: Life Insurance. NonLifeIns: Non 

Life Insurance. Fin.D: Financial Depth. Remit: Remittances. 

 

 


