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Abstract 

We apply pair vine copulas, specifically the C-vine and R-vine copulas, to examine the 

conditional multivariate dependence pattern/structure and R-vine copula-based value-at-risk 

(VaR) to assess financial portfolio risk. We examine the co-dependencies of 13 major 

commodity markets (which include three energy commodities, six agricultural commodities and 

four precious metals prices) from 2 January 2003 to 19 December 2016. Dividing our sample 

into three sub-periods, namely pre-GFC, GFC and post-GFC, we find that the dependencies 

among commodities undergo changes in a complex manner, changing in different financial 

conditions, and that the Student-t copula appears on the maximum number of occasions, 

especially during the GFC period, signifying the existence of fatter tails in the distributions of 

returns. We further show that the co-dependencies computed using R-vine copulas are best suited 

to compute the portfolio VaR during the considered time period. 
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1. Introduction 

In the last few years, the linkages between energy commodities, agricultural commodities and 

precious metals have increased thanks to the financialization of commodity markets (Tang and 

Xiong, 2012). For investors to manage risk in their portfolios effectively, it is crucial to measure 

the dependence structure of commodities (Liu et al., 2017). Ever since the global financial crisis 

(GFC), researchers and practitioners have shown greater curiosity in regards to examining the 

dynamics of dependence among commodity markets by applying new techniques for dependence 

estimation and portfolio optimisation. In this context, an accurate evaluation and analysis of the 

dependence structure and dependence risk of energy, agricultural and precious metals 

commodities have practical implications for both investors and policymakers, given the 

economic linkages and dependence relationships among these major commodities (Hernandez, 

2015). 

The dependence structure across different commodity markets has received much attention in the 

field of commodity financialization and risk management. The main methodologies applied to 

model the co-movement and risk dependence among commodities can be divided into the 

cointegration and correlation measure (Nazlioglu and Soytas, 2012; Nicola et al., 2016), the 

autoregressive distributive lag (ARDL)model (Bouri et al., 2018), the structural vector 

autoregression (SVAR) model (Fernandez-Perez et al., 2016), the generalized autoregressive 

conditional heteroskedasticity (GARCH)-type model (Ji and Fan, 2012; Mensi et al., 2014; Kang 

et al., 2017; Fernandez-Diaz and Morley, 2018), the network model (Ji and Fan, 2016a, b; Ji et 

al., 2018a), the wavelet model (Lahmiri et al., 2017; Antonakakis et al., 2018; Mensi et al., 2018) 

and the conditional value-at-risk measure (Shahzad et al., 2018; Ji et al., 2018b).  
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However, the dependence structure of commodities might be complicated and time-varying and 

show nonlinear behaviour, thereby requiring the employment of advanced models which could 

effectively interpret their dependence and joint distributions. Pair vine copula modelling has 

been one such sophisticated technique and has received considerable attention in financial 

economics, especially in the last decade. It has been found to outperform the alternative 

modelling techniques used to estimate the dependence structure of various asset classes (Heinen 

and Valdesogo, 2009; Dismman et al., 2013). Further, it overcomes the restrictive characteristics 

of the bivariate copulas and traditional measures of correlation (Brechmann and Czado, 2013; Ji 

et al., 2018c). Vine copulas offer better flexibility compared to standard copula models in that 

they allow the modelling of complex dependency structure which may be analysed in the form of 

tree structure. 

Our study makes use of canonical vine (C-vine) and regular vine (R-vine) copula models to 

examine the dependence structure and risk characteristics of 13 commodities at times of extreme 

financial stress and their usefulness in capturing the changes in their co-dependencies. The data 

comprise six agricultural commodities (corn, soybean oil [SO], soybean meal [SM], oats, 

soybeans and wheat), four precious metals commodities (gold, silver, palladium [PD] and 

platinum [PT]) and three energy commodities (West Texas Intermediate [WTI], heating oil [HO] 

and natural gas [NG]). Our study is motivated to analyse the commodity markets using the pair 

vine copula and portfolio optimisation approach because investors are increasingly attracted to 

these markets to diversify their portfolios (Hernandez, 2014). We analyse the data in three 

different sub-periods: pre-GFC, GFC and post-GFC. To further highlight the capabilities of our 

flexible modelling framework, we also employ R-vine copulas to quantify the value-at-risk 

(VaR) for an equally weighted portfolio of our considered commodities. 
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We contribute to the literature in many ways. First, we identify the risk characteristics of 

commodity portfolios and changes in their conditional dependence structure across three 

financial periods, incorporating the GFC. Second, we select the vine copula models that capture 

the multivariate risk dependence most effectively. To do so, we employ a copula technique to 

account for the complicated analysis of the portfolio’s dependence structure and the inherent 

changes over different time periods. Finally, we demonstrate the calculation of portfolio VaR on 

the basis of these dependency measures. Our results indicate that the dependencies change in a 

complex way and that the Student-t copula appears on the maximum number of occasions, 

especially during the GFC period, signifying the existence of fatter tails in the distributions of 

returns. For the purpose of the comparisons, we also used GARCH-based portfolio VaR, and the 

comparisons show that the R-vine copula-based portfolio VaR outperforms. Finally, we also 

provide the portfolio analysis (based on returns) using efficiency frontier in two scenarios: when 

short sale is or is not allowed. 

The rest of the paper is organised as follows. The next section describes the methodology in 

detail, while Section 3 presents the data. Section 4 explains the main empirical results. Section 5 

presents the application of R-vine copulas to the VaR framework. Finally, Section 6 concludes 

the article. 

 

2. Methodology 

2.1.Background Description 

Copula analyses and their applications have their origin in the statistical and mathematical fields. 

However, the integration and inter linkages among fields have led to the applicability of the 

models beyond their origin. Copulas can be attributed to Frechet (1957) and Sklar (1996) and 
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gained popularity in the late 1990s. In brief, copulas can be described as functions that connect 

the multivariate and marginal distribution functions of any dimension by utilising all relevant 

information about the dependence structure between variables that are considered to be random. 

Thus, the copula is one of the few methods that allow for greater flexibility in analysing 

multivariate and marginal distributions. The earlier forms of copulas are bivariate in nature 

(parametric and non-parametric). However, complexity arises when modelling more than two 

dimensions. This problem was first resolved by Joe (1997), with the formulation of multivariate 

dimension based on pair-wise copulas. Also, Bedford and Cooke (2002) introduced the concept 

of using diagrams to decompose multivariate copulas to pair-copulas. Thus, the work of Joe and 

Bedford and Cooke can be considered the genesis of paircopulas or vinecopulas. 

2.2.Basic Concept 

Copulas are functions that join multivariate distributions to their marginal distributions. These 

functions have uniform one-dimensional margins with an interval of [0,1], which have invariant 

monotonic increasing transformations of the marginal (Nelsen, 2006). The functionality of 

copulas assumes the existence of a vector of X random variables with marginal distribution 

functions of �௜ሺ�௜ሻ, � = ͳ, ʹ, … , ݀. The set of transformation �௜ =  �௜ሺ�௜ሻ defines a dependent 

and uniformly distributed vector of random variables� = ሺ�ଵ, … , �ௗሻ on [0,1]
d
. Nelson assumes 

that the joint distribution function of X can be expressed in the form below if the functions of �௜ሺ�௜ሻ are continuous in nature: �ሺ�ሻ = �(�ଵሺ�௜ሻ, … , �ௗሺ�ௗሻ) = �ሺ�ଵ, … , �ௗሻ,      (1) 

where C(U) is the copula of the distribution, C:[0,1]
d→[0,1] and U = ሺ�ଵ, … , �ௗሻ. The copula c 

could also be likened to a joint distribution function of vector U. Equation (1) above is the 

Sklar’s theorem. The equation could be expanded by defining copula C(U) as: 
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�ሺݑሻ = �ቀ�ଵ−ଵሺݑଵሻ, … , �ௗ−ଵሺݑௗሻቁ,       (2) 

and the accompanying copula density is given as: 

ܿሺݑሻ =  �ௗ�ሺ�ଵ, … , �ௗሻ �ሺ�ଵ, … , �ௗሻ⁄ .              (3) 

Lebrun and Dutfoy (2009a) define the joint probability density function of X, ��ሺ�ௗሻ = ��ሺ�ଵ, … , �ௗሻ as: ��ሺ�ଵ, … , �ௗሻ = ܿ{�ଵሺ�ଵሻ, … , �ௗሺ�ሻ} ∏ �ሺ�ଵሻௗ௜=ଵ ,             (4) 

where �௜ሺ�௜ሻ  is the marginal probability density function of �௜ . Equation (4) combines the 

marginal distributions and copula density, which contains all relevant information about the 

dependence structure of the random variables. Genest et al. (2009) and Lebrun and Dutfoy 

(2009b) calculate the conditional marginal distributions of X as: �௜|ଵ,…,௝−ଵሺ�௜| �௜, … , �௜−ଵሻ =  �௜|ଵ,…௜−ଵሺݑ௜| ݑ௜, … ,  ௜−ଵሻ,     (5)ݑ

where 

�௜|ଵ,…௜−ଵሺݑ௜| ݑ௜, … , ௜−ଵሻݑ =  �೔−1஼ሺ�1 ,…,�೔,ଵ,…,ଵሻ�ሺ�1,…,�೔ሻ �೔−1஼ሺ�1 ,…,�೔,�೔−1,ଵ,…,ଵሻ�ሺ�1,…,�೔ሻ⁄ .   (6) 

Equation (6) can also be considered for the bivariate case, with ݑଵ = ଶݑ and ݑ =  :ݒ

��ଶ|�ଵ ሺ�ଶ| �!ሻ = �ሺݑ|ݒሻ =  ��ሺݑ, ሻݒ ⁄ݑ� .       (7) 

If a random sample of size n having a corresponding vector of variables�, i.e. �ଵ = ሺ�௜ଵ, … ,�௜ௗሻሺ� = ͳ, … , �ሻ  is given, then, according to Genest et al. (1995) and Genest and Favre 

(2007),the estimated copula is defined as: ��ሺݑሻ =  ଵ� ∑ ͳሺ�௜ଵ ≤  �ଵ, … , �௜ௗ ≤  �ௗሻ�௜=ଵ ,       (8) 
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where�௜௝ =  �௜�/ሺ� + ͳሻ are the pseudo-observations, and �௜� are the ranks associated with the 

sample. The pseudo-observations can be grouped into vector �௜ = ሺ�௜ଵ, … , �௜ௗሻ. 
2.3.Vine Copulas 

Aas et al. (2006) defined vine copulas as any pair-copula construction. The joint probability 

density functions if X, ��ሺ�ሻ =  ��ሺ�ଵ, … , �ௗሻ can be expressed in terms of conditional density 

functions as: �ሺ�ሻ = �ଵሺ�ଵሻ�ଶ|ଵሺ�ଶ|�ଵሻ�ଷ|ଵ,ଶሺ�ଷ|�ଵ, �ଶሻ, … , �ௗ|ଵ,…,ௗ−ଵሺ�ௗ|�ଵ, … , �ௗ−ଵሻ.   (9) 

It should be noted that Equation(9) is not a representation of a unique decomposition; it is one of 

the many ways in which the function ��ሺ�ௗሻ  can be decomposed. However, the bivariate 

decomposition is represented as: �ଵଶሺ�ଵ, �ଶሻ =   �ଵଶ(�ଵሺ�ଵሻ, �ଶሺ�ଶሻ)�ଵሺ�ଵሻ�ଶሺ�ଶሻ,      (10) 

where �ଵଶ  is the copula density between variable �ଵ and  �ଶ.  Subjecting Equation (10) to 

conditional probability, we have: �ଶ|ଵሺ�ଵ| �ଶሻ =   �ଵଶ(�ଵሺ�ଵሻ, �ଶሺ�ଶሻ)�ଶሺ�ଶሻ.       (11)  

Equation (11) can be extended to a three random variable dimension such that it is expressed as: �ଷ|ଵ,ଶ(�ଷ| �ଵ,�ଶ) = �ଶଷ|ଵ ቀ�ଶ|ଵሺ�ଶ|�ଵሻ, �ଷ|ଵሺ�ଷ|�ଵሻቁ �ଷ|ଵሺ�ଷ|�ଵሻ.    (12) 

The implicit assumption in Equation (12)is that �ଶଷ|ଵ is independent of X1, which allows for 

flexible modelling as a result of it being considered a good approximation (Brechmann, 2010). 

However, Equation (12) could be expressed in other forms. For instance, an alternative 

specification of the form is: �ଷ|ଵ,ଶ(�ଷ| �ଵ,�ଶ) = �ଵଷ|ଶ ቀ�ଵ|ଶሺ�ଵ|�ଶሻ, �ଷ|ଶሺ�ଷ|�ଶሻቁ �ଷ|ଶሺ�ଷ|�ଶሻ.    (13) 
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Equations (12) and (13) show that the conditional densities can be decomposed into appropriate 

pair copulas and marginal (conditional) densities. The possibility of further decomposition of 

Equation (13) is explored as illustrated in Equation (11), which thus leads to: �ଷ|ଵ,ଶ(�ଷ| �ଵ,�ଶ) = �ଵଷ|ଶ ቀ�ଵ|ଶሺ�ଵ|�ଶሻ, �ଷ|ଶሺ�ଷ|�ଶሻቁ �ଶଷ(�ଶሺ�ଶሻ, �ଷሺ�ଷሻ)�ଷሺ�ଷሻ.  (14) 

In a situation in which two pair copulas are involved (for example Equation (9)), each term can 

be decomposed into appropriate products of conditional pair copulas multiplied by the 

conditional densities using the formula below: �ሺ�|ݒሻ = ܿ�,�ೕ|�−ೕ ቀ�(�|ݒ−௝), ቁ(௝−ݒ|௝ݒ)�  (15)     ,(௝−ݒ|�)� 

where ݒ௝  is an arbitrary selected component of a vector ݒ, ௝ is v excluding such component and ܿ�,�ೕ|�−ೕݒ  is the conditional bivariate copula. The paircopula that involves marginal conditional 

distribution can also be obtained using a recursive approach based on the formula below: �ሺ�|ݒሻ =  �ܿ�,�ೕ|�−ೕ ቀ�(�|ݒ−௝), ቁ(௝−ݒ|௝ݒ)� , (௝−ݒ|�)� ⁄(௝−ݒ|�)�� .   (16) 

There is a special case of univariate V, which can be expressed as: �ሺ�|ݒሻ =  �ܿ�,�(�ሺ�ሻ, �ሺݒሻ) ��ሺݒሻ⁄ .    (17) 

Following Aas et al. (2009), the C-vines copula is expressed as: �௜|ଵ,…,௜−ଵሺ�௜|�ଵ, … , �௜−ଵሻ =��௜,௜−ଵ|ଵ,,…,ଵ−ଶ(�ሺ�௜|�ଵ, … , �௜−ଶሻ, �ሺ�௜−ଵ|�ଵ, … , �௜−ଶሻ), ��(ሺ�௜|�ଵ−ଵ|�ଵ, … , �௜−ଶሻ)⁄ (18) 

2.4.Regular-Vine Copulas 

The main criticism of earlier versions of the pair copula is their inability to solve complicated 

models. As such, Dissmann (2010) suggested a possible way of solving this problem by 

constructing a regular vine using a diagram algorithm. In order words, the regular vine serves as 

an improvement on the variant of prior works due to the flexible nature of the former, as it can 
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model a wide range of complicated dependencies. However, R-vine has also been criticised 

based on the curse of dimensionality. The computational effort required to estimate the model 

also grows exponentially with the dimension. 

A section of the literature has identified that among the panaceas to this problem is either to 

simplify or truncate the model. Allen et al. (2007) define the truncation of a regular vine at level 

K as a situation in which any pair copulas that are equal to or larger than K are replaced with 

independent copulas. The independent copulas are regarded as Gaussian copulas, which are: (i) 

easier to specify that other variants of copulas and (ii) easier to interpret in terms of the 

correlation parameter. Vuoung (1989) proposed that the statistics that could be used are AIC-, 

BIC- and likelihood-ratio-based tests. The general specification of a regular-vine is expressed 

below: � ቀ�ଵ, … , �ௗ = [∏ ��ሺ�௞ሻௗ௞=ଵ ] ∗ [∏ ∏ ௝ܿሺ௘ሻ,௞ሺ௘ሻ|஽ሺ௘ሻ ቀ�(�௝ሺ௘ሻ|�஽ሺ௘ሻ)ቁ , ቀ�(�௞ሺ௘ሻ|�஽ሺ௘ሻ)ቁ௘∈ா೔ௗ−ଵ௜=ଵ ]ቁ(19) 

 

3. Data 

We analyse the daily returns of six agricultural commodities – corn, SO, SM, oats, soybeans and 

wheat; four precious metals – gold, silver, PD and PT; and three energy commodities – WTI, HO 

and NG– from 2 January 2003 to 19 December 2016. The data were accessed from the 

Bloomberg website. We later divided our data into three sub-periods, pre-GFC (January 2003 to 

June 2007), GFC (July 2007 to August 2009) and post-GFC (September 2009 to December 

2016). Table 1 illustrates the descriptive statistics for the 13 commodity markets for the full 

sample and three sub-periods. It is not surprising that the mean returns are positive for all 

commodities in the pre-crisis period and negative during the GFC period (except for gold, silver, 

SM and soybeans). 
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Table 1: Descriptive statistics for all commodities 

   Mean SD  Skewness  Kurtosis J-B N 

Full Sample 

Corn 0.011 1.946 -0.653 15.440 22876.9 3509 

Gold 0.034 1.208 -0.375 7.752 3384.21 3509 

HO 0.018 2.211 -0.251 6.887 2245.66 3509 

NG -0.012 3.300 0.633 7.645 3388.82 3509 

Oats 0.003 2.279 -0.524 9.390 6129.94 3509 

PD 0.030 2.095 -0.388 6.600 1983.38 3509 

PT 0.012 1.455 -0.520 6.541 1991.40 3509 

Silver 0.034 2.162 -0.874 9.431 6492.54 3509 

SM 0.017 2.454 -1.773 54.084 383376 3509 

SO 0.015 1.669 -0.495 15.004 21209.8 3509 

SB 0.016 1.817 -1.453 27.739 90718.7 3509 

Wheat 0.006 2.098 0.149 5.267 764.667 3509 

WTI 0.014 2.433 0.103 7.019 2367.73 3509 

Pre-GFC 

Corn 0.035 1.712 0.658 5.744 432.816 1122 

Gold 0.056 1.113 -0.725 6.151 562.615 1122 

HO 0.075 2.384 -0.131 4.417 97.0991 1122 

NG 0.023 3.623 0.686 7.301 952.803 1122 

Oats 0.023 2.188 -0.751 10.002 2397.78 1122 

PD 0.038 2.186 -0.358 7.253 869.718 1122 

PT 0.067 1.229 -0.430 4.973 216.561 1122 

Silver 0.084 2.010 -1.246 10.990 3275.03 1122 

SM 0.030 3.016 -1.780 66.048 186424 1122 

SO 0.051 1.911 -1.071 22.481 17956.7 1122 

SB 0.037 1.800 -2.494 37.654 57304.8 1122 

Wheat 0.053 1.814 0.534 4.510 159.905 1122 

WTI 0.071 2.156 -0.261 4.196 79.6145 1122 

GFC 

Corn -0.013 2.428 -0.291 3.694 18.65981 546 

Gold 0.067 1.637 0.262 5.696 171.5821 546 

HO -0.027 2.761 -0.106 4.325 40.99189 546 

NG -0.150 3.400 0.169 4.774 74.18986 546 

Oats -0.043 2.405 -0.102 4.178 32.5211 546 

PD -0.044 2.532 -0.394 6.173 243.1024 546 

PT -0.007 2.184 -0.619 5.417 167.8183 546 

Silver 0.030 2.745 -0.409 6.655 319.1952 546 

SM 0.080 2.546 -1.382 10.722 1530.466 546 

SO -0.015 2.193 -0.081 4.242 35.66754 546 

SB 0.037 2.663 -0.843 19.701 6410.401 546 

Wheat -0.039 2.870 -0.097 4.510 52.73616 546 

WTI -0.003 3.555 0.174 5.805 181.7269 546 
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Post-GFC 

Corn 0.007 1.919 -1.396 26.121 41559.0 1839 

Gold 0.010 1.110 -0.755 8.909 2850.30 1839 

HO -0.003 1.897 -0.511 11.772 5976.52 1839 

NG 0.010 3.053 0.758 8.852 2800.22 1839 

Oats 0.006 2.296 -0.543 10.900 4872.96 1839 

PD 0.047 1.886 -0.368 5.231 422.881 1839 

PT -0.016 1.304 -0.265 4.288 148.691 1839 

Silver 0.004 2.053 -0.939 9.679 3688.67 1839 

SM -0.006 1.994 -1.694 17.430 16833.7 1839 

SO 0.003 1.288 0.176 3.954 79.2659 1839 

SB 0.000 1.479 -0.905 8.734 2770.12 1839 

Wheat -0.007 1.985 0.201 4.755 248.385 1839 

WTI -0.015 2.171 0.218 6.338 868.351 1839 

Note: HO, NG, PD, PT, SM, SO and SB stand for heating oil, natural gas, palladium, platinum, soybean meal, 

soybean oil and soybeans, respectively. The data period is from 2 January 2003 to 19 December 2016. 

 

The post-GFC returns are either positive or negative but less than the returns of the pre-GFC 

period. Most importantly, the standard deviation is higher in all commodity markets in the GFC 

period (except NG). The Jarque-Bera test rejects the null hypothesis of normality of daily returns 

for all commodities in all sub-periods. The returns are mostly negatively skewed; only gold, NG 

and WTI exhibit positive skewness during the GFC. In fact, NG exhibits positive skewness in the 

full sample as well as in the three sub-periods. 

All the markets are also characterised by high kurtosis. Overall, the results in Table 1 show that 

the commodity returns in our sample are non-Gaussian and exhibit different skewness and 

kurtosis in different sub-periods. Therefore, copula models are best suited to capture these 

properties of the data having fat tails and changes in distributional characteristics. 

 

4. Empirical Results 

We present our results in two parts. In the first, we model the dependence structure of the 

considered commodities using the C-vine and R-vine copulas in three sub-periods, pre-GFC, 
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GFC and post- GFC. The second analysis pertains to the results from an empirical modelling of 

VaR using R-vine copulas for a portfolio constructed from the considered series. 

4.1.Dependence Modelling using Vine Copula 

As explained above, we have divided the data into three sub-periods of pre-GFC, GFC and post-

GFC to carry the C-vine and R-vine dependence analysis for 13 commodities. To do so, we need 

suitably standardised marginal distributions for the commodity return series. We used the AR(1)-

GARCH(1,1) as the base marginal model, but the final order of AR, and P & Q term GARCH 

model were selected based on AIC criteria. We extract the residuals and standardised them to 

obtain their marginals which were then used as inputs to the appropriate copula selection. We 

select the copula using the AIC criterion. The results described are for the pre-GFC period first, 

followed by the GFC and post-GFC periods. 

In the next section, we shift our discussion to the more flexible R-vine copulas. We primarily 

focus on the results obtained from R-vine copulas; therefore, the results for C-vine copulas are 

presented in the appendices to conserve space. Moreover, the results for C-vine copula highlight 

their lesser flexibility since the same security number appears on most of the occasions across 

the rows (Refer to appendices). The R-vines, however, are more flexible in this regard, as will be 

shown later in the paper. We use a range of seven copulas for selection purposes using AIC as 

the criterion to choose from the following copulas: 1 = Gaussian copula, 2 = Student-t copula (t-

copula), 3 = Clayton copula, 4 = Gumbel copula, 5 = Frank copula and 6 = Joe copula, 7 = Joe 

BB1 copula
1
.The Gaussian copula is symmetric and has no tail dependence (Aloui et al., 2013). 

The Student-t and Frank copulas describe situations of extreme symmetric tail dependence 

andtail independence, respectively, while the Gumbel copula describes situations ofasymmetric 

                                                           
1We are thankful to the anonymous referee for suggesting to include the Joe BB1 copula 
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tail dependence (Rodriguez, 2007). Further, the Clayton copula exhibits greater dependence in 

the negative tail than in the positive, whereas the Gumbel copula exhibits greater dependence in 

the upper tail than in the lower tail (Aloui et al., 2013). Joe copula captures the positive tail 

dependence. Joe BB1 copula provides both left and tail dependence. 

4.2.R-Vine Copulas 

4.2.1. The Pre-GFC Period 

The trees for the pre-GFC period are shown in Figures 1–3. It can be observed that the R-vine 

copula structure is more flexible than the C-vine structure (shown in appendix). Tree-1 shows 

two categories of commodities. On one hand, the agriculture commodities are linked together, 

that is, wheat, oats, corn and soybeans, while on the other hand, the precious metals (gold, silver, 

PT and PD) and the energy commodities (WTI, HO and NG) are separately linked to each other. 

 

Figure 1. R-vine tree-1 pre-GFC 

Tree 1

F

t

t

t

N

N
t

t

C N

F

t

Oats

Wheat

Corn

Soybean Meal

Soybeans

GOLD

Silver

Platinum

NaturalGas Soybean Oil

Palladium

WTI

HeatingOil



15 

 

 

 Figure 2. R-vine tree-2 pre-GFC 

 

 

Figure 3. R-vine tree-3 pre-GFC 
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(no 2), then the Gaussian copula again, followed by the Student-t copula (no. 2) and, finally, the 

Frank copula again (no. 5). 

Table 2 

Pre-GFC R-vine copula structure 

 
Corn SO SM Oats SB Wheat GOLD Silver PD PT WTI HO NG 

Corn 4 
            

SO 7 6 
           

SM 8 7 1 
          

Oats 10 8 7 3 
         

SB 9 10 8 7 5 
        

Wheat 13 9 10 8 7 7 
       

GOLD 12 13 9 10 8 13 8 
      

Silver 11 12 13 9 10 2 13 10 
     

PD 2 11 12 13 9 11 2 13 13 
    

PT 3 2 11 12 13 12 11 2 9 2 
   

WTI 5 3 2 11 12 9 12 11 12 9 9 
  

HO 6 5 3 2 11 10 9 12 2 12 11 11 
 

NG 1 1 5 5 2 8 10 9 11 11 12 12 12 

Note: HO, NG, PD, PT, SM, SO and SB stand for heating oil, natural gas, palladium, platinum, soybean meal, 

soybean oil and soybeans, respectively. The data period is from2 January 2003 to 19 December 2016. 

 

Table 3 

Pre-GFC R-vine copula specification matrix 

 
Corn SO SM Oats SB Wheat GOLD Silver PD PT WTI HO NG 

Corn 
             

SO 2 
            

SM 5 5 
           

Oats 3 1 3 
          

SB 3 1 5 5 
         

Wheat 5 6 1 5 1 
        

GOLD 1 1 5 1 5 5 
       

Silver 5 5 1 5 5 1 5 
      

PD 2 5 5 1 5 1 3 1 
     

PT 2 5 5 5 1 1 5 1 1 
    

WTI 1 5 1 3 1 2 3 1 5 3 
   

HO 2 2 6 5 5 2 5 3 5 1 2 
  

NG 5 2 2 2 1 1 2 2 3 1 5 2 
 

Note: HO, NG, PD, PT, SM, SO and SB stand for heating oil, natural gas, palladium, platinum, soybean meal, 

soybean oil and soybeans, respectively. The data period is from2 January 2003 to 19 December 2016. 
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This mixture of usage is noticeable across Table 3 at various levels in the tree structure used to 

capture dependencies. The bottom row consists primarily of Student-t copulas. The R-vine 

copulas used to capture the co-dependencies are dissimilar to the pre-GFC period C-vine 

copulas. In Appendix 2, 15 Gaussian copulas, 14 Student-t copulas, 12 Clayton copulas, 1 each 

of Gumbel, Joe and Joe BB1 copulas, and 34 Frank copulas were used. However, in Table 3, 24 

Gaussian, 14 Student-t, 9 Clayton, 29 Frank and 2 Joe copulas are used, with no instances of 

Gumbel and Joe BB1 copulas. This is possible because different co-dependencies are easily 

captured in the tree without any constraints on the pairings in the R-vine copulas. 

To conserve space, we have not reported the details of the parameters estimated, but the tau 

matrix for R-vines is shown in Table 4. The results in Table 4 for R-vines are different from 

those reported in Appendix 3 for C-vines. The strongest dependencies between various 

commodities are captured by the values reported at the bottom of the table. Overall, the picture 

of dependencies is similar to those captured by the C-vine analysis. 

Table 4 

Pre-GFC R-vine copula tau matrix 

 
Corn SO SM Oats SB Wheat GOLD Silver PD PT WTI HO NG 

Corn 
             

SO -0.03 
            

SM 0.01 -0.02 
           

Oats 0.03 -0.01 0.05 
          

SB 0.02 0.04 -0.04 -0.02 
         

Wheat -0.02 0.01 -0.04 -0.02 -0.08 
        

GOLD 0.01 -0.01 -0.01 0.02 0.01 -0.02 
       

Silver 0.02 -0.03 -0.01 -0.01 0.04 -0.06 -0.02 
      

PD -0.01 -0.04 -0.01 -0.03 0.01 -0.04 0.06 0.02 
     

PT -0.03 -0.03 0.03 -0.01 -0.02 -0.10 -0.06 0.05 0.04 
    

WTI -0.02 0.02 0.06 0.05 0.05 -0.12 0.03 0.02 0.02 0.07 
   

HO 0.07 -0.04 0.07 -0.40 0.03 0.18 0.06 0.05 0.05 0.05 0.02 
  

NG 0.28 0.46 0.39 0.60 0.36 0.60 0.54 0.39 0.11 0.23 0.18 0.66 
 

Note: HO, NG, PD, PT, SM, SO and SB stand for heating oil, natural gas, palladium, platinum, soybean meal, 

soybean oil and soybeans, respectively. The data period is fromJanuary 2, 2003 to December 19, 2016. 
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4.2.2. The GFC Period 

Figures 4 and 5 illustrate the trees for the R-vine copulas during the GFC period. Figure 4 shows 

that the dependencies have changed because of the influence of the GFC, and SO and HO act as 

the central commodities through which all three categories of commodities are linked. 

 

Figure 4. R-vine tree-1 GFC 

 

Figure 5. R-vine tree-2 GFC 

For instance, all precious metals and the energy commodities are linked to HO, which in turn is 

connected to SO; all agricultural commodities are linked to soybeans, which is linked to SO. 

However, in the pre-GFC period the links between agricultural and precious metals and energy 

commodities were not clear. Table 5 again implies the significance of capturing tail risk in 



19 

 

financial and economic downturns leading to fat-tailed distributions. The number of Gaussian 

copulas is 19, whereas the Student-t copula leads in the table, appearing 31times. There are 11 

appearances of the Frank copula, 9of the Clayton, 3 of the Gumbel and 4 of the Joe copula, 

whereas the Joe BB1 copula appears only in one instance. 

Table 5 

GFC R-vine copula specification matrix 

 
Corn SO SM Oats SB Wheat GOLD Silver PD PT WTI HO NG 

Corn 
             

SO 2 
            

SM 5 1 
           

Oats 2 2 3 
          

SB 5 6 2 5 
         

Wheat 2 6 1 2 1 
        

GOLD 2 2 1 1 5 1 
       

Silver 5 1 2 1 4 2 5 
      

PD 2 5 5 2 2 1 2 4 
     

PT 2 1 3 2 1 1 3 6 2 
    

WTI 3 2 1 3 2 2 3 1 1 3 
   

HO 2 2 6 2 1 2 2 5 3 2 1 
  

NG 5 2 4 2 2 1 7 2 5 2 1 3 
 

Note: HO, NG, PD, PT, SM, SO and SB stand for heating oil, natural gas, palladium, platinum, soybean meal, 

soybean oil and soybeans, respectively. The data period is from2 January 2003 to 19 December 2016. 

Table 6 

GFC R-vine copula tau matrix 

 
Corn SO SM Oats SB Wheat GOLD Silver PD PT WTI HO NG 

Corn 
             

SO -0.02 
            

SM -0.01 -0.02 
           

Oats -0.01 0.01 0.06 
          

SB -0.01 0.01 -0.03 -0.03 
         

Wheat -0.04 0.01 -0.03 -0.02 -0.09 
        

GOLD 0.01 0.01 0.04 0.01 0.00 -0.03 
       

Silver 0.01 -0.02 0.01 0.02 0.03 -0.01 -0.03 
      

PD -0.04 -0.01 0.02 -0.02 0.01 -0.07 -0.03 0.02 
     

PT -0.03 -0.01 0.02 0.03 0.00 -0.06 0.06 0.02 0.01 
    

WTI 0.04 0.04 0.08 0.02 -0.03 -0.11 0.03 0.06 -0.04 0.03 
   

HO 0.10 -0.04 0.07 -0.38 0.07 0.20 0.04 0.07 0.08 0.06 0.06 
  

NG 0.38 0.47 0.44 0.68 0.34 0.56 0.53 0.40 0.18 0.64 0.23 0.10 
 

Note: HO, NG, PD, PT, SM, SO and SB stand for heating oil, natural gas, palladium, platinum, soybean meal, 

soybean oil and soybeans, respectively. The data period is from January 2, 2003 to December 19, 2016. 
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Table 6 presents the results of the tau matrix for the GFC period. The varying dependencies in 

the R-vine analysis during the GFC provide us with some important observations. Regarding the 

values at the bottom of Table 6, 8 dependencies out of 12 indicate an increase, compared with 

the pre-GFC entries in Table 4. Further, the table reveals that the number of negative entries is 

28, less than the 32 negative observations in Table 4. Overall, results in Table 6 indicate that 

dependencies between these major commodities have increased during the crisis period. 

4.2.3. The Post-GFC Period 

In this subsection, we provide a detailed analysis of the post-GFC R-vine copula structure. 

Figure 6showsthat the relationships between the commodities markets have changed in the post-

GFC period compared to the GFC period.  

 

Figure 6. R-vine tree-1 post-GFC 

It can be seen in tree-1 that SO acts as a central commodity and that precious metals are linked to 

the agricultural commodities through WTI, which is similar to the pre-GFC linkages to some 

extent. Table 7 shows the various categories of copulas used to capture the dependencies in the 

post-GFC period. The Gaussian copula appears 19 times, while the Student-t copula yet again 
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dominates, being used on 25 occasions in Table 7, a considerable reduction from 31 times during 

the GFC period. The Clayton copula is used on 8 occasions, the Gumbel on two. The Frank 

copula appears 20 times, the Joe copula appears 4 times, and finally the Joe BB1 copula does not 

appear in the Table. 

Table 7 

Post-GFC R-vine copula specification matrix 

 
Corn SO SM Oats SB Wheat GOLD Silver PD PT WTI HO NG 

Corn 
             

SO 1 
            

SM 2 2 
           

Oats 1 1 5 
          

SB 3 2 6 5 
         

Wheat 2 1 5 2 1 
        

GOLD 1 2 2 1 5 2 
       

Silver 2 5 1 1 6 5 5 
      

PD 1 1 5 5 3 6 3 1 
     

PT 2 2 1 4 5 5 1 2 1 
    

WTI 2 3 2 2 5 1 3 4 5 3 
   

HO 5 2 1 6 5 5 5 1 3 5 2 
  

NG 1 2 2 2 2 2 2 5 3 2 5 2 
 

Note: HO, NG, PD, PT, SM, SO and SB stand for heating oil, natural gas, palladium, platinum, soybean meal, 

soybean oil and soybeans, respectively. The data period is from2 January 2003 to 19 December 2016. 

 

The tau dependency matrix presented in Table 8 shows that the dependencies have changed 

significantly in the post-GFC period. Compared to the GFC period, the dependencies in the 

bottom row have reduced in 6 of the 12 total cases in the post-GFC period. Table 8 reports 28 

cases of negative relationships which is same as shown in Table 6 for the GFC period.  

Though these changes are appealing, they are unable to provide an indication of the usefulness of 

R-vine modelling. In the next section, we empirically examine the VaR, which provides details 

of its use in risk assessment. In particular, our analysis offers important practical implications in 

that it helps examine the risk characteristics of commodity portfolios and changes in their 

conditional dependence structure across three financial periods, incorporating the GFC. A 
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precise estimation and interpretation of the dependence structure among these major 

commodities offer significant practical implications to investors and policymakers alike. Our 

paper provides new insights which could be useful in developing risk strategies for investment 

and hedging purposes, especially during more volatile periods in the markets. 

Table 8 

Post-GFC R-vine copula tau matrix 

 
Corn SO SM Oats SB Wheat GOLD Silver PD PT WTI HO NG 

Corn 
             

SO 0.01 
            

SM -0.02 -0.03 
           

Oats -0.01 -0.01 0.01 
          

SB 0.06 -0.01 0.01 0.01 
         

Wheat -0.03 0.00 0.02 -0.05 -0.02 
        

GOLD -0.08 0.02 -0.01 -0.02 -0.02 -0.01 
       

Silver -0.06 0.01 0.01 0.04 0.00 0.00 -0.03 
      

PD -0.04 -0.04 -0.02 -0.01 0.03 0.03 0.07 0.02 
     

PT -0.07 -0.02 -0.02 0.01 -0.01 0.02 -0.03 0.06 -0.04 
    

WTI -0.12 0.03 0.04 0.08 0.05 0.04 0.03 0.01 0.01 0.08 
   

HO 0.20 0.09 -0.05 0.08 -0.38 0.05 0.05 0.07 0.08 0.07 0.01 
  

NG 0.59 0.28 0.46 0.38 0.58 0.34 0.53 0.41 0.10 0.23 0.18 0.65 
 

Note: HO, NG, PD, PT, SM, SO and SB stand for heating oil, natural gas, palladium, platinum, soybean meal, 

soybean oil and soybeans, respectively. The data period is from2 January 2003 to 19 December 2016. 

 

Fink et al. (2017) apply Markov-switching R-vine models to investigate the existence of different 

global dependence regimes. In particular, they identify times of normal and abnormal states 

within a dataset consisting of North American, European and Asian indices. However, our work 

is different from theirs in that we choose a specific time period to signify the GFC, whereas they 

use smoothed rolling windows in a Markov-switching analysis. There are further limited studies 

which apply the same approach as we do. For instance, Beil (2013) uses vine copulas to 

understand the global stock indices. Further, Allen et al. (2017) also apply regular vine copulas 

to understand the dependencies in 10 major European stock markets by breaking the sample into 

pre-crisis, crisis and post-crisis periods. However, Beil (2013) does not make use of the Gumbel 
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copula to a great extent. Moreover, in Allen et al. (2017), the sample used is different compared 

to ours. 

4.3.Economic Significance – VaR Analysis 

We apply C-vine and R-vine copulas to capture the dependence structure among some of the key 

commodity markets which, in turn, could be crucial for portfolio evaluation and risk modelling. 

The R-vine approach provides better results than the standard bivariate copula frame work since 

the copulas selected via the vine copulas framework are more sensitive to the asset’s return 

distributions. The co-dependencies computed using R-vine copulas are useful for portfolio VaR 

analysis. For all three subsamples (i.e., pre-GFC, GFC and post-GFC), we create an equally 

weighted portfolio of the 13commodities to explore the importance of vine copulas in modelling 

VaR
2
. The 13 selected assets in the portfolio are our 13 commodities. We employ a 250-day 

moving window framework to forecast the VaR for this equally weighted portfolio.
3
 

The main steps of our analysis are illustrated below: 

1. Convert the data for commodities into log returns and select a 250-daymoving window of 

returns. 

2. Apply GARCH (1,1) with Student-t innovations to convert the log returns into an IID series. 

The same model is fitted in all the iterations to maintain uniformity in the approach, which 

also makes the analysis a little less intensive. 

3. Take the residuals from Step2 and standardise them with the deviations obtained in Step 2. 

4. Convert these residuals to Student-t marginals for the estimation of copulas. These steps are 

repeated for all the 13commodities to obtain a multivariate matrix of uniform marginals. 

                                                           
2In the paper, we report the results for the full sample only. Please refer to the Appendix for the sub-sample results. 
3 To analyse the sensitivity of the results with respect to the rolling window size we also chose a 500-day rolling window and  

found that the results were robust to the window size selected. Though these results are not presented, they are available upon 

request. 
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5. Fit an R-vine to the multivariate data so obtained and generate simulations using the fitted R-

vine model. We generate 1000 simulations per commodity for forecasting a day ahead VaR. 

6. Convert the simulated uniform marginals to standardised residuals and simulate returns using 

GARCH simulations. 

7. Generate a series of simulated daily portfolio returns to forecast 1% and 5% VaR. 

8. Repeat Steps 1 to 7 for a moving window. 

The above approach leads to VaR forecasts, which, not being time-dependent, have the 

advantage of being co-dependent on the commodities in the portfolio. We use this framework as 

a manifestation of a practical application of the co-dependencies captured by the flexible vine 

copula approach applied to construct VaR forecasts. Figure 7-9 plot the 1% and 5% VaR 

forecasts along with the original portfolio return series obtained bythe method for the full 

sample. The plot shows that the VaR forecasts closely follow the daily returns with few 

violations. 

 

Figure 7. Portfolio VaR analysis based on the application of vine copulas 
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For a better comparison of the performance of our vine copula VaR forecasts, we also use our 

series of commodity returns combined into an equally weighted portfolio to construct a 

simulation of a VaR analysis based on the use of a GARCH(1,1) model
4
. The relative number of 

violations of the VaR set at 1% and 5% indicate whether our vine copula approach better 

captures the complex structure of dependencies and is better suited to VaR analysis. 

This analysis is outlined as follows: 

1. Convert the data sample to log returns and select a moving window of 250 returns.
5
 

2. Fit the GARCH(1,1) with Normal innovations to convert the log returns into an IID series. 

3. Extract the fit from Step 2 and simulate 1000 returns per asset. 

4. Repeat Steps 2 and 3 for all commodities followed by the computation of the portfolio return 

from the simulated series. 

5. Generate a series of simulated daily portfolio returns to forecast 1% and 5% VaR. 

6. Repeat Steps 1 to 5 for a moving window. 

Figure 8 plots the 1% and 5% VaR forecasts along with original portfolio return series obtained 

from the use of the GARCH (1, 1) model. A close examination of the plots reveals that the use of 

the GARCH (1,1) model leads to multiple violations of the VaR 5% (black line) and VaR 1% 

(red line) compared to the VaR forecasts based on the application of vine copulas. Further, the 

results presented in the appendix for sub-sample analysis also provide robustness to the results 

shown in Figures 7A and 8A for the full sample. Overall, our vine copula models are best suited 

over the GRACH (1,1) model to compute the portfolio VaR during the considered time period. 

                                                           
4We have reported the results for the full sample only. The readers may kindly refer to the sub-sample results presented in the 

appendix. 
5To analyse the sensitivity of the results with respect to the rolling window size we also chose 500-day rolling window and found 

that the results were robust to the window size selected. Though these results are not presented, they are available upon request.  
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Figure 8. Portfolio VaR analysis based on the application of GARCH (1,1) model 

 

4.4. Analysis of efficient portfolios 

To illustrate the different combinations of the commodities, Figure 9 exhibits the efficient 

frontier of the portfolios. We plot the efficient frontier under the short-selling constraints such 

that NG and gold are located on the efficient frontier, representing the lowest and the highest 

expected returns among all the commodities considered, respectively
6
. 

The maximum Sharpe ratio and maximum utility can be achieved on the efficient frontier in 

Figure 9 through rational asset allocation across the commodities. In Figure 10, we remove the 

short-selling constraints and plot the efficient frontier again. The figure shows that none of the 

commodities now lie on the frontier.
7
 

                                                           
6 We would like the readers to note that while performing the analysis of efficient portfolios with and without short-sales, the 

portfolios are not equally weighted. 
7 The analysis of efficient portfolios is based on in-sample results only as we estimate the mean and covariance matrices based on 

the entire sample, which is infeasible for real investments. Further, we have attempted to do the same analysis on simulated data 

from the GARCH and copula models, but we faced serious convergence issues.   
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Figure 9. Efficient frontier of commodities’ portfolio 

 

Figure 10.Efficient frontier of commodities’ portfolio when short sales are allowed 
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Figure 11 illustrates different scenarios of the minimum variance portfolio and tangency 

portfolio. For example, the upper panel of Figure 11 shows that the minimum variance portfolio 

comprises the largest proportion of gold (48.71%), followed by SO (10.15%) and PT (9.43%). 

The portfolio has no proportion of PD, silver and WTI since their weights are zero. The middle 

panel of Figure 11 shows the results for the tangency portfolio weights where the capital market 

line touches the market portfolio. We observe that the proportion of gold in the portfolio 

increases to 87.71%, followed by soybeans (5.38%) and SM (3.67%) under the restriction on 

short sales. 
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Figure 11. Portfolio weights under different scenarios 

 

When we allow for short sales, in the lower panel of Figure 11, the proportion of gold shoots up 

to 113.21%, while for silver and PT, it goes down to as low as -30.58% and -20.38%, 
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Overall, the results for the minimum variance portfolio and tangency portfolio under both short 

sales and no short sales confirm that gold is the most attractive commodity among the 

investments. 
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the Student-t copula appears the maximum number of times, especially during the GFC, 

highlighting the importance of fatter tails during financial turmoil. 

Next, using the flexibility of this approach in financial risk modelling, we compute the portfolio 

VaR based on the dependencies obtained. The results show that the VaR forecasts closely follow 

the daily returns with few violations. These results are in contrast with those obtained from the 

same data using the GARCH (1,1) model and Gaussian distribution, and we conclude that our 

vine copula models are best suited to compute the portfolio VaR during the considered time 

period. We further plot the efficient frontier, construct the portfolio weights and show that gold 

is the most attractive commodity among the investments under all scenarios. 

We contribute to the literature by identifying the risk characteristics of commodity portfolios and 

changes in their conditional dependence structure across three financial periods, incorporating 

the GFC. Overall, a precise estimation and interpretation of the dependence structure among 

these major commodities offer significant practical implications to investors and policymakers 

alike. Specifically, our approach provides new insights which could be useful in developing 

dependence-and investment-risk strategies for investment and hedging purposes, especially 

during more volatile periods in the markets. 

 

Acknowledgement 

The corresponding author thanks for supports from the National Natural Science Foundation of 

China under Grant No. 71774152, No. 91546109 and Youth Innovation Promotion Association 

of Chinese Academy of Sciences (Grant: Y7X0231505) are acknowledged. 

 

 



31 

 

References 

Aas, K., Czado, C., Frigessi, A., Bakken, H., 2006. Pair-Copula Constructions of Multiple 

Dependence. Technical University of Munich. 

Allen, D.E., McAleer, M., and Singh, A., 2017. Risk Measurement and Risk Modelling Using 

Applications of Vine Copulas. Sustainability, 9, 1-34. 

Aloui, R., Aïssa, M. S. B., & Nguyen, D. K. (2013). Conditional dependence structure between 

oil prices and exchange rates: a copula-GARCH approach. Journal of International Money and 

Finance, 32, 719-738. 

Antonakakis, N., Chang, T., Cunado, J., Gupta, R., 2018. The relationship between commodity 

markets and commodity mutual funds: A wavelet-based analysis. Finance Research Letters, 24, 

1-9. 

Bedford, T. Cooke, R.M., 2002. Vines—A new graphical model for dependent random variables. 

Annal Statistics, 30, 1031–1068. 

Bouri, E., Gupta, R., Lahiani, A., Shahbaz, M., 2018. Testing for asymmetric nonlinear short- 

and long-run relationships between bitcoin, aggregate commodity and gold prices. Resources 

Policy, 57, 224-235. 

Brechmann, E.C., 2010. Truncated and Simplified Regular Vines and their Applications. Center 

of Matemathics, Technical University of Munich. 

Brechmann, E. C., & Czado, C. (2013). Risk management with high-dimensional vine copulas: 

An analysis of the Euro Stoxx 50. Statistics & Risk Modeling, 30(4), 307-342. 

Dissman, J.F., 2010. Statistical Inference for Regular Vines and Application. Master’s Thesis, 

TechnischeUniversitatMünchen, München, Germany. 



32 

 

Fernandez-Diaz, J.M., Morley, B., 2018. Interdependence among agricultural commodity 

markets, macroeconomic factors, crude oil and commodity index. Research in International 

Business and Finance. https://doi.org/10.1016/j.ribaf.2018.07.009. 

Fernandez-Perez, A., Frijns, B., Tourani-Rad, A., 2016. Contemporaneous interactions among 

fuel, biofuel and agricultural commodities. Energy Economics, 58, 1-10. 

Frechet, M., 1957. Les tableaux de corr´elationdont les marges et des bornessontdonn´ees. 

Annales de l’Universit´e de Lyon, Sciences Math´ematiquesetAstronomie, 20, 13–31. 

Genest, C., Favre, A.-C., 2007. Everything you always wanted to know about copulas modeling 

but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347–368 

Genest, C., Ghoudi, K., Rivest, L.-P., 1995. A semiparametric estimation procedure of 

dependence parameters in multivariate families of distributions. Biometrika 82 (3), 543–552.  

Genest, C., Rémillard, B., Beaudoin, D., 2009. Goodness-of-fit tests for copulas: a review and a 

power study. Insurance: Mathematics and Economics, 44, 199–213 

Heinen, A., & Valdesogo, A. (2009). Asymmetric CAPM dependence for large dimensions: the 

canonical vine autoregressive model (No. Universidad Carlos III de Madrid). CORE, 1-30. 

Hernandez, J.A. (2014). Are oil and gas stocks from the Australian market riskier than coal and 

uranium stocks? Dependence risk analysis and portfolio optimization. Energy Economics, 45, 

528-536. 

Hernandez, J.A. (2015). Vine copula modelling of dependence and portfolio optimization with 

application to mining and energy stock return series from the Australian market. Doctoral 

Dissertation, Edith CowanUniversity, Australia. 



33 

 

Ji, Q., Bour, E., Roubaud, D., Shahzad, S.J.H., 2018b. Risk spillover between energy and 

agricultural commodity markets: A dependence-switching CoVaR-copula model. Energy 

Economics. https://doi.org/10.1016/j.eneco.2018.08.015 

Ji, Q., Bouri, E., Roubaud, D., 2018a. Dynamic network of implied volatility transmission 

among US equities, strategic commodities, and BRICS equities. International Review of 

Financial Analysis, 57, 1-12. 

Ji, Q., Fan, Y., 2012. How does oil price volatility affect non-energy commodity markets? 

Applied Energy, 89(1), 273-280. 

Ji, Q., Fan, Y., 2016a. Evolution of the world crude oil market integration: A graph theory 

analysis. Energy Economics, 53, 90-100. 

Ji, Q., Fan, Y., 2016b. How do China's oil markets affect other commodity markets both 

domestically and internationally? Finance Research Letters, 19, 247-254. 

Ji, Q., Liu, B., Fan, Y., 2018c. Risk dependence of CoVaR and structural change between oil 

prices and exchange rates: A time-varying copula model. Energy Economics.  

https://doi.org/10.1016/j.eneco.2018.07.012 

Joe, H., 1997. Multivariate Models and Dependence Concepts; Chapman & Hall: London, UK, 

1997 

Kang, S.H., Mclver, R., Yoon, S., 2017. Dynamic spillover effects among crude oil, precious 

metal, and agricultural commodity futures markets. Energy Economics, 62, 19-32. 

Lahmiri, S., Uddin, G.S., Bekiros, S., 2017. Clustering of short and long-term co-movements in 

international financial and commodity markets in wavelet domain. Physica A: Statistical 

Mechanics and its Applications, 486, 947-955. 



34 

 

Lebrun, R., Dutfoy, A., 2009a. An innovating analysis of the Nataf transformation from the 

copula view point. Probabilistic Engineering Mechanics 24, 312–320.  

Lebrun, R., Dutfoy, A., 2009b. Do Rosenblatt and Natafiso probabilistic transformations really 

differ? Probabilistic Engineering Mechanics, 24, 577–584 

Liu, B., Ji, Q., Fan, Y., 2017. A new time-varying optimal copula model identifying the 

dependence across markets. Quantitative Finance, 17(3), 437-453. 

Mensi, W., Hammoudeh, S., Nguyen, D.K., Yoon, S., 2014. Dynamic spillovers among major 

energy and cereal commodity prices. Energy Economics, 43, 225-243. 

Mensi, W., Hkiri, B., AI-Yahyaee, K.H., Kang, S.Y., 2018. Analyzing time–frequency co-

movements across gold and oil prices with BRICS stock markets: A VaR based on wavelet 

approach.  International Review of Economics & Finance, 54, 74-102. 

Nazlioglu, S., Soytas, U., 2012. Oil price, agricultural commodity prices, and the dollar: A panel 

cointegration and causality analysis. Energy Economics, 34, 1098-1104. 

Nelsen, R., 2006. An Introduction to Copulas, 2nd ed.; Springer: New York, NY, USA. 

Nicola, F., Pace, P., Hernandez, M.A., 2016. Co-movement of major energy, agricultural, and 

food commodity price returns: A time-series assessment. Energy Economics, 57, 28-41. 

Rodriguez, J. C. (2007). Measuring financial contagion: A copula approach. Journal of Empirical 

Finance, 14(3), 401-423. 

Shahzad, S.J.H., Hernandez, J.A., AI-Yahyaee, K.H., Jammazi, R., 2018. Asymmetric risk 

spillovers between oil and agricultural commodities. Energy Policy, 118, 182-198. 

Sklar, A., 1996. Random variables, distribution functions, and copulas – a personal look 

backward and forward in Distributions with Fixed Marginals and Related Topics, ed. by L. 



35 

 

R¨uschendorff, B.Schweizer, and M. Taylor, pp. 1–14. Institute of Mathematical Statistics, 

Hayward, CA. 

Tang, K., & Xiong, W. (2012). Index investment and the financialization of commodities. 

Financial Analysts Journal, 68(5), 54-74. 

Vuong, Q.H., 1989. Likelihood ratio tests for model selection and non-nested hypotheses. 

Econometrica, 57, 307–333. 


