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Abstract

This study extends the Diebold-Yilmaz Connectedness Index (DYCI) methodology and, based
on forecast error covariance decompositions, derives a network risk model for a portfolio of
assets. As a normalized measure of the sum of variance contributions, system-wide connected-
ness averages out the information embedded in the covariance matrix in aggregating pairwise
directional measures. This actually does matter, especially when there are large differences in
asset variances. As a first step towards deriving the network risk model, the portfolio covariance
matrix is decomposed to obtain the network-driven component of the portfolio variance using
covariance decompositions. A second step shows that a common factor model can be estimated
to obtain both the variance and covariance decompositions. In a third step, using quantile
regressions, the proposed network risk model is estimated for different shock sizes. It is shown,
in contrast to the DYCI model, the dynamic quantile estimation of the network risk model can
differentiate even small shocks at both tails. This result is obtained because the network risk
model makes full use of information embedded in the covariance matrix. Estimation results
show that in two recent episodes of financial market turmoil, the proposed network risk model
captures the responses to systemic events better than the system-wide index.
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1 Introduction

In a series of papers, Diebold and Yilmaz (2012, 2014) develop the connectedness index (DYCI)

methodology to analyze how shocks are transmitted among a set of financial variables. They

propose several connectedness measures that range from the aggregate level (system-wide index)

to the granular level (pairwise directional measures) and are obtained via forecast error variance

decompositions from a vector autoregression. The system-wide connectedness index aggregates

the pairwise directional measures on the basis of average “cross”-variance decomposition shares.

The index, which indicates the strength of the overall connectedness in the system, can be used

to identify changes in financial networks when the primary focus is providing descriptive results

in order to monitor overall shock transmissions across financial assets.

Although connectedness arises also through the disturbance covariance matrix (Demirer

et al., 2018), system-wide connectedness fails to account for the asymmetry in asset variances

as a result of normalizing the rows of variance decomposition matrix. This raises an important

issue: when assets are not homogeneous in terms of their risk exposures, a central asset may

carry less risk exposure, or sometimes a riskier asset may be less central in the network. In these

cases, systemic risk can be poorly approximated if one utilizes only the normalized measure

of connectedness. On the other hand, forecast error variances by definition are the sum of

squared impulse responses, and so system-wide connectedness practically takes the row-means

of cross-variance decomposition shares. This is indeed a simple and often effective way to

provide descriptive results for overall connectedness in the system. However, as an outer product

of impulse response functions, covariances are also critically important from a systemic risk

perspective.

In this study, I propose an approximate covariance decomposition methodology that builds

on Joo (2000) and Goto and Volkanov (2002) in order to improve the standard system-wide con-

nectedness measure. Incorporating covariance decompositions into a connectedness framework

paves the way for a more general method to aggregate pairwise directional measures. Assuming

that the financial system is a portfolio of assets, network-driven portfolio variance is calculated

via covariance decompositions. Instead of taking the row means of variance decomposition

shares, I use the ratio of network-driven portfolio variance to total portfolio variance to mea-

sure overall network effect. Noticeably, the share of network-driven portfolio variance has the

same meaning with standard system-wide connectedness measure. Moreover, it distinguishes

differences among asset variances, and unlike the conventional system-wide connectedness mea-

sure, covariances are allowed to have an impact. Furthermore, network-driven variance can

easily be converted into a network-driven risk measure that quantifies the impact of network

connectivity on portfolio risk in nominal terms. For this reason, I refer to this framework as a

“network risk model”.

Using daily or higher frequency stock returns, the standard assumptions of vector autore-

gressions, such as those employed by Diebold and Yilmaz (2014), can be used to estimate the

network risk model. As suggested by Claeys and Vaš́ıček (2014), it is also possible to take the

factor structure into account when considering the impact of common shocks on variables. In



the spirit of network analysis, this requires a further effort to interpret the factor structure in

a network model. A rich literature examines the network interpretation of factor structure in

neural network models (Kumar et al. (2012), Ravi and Pramodh (2008), O’Farrell et al. (2005)),

bayesian graphical models (Ahelegbey, 2016) and psychometrics (Borsboom and Cramer (2013),

Epskamp et al. (2016)). I also demonstrate a further result that common factors can be ana-

lyzed in the spirit of variance decomposition networks. Incorporating the factor structure to

the network risk model yields an explanation similar to the well-known “robust yet fragile”

phenomenon (Gai and Kapadia (2010), Gai (2013)). Increasing the number of assets in the

portfolio enables the diversification of idiosyncratic risks, while at the same time, overall port-

folio risk approaches to the undiversifiable (or systematic) risk component. In addition, larger

portfolios are more likely to display higher network risks for two reasons: a) a large number of

assets increase the number of possible linkages among assets, b) adding more assets boosts the

pre-existing network relations, allowing further feedbacks.

It is also possible to estimate the network risk model for different shock sizes by relying

on approximate quantile regressions. Ando et al. (2018) apply the quantile regression model

to the DYCI framework to obtain connectedness measures for different shock sizes. Using a

static factor model to remove cross-sectional correlations, they apply quantile regressions on

an equation-by-equation basis and find that financial networks get denser at both tails of the

shock distribution. However, the dynamic estimation of the quantile connectedness at both tails

fails to distinguish good or bad market conditions, showing very little change in system-wide

connectedness through time. Unlike the quantile estimation of the connectedness model, the

proposed network risk model can distinguish shocks at both tails because it also takes into

account the full information available at the covariance matrix.

This paper is organized as follows. Section 2 discusses the connectedness framework in order

to provide a basis for further discussion of the network risk model. Next, Section 3 discovers

the effect of financial networks on the covariance matrix by exploiting a simple payoff function

associated with network effects. Section 4 proposes the approximate covariance decompositions

and introduces the network risk model. It also incorporates common shocks into the network

risk model and provides a network interpretation in the spirit of variance decomposition based

networks. Section 5 presents a detailed exposition of the empirical estimation of the network

risk model. Section 6 reports the network risk model estimation results and compares them to

the results obtained from the standard DYCI estimation. Finally, Section 7 concludes.

2 DYCI and Variance Decompositions

Diebold and Yilmaz (2014) develop a methodology to obtain a connectedness measure (Diebold-

Yilmaz Connectedness Index – DYCI) through variance decompositions using approximating

VAR models. By virtue of variance decompositions, connectedness is defined as the share of the

forecast error variance of a variable due to shocks arising from other variables. In the N -variable

vector autoregression model, the connectedness measure cHij is defined as the ij-th element of

the H-step forecast error variance decomposition matrix. It is calculated as the proportion of
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i-th variable’s H-step forecast error variance due to shocks in variable j, where i 6= j.

x1 x2 . . . xN From Others

x1 cH11 cH12 . . . cH1N
∑N

j=1 c
H
1j , j 6= 1

x2 cH21 cH22 . . . cH2N
∑N

j=1 c
H
2j , j 6= 2

...
...

...
. . .

...
...

xN cHN1 cHN2 . . . cHNN

∑N
j=1 c

H
Nj , j 6= N

To Others
∑N

i=1 c
H
i1

∑N
i=1 c

H
i2 . . .

∑N
i=1 c

H
iN

1

N

∑N
i,j=1 c

H
ij

i 6= 1 i 6= 2 i 6= N i 6= j

Table 1: The Connectedness Table

Table 1, the connectedness table, is generated from the forecast error variance decomposition

matrix. The off-diagonal elements are the measures of pairwise directional connectedness. The

last column, called “From Others” or simply from–connectedness, is defined as the row-sum of

the off-diagonal elements. The last row, called “To Others” or to–connectedness, is the column-

sum of the off-diagonal elements. The diagonal elements of the connectedness table (cHii for

i = 1, 2, . . . , N) are called own connectedness, indicates the share of the i–th variance due to

shocks that hit the i-th variable’s itself. Noticeably, own connectedness, or the self loop in

network terminology, is kept out of the “To − connectedness” and “From − connectedness”,

which are the directional measures of connectedness. The bottom-right element is the system-

wide connectedness or “connectedness index”; it summarizes the overall connectedness in the

system.

Connectedness is just one of the proposed methodologies to analyze financial networks.

Other methodologies proposed in literature include the correlation networks of (Barigozzi et al.,

2018) and (Brownlees et al., 2018), and the Granger–causality networks of Billio et al. (2011).

However, the connectedness methodology has certain advantages: the estimated edges are de-

fined bilaterally with possibly different weights owing to the variance decompositions argued in

Diebold and Yilmaz (2014). The method provides rich information that explains sophisticated

network relationships compared to undirected, unweighted network structures. It also flexibly

defines asymmetric linkages among assets, which is highly relevant to the financial networks.

3 Financial Networks and Portfolio Risk

This section explores the close links between the covariance matrix and financial networks.

Benoit et al. (2017) utilizes a standard asset pricing model to review the features of systemic

risk models in the literature. They assume N financial institutions indexed by i, each of which

has a risk exposure xi. They denote the share of systematic component on total risk exposure

as αi; the remaining share 1 − αi is reserved for the idiosyncratic component. The systematic

risk exposure of asset i is defined as ySi = αixi; y
I
i = (1 − αi)xi shows the idiosyncratic risk
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exposure. The benchmark payoff function of a financial institution, π̂i, is the weighted sum of

ρS + εS and ρI + εI where ρS and ρI are constants and εS and εI are iid random shocks.

π̂i = (ρS + εS)× ySi + (ρI + εI)× yIi (1)

Equation (1) defines the financial gains/losses as a function of the systematic and idiosyn-

cratic shocks and exposures. Noticeably, π̂i(y
S
i , y

I
i , ε

S , εI) allows simultaneous financial losses

only through the systematic component. Benoit et al. (2017) argue that the model fails to

approximate systemic risk because it does not take into account simultaneous losses generated

through asset linkages. They modify the π̂i(·), assuming that the direct exposures among assets

are collected in an N ×N adjacency matrix B and redefine the benchmark payoff function with

network effects as πi(y
S
i , y

I
i , B, ε

S , εI). Finally, they argue that systemic event in systemic risk

literature is a joint statement about the πi(·) in general.

To uncover the impact of asset linkages on the covariance matrix, I specify the payoff function

with network effects borrowing the πi(·) from (Benoit et al., 2017). Assuming an N -asset

portfolio P, I define the function fi(B, πj) that connects the payoff πi to the payoff of others in

the portfolio πj where j ∈ P \ {i}. The function fi(B, πj) represents the network driven payoff.

For the sake of simplicity, I assume that the functional forms for asset payoffs are the same for

all assets in the portfolio. Then, the benchmark payoff of i-th asset is defined as

πi = π(πSi , π
I
i , fi(B, πj)). (2)

a) Network Effects in the Static Model

To isolate the effects of asset linkages on asset variance, I specify a simple payoff function, π∗i (·)
with no common shocks. Then, assuming that there are three or more assets, I draw two assets

indexed by i and k where i 6= k. Assuming the payoff function π∗i is additively separable and

fi(B, πj) is linear, I organize the payoff of asset i as

π∗i = πIi +
∑
j

bijπ
I
j

wherein bij is the ij-th element of the adjacency matrix B that connects asset payoffs to each

other. For independent asset-specific shocks, the variance of π∗i is found as

σ∗2i = σ2
i +

∑
j

b2ijσ
2
j .

where σ2
i is the variance of the asset-specific shock πIi . The first term on the right-hand side

corresponds to the asset-specific variance contribution of i-th asset to its own variance; the

latter term is the variance contributions of others in the portfolio. For the values of bij 6= 0,

the asset variance σ∗2i is directly affected by the others’ asset-specific shocks. Therefore, the
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presence of network effects makes the asset payoffs move together simultaneously even when

the systematic shocks are absent.

Similarly, the impact of direct asset linkages (even there is no systematic shocks) becomes

evident in covariances that happen to be essential for measuring portfolio risk. Given the adja-

cency matrix and the distribution of asset-specific shocks, one can also measure the covariance

among assets in terms of asset-specific variances and bilateral linkages. The covariance among

asset i and k is calculated by taking the cross-multiplication of payoffs for j ∈ P\{i, k}

π∗i = πIi + bikπ
I
k +

∑
j

bijπ
I
j

π∗k = πIk + bkiπ
I
i +

∑
j

bkjπ
I
j

Therefore, Cov(π∗i , π
∗
k) is

Cov(π∗i , π
∗
k) = (bikσ

2
i + bkiσ

2
k) +

∑
j

bijbkjσ
2
j

The first part of the covariance equation associates the asset-specific variances and connect-

edness for i and k. This is the pairwise contributions of i-th and k-th assets to their own

covariance. The latter term captures the contributions of other assets to Cov(π∗i , π
∗
k).

Noticeably, network driven variance and covariances are derived as a function of the adja-

cency and covariance matrices. Without a loss of generality, the simple model above considers

only the first-order network effects; it assumes that asset-specific shocks instantly transmitted

to the others and that the equilibrium solution is then reached. Given that evidence of the pres-

ence of network effects on portfolio covariance matrix has already been provided, one can argue

that higher order network effects may trigger a further propagation of asset-specific shocks.

Further iterations are required to arrive at a static equilibrium solution; the complexity of the

variance and covariance equations increases because the model includes higher order network

effects for large portfolios.

b) Detection of Network Effects through Spatial Regressions

Billio et al. (2016), who takes a spatial regression approach, offers a variation of the traditional

asset pricing model that includes the contemporaneous and/or lagged links across assets. Their

work shows that incorporating network effects into the asset pricing model introduces two

new components to the conventional (i) systematic and (ii) idiosyncratic components. These

components are (iii) the impact that network connectivity among asset returns has on the

systematic component and (iv) the impact that network connectivity among asset returns has

on the idiosyncratic component. The model assumes that the network structure W is given

and that the factor structure captures the effect of common shocks. They utilize the following

spatial regression model:
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Π̂t = ρW Π̂t + ΛFt + ηt ηt ∼ N(0,Ω) (3)

where the coefficient ρ accounts for the impact of other assets that are weighted by the N ×N
proximity matrix W (the adjacency matrix in network terminology, or the spatial weight matrix

in spatial regression terminology); Π̂t is the vector of excess returns, Λ is a N ×M matrix of

factor loadings, where M is the number of factors; Ft is M -dimensional vector of common

factors; Ω is the diagonal covariance matrix of error terms ηt. The diagonal elements of W are

assumed to be zero; therefore, self-loops are not allowed. Furthermore, the W is symmetric

for undirected networks, and so one can introduce asymmetry in order to deal with directed

network structures. Equation (3) is equivalently written as

(I − ρW )Π̂t = ΛFt + ηt

Π̂t = Λ∗Ft + η∗t (4)

where Λ∗ = (I − ρW )−1Λ and η∗t = (I − ρW )−1ηt. Using the property (I − ρW )−1 = I + ρW +

ρ2W 2 + ρ3W 3 + ... following LeSage and Pace (2009), Billio et al. (2016) rewrite the Equation

(4) as below

Π̂t = ΛFt +
∞∑
j=1

ρjW jΛFt + ηt +
∞∑
j=1

ρjW jηt. (5)

There are four components of the excess returns Π̂t in equation (5). ΛFt and ηt are the

well-known systematic and idiosyncratic components, and they are independent of the network

exposures. The network exposure to the common factor is captured by
∑∞

j=1 ρ
jW jΛFt; the

network exposure to the idiosyncratic shocks is defined as
∑∞

j=1 ρ
jW jηt. Noticeably, the model

allows for higher order network effects on systematic and idiosyncratic components. Billio

et al. (2016) argue that contemporaneous relations among asset returns can help to deal with

correlated idiosyncratic shocks in the estimation of the model. They also note that the network

effect pushes the diversification benefit down because the idiosyncratic risks that are amplified

by the network connections generates an additional non-diversifiable risk component. This

approach, which can be used to decompose portfolio risk, requires the estimation of the network

structure W , which Billio et al. (2016) do not address.

4 The Network Risk Model

Static and spatial models are useful for exploring the effects of financial networks on the portfolio

covariance matrix. In practice, we observe asset payoffs and estimate the covariance matrix

Σπ. Unfortunately, without prior knowledge on the asset linkages, it is not always feasible to

measure the effect of financial networks in static or spatial model, as discussed earlier. To

have a proper portfolio risk decomposition with network effects, one also needs to estimate

the adjacency matrix (denoted by network parameters {bij} or W in previous section). In
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this section, I introduce the network risk model and propose a methodology to deliver network

driven covariances. The estimation of the network risk model, which utilizes the standard

assumptions of vector autoregressive model, allows us to estimate the adjacency and covariance

matrix together. To obtain the network driven covariances, I propose approximate covariance

decompositions using the adjacency matrix. Below, I briefly share the details of the network

risk model. Additional details are provided in Appendix A.

4.1 Forecast Errors and Covariance Decompositions

Consider anN -dimensional covariance stationary data-generating process with orthogonal shocks

wt:

yt = Θ(L)wt, Θ(L) = Θ0 + Θ1 + Θ2 + . . . , E(wtw
′
t) = I (6)

with Θi for i = 1, 2, 3, . . . are each N ×N coefficient matrices, and Θ(L) is the lag-polynomial.

The error of the optimal h-step forecast is the difference between the actual value yt+h and the

optimal h-step forecast yt(h):

yt+h − yt(h) =
h−1∑
i=0

Θiwt+h−i.

Because wn,t’s are assumed to be uncorrelated and have unit variances, the mean-squared error

(MSE) of yj,t+h is

E(yj,t+h − yj,t(h))2 =
N∑
n=1

(θ2
jn,0 + · · ·+ θ2

jn,h−1) (7)

This analysis is often called innovation accounting, which accumulates the effect of individual

innovations to the variance of a particular variable. (Lütkepohl, 2005). To provide variance

decompositions, Equation (7) can arbitrarily be rewritten as

E(yj,t+h − yj,t(h))2 =

h−1∑
i=0

θ2
jj,i +

h−1∑
i=0

N∑
n=1;j 6=n

(θ2
jn,i) (8)

The first term on the right-hand side (RHS) corresponds to the contribution of innovations

in variable j, while the second term stands for the contribution of innovations in variables other

than j to forecast the error variance of the h-step forecast of variable j. Variance decomposition

shares are obtained by dividing RHS to MSE[yj,t(h)]∑h−1
i=0 θ

2
jj,i

MSE[yj,t(h)]︸ ︷︷ ︸
Own Contribution

+

∑h−1
i=0

∑N
n=1;j 6=n(θ2

jn,i)

MSE[yj,t(h)]︸ ︷︷ ︸
Contribution of Others

(9)
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4.1.1 Covariance Decompositions

Joo (2000) and Goto and Volkanov (2002) propose covariance decompositions as a “natural”

extension of variance decomposition analysis; instead of accumulating only the squared shocks,

they also consider the accumulation of the cross-multiplied shocks that can be defined as forecast

error covariances. Noticeably, variance decompositions provide an N ×N matrix that indicates

the contribution of each N variables to N different individual asset variances, while covariance

decomposition gives an N × N × N dimensional array that provides the contribution of N

variables to N2 variances and covariances. However, extending the variance decompositions

to covariance decompositions is not feasible in most cases. To see this, recall Equation (8)

in matrix form, which gives contribution of innovations in variable n to h-step forecast error

variance of variable j,

h−1∑
i=0

(e
′
jΘien)2

where ej is the j-th column of the N ×N identity matrix, IN . To obtain covariances among

m and j, rather than taking squares of (e
′
jΘien) terms, multiply the (e

′
mΘien) and (e

′
jΘien)

terms.

h−1∑
i=0

(e
′
mΘien)(e

′
jΘien) (10)

Consider the special case, m = j, which is simply equal to variance decomposition. For

this reason, it is convenient to regard covariance decomposition as a generalization of variance

decompositions. Equation (10) shows the contribution of innovations in variable n to the h-step

forecast error covariance of variable m and j. Now, regarding the MSE as covariance matrix,

the mj-th and jm-th components of MSE matrix are given as

σmj = σjm =
h−1∑
i=0

N∑
n=1

θmn,iθjn,i =
h−1∑
i=0

N∑
n=1

θjn,iθmn,i (11)

Analogous to variance decompositions, both Joo (2000) and Goto and Volkanov (2002) define

covariance decomposition as

ωmj,n,h =

∑h−1
i=0 (e

′
mΘien)(e

′
jΘien)

MSEmj,t(h)
(12)

However, this approach has two important drawbacks. First, if any pair of θjn,i and θmn,i has

opposite signs, their interactions will be negative. Positive and negative terms in MSEmj,t(h)

cancel out each other; then it is no longer an appropriate denominator that ω ∈ [0, 1] is not

guaranteed, or covariance decomposition may be undefined since denominator can be zero.

Second, since we are interested in covariances (instead of shares), it may be preferable to obtain

covariances directly instead of having the ωs. This eliminates the first drawback,but it fails to

satisfy one of the basic assumptions of covariance matrix: positive semi-definiteness. To see

8



this, modify the Equation (11) and write it explicitly as

h−1∑
i=0

(θjj,iθmj,i + θmm,iθjm,i) +

h−1∑
i=0

N∑
n=1
j 6=n
m6=n

(θjn,iθmn,i). (13)

This equation fails to guarantee the positive semi-definiteness of the covariance matrix be-

cause it arbitrarily splits the variance-covariance matrix into two pieces, both of which are

not necessarily positive semi-definite. It should be noted that the symmetry property of the

covariance matrix is satisfied in Equation (13).

4.1.2 Approximate Covariance Decomposition via Variance Decomposition

Apparently, the “natural” extension of variance decompositions fails to provide a feasible solu-

tion to covariance decompositions. Instead, I propose an approximate covariance decomposition

that relies on the information from variance decompositions. To isolate the network-driven vari-

ance and covariances from the covariance matrix, I follow a two-step procedure that satisfies

the symmetry and positive semi-definiteness properties of covariance matrix. The procedure

relies on basic variance and covariance properties,

V ar(aX + b) = a2V ar(X)

Cov(aX + b, cY + d) = acCov(X,Y )

Because variance decomposition delivers a proportion of the h-step forecast error variance

of variable j, accounted for by wnt innovations, we easily apply backward-engineering to the

variance equation to procure a2 and c2. Recall Equation (9) such as∑h−1
i=0 θ

2
jj,i

MSE[yj,t(h)]︸ ︷︷ ︸
Own Contribution

+

∑h−1
i=0

∑N
n=1;j 6=n(θ2

jn,i)

MSE[yj,t(h)]︸ ︷︷ ︸
Contribution of Others

The second term represents the contribution of innovations in variables other than j to

the forecast error variance of the h-step forecast of variable j. Let us call that term d2
o,j∑h−1

i=0

∑N
n=1;j 6=n(θ2

jn,i)

MSE[yj,t(h)]︸ ︷︷ ︸
Contribution of Others

= d2
o,j

Because variance decompositions provide the portion of variance that is contributed by

others, a2 or c2 can be replaced with d2
o,j in the variance equation. In matrix form, the procedure

is as follows. I form a diagonal matrix of the “contribution of others”, D2
o , which locates the

share of the contribution of others to the variance of a particular variable.
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D2
o =


d2
o,1 0 . . . 0

0 d2
o,2 . . . 0

...
...

. . .
...

0 0 . . . d2
o,N


Owing to the fact that d2

o,j ≥ 0 for all j and it is a diagonal matrix, I can take the square

root of D2
o . In order to ensure the positive semi-definiteness of the resulting covariance matrix,

the do,is are assumed to be greater than or equal to zero, do,i ≥ 0 . In order to weight the

covariance matrix in the next step, I pre- and post-multiply the covariance matrix with the

squared matrices. 
do,1 . . . 0

...
. . .

...

0 . . . do,N



σ11 . . . σ1K

...
. . .

...

σK1 . . . σKK



do,1 . . . 0

...
. . .

...

0 . . . do,K


Then the positive semi-definite network-driven covariance matrix is

Σnd =



a2V ar(X)︷ ︸︸ ︷
σ11d

2
o,1

acCov(X,Y )︷ ︸︸ ︷
σ12do,1do,2 . . . σ1Kdo,1do,K

σ21do,2do,1 σ22d
2
o,2 . . . σ2Kdo,2do,K

...
...

. . .
...

σK1do,Kdo,1 σK2do,Kdo,2 . . . σKKd
2
o,K


(14)

After obtaining the network-driven covariance matrix, I subtract it from the portfolio co-

variance matrix. The residual part is denoted as the asset specific covariance matrix which can

be diagonal or not. Noticeably, the correlations among variables are equal in the network driven

covariance matrix and the portfolio covariance matrix because approximate covariance decom-

position keeps the underlying correlation structure constant. It scales only the asset volatilities

using basic variance and covariance properties. Clearly, this assumption leads to the argument

that the network driven covariances play a primary role on determining the correlation struc-

ture, and asset-specific covariances are treated as residual variation. This is similar to factor

models in which the covariance among assets is explained only through the systematic compo-

nent. The network risk model provides an additional component to the portfolio risk problem:

after accounting for the systematic shocks, network driven covariances identifies the correlation

structure when the covariance matrix is non-diagonal.

The network risk model presented above extends the connectedness framework, incorpo-

rating the adjacency and covariance matrices for a portfolio of assets. Conventionally, the

connectedness framework addresses the network implications for a portfolio of assets, while the

network risk model (achieved via approximate covariance decompositions) provides a rich en-

vironment for analyzing the portfolio risk implications employing the covariance matrix and

network structure together.

10



As discussed earlier, the connectedness index by definition is the average of the off-diagonal

variance decomposition shares. This is introduced as a summary measure for the financial

connectedness among variables. The network risk model generalizes the connectedness index

taking a portfolio variance approach and proposes the share of the network driven variance as

a more general approximation to systemic risk. This is the proportion of portfolio variance

weighted by the adjacency matrix; it also accounts for the covariances among assets such as

The Share of Network-Driven Variance =
w′DoΣDow

w′Σw

where w is the vector of portfolio weights. The following example emphasizes the difference

among connectedness index and the share of network variance using the simple two assets

(equally-weighted) portfolio. I borrow the notation from Equation (14) and explicitly write

connectedness index and the share of the network driven variance as

Connectedness Index =
d2
o,1 + d2

o,2

2

The Share of the Network-Driven Variance =
σ11d

2
o,1 + σ22d

2
o,2 + 2σ12do,1do,2

σ11 + σ22 + 2σ12

Noticeably, the connectedness index is a special case of the share of the network-driven

variance for a portfolio; they are equal when σ11 = σ22 and σ12 = 0. Also, approximate

covariance decompositions introduce non-linearity in connectedness as the multiplication of

the square-root of the from-connectedness appears in the network driven variance. From the

perspective of portfolio risk, further diversification is achieved when we take into account the

covariances in the connectedness framework (σ12 6= 0); now the covariances can be positive or

negative, implying that there is a difference between the connectedness index and the share of

network driven variances.

Furthermore, the network risk model goes a step further, quantifying the network-driven

and asset-specific risks following the estimation of covariance matrix and the network structure

of the portfolio. The network-driven portfolio risk and the asset-specific portfolio risk are just

the square root of the network driven variance and asset specific covariance matrices as follows

Risknd =
√
w′DoΣDow

Riskas =
√
w′(Σ− Σnd)w

4.1.3 The Network Risk Model: A Numerical Exercise

Armed with the approximate FECVD, I undertake a numerical exercise to show the properties

of the network risk model. The first task is to investigate the direct impact of connectedness

on network-driven and asset-specific risks. To isolate the impact of connectedness, I assume

an equicorrelation matrix and equal standard deviations for each node in the system. I also

assume equal connectedness weights for each node; the only thing I allow to change is the

expected system–wide connectedness that measures the expected value of off-diagonal elements
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of adjacency matrix. Figure 1 (a) shows the decomposed portfolio risk changes with the system-

wide connectedness and reveals the trade-off between the network-driven risk and asset-specific

risk that, as expected, are inversely related to each other. When connectedness is high, the

network-driven risk takes a higher share from the portfolio risk, which undermines the share

of asset specific risk, causing it to be lower. Figure 1 (b) also takes into account the portfolio

variance; as expected, if portfolio variance is high, then the network-driven risks goes up because

the network risk model rescales the network effect with portfolio variance.

(a) (b)

Figure 1: The Network Risk Model

As stated earlier, the system-wide connectedness index does not distinguish the effect of

large differences among asset variances. This becomes an issue when the risk exposures of

assets are not homogeneous because a central asset may carry less risk exposure or in some

cases a riskier asset may be less central in the network. In these cases, systemic risk can be

poorly approximated if one utilizes only the normalized measure of connectedness. However,

the share of network variance by construction exploits the full information embedded in the

covariance matrix and it is expected to provide a better approximation to systemic risk in

these cases. Below, I provide a numerical exercise that uses the two asset example in Equation

(15) to understand how the share of network-driven variance differentiates when there are large

differences among asset variances. To allow asset variances to be different, I assume that assets

may have different volatilities. I define the variable risk spread as a measure of the difference

in volatilities among arbitrarily assigned High and Low -connected assets. When risk spread is

zero, then volatilities of both assets are assumed to be one.1 Figure 2 provides the result of the

exercise.

1One may argue correctly that the simulation result is highly dependent on the minimum and maximum values
of risk spread parameter. However, this only changes the speed of convergence and the shape of the curve, the
intuition is still valid. In that regard, to make the plot more beautiful, I define risk spread as a grid of [-5,5] with
step-size 0.1. I fixed the variance of low (high) connected asset to one when risk spread is positive (negative).
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The result points out to several conclusions. First, the connectedness index and the share

of network-driven variance are equal when two conditions are met: the asset variances are

equal and the covariance is equal to zero. This confirms the analytic result of Equation (15),

which indicates that under certain conditions the share of network driven variance is equal to

connectedness. Second, I focus on the green line, which allows only asset variances to vary

without any further action on covariances. In this case, the share of network driven variance is

larger when the high connected asset is more volatile. The figure also shows that the share of

network driven variance is bounded by [cLowCon, cHighCon], which represents directional pairwise

connectedness measures for Low and High-connected assets. Third, the black and blue lines

introduce the effect of covariances. A positive correlation means weaker diversification of total

portfolio risk with respect to network-driven risks; that is, the connectedness index and the

share of network driven variance converge. If assets are negatively correlated, a small difference

among asset variances can lead to a large difference in both measures.

Figure 2: Connectedness Index and The Share of Network Driven Variance

The connectedness framework draws a complete, weighted, and directed network, and within

the framework it is possible to evaluate the distributional properties of different network struc-

tures. To test the network risk model with different network structures I design a numerical ex-

ercise. First, I consider the sparsity of the network. The sparsity, by definition, is trivial in terms

of variance decomposition-based networks because the network structure is complete. However,

I introduce sparsity to the complete variance decomposition-based network via connectedness

weights because connectedness weights indicate the strength of linkages among financial assets.

I prefer not to drop any of the nodes and linkages in order to achieve sparsity; instead, I

allow the directional “to-connectedness” measures to vary keeping the expected system-wide

connectedness constant. Hence, the presence of to-connectedness weights that are almost equal

in all assets of a portfolio signifies that the network structure allows more shock transmis-

sion. Otherwise, a small number of assets can have extremely high directional to-connectedness

weights while a large number of assets receive low to-connectedness shares. This apparently

implies a sparse network structure wherein shocks to low to-connectedness variables are hardly

13



Figure 3: Sparsity in Networks

transmitted to others in the portfolio. To introduce this form of sparsity, I make use of power

distribution, which is routinely used in network studies (Gabaix (2009), Jackson (2010)). In

general, a power distribution with a scale parameter α is used to measure the degree distribution

of networks. I use it to generate heterogeneous to-connectedness weights for different nodes.

Consequently, I do not need to remove the weak linkages. The left panel of Figure 3 shows

that the parameter α determines the shape of the to-connectedness distribution. Where α→ 0,

connectedness weights tends to be equal and the network is denser. In contrast, α→∞ implies

sparser networks in which the to-connectedness weights for many of the nodes shrink towards

zero; then, there are only a few assets which have remarkable to-connectedness weights. As-

suming that all nodes are exposed to equal shocks, and because sparse networks implies weaker

propagation of shocks, the network-driven risk is expected to be lower. To achieve comparable

results, I normalize the connectedness weights by the sum of system-wide connectedness. The

right panel of Figure 3 shows the network risk results for different α values. As α increases,

confirming the prior expectation, network risk goes down. Moreover, the power function im-

poses sparsity in a non-linear fashion as α gets bigger; the network-driven risk, too, goes down

non-linearly.

The network risk model is also able to capture different network structures and explore

their effects on the portfolio risk. Here I examine two well-known network structures, star and

tree networks to be examined2. Star networks (Figure 4(a)), have only a single central node

and N − 1 peripheral nodes are connected to the center node with N − 1 paths. The central

node is a hub, and so shocks to the central node is transmitted to all peripheral nodes. Figure

4(b) illustrates the numerical network risk result as a function of connectedness. The blue line

indicates the benchmark network-driven portfolio risk with one standard deviation shocks. The

red (green) line provides the network-driven portfolio risk when shock size is doubled for the

2See Hojman and Szeidl (2008), Jackson (2010) for detailed information.
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(a) (b)

Figure 4: Network Risk in Star Network

central (a peripheral) node. That result shows that increasing the shock size in the central node

surges the network driven portfolio risk more than in the peripheral node.

A tree network (Figure 5(a)) is a network with no cycles. I define a tree network with a

central node that has four children (child 1), all of whom (child 1) have two children (child 2).

Here, the central node remains the most important in terms of portfolio risk; however, Child 1

is also crucial in terms of portfolio risk because it is locally central. Figure 5(b) shows a similar

numerical result; here large shocks to central node increase the network-driven portfolio risk

more than Child 1 does, Child 1 impacts more than Child 2.

4.2 Connectedness and Factor Structure

In Section 2, I discuss in detail the properties of the Diebold and Yilmaz (2014) connectedness

framework. Notably, the standard DYCI framework does not account for the factor structure

explicitly. As shown by Claeys and Vaš́ıček (2014), who employ a factor augmented VAR model,

if variables are exposed to common shocks, these shocks amplify the connectedness among as-

sets. When the factor structure is not explicitly identified, the connectedness impact of the

common shocks are allocated to pairwise directional connectedness measures. The connected-

ness framework with/without factor structure is useful, when the primary focus of the study

is providing a descriptive analysis of overall connectedness in the financial markets. However,

when network-driven risk is being measured, the model should explicitly account for common

shocks.

The network interpretation of observed/latent factor models is examined intensively in dis-

cussion of neural network models (Kumar et al. (2012), Ravi and Pramodh (2008), O’Farrell

et al. (2005)) and bayesian graphical models (Ahelegbey, 2016) and in the psychometrics liter-
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(a) (b)

Figure 5: Network Risk in Tree Network

ature (Borsboom and Cramer (2013), Epskamp et al. (2016)). Below, I provide a brief intro-

duction to the network interpretation of the factor structure in variance decomposition-based

networks and their use in the network risk model.

I start with a simple factor model to discover the network properties of common effects

assuming that assets are conditionally independent given common factors. In literature, variance

decompositions (or volatility decompositions (Campbell et al., 2001)) is a standard tool used

to analyze the components of the asset and portfolio risk. In the simplest form, the common

shocks are regarded as the common cause of dependence among asset returns. Then, it is

convenient to explore the network properties using causal graphical models that date back to

the conjunctive forks of Reichenbach (1956). Cartwright (1988) defines the conjunctive fork

as a causal diagram in which common causes screen off joint effects; that is, the correlation

among variables disappears given the common causes. In this manner, the factor structure can

be drawn as a graph with N paths (where N is the number of assets) and the relationships

between asset returns can be interpreted as forks. The variance decompositions can be used

to provide a distance metric that indicates the strength of the unilateral linkage from common

factors to asset returns.

The single factor model yields a special case in which the correlation coefficient among single

common factor and asset returns is directly related to the variance decompositions. To show

this property I write a single factor model in regression form such that

Ri,t = αi + βiFt + εi,t

Equivalently, the regression equation can be set to go through the origin
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R̂i,t = βiF̂t + εi (15)

where R̂i,t = Ri,t−µRi and F̂t = Ft−µF . Then, I write down βi explicitly as Cov(R̂i, F̂ )/V ar(F̂ ),

R̂i,t =
σ̂iF
σ̂2
F

R̂Ft + εi (16)

where σ̂iF is the covariance among the asset return i and the single factor. The variance

decomposition for asset i is derived as

σ̂2
i = ρ2

iF σ̂
2
i + σ2

εi or alternatively (17)

σ̂2
εi = (1− ρ2

iF )σ̂2
i (18)

where ρiF is the correlation coefficient between asset returns R̃i,t and F̃t. Because the mean

adjustment in Equation 15 does not change the covariances and correlations, we can replace

hats and tildes. The above equation shows the share of variance that can be accounted for

common and idiosyncratic shocks; the share of common shocks is equal to ρ2
iF while the share of

idiosyncratic shock is (1−ρ2
iF ). The geometric interpretation of the correlation coefficient among

variables (or effects) is widely studied in learning methods, clustering, and network literature

considering its similarity to the distance metrics (Berthold and Höppner, 2016). Jaskowiak

et al. (2013) formulates the inverse relation between correlation and distance. In this manner,

the correlation coefficient can be represented as a measure of the asset’s distance metric to the

common factor when the common factor is hypothetically located at the origin.

Furthermore, it is possible to extend this argument to the factor loadings βi = ρiF
σ̂i
σ̂F

. From a

network perspective, βi can be interpreted as a volatility-adjusted distance metric. Observably,

an asset i with βi = 1 in a single factor model (i.e. capital asset pricing model) does not

necessarily mean that the asset return i is following market returns because of its distance to

the common factor (i.e. ρiF = 1). The ratio of asset and market volatilities can be high and it

can recover the low correlation, pushing the market beta to be equal to 1. On the other hand,

factor loading has a nice feature in single latent factor models, the loading of the single latent

factor (the first principal component) is definitionally equivalent to the eigenvector centrality

in network terminology, as argued in Billio et al. (2017).

Since Ross (1976), most factor models in finance have exploited multiple factors. The

previous results on the network properties of single factor models can be easily generalized

for orthogonal multiple factors; assets live in K (the number of factors) different causal net-

works. When common factors are allowed to be correlated, factor model is still appealing under

the assumption of orthogonality of the common and idiosyncratic components. In this case,

component-wise variance decompositions are available, not to obtain distance metrics, but to

decompose the portfolio covariance matrix.
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4.2.1 Latent and Residual Network Modeling

Epskamp et al. (2016) provide a simple network representation for latent variable models. In

the first step, they discuss well-known latent network modeling (LNM) which relies on the local

independence assumption (Lord et al. (1968), Lazarsfeld and Henry (1968)) and in which the

observed indicators are independent given the latent factors. LNM explores a unique structure

of network interactions among common latent variables (or factors). In the following step, and

taking into account the possible violations of local independence assumption, Epskamp et al.

(2016) allow some degree of correlation among observed indicators after accounting for the effect

of latent factors. In proposing residual network modeling (RNM), they aim to capture pairwise

linear effects among residuals terms. Accounting for residual interactions, they show that RNM

performs better than standard models. Assuming that the factor model is correctly identified,

it does not change the interpretation of latent factors because the factor structure is kept intact;

that is, the model extracts further information about the interaction of variables, which remain

after controlling for the effect of common factors.

Assuming the feedbacks from the variables (or observed indicators) to the factors are blocked,

the connectedness among common factors (visually the top layer) forms a network structure that

takes into account the interactions among common factors; the connectedness among variables

(visually the bottom layer) forms another network structure. Causal relationship among factors

and individual variables are also accounted for by unilateral linkages that run from top layer to

bottom layer of the network. Similarly, the interpretation of the factor structure remains the

same, and the residual network provides additional information and that allows us to estimate

the network-driven risks.

Apparently, the LNM & RNM approach yields a natural component-wise decomposition of

covariance matrix using both the factor loadings and the residual adjacency matrix. I adopt

Epskamp et al. (2016) in order to provide a component-wise decomposition of the portfolio

covariance matrix. Practically, LNM extracts the common component in the covariance matrix

by estimating the factor model in the first step. Using residuals of the estimated factor model,

I estimate vector autoregressions to estimate the connectedness matrix and covariances among

residual terms. Applying approximate covariance decompositions (see Section 4.1.2) to the

covariance matrix of the residuals, I provide further decomposition of the residual covariance

matrix and I obtain network-driven covariances and asset-specific covariance matrix.

The argument on static factor models can be extended to dynamic factor models (DFM)

by taking into account the time dynamics of the factor structure and their dynamic effects on

the variables. As Stock and Watson (2005) have argued, if the model is identified, the impulse

responses and variance decompositions are available; then it is possible to apply connectedness

and network risk analyses enjoying very rich information about the dynamics of the factor

structure and its implications. The estimation of the FAVAR model usually includes exclusion

restrictions that blocks feedbacks from variables to common factors. Bai and Wang (2015)

discusses details of the implications and identification of the DFM. However, providing a proper

identification for a portfolio of asset is not usually straightforward, the connectedness analysis
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and the network risk model in dynamic factor models are reserved for the future work.

4.2.2 Network Risk Model with Factor Structure

To estimate the network risk model, I utilize a multivariate version of a static factor model

that allows dynamic interactions among variables. This model allows measurement of the

network-driven risk together with the common and idiosyncratic components using the variance

decompositions. Borrowing from Ando et al. (2018), I write the standard factor model for N

assets as simultaneous regression equations in the dynamic form as follows

πi,t =
∑
p

∑
j

bij,pπj,t−p + εi,t (19)

εi,t = λ′ift + νi,t νi,t ∼ N(0, ν2
i,t) (20)

whereK is the number of factors, λi is theK×1 vector of factor loadings, ft is theK-dimensional

vector of common factors, p = 1, . . . , P is lag order, and bij,p is the ij-th element of coefficient

matrix B for lag order p. Notably, the idiosyncratic component πIi (see Equation 2) is replaced

by an iid random shock νi,t, while factors and loadings λ′ift address the common component

πSi . Again, if there is nonzero bij for any i, j where i 6= j, then
∑

p

∑
j bij,pπj,t−p corresponds to

the dynamic network effect in the payoff function.

Assuming static and observable exogenous factors, plugging 20 into 19 yields a VARX(p,0)

representation of the factor model with lagged endogenous variables and static exogenous vari-

ables common factors.

πi,t =
∑
p

∑
j

bij,pπj,t−p + λ′ift + νi,t (21)

Equation (21) can be estimated using standard assumptions of vector autoregressions. For-

tunately, variance decomposition in the standard toolbox of VARs is also available to provide a

reasonable solution. As suggested in Diebold and Yilmaz (2014), the variance decompositions

imply a normalized measure of network connectivity, while the decomposition of portfolio covari-

ance matrix according to Equation (21) provides a reasonable means of capturing the network-

driven risk component. Since common shocks are static and exogenous, VARX(p,0) represen-

tation allows RNM to estimate the adjacency matrix via variance decompositions. Moreover,

approximate covariance decompositions are also available; thus, portfolio covariance matrix can

be split into common, network-driven and asset-specific components. In this way, network-

driven risk can be obtained by isolating the network driven covariances.

5 Estimation

The proposed network risk model employs vector autoregressions for asset returns in order to

estimate the connectedness and covariance matrices for a portfolio of assets. I evaluate the

model in two cases. First, exploiting the full-sample information, I apply network risk model
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to S&P-100 stock market portfolio for 107 stocks 3. In this case, I emphasize the portfolio

risk implications of the network risk model. Second, borrowing the global banking dataset

from Demirer et al. (2018) and using rolling window analysis, I discover the systemic risk

implications of the network risk model for a portfolio of international banks. Considering the

heavy computational burden, I drop smaller and low-connected banks (see Demirer et al. (2018))

in the dynamic estimation and I employ 75 banks from 25 countries. The list of assets in both

portfolios is provided in Appendix D. The stock market sample covers the period from the May

2012 to July 2019 and the number of daily observations is 1811. Again, the global banking

portfolio dataset spans a longer period, from September 2003 to December 2013, and consists

of 2676 daily asset returns.

Stock and Watson (2002) show that static/dynamic factors models can be consistently es-

timated using the factors obtained by the principal component analysis, when the number of

variables and time series are both large. In that regard, when estimating the network risk model

with common shocks, I make use of latent factors that are extracted through principal compo-

nent analysis (PCA). Determining the number of static factors using the well-known minimum

average partial method. Following Bai and Ng (2013), I identify the factor structure by em-

ploying the normalization restrictions F′F/T is identity matrix and first block of factor loading

matrix is lower diagonal.

The estimation of network risk model via approximate quantile regressions is discussed

in Section 5.3, Wang and Wang (2016) warn that tail quantiles suffer from high variability

when the sample size is small. I assume that the length of the time series is sufficient for a

full-sample estimation of the stock market portfolio. However, the rolling window analysis of

the global banking system requires sizeable windows in order to deal with small sample size

limitations. Therefore, I select 1000-day overlapping rolling windows to estimate the time-

dynamics of the network risk model duirng the sample period. As noted below in the discussion

of results, this poses a drawback that the impact of large shocks are preserved in connectedness

outcomes throughout rolling windows for those who include the observation from systemic event.

Observably, the bankruptcy of Lehman Brothers had huge impact on the estimation results,

the shock remained in the system for a long period. Therefore, I do not provide the full set

of time-dynamics. Instead, I focus on two episodes of financial market turmoil: a) before and

after the global financial crisis and b) the Fed’s decision to taper QE in 2013. To deal with

long rolling windows, network risk model can be estimated using high-frequency data (For an

elegant application of vector autoregressions to intra-day data see Hotchkiss and Ronen (2002)).

I reserve this issue for future work.

The estimated parameters in vector autoregressions are usually sensitive to the selection of

the lag structure, as argued in Nicholson et al. (2014), and so are the variance decompositions.

Several methods are available in standard toolbox of vector autoregressions to determine the

optimal lag structure of the VAR model (Lütkepohl, 2005). Tiwari and Ludwig (2015) argue

3The dataset consider entry and exit of firms to the stock market index. I exclude the new stocks whose
public trading started later after the beginning of the sample period. I obtain the daily stock market data from
the Bloomberg terminal.
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that the rolling window estimation raises a further concern about the interpretation of the

variation in the lag structure during different periods. The statistical nature of the optimal lag

structure models (as discussed by Tsay (2013)) makes them highly sensitive to the changes in the

data; therefore, the shifts in lag structure for different rolling windows can lead to unidentified

jumps in connectedness especially in extreme events. In these cases, fluctuations in observed

outcomes turn out to be a mixture of effects from both the lag structure shifts and the shocks

to the variables; consequently it is difficult to interpret the connectedness results. To minimize

the impact of window-wise lag selection, I assume a fixed one-lag model which provides stable

results, experimenting higher lag orders do not add much to the estimation results. After

inspecting {5, 10, 15} periods, I select a 10-period forecast horizon, but the results are not

materially different.

5.1 Identification

A reduced form vector autoregression model can easily be estimated using standard estima-

tion techniques. However, recovering uncorrelated structural shocks from usually correlated

reduced form shocks requires a further effort to identify the source of contemporaneous corre-

lation among residuals. To achieve proper impulse responses, additional restrictions should be

considered to sort out the contemporaneous effects among variables. Since publication of the

influential work of Sims (1980), a popular solution has been orthogonalized impulse responses.

When the true ”causal” ordering of the variables is known, orthogonalized impulse responses

utilizes the cholesky decomposition of a positive semidefinite variance-covariance matrix (which

yields a unique lower triangular matrix) to identify the vector autoregressions. In this case,

variance decomposition analysis can be undertaken without prior knowledge on the structural

relationship between the endogeneous variables, except that the causal ordering of variables

must be known. Therefore, an important practical problem emerges when the ordering of vari-

ables is either not known or is not explicit, the network structure estimated via orthogonalized

impulse responses also depends on the ordering of variables.

(Demiralp and Hoover, 2003) argue that there is no consensus about the statistical or em-

pirical basis for the choice of the ordering problem; orthogonalized impulse responses are not

unique in general, and this may lead to unclear/misleading estimation outcomes. Instead,

Klößner and Wagner (2014) suggest an algorithm to search for all possible orderings that can

be applied to the orthogonalized impulse responses. Thus, they provide upper and lower bounds

to variance decompositions. However, their approach becomes costly when large VAR models

are estimated, in which case the number of possible orderings explodes with the number of

assets in the portfolio.

But rather, one can prefer to be more specific on identification problem via explicit assump-

tions on the “structure” of how variables behave and interact to recover uncorrelated shocks

from the residuals. Structural VARs have attracted considerable attention because they enable

researchers devise a behavioural interpretation of the model parameters using theory-driven

explanations that transform the reduced-form model. Structural estimation models usually
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requires setting up a number of structural equations that are founded on certain assumptions.

Researchers sometimes prefer to search alternative identification methods due to lack of suf-

ficient and credible identifying assumptions, including an unreasonable ordering or inadequate

theoretical knowledge. There are two crucial drawbacks to applying both the Choleski and

structural approaches to the network-risk model. First, the aim of this study is to discover

the network of financial assets. Apparently, it is difficult to devise a structural or reasonable

”causal” model that provide an ordering of financial asset returns. Second, the number of fi-

nancial assets in the portfolio sometimes is too large that it causes two problems: the assets

cannot be uniquely ordered; and a structural model is not achievable (e.g. the estimation would

require an unfeasibly large number of structural equations). Therefore, I consider an alternative

strategy.

Let ψoj (n) = ΘhPej be the orthogonalized impulse response of the model (Equation (6)),

where P is a lower triangular matrix obtained by Choleski decomposition of covariance matrix

Σ. As discussed, the ordering of the variables matters because orthogonalized impulse responses

requires a lower-triangular decomposition of the covariance matrix. Alternatively, Koop et al.

(1996) develop ordering invariant impulse responses, generalized impulse responses. They as-

sume that error terms are distributed as multivariate normal and that a shock hits only one

equation at a time. Consequently, the ordering of the variables has no effect on the impulse-

responses. Pesaran and Shin (1998) show that generalized impulse responses yield the same

result as the orthogonalized impulse responses in the first equation under the multivariate nor-

mality assumption.4 This property can be exploited so that, in any linear vector autoregression

model, the estimate of the model is repeated as each equation becomes the first equation in each

loop; then apply the Cholesky decomposition is applied only for the first equation and store the

orthogonalized impulse responses. This identification procedure explicitly allows each variable

to cause all variables in the system to become the first chain of the “causal” model. Thus, we

can see that the generalized impulse responses are far more agnostic than the orthogonalized

impulse responses that one no longer needs to invest much to discover the ordering of variables.

From the economics perspective, this can be seen as a drawback because it disregards the true

causal chain (if such a chain exist); indeed, it can lead to unclear analysis outcomes. However,

as it is true in some cases, when a true causal chain is not achievable and, therefore, a unique

ordering is not deliverable, generalized impulse responses can provide a practical solution to the

identification problem.

5.2 Shrinkage and Selection

Both the DYCI framework and covariance decomposition framework rely on the estimation

of an approximating VAR model. However, because there are a high number of endogenous

variables in the vector autoregression model, it is probably not effective to go ahead with the

classical least squares estimation of the VAR model. To overcome the high dimensionality prob-

4For proof, see Pesaran and Shin (1998). The derivarion and the details of the generalized impulse responses
are discussed in Appendix B.
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lem, constrained estimation methods are employed that achieve proper shrinkage and selection.

Tibshirani (1996) defines least-absolute shrinkage and selection operator (LASSO), which is a

regression method that applies both regularization and selection to solve a constrained convex

optimization problem

β̂ = arg min
β

( N∑
i=1

(
yt −

∑
i

βixit

)2)
subject to

K∑
i=1

|β|q ≤ c

Demirer et al. (2018) introduce the penalized estimation of connectedness that selects and

shrinks the coefficients of the estimated VAR model. They argue that making the estimated

VAR coefficient matrix sparse generally does not lead to incomplete networks owing to the

nonlinear transformation of the coefficient matrix to obtain variance decompositions.

Selection and shrinkage handle the high dimensionality problem, but an interesting issue

emerges when we think a factor model and residual network model together. For instance,

consider Bernanke et al. (2005)’s FAVAR estimation that treats dynamic factors as variables

and imposes no additional restrictions. Yet, one could also argue that the factor structure

applies to each variable in the system and, thus, that the selection and shrinkage of the factor

loadings are not appropriate. Because the Lasso estimator is flexible, one can decide to penalize

particular variables (their coefficients) or not penalize some of them. Then, the optimization

function can be written to take into account the non-penalized factor structure, such as

β̂lasso = arg min
β

( T∑
t=1

(
yt −

∑
i

γift +
∑
i

βixit

)2
+ λ

K∑
i=1

|βi|
)
.

Noticeably, the only the penalized vector of coefficients is associated to variables; factors are

not included in the constraint. Therefore, it ensures that common shocks to affect each of the

variable in the system. In that regard, component-wise decomposition of the covariance matrix

is properly defined.

5.3 Quantile VARs: A Value-at-Risk type of Network Risk Measure

Risk measurement techniques usually focus on the tails of the distribution in order to provide

a statistical measure of expected loss with a given probability. Portfolio risk decomposition

is supposed to consider the impacts of the different size of shocks, especially the larger ones

that are at the tails of the distributions. This approach is also employed in the systemic risk

literature, in tail dependence models (Balla et al., 2014), in copula methods, in the ∆CoV aR

of Adrian and Brunnermeier (2016).

In ordinary least squares regressions, the estimation problem solves, by construction, the

conditional mean estimator. The estimation result is generalized to the entire distribution when

the distribution is assumed to be well-behaved. However, one may be interested in how different
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shock size affect the network structure and covariances. Moreover, quantile regressions are

robust to non-gaussian errors and outliers. Ando et al. (2018), instead of using conditional mean

estimators, consider a methodology that estimates the connectedness via quantile regressions

(Koenker and Bassett Jr, 1978), and to this end they utilize a factor structure to remove cross-

sectional dependence. They show that idiosyncratic credit risk shocks are powerful in tails of

the shock distribution, where the median shocks do not propagate strongly. This evidence is

obviously useful for the network risk model.

The covariance decomposition is straightforward in this case because the connectedness

model of Ando et al. (2018) estimates variance decompositions and the covariance matrix. In

this manner, one can focus on the tails of the distribution, the tail network-driven portfolio risk

is conceptually similar to a value-at-risk (VaR) type of risk measure accounted for the network

effects. The details of the quantile regression approach are provided in Appendix C.

6 Empirical Results

The theoretical properties and implications of the network risk model were introduced in Sec-

tion 4. As stated in that discussion, I evaluate the network risk model in two cases: a) the

portfolio risk implications of the network risk model for a portfolio of 107 S&P -100 stocks; and

b) the systemic risk implications of the network risk model for a portfolio of international banks.

Case 1) Stock Portfolio

In this case, I conduct a full-sample estimation in order to discover the portfolio risk im-

plications of the network risk model. The details of the estimation are examined in Section 5.

To start, I estimate the network risk model with latent factors that rely on conditional mean

estimators. I obtain the portfolio risk measures for random portfolios, which allows the port-

folio size to vary. This analysis emphasizes the role played by network effects in portfolio risk.

I use a grid of [5, 75] to determine the number of assets in the portfolio. For each portfolio

size, I generate 100 different random portfolios and apply the network risk model. Figure 6

indicates the estimation results. Panel (a) shows that the average portfolio risk for random

portfolios decreases, which verify the diversification effect. As the number of assets increases,

total portfolio risk gets closer to the common (or systematic) risk, thus diversifying the asset

specific risks. However, the marginal diversification effect becomes smaller for more than 15

stocks, and it becomes very small for more than 45 stocks. The network risk model enables

additional analysis of the portfolio risk by taking financial networks into account.

Figure 6(b) summarizes the results for network risk model which obtains the shares of

asset-specific and network-driven variances. Larger portfolios are more likely to display high

network-driven variance because a) added assets increase the number of possible linkages among

assets and b) adding more assets enhances the existing network effect (feedbacks generated by

the new assets). Not surprisingly, the share of the network-driven variance grows (in exchange

for the asset-specific variance) as the number of assets in the portfolio increases. Figure 6
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(a) (b)
Note: The estimation employs 100 randomly selected stock portfolios for each size out of 107 stocks. The value of the
portfolio is $1000 and it is equally-weighted. The light areas indicates the 95% confidence intervals.

Figure 6: Portfolio Risk in Network Risk Model - Conditional Mean Estimation

yields results similar to those found in the well-known “robust yet fragile” phenomenon (Gai

and Kapadia (2010), Gai (2013)). Increasing the number of assets in the portfolio leads to a

diversification of asset-specific risks, while at the same time it prompts the overall portfolio risk

approach to the undiversifiable (or systematic) risk component. In contrast, Vivier-Lirimont

(2006) and Battiston et al. (2012) argue that as financial networks become denser, financial

networks can become a destabilizing force that increase fragility by enabling the transmission

and cascade of the financial shocks, especially in bad times. Figure 6 provides the basis for this

discussion employing a portfolio risk approach.

Figure 7: Network Driven Risk by Size and Quantile
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The above result indicates that the share of network risk is lower with respect to asset-

specific variance. To estimate the network and covariance matrices, it employs conditional

mean estimator that accounts only for the average shocks. However, I also analyze the network

effect at different quantiles, especially tail comovement and tail risks. To capture the tail

behaviour of the network risk model, I use the quantile regression approach which leads to a

risk measure analogous to the well-known value-at-risk at different quantiles. Figure 7 shows the

share of network-driven risk for different portfolio sizes when τ = {0.05, 0.25, 0.50}. Fulfilling

the expectations, the share of the network effect increases with τ because connectedness and

portfolio variance go up together towards the tails of the distribution. In the extreme quantiles,

the share of network-driven variance converges immediately to an upper bound as portfolio size

increases. This result verifies the Ando et al. (2018) conclusion that connectedness is higher

at the tails of the distribution. Not surprisingly, the portfolio variance is also large at the

tails, and the combination of both high connectedness and portfolio variance means the share of

network-driven variance surges. This result is important for portfolio risk management because

the relative increase in the network-driven risk at the tails (in exchange for the asset-specific

risks) generates a significant non-diversifiable risk component.

Figure 8, which relies on the quantile estimation of network risk model by using the whole

set of assets in the stock portfolio, provides richer information. First, Panel (a) compares

the (standard system-wide) connectedness index and the share of network-driven variance at

different quantiles. The results indicate an inverse bell-shaped curve for the connectedness

index and the share of the network-driven variance along the quantiles; connectedness and

portfolio variance go up towards the tails, and the conditional median estimator provides the

minimum connectedness and the share of network driven variance. Second, the shapes of the

curves are almost symmetrical; neither measure can tackle the asymmetry in the risk results at

the rightmost and leftmost tails. Third, the share of network-driven variance towards median

shocks is slightly higher than connectedness index. As financial network become denser at the

tails, the differences disappears. This means that the upper and lower bounds (see Figure 2)

narrow down, this implies the share of network-driven variances and system-wide connectedness

measures get closer to each other.

Second, Panel (b) shows the network-driven and asset-specific risk measures in dollar terms

rather than variance shares. Noticeably, this panel differs from the previous one in the respect

that the risk results are not normalized; the panel quantifies the network-driven and asset-

specific components of the portfolio risk. According to my estimation results, network-driven

risk is almost equal to asset-specific risks around the median. Otherwise, network risk is higher

at the tails, it distinguishes the asymmetric left and right tail shocks, which are highly relevant

in both network studies Baruńık et al. (2016) and risk measurement practices. Asset-specific

risk is small at the tails which means that the portfolio risk (after accounting for the common

shocks) is mainly dominated by the network effects. Third, Panel (c) compares the network-

driven and common factor risks. As it is evident in Figure 6, I utilize the percentage changes

from the median to recover the scale difference in common factor and network driven risk .
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The plot draws a similar result for network driven risk. It also shows that the common factor

risk grows more at the tails, however, network-driven risk grows faster than common factor (or

systematic) risk component towards the extremes of the tail distribution.

(a) (b) (c)

Figure 8: The Network Risk Model by Quantiles

Case 2) Global Banking Portfolio

Borrowing the global banking dataset from Demirer et al. (2018), I discover the systemic

risk implications of the network risk model for a portfolio of international banks using rolling

window analysis. The sample covers the period 2003 to 2014. As discussed above, the dynamic

estimation of connectedness model is conducted using 1000-day overlapping rolling windows.

Therefore, the first estimation outcome is provided by the third quarter of 2007, which coincides

with the beginning of the mortgage crisis in U.S. markets. By selecting long rolling windows,

I accept the risk of carrying the effect of large shocks in the system for a long time. Indeed,

estimation results suffer from this issue, indicating that connectedness and network-driven risks

are highly persistent during 2009-2012, or the period after the peak of the global financial crisis.

In this respect, I divide the sample into two parts, which covers the a) global financial crisis and

b) the Fed’s tapering decision. The estimation results provide enough evidence to distinguish

the contribution of the network risk model.

As argued in Glasserman and Young (2016), exposures to the U.S. subprime mortgage

market have not been limited to the traditional mortgage lending; securitization of the mortgage

debt has generated considerable uncertainty about the bank balance sheets. This has become

evident when housing markets were shaken. When default rates on mortgage debt increased, the

expected value of mortgage-backed securities and derivatives also were affected. Claessens et al.

(2010) emphasize on the cross-border spillovers from the U.S. mortgage market to European

banks; considering the U.S. originated mortgage-backed instruments were widely held by banks

in other advanced economies. On the other hand, the Fed’s tapering in recent decade has

signalled the end of the era of super-easy monetary policy. In the years following the global

financial crisis, major central banks pumped large amounts of money to fight the economic

downturn. An unconventional monetary policy tool, large-scale asset purchases (LSAP) are
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usually used by central banks to achieve domestic objectives. However, as Coeuré (2017) points

out, LSAPs in a world of integrated financial markets are likely to have international effects.

Bernanke (2017) and Khatiwada (2017) provide evidence of international spillovers from U.S.

quantitative easing policies to other economies, especially emerging countries. In this respect, I

confidently use these two recent episodes of the financial market turmoil as laboratories to test

the implications of the network risk model for a pool of international banks. Figure 9-10 show

the estimation results for the network risk model estimated for left tail shocks when τ = 0.05.

(a) Global Financial Crisis (b) Fed’s Tapering

Note: Numbers on top of dashed lines indicates important dates: 1) Major banks announces huge losses over
subprime plunge 2) Global stock market tumble on U.S. mortgage fears 3) Collapse of Bear Stearns, 4) Bankruptcy of
Lehman Brothers, 5) Peak of the Cyprus Crisis, 6) Bernanke announces “tapering” 7) Fed surprises markets postponing
the start of tapering

Figure 9: Connectedness Index vs. The Share of Network Driven Risk in Important Dates

Figure 9 compares the connectedness index and the share of network-driven variance (N-

var share). Panel (a) shows that connectedness among banks decreased after the collapse of

Lehman Brothers which is usually referred as the peak of the global financial crisis. This

result contradicts the well-known result that connectedness tends to increase under financial

distress (e.g. Demirer et al. (2018)). Thus, it is important to observe, as noted above, that

the network risk model also utilize the static latent factor model, as the details are discussed

earlier. Therefore, the results shown in Figure 9 are the “de-factorised” connectedness measures,

as defined by Claeys and Vaš́ıček (2014), that analyzes the network effect after accounting for

the common shocks. Then, it is possible to observe that connectedness and the share of network

driven variance may go down when common shocks capture a greater share of covariation among

asset returns during systemic events. In these cases, as an unscaled measure, network driven

risk is still effective to verify the increasing network effects which is provided in Figure 10.

As claimed earlier, as an average measure of pairwise directional connectedness, the con-

nectedness index draws a smoother pattern with respect to N-Var Share. Moreover, as evident

in Figure (9), it fails to distinguish the impact of some important events The equivalence of
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connectedness and the N-Var share is broken in many cases. Usually this occurs when the N-Var

share is pushed up, which indicates that high connected assets are, on average, the riskier ones.

Clearly, the estimated N-Var share is more volatile than connectedness index because it utilizes

richer information embedded in the covariance matrix.

(a) Global Financial Crisis (b) Fed’s Tapering

Note: Numbers on top of dashed lines indicates important dates: 1) Major banks announces huge losses over
subprime plunge 2) Global stock market tumble on U.S. mortgage fears 3) Collapse of Bear Stearns, 4) Bankruptcy of
Lehman Brothers, 5) Peak of the Cyprus Crisis, 6) Bernanke announces “tapering” 7) Fed surprises markets postponing
the start of tapering

Figure 10: Network Driven Risk in Important Dates

In Figure (10), I provide the network risk outcome rather than indices. In contrast to Figure

(9), it quantifies the network-driven risk in nominal terms. As an “unscaled” network measure,

it does not rely on the proportions; instead, it calculates the network-driven portfolio risk. In

that regard, either the connectedness index or the share of network-driven variance goes down

because of normalization; as can be observed in Figure (10), network-driven risk goes up. I also

include the network-driven risks for the conditional mean and conditional median estimators,

which are clearly lower than tail risks. Furthermore, tail shocks are likely to generate a more

responsive network risk measure because conditional covariances is also affected more at the

tails.

7 Conclusion

Extending the DYCI methodology, and on the basis of forecast error covariance decompositions,

this study derives the network risk model for a portfolio of assets. As a first step towards the

derivation of the network risk model, I propose the approximate covariance decompositions

to obtain network-driven portfolio variance. Unlike the “natural” covariance decompositions,

approximate covariance decomposition ensures the positive semi-definiteness of the covariance

matrix . Simulation and estimation results show that the network risk model can identify large
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differences among asset variances when it aggregates the pairwise directional connectedness

measures.

In addition, the proposed model uses static latent factors to take into account common

shocks. Relying on the latent and residual network modeling of Epskamp et al. (2016), I show

that a common factor model can be estimated to obtain both the variance and the covariance

decompositions that enable the component-wise decomposition of portfolio variance. Incor-

porating the factor structure into the network risk model yields a property quite similar to

the well-known “robust yet fragile” phenomenon: Although large portfolios are assumed to be

well-diversified, they are more likely to display higher network driven risks.

Finally, the proposed network risk model is estimated for different shock sizes using quantile

regressions. Results show that unlike the quantile estimation of the connectedness model, the

network risk model can differentiate even small shocks at both tails because it also takes into

account the information available at the covariance matrix.

There are many ways to improve the proposed network risk model. As noted above, the

model does not consider the time dynamics of the common factors; it simply assumes static

and exogenous common shocks. The dynamic factor models and hierarchical factor models of

(Moench et al., 2013) can be used to describe the different aspects of a network risk model that

utilizes different factor structures. Moreover, in our framework, the identification of the network

risk model relies on the generalized variance decompositions of Koop et al. (1996). However

recent studies (e.g. Bettendorf and Heinlein (2019), Scidá (2017)), favor data-driven identifi-

cation methods that provide a statistical basis for the ordering problem and for the structural

vector autoregressions. In any case, these new methods could improve connectedness analysis.

Finally, while the network risk model penalizes only the coefficient matrix in high dimensional

settings, sparse estimates of the covariance matrix could be obtained. This methodological issue

is relevant to extension of the proposed network risk model because the derivation of the model

depends critically on the covariance matrix and covariance decomposition.
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Coeuré, Benoit (2017), “The International Dimension of the ECB’s Asset Purchase Pro-

gramme,” Tech. rep., Speech at the Foreign Exchange Contact Group Meeting, July 11,

Frankfurt, Germany.

Demiralp, Selva and Kevin D Hoover (2003), “Searching for the causal structure of a vector

autoregression,” Oxford Bulletin of Economics and statistics, 65, 745–767.

Demirer, Mert, Francis X Diebold, Laura Liu, and Kamil Yilmaz (2018), “Estimating global

bank network connectedness,” Journal of Applied Econometrics, 33, 1–15.

Diebold, F.X. and K. Yilmaz (2014), “On the Network Topology of Variance Decompositions:

Measuring the Connectedness of Financial Firms,” Journal of Econometrics, Forthcoming.

32



Epskamp, Sacha, Mijke Rhemtulla, and Denny Borsboom (2016), “Generalized Network Psy-

chometrics: Combining Network and Latent Variable Models,” Psychometrika, 82.

Gabaix, Xavier (2009), “Power laws in economics and finance,” Annu. Rev. Econ., 1, 255–294.

Gai, Prasanna (2013), Systemic risk: the dynamics of modern financial systems, OUP Oxford.

Gai, Prasanna and Sujit Kapadia (2010), “Contagion in financial networks,” Proceedings of the

Royal Society A: Mathematical, Physical and Engineering Sciences, 466, 2401–2423.

Glasserman, Paul and H Peyton Young (2016), “Contagion in financial networks,” Journal of

Economic Literature, 54, 779–831.

Goto, S. and R. I. Volkanov (2002), “The Fed?s Effect on Excess Returns and Inflation is Much

Bigger Than You Think,” Texas Finance Festival.

Hojman, Daniel A. and Adam Szeidl (2008), “Core and periphery in networks,” Journal of

Economic Theory , 139, 295 – 309.

Hotchkiss, Edith S and Tavy Ronen (2002), “The informational efficiency of the corporate bond

market: An intraday analysis,” The Review of Financial Studies, 15, 1325–1354.

Jackson, Matthew O (2010), Social and economic networks, Princeton university press.

Jaskowiak, Pablo A, Ricardo JGB Campello, and Ivan G Costa Filho (2013), “Proximity mea-

sures for clustering gene expression microarray data: a validation methodology and a com-

parative analysis,” IEEE/ACM Transactions on Computational Biology and Bioinformatics

(TCBB), 10, 845–857.

Joo, Sangyong (2000), “Stock returns and inflation: a covariance decomposition,” Applied Eco-

nomics Letters, 7, 233–237.

Khatiwada, Sameer (2017), “Quantitative easing by the fed and international capital flows,”

Tech. rep., Graduate Institute of International and Development Studies Working Paper.
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Appendices

A Covariance Decompositions

Previously, I discussed the network properties of asset pricing models with/without factors, the

question of how portfolio risk decomposition is not answered yet. Obviously, the implications

of variance decomposition based networks is limited in the analysis of portfolio risk, since the

portfolio risk is more than asset return variances, the covariance among asset returns is crucial

for the purpose of diversification and risk management.

In standard applications of factor models, the residuals of the factor model are assumed to be

uncorrelated in multivariate analysis of asset returns, decomposing covariance matrix is pretty

straightforward, asset return variance is a weighted sum of the systematic and idiosyncratic

variances that the weights are closely related to the variable’s closeness to the factor structure

as discussed earlier. In this case, there is no need to decompose the covariances, since the

error covariance matrix is assumed to be diagonal, the covariances are only generated by the

systematic component. I have earlier discussed the covariance among asset returns can be

different than zero when there exist direct linkages among assets, even if the factor structure is

absent or is not able to capture the effect of network linkages on portfolio risks. Therefore, the

covariances are not only provided by the systematic component, yet the linkages among assets

also let the residual returns to be correlated.

For simplicity, I assume the factor structure is independent of the error terms, therefore I

can estimate it in standard VAR framework. It could easily be extended to the exact factor

models, extending it to the approximate factor models requires the adoption of further identi-

fication strategies in DFM, which is one of the directions for the future researches, except for

FAVAR estimation of Bernanke et al. (2005) and Claeys and Vaš́ıček (2014), the covariance

decomposition framework is easily applicable in this case.

Data-Generating Process and Forecast Errors

Consider an N-dimensional covariance stationary data-generating process with orthogonal shocks

wt:

yt = Θ(L)wt, Θ(L) = Θ0 + Θ1 + Θ2 + . . . , E(wtw
′
t) = I (A.1)

with Θi for i = 1, 2, 3, . . . are each N ×N coefficient matrices, Θ(L) is the lag-polynomial.

The error of the optimal h-step forecast is the difference between actual value yt+h and optimal

h-step forecast yt(h):

yt+h − yt(h) =
h−1∑
i=0

Θiwt+h−i.

Explicitly, we can write optimal h-step forecast error of j-th component of yt such as
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yj,t+h − yj,t(h) =

h−1∑
i=0

(θj1,iw1,t+h−i + · · ·+ θjK,iwK,t+h−i)

where θji,i are the elements of ji-th element of Θi. Equivalently, we can rewrite optimal

h-step forecast error of j-th component of yt by summing up the innovations over each variable

n where n = 1, 2, . . . , N

yj,t+h − yj,t(h) =
N∑
n=1

(θjn,0wn,t+h + · · ·+ θjn,h−1wn,t+1).

Since the wn,t’s are assumed to be uncorrelated and have unit variances, the mean-squared

error (MSE) of yj,t+h is

E(yj,t+h − yj,t(h))2 =

N∑
n=1

(θ2
jn,0 + · · ·+ θ2

jn,h−1) (A.2)

This analysis is often called innovation accounting which accumulates the effect of individual

innovations to variance of a particular variable. (Lütkepohl, 2005)

Forecast Error Variance and Covariance Decompositions

Equation (A.2) can arbitrarily be rewritten as

E(yj,t+h − yj,t(h))2 =
h−1∑
i=0

θ2
jj,i +

h−1∑
i=0

N∑
n=1;j 6=n

(θ2
jn,i) (A.3)

First term on the right-hand side (RHS) corresponds to the contribution of innovations in

variable j and second term stands for the contribution of innovations in variables other than

j to forecast error variance of the h-step forecast of variable j. Variance decompositions are

obtained by dividing RHS to MSE[yj,t(h)]∑h−1
i=0 θ

2
jj,i

MSE[yj,t(h)]︸ ︷︷ ︸
Own Contribution

+

∑h−1
i=0

∑N
n=1;j 6=n(θ2

jn,i)

MSE[yj,t(h)]︸ ︷︷ ︸
Contribution of Others

(A.4)

We can also show individual contributions using Equation (A.3). The innovations in variable

n contributes to h-step forecast error variance of variable j by

θ2
jn,0 + · · ·+ θ2

jn,h−1 =

h−1∑
i=0

θ2
jn,i (A.5)

We also rewrite the MSE of the j-th component as follows

MSE[yj,t(h)] =
h−1∑
i=0

N∑
n=1

θ2
jn,i (A.6)
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Dividing (A.5) to (A.6) gives

ωjn,h =

h−1∑
i=0

θ2
jn,i/

h−1∑
i=0

N∑
n=1

θ2
jn,i (A.7)

is the proportion of the h-step forecast error variance of variable j, accounted for by wnt

innovations.

How to Decompose Covariances

Joo (2000) and Goto and Volkanov (2002) proposes covariance decompositions as a “natural”

extension of variance decomposition analysis, instead of accumulating only the squared shocks,

they also consider the accumulation of the cross-multiplied shocks which can be defined as

forecast error covariances. Noticably, variance decompositions provides N × N matrix that

indicates the contribution of each N variables to N different variances, covariance decomposition

gives an N ×N ×N dimensional array providing the contribution of N variable to N2 variances

and covariances. However, extending the variance decompositions to covariance decompositions

is not feasible in most of the cases. To see this, recall Equation (A.5) in matrix form which

gives contribution of innovations in variable n to h-step forecast error variance of variable j,

h−1∑
i=0

(e
′
jΘien)2

where ej is the j-th column of N × N identity matrix, IN . In order to obtain covariances

among m and j, instead of taking squares of (e
′
jΘien) terms, multiply the (e

′
mΘien) and (e

′
jΘien)

terms.

h−1∑
i=0

(e
′
mΘien)(e

′
jΘien) (A.8)

Consider the special case, m = j. It is simply equal to variance decomposition. For this

reason, it is convenient to think covariance decomposition as a generalization of variance decom-

positions. Equation (A.8) gives the contribution of innovations in variable n to h-step forecast

error covariance of variable m and j. Now, think MSE as covariance matrix, the mj-th and

jm-th component of MSE matrix is given as

σmj = σjm =

h−1∑
i=0

N∑
n=1

θmn,iθjn,i =

h−1∑
i=0

N∑
n=1

θjn,iθmn,i (A.9)

Analogous to variance decompositions, both Joo (2000) and Goto and Volkanov (2002)

defines covariance decomposition as

ωmj,n,h =

∑h−1
i=0 (e

′
mΘien)(e

′
jΘien)

MSEmj,t(h)
(A.10)

However, there are two important drawbacks. First, if any pair of θjn,i and θmn,i has opposite
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signs, their interactions will be negative. Positive and negative terms in MSEmj,t(h) cancel out

each other, then it is no longer an appropriate denominator that ω ∈ [0, 1] is not guaranteed. On

the other hand, since we are interested in covariances, it may be preferred to obtain covariances

directly instead of having the ωs. This eliminates first drawback for sure, however, it still fails

to satisfy one of the basic assumptions of covariance matrix, positive semi-definiteness. To see

this, modify the Equation (A.9) and write it explicitly such as

h−1∑
i=0

(θjj,iθmj,i + θmm,iθjm,i) +
h−1∑
i=0

N∑
n=1
j 6=n
m 6=n

(θjn,iθmn,i). (A.11)

It should be noted that symmetry property of the covariance matrix is satisfied in Equation

(A.11). This equation fails to guarantee positive semi-definiteness of covariance matrix since it

arbitrarily splits variance-covariance matrix into two pieces in which both are not needed to be

positive semi-definite.

A.0.1 Approximate Covariance Decomposition via Variance Decomposition

Previously, I showed “natural” expansion of variance decompositions to decompose covariances

fails to provide feasible solution to our problem. Instead, I propose an approximate covariance

decomposition which relies on the information from variance decompositions. To isolate the

network-driven variance and covariances from covariance matrix, I follow a two-step procedure

which satisfies the symmetry and positive semi-definiteness properties. Procedure relies on basic

variance and covariance properties,

V ar(aX + b) = a2V ar(X)

Cov(aX + b, cY + d) = acCov(X,Y )

As variance decomposition delivers proportion of the h-step forecast error variance of variable

j, accounted for by wnt innovations, we easily apply backward-engineering to variance equation

to procure a2 and c2. Recall Equation (A.11) such as∑h−1
i=0 θ

2
jj,i

MSE[yj,t(h)]︸ ︷︷ ︸
Own Contribution

+

∑h−1
i=0

∑N
n=1;j 6=n(θ2

jn,i)

MSE[yj,t(h)]︸ ︷︷ ︸
Contribution of Others

Second term represents contribution of innovations in variables other than j to forecast

error variance of the h-step forecast of variable j. Let us call that term d2
o,j∑h−1

i=0

∑N
n=1;j 6=n(θ2

jn,i)

MSE[yj,t(h)]︸ ︷︷ ︸
Contribution of Others

= d2
o,j

Since variance decompositions provides the portion of variance contributed by others, a2 or
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c2 can be replaced with d2
o,j in variance equation. In matrix form, we proceed as follows. We

form a diagonal matrix of “contribution of others”, D2
o , which locates the share of contribution

of others to variance of a particular variable.

D2
o =


d2
o,1 0 . . . 0

0 d2
o,2 . . . 0

...
...

. . .
...

0 0 . . . d2
o,N


Owing to the fact that d2

o,j ≥ 0 for all j and it is diagonal matrix, we can take square root of

D2
o . In order to ensure the positive semi-definiteness of the resulting covariance matrix the do,is

are assumed to be greater than or equal to zero, do,i ≥ 0 . In order to weight covariance matrix

in the next step, we pre- and post-multiply the covariance matrix with the squared matrices.
do,1 . . . 0

...
. . .

...

0 . . . do,N



σ11 . . . σ1K

...
. . .

...

σK1 . . . σKK



do,1 . . . 0

...
. . .

...

0 . . . do,K


Then positive semi-definite network-driven covariance matrix is

Σnd =



a2V ar(X)︷ ︸︸ ︷
σ11d

2
o,1

acCov(X,Y )︷ ︸︸ ︷
σ12do,1do,2 . . . σ1Kdo,1do,K

σ21do,2do,1 σ22d
2
o,2 . . . σ2Kdo,2do,K

...
...

. . .
...

σK1do,Kdo,1 σK2do,Kdo,2 . . . σKKd
2
o,K


(A.12)

B Generalized Variance Decompositions

Building on Koop et al. (1996), Pesaran and Shin (1998) proposes an agnostic approach to

the identification problem which the estimated impulse responses are invariant to the order

of variables. Recall the time series model in Equation A.1 with a covariance matrix Σ (not

necessarily an identity matrix)

yt =
∞∑
l=0

Θlwt−l, E(wtw
′
t) = Σ

where Θl is K × K coefficient matrices, wt−l is K × 1 zero mean iid random shock with

covariance matrix Σ. An impulse response function for yt of the j-th shock is formally interpreted

as
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IRF (h, δj ,Ωt−1) = E[yt+h|wj,t = δj , wk 6=j,t = 0, wt+1 = 0, . . . , wt+h = 0,Ωt−1]

−E[yt+h|wt = 0, wt+1 = 0, . . . , wt+h = 0,Ωt−1]

where h is the forecast horizon, δj is the shock size hitting the j-th variable, Ωt−1 is the

information set that is used to forecast yt. Noticably, realization of yt+h is dependent to both

Ωt−1 and {wt, . . . , wt+h}. As Koop et al. (1996) called, traditional impulse responses measures

the difference of expectations of two realizations of yi,t+h. The first one is the realization of

yt+h when j-th variable is hit by a shock of size δj at time t and the rest of the shocks hitting

other variables are assumed to be zero along time t and t+ h. The second realization assumes

no shocks hitting the system during t, . . . , t+ h. In this setting, the impulse response function

can be thought as an experiment to discover the dynamic effect of a shock hitting a particular

variable at a particular time compared to the control, outcome of the baseline model assuming

no shock hitting the system.

Identification problem takes place at this particular stage of the analysis. If reduced-form

shocks are correlated, then any data generating process will fail to produce an outcome wj,t = δj

while wk 6=j,t = 0, causing the experiment to be infeasible. As discussed above, from Choleksi-

type of identification to the structural models relying on economic theory attempts to set this

kind of experiment to find out the particular impact of a particular variable in the system. As a

solution, Koop et al. (1996) defines the generalized impulse response function condition on the

non-decreasing information set Ωt−1

GIRFij(h, δj ,Ωt−1) = E[yt+h|wj,t = δj ,Ωt−1]− E[yt+h|Ωt−1]

Assuming that wt is distributed as multivariate normal, we obtain (see also Koop et al.

(1996) and Pesaran and Shin (1998))

E(wt|wjt = δj) = (σ1j , σ2j , . . . , σKj)
′σ−1
jj δj = Σejσ

−1
jj δj

where ej is a selection vector with one on the j-th entry and zeros elsewhere. Therefore,

the generalized impulse response of the effect of a shock to the j-th equation at time t on yt+h

is

(ΘhΣej√
σjj

)( δj√
σjj

)
The remaining step is scaling the impulse response function defining a shock size equal to

one standard deviation for j-th variable that eliminates the latter parenthesis from the last

equation. We end up with the generalized impulse response function for variable j as follows

ψgj (h) = σ
− 1

2
jj ΘhΣej

Now, we can discuss the differences between generalized and orthogonalized impulse re-
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sponse functions. For comparison purposes, we can simply obtain orthogonalized impulse re-

sponse, ψoj (n) = ΘhPej where P is an m × m lower triangular matrix obtained by Choleski

decomposition of covariance matrix Σ. Apparently, orthogonalized impulse responses requires

a lower-triangular decomposition of covariance matrix, the ordering of the variables matters.

However, in generalized impulse responses, assuming error terms are distributed as multivariate

normal, we define a shock hitting only one equation at a time, then the ordering does not change

anything. On the other hand, Pesaran and Shin (1998) shows generalized impulse responses

yields the same result with the orthogonalized impulse responses in the first equation under

the multivariate normality assumption. (For proof, see Pesaran and Shin (1998)) This property

can be exploited in a way that, for any linear vector autoregression model, estimate the model

repeatedly as each equation becomes the first equation in each loop, then apply the Cholesky

decomposition to select and store the orthogonalized impulse responses for the first equation.

This identification procedure explicitly allow each variable to cause all variables in the system,

to become the first chain of the “causal” model. In that regard, we can see the generalized

impulse responses far more agnostic than the orthogonalized impulse responses, you do not

spend your time to find out the ordering of variables. From the economics perspective, this may

be seen as a drawback that disregarding the true causal chain, if there exists one, can lead to

unclear analysis outcomes. However, as it is in some cases, when there is no true causal chain

is achievable and therefore a unique ordering is non-deliverable, generalized impulse responses

can provide a practical solution to the ordering problem.

One interesting issue arises when we proceed to generalized variance decompositions from

generalized impulse responses. Koop et al. (1996) defines the ij-th element of h-step generalized

variance decomposition matrix as

Dg
ij(h) =

σ−1
jj

∑H−1
h=0 (e′iΘhΣej)

2∑H−1
h=0 (e′iΘhΣΘ′hej)

where e′i is similar to the ej is a K × 1 vector that i-th element is equal to one and else

are zero. Since the shocks in generalized impulse responses are not necessarily orthogonal, row

sums of Dg do not sum up to unity. This requires additional effort to rescale the rows to

provide a convenient network representation. Diebold and Yilmaz (2014) normalizes the row

sums to scale the variance decompositions. They prefer to use D̃g as adjacency matrix where

D̃g
ij =

Dg
ij∑N

j=1D
g
ij

.

C Quantile VARs

Ando et al. (2018) introduces the studies the quantile connectedness, technically the quantile

vector autoregressions for the estimation of connectedness in order to account for the different

size of idiosyncratic shocks. They adopt equation-by-equation approach to estimate the quantile

VARs of cross-sectionally correlated residuals proposed by Cecchetti and Li (2008) and Schüler

(2014). They, similar to the Epskamp et al. (2016), focuses on the residual network after
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isolating the impact of common shocks.

First, assuming a factor VAR(p) model

yt = µ+

p∑
j=1

Φjyt−j + Λft + νt (A.13)

where ft is the k dimensional vector of common factors are observed or latent at time t, Λ

is the N × k factor loading matrix, νt is the N ×T error terms, Φj is the coefficient matrix and

µ contains the intercept terms.

They rewrite the Equation A.13 in quantile factor model (QFVAR) form evaluated at τth

conditional quantile such as

yt = µ(τ) +

p∑
j=1

Φj(τ)yt−j + Λ(τ)ft + νt(τ) (A.14)

Then, following Koenker and Xiao (2006) keeping the lag order as fixed across quantiles,

they obtain the parameter estimates minimizing the function

min
β
′
i(τ)

T∑
t=1

ξτ
(
yit − β

′

i(τ)zt
)

(A.15)

where the β
′

i(τ)zt is the compact form of right-hand side of the Equation A.14 with zt is

an (Np + k + 1) × 1 is the vector vector of regressors at time t, β
′

i(τ) is the corresponding

coefficient matrix evaluated at τ -th conditional quantile, ξτ (z) is the check loss function defined

as ξτ (z) = z(τ−1[z≤0]) following Koenker and Hallock (2001). Once the parameters of the VAR

model is done, the remaining procedure is similar to the usual Diebold and Yilmaz (2014), in

order to extract the network structure of financial assets evaluated with different conditional

quantiles. In order to see the estimation details, check Ando et al. (2018).
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Table 3: Stock Market Portfolio - Companies
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