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Abstract 
In this paper we try to put together both the dynamics of the 
endogenous evolution of an industry and the corresponding dynamics 
on the capital market. The first module of our modelling efforts is the 
endogenous evolution of the industry based on the micro-behaviour of 
boundedly rational agents. They strive to undertake entrepreneurial 
actions and found new firms. Thereby, the role of knowledge diffusion 
is emphasized. The second module, the capital market module, will 
also be represented by boundedly rational agents. They read the data 
of the real side of the economy – induced by the real economy module 
– interact with other investors and eventually derive their investment 
decisions. The cognitive process will be modelled using a neural 
network approach. 
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1. Introduction 

Schumpeterian dynamics focus on the pattern of growth and structural change in capitalistic 

economies. Its main emphasis is put on the disruptive effects of innovation on the real 

economy. In this context the role of the financial sphere is often only touched or even 

neglected. However, financial markets do have a crucial and reinforcing effect on the 

dynamics of the real economy and vice versa. 

 

The aim of our paper is to merge the Schumpeterian dynamics, occurring in the real sphere of 

a high technology sector, such as ICT, with the financial dynamics, characterizing the 

corresponding capital or stock market. Contrary to Perez (2003), who systemized the link 

between both sides in a more descriptive and historical perspective, we try to develop a 

general theoretical analysis, using two modules of modelling. 

 

In order to represent the real economy, we construct a model of entrepreneurship and 

industrial dynamics, whose main features have been developed by Grebel/Pyka/Hanusch 

(2003) and Grebel (2004). The real economy is represented by an entrepreneurial economy. 

New firms drive the innovation dynamics within a new technology sector. The dynamics 

show the stylized facts of an industry life cycle which will feed back into the capital market 

module. The information relevant for investment decisions come from the three layers of the 

industrial dynamics model: the performance of individual firms, the market structure and the 

macroeconomic evolution.  

 

The capital market module derives from Kugler/Sommer/Hanusch (1996). An artificial capital 

market, modelled via a neural network (e.g. Zimmermann, 1994), will reflect the investment 

behaviour of heterogeneous, bounded rational actors (investors). They differ in their cognitive 

capabilities and have to make a choice (Arrow, 1964) between secure investments and shares 

of companies working in a new, innovative high technology market, such as the ICT sector.  

Because of the lack of experience and information (Ohlson, 1987) in new markets, investors 

cannot calculate present values of firms’ future cash flows. Instead, investors have to appraise 

a firm’s competitiveness and prospects under true uncertainty (Knight, 1921). The more, 

decisions will be contingent to the investors’ interaction and learning process influenced by 

their psychology (Kahneman/Tversky, 1979; Tversky/Kahneman, 1992). Thus, the 

behavioural dynamics of investors, the way they collect and process information, the way they 
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react to changing situations on the market making final decisions is incorporated into the 

model. 

 

The two modules will be brought together in a simulation study; yet, this work is still in 

progress. In this way, we could manage to combine the dynamic evolution of an innovation-

driven real economy and financial markets taking into account feedback effects. As a result, 

investors’ behaviour is put into a dynamic context of an industry life cycle. The modular 

design of our framework will allow investigating several scenarios of different types of 

investors such as sophisticated versus naive investors, etc. Conclusively, we will shed some 

light on the psychological aspects of investment behaviour, illustrated as an interactive 

process of heterogeneous agents and inducing the phenomenon of euphoric stock market 

phases. 

2. The Dynamic Model of the Real Economy 

2.1 Heterogeneous Actors 

To represent the real economy we draw on Grebel/Pyka/Hanusch (2003) and Grebel (2004). It 

is a micro-based simulation study which considers boundedly rational agents that strive to 

found a firm subject to various economic aspects. Actors are heterogeneous in their 

endowments. Each actor is characterized by a certain amount of resources such as financial 

funds,  (financial funds component of individual i at time t), their individual cumulated 

human capital, cc  (capability component of individual i at time t), and a psychological 

profile which may boost or inhibit entrepreneneurial behaviour, ec  (entrepreneurial 

component of individual i at time t), respectiviely, i.e. it decides over an individual’s 

propensity to entrepreneurial actions. Consequently, the actor looks as the following: 

itfc

it

it

 

{ }{ }itititiit fcccecwa ,,,=  

Knowledge Diffusion 

The additional component w in the vector a  describing the actor denotes new knowledge 

about a new technology. For simplicity, it is a dichotomous variable taking values 1 or 0 

saying that the individual either knows the functioning of the new technology thinking to be 

able to use the new technology to found a new firm, or that the individual just does not know 

it it
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how to use the new technology.1 The diffusion of knowledge is a time-consuming process 

which has a crucial influence on the endogenous evolution of an industry: the faster the 

diffusion of knowledge the higher expectations may be in terms of economic prospects; since 

only few firms will be found at an early stage, and the market still is in an emerging phase. 

With a slow rate of knowledge diffusion firms will be formed gradually step by step without 

the possibility of bandwagon effects occurring. To model the diffusion of new technological 

knowledge, the actors are arranged on a Torus. Doing this, each actor has the same number of 

neighbours to interact with. Via individual interaction the knowledge will be transmitted 

through the society, whereby the rate of diffusion is determined by the actors’ absorptive 

capacities. 

The Networking Process 

While the process of knowledge diffusion goes on, the actors activated, those who know 

about and how to use the new technology, think of forming a firm. Besides a self-evaluation 

of whether he is capable of running a business or not, the social network plays an important 

role. In case the individual happens to meet the “right people”, people who he thinks to be 

adequate and willing to support a new business venture, the actual decision to found a firm is 

more likely to be made.2 The networking process is modelled via a random permutation 

process taking into account the uncertainty in finding adequate co-founders. 

The Founding Threshold 

As a third aspect in the entrepreneurial founding decision a macro-economic aspect has to be 

considered, too. The economic opportunities of a new technology’s potential have to be 

evaluated by the actors. This is what we call market sentiment in general. Actors interpret the 

empirical data of a new emerging market. High growth rates, return on sales, the entry rate of 

new firms, and the number of exits that have occurred up to a certain point in time. The more 

positively those data is read, the lower the psychological barrier is to found a firm. 

Furthermore, the founding threshold represents the micro-macro feedback effects within the 

model. Actors behave according to the market data as well as they influence the market data 

by their entrepreneurial actions. 

                                                      
1 As an example one may think of someone who becomes acquainted with new information and communication 

technologies (ICT) and thinks of forming an E-commerce business. 
2 As an empirical fact, there is more than just one individual involved in a firm-founding process.  
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The Firm 

The firm consists of the total endowments (financial funds, capabilities, etc.) actors bring into 

the firm. Since all actors are boundedly rational, it is very unlikely that an optimal 

composition of a firm’s endowment is formed. This is the outcome of the entrepreneurial 

decision-making process. The relative fitness on the market is determined by the balance of a 

firm’s endowment. A lack of competencies, of knowing the business, in managerial skills, etc. 

might not be compensated by financial funds. The start-up firm can be ill-chosen in size, 

whereby a solid, sustainable growth of a firm might be a better strategy.  

Technically, a firm’s competitiveness is derived from the endowments actors incorporated 

into the firm. The selection process, which drives the dynamics of the market and the industry 

in a broader sense, is implemented in the model by using a heterogeneous oligopoly, which 

especially takes into account the heterogeneity of firms. 

Simulation Results 

The simulation runs show specific patterns in the endogenous evolution of an industry. 

Figure 1 shows two scenarios of an industry’s evolution subject to different rates of 

knowledge diffusion. Total sales of the industry draw a sigmoid shape. This holds for both 

scenarios. In the fast diffusion case, the number of firms on the market is overshooting, and, 

after a shake-out phase, remains at a certain level. The diagrams at the bottom depict the 

founding threshold, i.e. the market sentiment, the mental barrier of actors who found a firm. 

And again, we observe euphoric (fast diffusion) and less euphoric (slow diffusion) market 

sentiment. 
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Figure 1: Simulation results of the endogenous evolution of an industry considering 

(a) fast knowledge diffusion           and        (b) slow knowledge diffusion. 
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Aside from the aggregate data, this model also delivers firm specific data such as sales, profits, 

and relative competitiveness (determined by the firms balance in endowments), etc.3  

 

In a further step, the data output of this model will serve as input data feeding into the neural 

network model, which will be explained in the following. 

Figure 2 shows the basic arrangement of the two interacting modules. Module I generates data 

by the endogenous evolution of an industry. Module II reads in this data in order to build the 

capital market onto the real economy module. Although this definitely is an interactive 

process between both modules, we confine ourselves to a one-way influence from the real 

economy onto the financial market neglecting repercussions from the financial market onto 

the real economy.4 
                                                      
3 Details can be found in Grebel (2004) and Grebel/Pyka/Hanusch (2003). 
4 Certainly, to make the link between the real economy and the capital market requires a going public process. 

But for simplicity, we will not discuss this aspect, here. 
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Figure 2: The two modules put together. 
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3. The Capital Market 

For a first step, we use a simply version of a neural network approach to trace the behaviour 

of boundedly rational investors. Sommer (1999) develops such a portfolio model expanding 

the state preference approach from Arrow (1953). Arrow describes the decision-making 

process of an individual who decides over current, certain consumption and the uncertain 

return of a portfolio investment. Thereby, the investor maximizes the utility of current 

consumption and the utility of the expected state-dependent pay-off of the portfolio subject to 

budget constraints. Sommer transforms Arrow’s approach into an n-period model applying 

subjective probabilities (Savage, 1954) in order to describe the formation of expectations. 

Thereby the resulting market sentiment feeds back into the decisions-making process of 

investors. 

 

3.1. The neural network approach 

The basic idea of the neural network (module II) is depicted in figure 3. As figure 3 shows, 

each agent i for i = {1,…, n} is represented by a multi-layer perceptron (MLP). The 

information layer perceives the incoming information such as information about the 

performance of firms (growth rates in sales and profit, quality index, firm survival, etc.) but it 

also considers meso (entry/exit of firms, sector return on sales) and macro data (interest rates, 

state in business cycle, institutional uncertainty, etc.). 
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Figure 3: The configuration of the neural network – agents represented  

by a multi-layer perceptron. 
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To recall, this data is produced by module I, the real economy module. Each agent weighs 

incoming positive as well as negative information (denoted by vertices with a “+” or a “-” 

respectively). This leads to subjective forecasts of price boundaries in the hidden layer 

(vertices labelled with ei
p, with p = {h,l}, whereby h stands for expected highest price and l 

stands for expected lowest price). After that, the individual agents interact and compare price 

boundaries with other agents. Thus, a second weighing process results in πi, the agent’s 

revealed preferences, the portfolio investment bid. Eventually, the actual share price is 

determined by the financial market. These market results, allow the agent for calculating his 

optimal portfolio investment decision πopt. Conclusively, the error induces a learning process, 

since it affects future investment decisions. Hence, the error feeds back on agents’ future 

investment decisions. The learning process itself is carried out by simply adjusting weights 

(back propagation algorithm). Moreover, the sum of errors made by agents expresses the 

magnitude of financial market anomalies.  
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3.2. Some Preliminary Results 
The neural network module has already been established from a conceptual point of view (See 

section 3.1). Yet the simulation works are still in progress. Nevertheless, some preliminary 

results can be expected. The composition of an investor’s portfolio is the result of a two-stage 

process, i.e. the individual’s appraisal of the market (micro, meso, and macro) information 

and the mutual influence within the subsequent interaction with each other. This process 

yields price forecasts. If, finally, the actual price exceeds the forecast, the agents start to adjust 

their weights – both the weights for positive/negative information and the weights agents take 

account of the forecasts of others; thus the notion of market sentiment has been incorporated 

into the expectation formation process. Agents decide rationally about the information they 

have available. Possible prediction errors will be reinforced by overcast price forecasts. As a 

consequence, the potential of a steadily increasing financial market bubble grows (financial 

market anomaly). Not before a downturn in the real economy occurs, the repercussions on the 

financial market will make the bubble burst. Thereby, the dynamics on the financial market 

depends on the investors’ behaviour: which data agents choose to take into account to 

appraise their investment decision, to which extent agents adjust their weights to consider data 

generated in the real economy, and of which degree the mutual influence of investors is. The 

results of Sommer (1999) and Kugler/Sommer/Hanusch (1996) allow anticipating some of the 

results to be expected once the two modules have successfully been combined. They model a 

(one-share) financial market using neural networks. The economic environment, however, is 

simply represented by pseudo-random numbers, and does not incur information about a 

stylized dynamic real economy.  We have extended the neural network approach two n firms 

and a variable number of investors considering varying data produced in the real economy. 

Hence, the interface of module I and module II is established from a formal point of view.5 

Analogously to figure 4, we expect similar price dynamics in the financial market driven by 

an endogenously evolving new industry.  

                                                      
5 Interested readers may contact the authors to enquire about the formal neural network design. 
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Figure 4: The subjective market sentiment of actors (a) and the corresponding price 

development on the market (b).6 
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Diagram 4 (a) illustrates the distribution of the individuals market sentiment considered in 

period 25 to 37. T expresses market sentiment and is determined by the deviation of the actual 

share price from the individual’s forecast.7 The closer T is to the expected highest price, the 

more optimistic the individual becomes. Henceforth, the scale in diagram 4 (a) reads: the 

higher (lower) T the more (less) optimistic the agents are. The height of each column signifies 

the number of agents sharing the same market sentiment. Conclusively, the dynamic of the 

share price is the result of the investors’ interdependent decision-making process: first, the 

investor analyzes the data, taking into account also the actual share price of the previous 

period, and second, via interaction derives his investment bid. Finally, the actual share price is 

determined in the market. Thus, overdrawn expectations (owing to erroneous price forecasts) 

of future share prices propagate through the system and reinforce a positive/negative market 

sentiment. Diagram 4 (b) shows the corresponding price dynamics. A high share price at the 

beginning spurs the expectations of falling prices (negative market sentiment). The 

subsequent investment decisions make the share price go down and progressively increases a 

negative market sentiment. In return, this reinforcement effect induces that future price 

forecasts become more pessimistic than the actual share price turns out to be. Hence, 

optimism returns into the market and lets the share price increase. The scope of this sentiment 

fluctuation – the turnaround of the share price development – depends on the learning process. 

To put it in other words, it depends on the sensitivity to changes in the (micro, meso, macro) 

market data and the mutual influence of interacting agents. 

                                                      
6 Compare Sommer (p. 134, 1999). 
7 The positive/negative input information is kept constant is this scenario, i.e. there is no change in the dynamics 

of the real economy. 
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After a comprehensive numeric study of the two connected modules, the following outcome 

should be expected. Figure 5 depicts the alleged results of the model: since we only model a 

one-way influence of the real economy on the financial market, the curves about entries, exits 

and total firms is a given result of module I. In other words, these curves will not change 

because a feedback effect from the financial market on the real economy is neglected for 

simplicity. The only curve that we focus on in the simulation runs is the market capitalization 

curve. This curve should be embedded in the real economy context as shown below. In an 

industry with a high rate of knowledge diffusion we observe a rather turbulent development 

on the industry life cycle.8 Rapid knowledge diffusion vehemently increases the potential of 

firm formation.9 We observe five phases of an industry life cycle.10 In an infant industry stage 

(phase 0)11, stock markets have not yet perceived the new industry. With the upswing of the 

emerging market, not only imitators in the real economy but also more and more investors get 

interested in the new market (phase I, euphoric phase I). There are first-movers in the real 

economy as well as early investors in the financial markets. Successively, the growth rate of 

the new sector in the economy is increasing. In this third phase (euphoric phase II) the 

euphoria in the real economy as well as on the financial market keeps on, although first 

negative information particularly in the form of exits, which start to augment. Investors still 

have a favourable investment attitude and pay high share prices.12 The dynamics in the real 

economy evolve faster than investors manage to learn. This drives financial market anomalies 

and increases the bubble. In the consolidating phase (phase III) a shake-out occurs, which 

severely reduces the number of firms in the industry. Market capitalization plummets; 

reinforcing13 pessimism prevails among investors until a turn-around indicates a recovery of 

the financial market in phase IV.14  

                                                      
8 Compare also figure 1. 
9 For more details see Grebel (2004) and Grebel/Pyka/Hanusch (2003). 
10 A lower rate of knowledge diffusion may reduce the number of phases observed. Compare figure 1.  
11 The numbering of phases is in accordance with Perez (2003). 
12 Remember that investors learn about the dynamics of the real economy represented by the neural network. The 

learning process (adjusting weights which information is weighted with) is a time-consuming process.  
13 The reinforcement effect is a feature that comes out of the neural network approach. See section 3.1. 
14 The declining phase of the industry life cycle has been neglected. 
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Figure 5: Conceptual expectations about the integrated model. 
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This outcome would match empirical facts of the “New Economy” period.15 The latter we 

consider the phenomenon of a high rate of knowledge diffusion in the economy.  

 

The modular construction of our model allows two investigate several scenarios.16  Each 

module can be altered. The real economy module renders a different evolution of the industry 

life cycle assuming a low rate of knowledge diffusion.17 This would also induce a different 

evolution of the financial market. Aside from that, we can solely look at the financial market 

and consider sophisticated and naive traders. Once the feedback effects on the real economy 

have been accomplished in our modelling venture, we are able to exert different partial 

analyses not neglecting the overall context. 

4. Conclusions and Further Research 

The basic building blocks of our modelling attempt are two modules, a real economy module 

that reflects the Schumpeterian dynamics of an endogenously evolving industry and a neural 

network module that describes investment behaviour. Both models are micro-based and 

discuss the behaviour of boundedly rational agents that act under strong uncertainty. 

                                                      
15 Compare for example Klandt (2003). 
16 The modular modelling procedure is also exerted within the real economy module. Compare Grebel (2004). 
17 Compare figure 1. 
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In the real economy module, agents strive to found a firm: they absorb new technological 

knowledge, evaluate their own endowments and capabilities, assess the support of their social 

network and consider the current economic environment. Newly founded firms take part in 

market competition and thus drive the dynamics of the industry life cycle.  

The neural network (financial market) module illustrates the adaptation (learning) process of 

boundedly rational agents that make a portfolio decision – under strong uncertainty – 

considering facts about (micro, meso, macro) market data and taking into account opinions 

and the share price expected by others. The module as indicated above is constraint to a one 

firm one share financial market with a constant number of investors and exogenously given 

set of information. 

For a start, we simply connect the two models in the following way: the economic data 

produced in the real economy module serves as input information for the neural network 

module; the latter has been extended for adjustment reasons. For time being, repercussions 

from the financial market onto the real economy will be neglected. 

Owing to the endogenous evolution of the industry, firms are heterogeneous in their 

endowments. This heterogeneity determines their competitiveness and consequently involves 

entries and exits in the economy; therefore, the number of firms varies over time. Accordingly, 

for connecting purposes, the number of shares in the financial market has to be variable, too; 

henceforth we expand the neural network to a n firms n shares market. Aside from that, the 

number of investors may increase as the economic prospects improve over time. 

It is not only speculative investment behaviour that causes financial market anomalies. At the 

beginning of a new innovative industry, entrepreneurial behaviour is based on a high degree 

of uncertainty. Accurate predictions of a new technology’s economic potential (i.e. profit 

opportunities) are impossible. New firms have to struggle with strong uncertainty, 

entrepreneurial decisions may seem promising, but may turn out wrong in the long run. 

Insolvency may put an end to a highly praised business venture. Such misinterpretations drive 

the market turbulence of a new industry. Conclusively, this influences investment behaviour 

and therefore leads to a turbulent stock market dynamics, too. Doing this, we implement the 

Schumpeterian dynamics of the real economy side into financial markets and expect to show 

the emergence of financial market anomalies.  
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