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Abstract 
I examine the conduct of macroprudential policy in 
an environment where economic indicators move in 
a cyclical fashion, policy works with a lag, and there 
are adjustment costs to changing policy. In this 
setting policy instruments such as the 
countercyclical capital buffer should be set not only 
based on the present state of the cycle, but also on 
where the cycle is expected to be in the future and 
on the current level of buffer.

Resume 
Jeg analyserer, hvordan makroprudentiel politik 
bør implementeres, hvis økonomiske indikatorer 
er cykliske, makroprudentiel politik virker med 
forsinkelse, og der er tilpasningsomkostninger 
forbundet med at ændre politik. I denne situation 
bør politikinstrumenter som den kontracykliske 
kapitalbuffer blot være en funktion af den 
nuværende cykliske situation, men også af hvor 
cyklen er på vej hen og det gældende niveau for 
bufferen. 
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Abstract

I examine the conduct of macroprudential policy in an environment where economic

indicators move in a cyclical fashion, policy works with a lag, and there are adjustment

costs to changing policy. In this setting policy instruments, such as the countercyclical

capital buffer, should be set not only based on the present state of the cycle, but also

on where the cycle is expected to be heading in the future and on the current buffer

level.
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1. Introduction

Macroprudential authorities spend considerable efforts looking at economic and financial

indicators, trying to identify the state of various cycles and deciding on the appropriate level

of macroprudential policy instruments such as the countercyclical capital buffer. At the same

time they must take into account the costs of changing policy. These costs can be thought

of as adjustment costs on the part of the agents affected by the policy, e.g. banks having to

raise capital or choosing to reduce assets, or simply as the costs of implementing the policy.

In some jurisdictions, for example, one authority is responsible for making recommendations

on macroprudential policy, but must persuade another authority to implement the policy

(ESRB, 2018). In addition, policy makers must contend with the fact that their policies

are sometimes implemented with a considerable lag, at which point the cycle might be in a

different state from when the policy decision was made.

I construct a model which captures these basic features of macroprudential policy making

in a tractable framework. It features a policy maker who, based on a range of indicators, has

a view on the ideal, or “target”, levels of various policy instruments. For concreteness, think

of a single instrument such as the countercyclical buffer rate. If there were no frictions, the

buffer rate would be set equal to the target. In the model there are frictions. It is costly

to adjust policy, and the buffer rate set in the current period only takes effect in the next

period. The target moves in a cyclical (and stochastic) fashion, and the policy maker trades

off the cost of straying from the target against the cost of adjusting the buffer.

The key result of the paper is that policy makers should consider not just the state of the

cycle today, but also where it is heading in the future, the current level of policy instruments,

and how costly it is to change policy. If the model were static, the optimal rate would be

a weighted average of the current buffer and the optimal (target) buffer. Because policy

makers must take into account the movement of the target and their own future actions,

however, they need to think ahead of the cycle. Specifically, I show that the optimal buffer

can be expressed in closed form as a linear combination of the buffer in place, the existing

target, and the expected value of the target in the next period.
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The principles underlying the model are by no means original to macroprudential policy,

but have a wide variety of applications in other areas ranging from the design of missile

systems to sports where agents also “aim ahead of the target”.1

There are two essential steps to solving the model. The first step is to show that the

model can be cast in linear-quadratic form2, which establishes the existence and uniqueness

as well as the form of the solution. The second step is to separate the state variables into

two groups, (1) existing buffer levels and (2) past and present levels of economic indicators,

and then split the value function into two parts involving these terms, respectively, and a

third term involving cross-terms. This allows one to write the problem in a manner which

is mathematically equivalent to that in Gârleanu and Pedersen (2013) and one can then

directly apply the closed-form solutions identified in that paper.

I also consider simple numerical extensions to the model, each intended to illustrate a

friction in actual policy making. The first extension is to vary the duration of the implemen-

tation lag. A longer lag simply implies that policy makers must think even further ahead in

the cycle. I then proceed to look at asymmetries in policy making. While it may be costly

to increase capital levels for banks, it is not costly for banks to reduce capital levels. This

asymmetry implies that while the build-up of capital buffers should be gradual, the release

of capital buffers can be swifter. Another asymmetry is that while increases in instruments

such as the countercyclical capital buffer only take effect after an extended period, e.g. 12

months, the instruments can be released with immediate effect. In addition, the cost of

building capital is likely to be state-dependent and, specifically, cheaper in “good” states

such as upturns. The effect of this asymmetry is to have a swifter build-up of capital buffers

when the underlying cycle is improving.

While stylized and intended as a story-telling device, the model captures key elements

of actual policy. The evolution of economic and financial indicators clearly affects policy

decisions. A number of macroprudential authorities also emphasize that buffers should be

1In fact, the inspiration for the paper was Gârleanu and Pedersen (2013) who apply the same principles
to trading strategies in financial markets.

2See chapter 5 in Ljungqvist and Sargent (2012) for a discussion of results related to linear-quadratic
dynamic programming.
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built-up both ahead of the cycle and gradually, exactly the “prescriptions” laid out in this

paper. For example, in a policy statement on its strategy for setting the countercyclical

capital buffer, the Bank of England (2016) lays out a “moving early” strategy and emphasizes

how it intends to vary the buffer gradually to reduce its economic cost. One of the Bank of

England’s five core principles reads: “By moving early, before risks are elevated, the FPC

expects to be able to vary the CCyB gradually, and to reduce its economic cost.” Other

macroprudential authorities have similar strategies which mirror the principles of the paper.

In their memo on the countercyclical capital buffer, the Danish Systemic Risk Council (2017)

emphasize an early and gradual build-up of the buffer.

In terms of related literature, there is extensive research on the rationales for macro-

prudential policy (see, amongst others, Farhi and Werning (2016)), its effects (e.g. Jiménez

et al. (2017) and Galati and Moessner (2018)), and institutional details and applications

(Claessens (2018) and Lim et al. (2011)). Some papers, for example Bianchi and Mendoza

(2018), derive optimal macroprudential policies, but these are quite different from - and

more complex than - the macroprudential policy instruments actually used. There is also

a number of more practical papers, such as Drehmann et al. (2010) and Drehmann et al.

(2011), which address which indicators to use when setting the levels of policy instruments

such as the countercyclical capital buffer. The main contribution of this paper is to highlight

that policy making should be forward-looking and not just concerned with the current values

of such indicators, but also their projected future evolution.

The rest of the paper proceeds as follows. Section 2 outlines the model in the simple

case where a policy maker chooses a single instrument (a “buffer rate”) to trade off the

costs of straying from a moving target and of adjusting policy. Section 3 describes the more

general case with multiple policy instruments and targets, and the targets themselves reflect

underlying financial or economic indicators. In section 4, I numerically examine the effects

of introducing realistic frictions to the model. Section 5 concludes.
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2. A simple model of macroprudential policy

I start out by considering a simple, motivating example in a static setting. Consider

a policy maker who inherits a buffer rate bt−1 and must choose a new buffer rate bt. The

policy maker has a “target rate”, xt, and seeks to avoid deviations from this target. At the

same time, the policy maker must also take into account that changing the buffer entails

adjustment costs, which are proportional to a cost parameter λ. Assuming that both the

cost of deviations from the target and the cost of changing the buffer are quadratic, the

problem facing the policy maker is to minimize

(xt − bt)
2 + λ (bt − bt−1)2 . (1)

Solving for the optimal buffer gives

bt =
λ

1 + λ
bt−1 +

1

1 + λ
xt. (2)

The optimal buffer rate is a weighted average of the current rate and the target rate, with

transaction costs determining the extent of the movement towards the target. An alternative

formulation is to look at changes in the buffer,

bt =
1

1 + λ
(xt − bt) , (3)

which highlights the partial nature of the adjustment towards the target.

To make the model more interesting I add further elements. First, I assume that policy

is implemented with a lag and is aimed at a moving and possibly stochastic target. The

buffer set in the current period will only take effect in the next period. The present value of

deviating from the buffer is therefore βEt
[
(xt+1 − bt)

2], where β is a discounting parameter.

Second, the model is made dynamic by considering a multi-period setting. The target

moves according to

∆xt+1 = −φxt + ψ∆xt + εt+1, (4)
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where ∆xt = xt − xt−1. φ < 1 can be interpreted as a mean-reversion parameter and ψ > 0

as a momentum parameter. When the target moves far away from its mean value, assumed

to be zero, it starts being pulled back (mean reversion). Moreover, changes in the target

in one direction tend to be followed by further changes in the same direction (momentum).

Finally, εt is a zero-mean shock term.

Equation (4) is a second-order difference equation and, given appropriate parameters

values, the mean reversion and momentum effects combine to describe a target moving in a

non-explosive cyclical fashion.

The policy maker seeks to minimize all future costs of being far from target while at the

same time taking adjustment costs into account

−
∞∑
t=0

[
βt+1 (xt+1 − bt)

2 + λβt (bt − bt−1)2] . (5)

The problem can also be formulated in value function notation as

V (bt−1, xt, xt−1) = max
bt

{
−λ (bt − bt−1)2 + βE

[
− (xt+1 − bt)

2 + V (bt, xt+1, xt)
]}
. (6)

This notation makes clear the trade-offs facing the policy maker. The policy maker

inherits a buffer from the last period and must take into account the current and past

targets to predict the future target. Given these state variables, the policy maker must

trade off the cost of changing the buffer, the cost of deviating from the cycle in the next

period, and the effect of the current decision on actions in future periods.

In this setting, the optimal buffer can be expressed in closed form. There are two steps

involved in proving this (see the appendix for details). First, it is shown that the problem

of solving (6) subject to (4) belongs to the class of linear-quadratic dynamic programming

problems. This implies that the value function is a quadratic function of the state variables.

We can then split the state variables into two groups: those concerning the target (let

ι>t =
(
xt xt−1

)
) and those concerning the buffer rate. The value function can then be
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written as

V (ιt, bt−1) =
1

2
ι>t Piiιt + b>t−1Pbiιt −

1

2
b>t−1Pbbbt−1 + dt (7)

The P -coefficients can be described by a Ricatti equation, which one must normally solve

numerically. However, in this particular case there is a closed-form solution. In the second

part of the proof, it is shown that the expression for the value function can be written in a

way which is mathematically equivalent to a problem studied by (Gârleanu and Pedersen,

2013) for which they identify a closed-form solution.

Two characterisations of the optimal buffer

As shown in the appendix, the optimal buffer can be written as

bt =
1

1 + λ̄+ Pbb

λ̄bt−1 + Et[xt+1] + Pbi

Et[xt+1]

xt

 (8)

This characterisation shows that the current buffer level (bt) can be expressed as a linear

combination of the buffer level in place (bt−1), the current state of the cycle (xt), and the

expected future value of the cycle E [xt+1]. Moreover, Pbb is increasing in adjustment costs,

λ, and 1
1+βλ+Pbb

is therefore decreasing in the adjustment cost. This term can therefore be

thought of as controlling the magnitude of how much the buffer is used. Figure 1 illustrates

these mechanisms. It shows that, unless adjustment costs are very high, policy (i.e. the

buffer) is ahead of the current state of the cycle. If adjustment costs are very high, the

buffer does not fully track the cycle, but is more muted.

Another way of looking at the problem is to consider changes in the buffer rather than

the level. Equation (7) should equal equation (6) evaluated at the optimal buffer level.

Differentiating both equations w.r.t. bt−1 and applying the envelope theorem shows that

changes in the buffer can be written as

bt − bt−1 =
1

λ
(Pbiιt − Pbbbt−1) . (9)
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Figure 1: A stylized depiction of how the optimal buffer varies throughout the cycle for different values of the adjustment cost
parameter, λ. Unless adjustment costs are very large, the buffer will be ahead of the cycle.
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Figure 2: The figure shows the buffer dynamics in the case where the buffer starts out at a low value relative to the cycle
(target). The dynamics are shown for different values of the adjustment cost parameter, λ. With low adjustment costs, there
is a rapid catch-up.
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As a result, the optimal buffer can also be written as

bt =

(
1 − Pbb

λ

)
bt−1 +

Pbi
λ
ιt (10)

This simpler formulation describes the optimal buffer as a combination of the current

buffer and the target state variables.

One can also look at the dynamics when the buffer starts out from a position which is

out of place. Perhaps the most interesting case is that when the buffer is low relative to the

current state of the cycle. In that case, the buffer rapidly catches up when adjustment costs

are low, whereas the movement of the buffer is much more gradual when adjustment costs

are larger. A stylized depiction of this is shown in figure 2.
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3. General model

The above model can be viewed as a simpler, special case of a more general model. When

deciding on the appropriate levels for policy instruments, macroprudential policy makers

typically look at a variety of indicators and may need to consider multiple instruments and

their interaction.

To fit this into a linear-quadratic setting, one can think of the policy maker identifying

targets based on weighted combinations of indicators. As an example, when considering the

countercyclical capital buffer policy makers assess a variety of indicators such as credit stan-

dards and developments, property prices, risks as judged by markets (e.g. credit spreads and

volatility), model-based estimates of the state of the financial cycle, etc.3 These indicators

are frequently weighted and then illustrated in e.g. “heat maps” which show the signals

coming from indicators grouped in various categories.

In this case we can write the targets (xt) as linear combinations of the indicators (it)

xt = Wit (11)

where xt is a k × 1 vector, W is a k × n matrix, and it is a n× 1 vector.

In this more general setting, the changes in the targets come from the movement of the

indicators

∆it+1 = it+1 − it = −Φit + Ψ∆it + εt+1, Et
[
εt+1ε

>
t+1

]
= Σ. (12)

Finally, the cost of deviating from target and of adjusting the policy instruments (“buffers”)

are represented by k × k matrices Ω and Λ, respectively. The objective is therefore to max-

imize

−1

2
E

[
∞∑
t=0

{
βt+1 (xt+1 − bt)

>Ω (xt+1 − bt) + βt (bt − bt−1)> Λ (bt − bt−1)>
}]

(13)

3Appendix A in Danish Systemic Risk Council (2017) shows a concrete example of the set of indicators
a macroprudential authority might look at.
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subject to equations (11) and (12).

The general problem, likewise, has a closed-form solution (see the appendix), and one can

characterise this solution in ways that are analogous to the way it was done for the simpler

case. For example, the equivalent of equation (9) in the general case is

bt − bt−1 = Λ−1 (Pbiιt − Pbbbt−1) (14)

with Pbb and Pbi defined as in equations (A.20) and (A.21).

While the model is intended as a means for thinking qualitatively about macroprudential

policy, it does, in principle, also offer a “recipe” for setting the levels of policy instruments.

A macroprudential policy expert could use the model by deciding, using judgement, how to

weight selected indicators to decide the level of the relevant policy instruments. A VAR-

model could then be used to study the dynamics of these indicators, and, finally, the model

could be applied based on estimates of how costly it is to depart from targets relative to the

cost of adjusting behavior.

4. Adding realistic frictions: Simple numerical experi-

ments

The world inhabited by actual macroprudential policy makers is more complicated than

the setting studied in this paper. In this section, I consider a number of simple extensions to

the model in order to identify how realistic frictions might affect the direction of macropru-

dential policy relative to the case where such frictions are not present. I study the frictions

numerically and consider the case where the evolution of xt is literally described by a cycle,

which takes on values in the interval [−2.5, 2.5].

One friction is that the policy implementation lag is typically not just “one period”,

but can span multiple quarters. How does changing the implementation lag affect policy?

The numerical analysis shows that increasing the implementation lag simply moves policy

forward, cf. figure 3. The longer the implementation lag, the further “ahead of the cycle” the

11



Figure 3: The figure shows the cycle and the buffer dynamics for implementation lags of 2, 4, and 6 periods respectively. The
buffer value refers to the buffer value chosen in that period - which will then take effect either 2, 4, or 6 periods later. In all
cases the adjustment cost parameter, λ = 1.
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policy maker needs to be. Another friction is that macroprudential authorities have limited

implementation means. An instrument such as the countercyclical buffer can only be chosen

in increments of 0.25 and is ordinarily restricted to be between 0.0 and 2.5 per cent (under

certain circumstances, though, a higher level is possible). Figure 4 shows the evolution of

the buffer with a coarser grid of possible buffer values and restricting the buffer to positive

values, relatively to the case of a relatively fine and unrestricted grid. Continuing from the

above case where buffer values are restricted, I consider another extension, namely that the

costs of changing buffers are likely to be asymmetric: It is costly to raise capital, but not to

reduce it, and the cost of raising capital is presumably state-dependent, with raising capital

being cheaper in upturns than downturns.
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Figure 4: The figure shows the cycle and the buffer dynamics for different grids of possible buffer values. In all cases the
adjustment cost parameter, λ = 1, while the policy lag is set to four periods.
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Figure 5: The figure shows the cycle and the buffer dynamics when buffer adjustment costs are (1) symmetric, (2) asymmetric
(i.e. zero cost of reducing buffers), and (3) asymmetric and cyclical (lower cost in upturns). In all cases the adjustment cost
parameter, λ = 5, while the policy lag is set to four periods.
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When costs are asymmetric, i.e. buffers can be reduced at no cost, the policy maker

waits slightly longer to reduce buffers, but then reduces them faster, see figure 5. This

better approximates the movement of the cycle than the buffer policy in the symmetric case.

This is because, in the symmetric case, the policy maker tries to smoothe the reductions so

they are of equal size in each period (which lowers adjustment costs). If costs are not only

asymmetric, but also cyclical, there is a faster build-up of buffers and to a higher level.

The faster build-up of equity capital in good times appears consistent with the com-

munication of policy makers who frequently advocate raising equity while it is cheap to do

so.
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5. Conclusion

When setting macroprudential policy, policy makers look at a variety of economic and

financial indicators to gauge where the cycle is. This paper makes the point that policy

makers should not only look at the present state of the cycle, but also where it is heading,

and therefore need to be “ahead of the cycle” when setting e.g. the level of instruments such

as the countercyclical capital buffer. The model thereby provides support and a rationale for

the practical approaches to setting macroprudential policy followed by some central banks.

In terms of future research, one could consider other extensions to the model than those

briefly mentioned in the paper. As an example, the paper treats banks as passive agents who

immediately raise capital when capital buffers are increased. A more sophisticated analysis

could look at the response of banks to the macroprudential regulation. Banks typically hold

capital somewhat in excess of their capital requirements in order not to breach them. It is

not obvious that banks, especially those mainly exposed to systemic risks, would have an

incentive to further increase their capital in response to increased capital buffers if these

buffers are withdrawn when systemic risks materialize. Another simplifying assumption of

the paper is that it treats the cycle as being unaffected by the macroprudential policy, where

at least some macroprudential instruments are potentially intended to dampen the cycle

itself.4 That is not the case for the countercyclical capital buffer, but a number of so-called

“borrower-based” measures have this aim.

Finally, a more sophisticated analysis might take a closer look at the objectives of the

macroprudential authority. The authority is likely to care mainly about robustness of policy

and the most adverse states, such as financial crises, and setting policy instruments so as to

mitigate the consequences in such states.

4A less sanguine possibility, as pointed out by Hórvath and Wagner (2017), is that macroprudential policy
instruments can increase systemic risk taking because they insulate banks against aggregate shocks.
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Appendix: Proofs

General model

The objective is to maximize

−1

2
E

[
∞∑
t=0

{
βt+1 (xt+1 − bt)

>Ω (xt+1 − bt) + βt (bt − bt−1)> Λ (bt − bt−1)>
}]

(A.1)

That is, there are costs to changing buffers and it is costly if buffers stray from targets

(both xt and bt are k × 1 vectors).

And these costs are represented by k×k matrices Ω and Λ, both symmetric and positive

definite.

The targets are linear combinations of various indicators, i.e.

xt = Wit (A.2)

with W a k × n matrix and it a n× 1 vector.

We assume that the indicators evolve according to

∆it+1 = it+1 − it = −Φit + Ψ∆it + εt+1, Et
[
εt+1ε

>
t+1

]
= Σ. (A.3)

We want to prove two things:

1. That the model is linear-quadratic, thereby establishing existence and uniqueness of

a solution.

2. That its solution can be written in a form that is equivalent to that in Gârleanu and

Pedersen (2013), allowing us to write the solution in closed form.

Proof that the model is linear-quadratic

The generic linear-quadratic problem can be written as one of maximizing
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−
∞∑
t=0

βt
{
z>t Rzt + u>t Qut + 2u>t Hzt

}
(A.4)

subject to

zt+1 = Azt +But + Cεt+1. (A.5)

where zt are state variables and ut are control variables.

In the model, we can treat it, it−1, and bt−1 as state variables and bt − bt−1 as a control

variable. The law of motion can then be written as

zt+1 ≡


it+1

it

bt

 =


I − Φ + Ψ −Ψ 0

I 0 0

0 0 Ib


︸ ︷︷ ︸

”A”


it

it−1

bt−1


︸ ︷︷ ︸

zt

+


0

0

Ib


︸ ︷︷ ︸

”B”

(bt − bt−1)︸ ︷︷ ︸
ut

+


I

0

0


︸ ︷︷ ︸

”C”

εt+1 (A.6)

This is equivalent to the formulation of the law of motion in the generic model.

We next write the deviations from target, xt+1 − bt, as

xt+1 − bt =
(
W 0 −1

)
︸ ︷︷ ︸

W̄


it+1

it

bt

 = W̄ (Azt +But + Cεt+1) = Āzt + B̄ut + C̄εt+1 (A.7)

Plugging this into the objective function yields

−1

2

∞∑
t=0

βt
{
z>t
(
βĀ>ΩĀ

)
z>t + u>t

(
Λ + βB̄>ΩB̄

)
u>t + 2z>t

(
βĀ>ΩB̄

)
u>t + c

}
(A.8)

which shows the equivalence with the generic problem. (Here c refers to terms that are

irrelevant to the maximization problem.)
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Solving the model in closed-form

Having established that the problem has a linear-quadratic structure, we know that the

value function is of the form V (z) = z>Pz+P0. Here P0 is included in the stochastic version

of the problem. Because we know that the policy function is the same in the deterministic

version of the problem, a feature known as the certainty equivalence principle, see Ljungqvist

and Sargent (2012), we will proceed by analysing the problem without shocks.

For our purposes, it turns out to be convenient to separate the indicator (it and it−1) and

buffer (bt−1) state variables and write the value function as

V (ιt, bt−1) =
1

2
ι>t Piiιt + b>t−1Pbiιt −

1

2
b>t−1Pbbbt−1 (A.9)

where ιt =
(
it it−1

)>
.

In value function notation, the problem can be written as

β−1V (ιt, bt−1) = max
bt

{
−1

2
(bt − bt−1)> Λ̄ (bt − bt−1)

− 1

2
(W0ιt+1 − bt)

>Ω (W0ιt+1 − bt) + V (ιt+1, bt)

}

where Λ̄ = β−1Λ, W0 =
(
W 0

)
, and

ιt+1 =

I − Φ + Ψ −Ψ

I 0

 ιt = Âιt. (A.10)

The right-hand side of the value function equation (i.e. the expression to be maximized)

can then be written as

−1

2
b>t Jbt + b>t jt + dt (A.11)

with

J = Λ̄ + Ω + Pbb (A.12)
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jt = Λ̄bt−1 + (ΩW0 + Pbi) Âιt (A.13)

dt = −1

2
b>t−1Λ̄bt−1 −

1

2

(
W0Âιt

)>
ΩW0Âιt +

1

2

(
Âιt

)>
PiiÂιt. (A.14)

The policy rule, i.e. optimal choice of buffers is

bt = J−1jt. (A.15)

The policy rule is therefore a function of Pbb and Pbi.

The value function itself takes on value

1

2
j>t J

−1jt + dt. (A.16)

We therefore have that

β−1

(
1

2
ι>t Piiιt + b>t−1Pbiιt −

1

2
b>t−1Pbbbt−1

)
=

1

2
j>t J

−1jt + dt. (A.17)

It is now possible to find the coefficients (Pii, Pbi, and Pbi) by matching the left-hand and

right-hand sides. This implies the following restrictions:

−β−1Pbb = Λ̄
(
Λ̄ + Ω + Pbb

)−1
Λ̄ − Λ̄, (A.18)

β−1Pbi = Λ̄
(
Λ̄ + Ω + Pbb

)−1
(

ΩW0Â+ PbiÂ
)
. (A.19)

This formulation is analogous to that in Gârleanu and Pedersen (2013) (see equations

(A7) and (A8) in their appendix), with the following mapping of notation: Axx = Pbb,

Axf = Pbi, Λ̄ = Λ̄, γΣ = Ω, B = ΩW0Â, I − Φ = Â, ρ̄ = β and ρ = 1 − β.

We can therefore plug these expressions into equations A15 and A18, respectively, to get
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the closed-form solutions.

Pbb =

(
βΛ̄

1
2 ΩΛ̄

1
2 +

1

4

(
(1 − β)2 Λ̄2 + 2 (1 − β) Λ̄

1
2 ΩΛ̄

1
2 + Λ̄

1
2 ΩΛ̄−1ΩΛ̄

1
2

)) 1
2

− 1

2

(
(1 − β) Λ̄ + Ω

)
(A.20)

vec (Pbi) = β
(
I − βÂ> ⊗

(
I − PbbΛ

−1
))−1

vec
((
I − PbbΛ

−1
)

ΩW0Â
)
. (A.21)

Simpler model

To get at the closed-form solutions for setting the buffer in the simpler model, we first

write down the mapping from the general model to the more complicated model. The buffer,

bt, is the same, except that it is a scalar rather than a vector. The adjustment cost is also a

scalar with Λ = λ and Λ̄ = λ̄.

We let the cost of deviating from the target be one, i.e. Ω = 1, so the adjustment cost is

viewed relative to this cost.

Instead of letting the target be a weighted function of the economic indicators, we simply

let the target itself follow the second-order difference equation (note that Pbi is now a 1 × 2

vector).

ιt =

 xt

xt−1

 , (A.22)

Â =

1 − φ+ ψ −ψ

1 0

 , (A.23)

W0 =
(

1 0
)
. (A.24)

Inserting these expression into the formulas from the general model and simplifying gives

J = 1 + λ̄+ Pbb (A.25)

jt = λ̄bt−1 + (W0 + Pbi)Âιt (A.26)
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Pbb =

(
λ+

1

4

(
1 +

1 − β

β
λ

)2
) 1

2

− 1

2

(
1 +

1 − β

β
λ

)
(A.27)

P>bi = β

(
λ

λ− Pbb
I − βÂ>

)−1 (
W0Â

)>
= β

(
λ

λ− Pbb
I − βÂ>

)−1
1 − φ+ ψ

−ψ

 (A.28)

We can now insert these expression to get the rule for the buffer:

bt =
1

1 + λ̄+ Pbb

(
λ̄bt−1 +

((
1 − φ+ ψ −ψ

)
+ PbiÂ

)
ιt

)
(A.29)

Noting that (
1 − φ+ ψ −ψ

)
ιt = Et[xt+1] (A.30)

and

Âιt =

Et[xt+1]

xt

 (A.31)

we see that

bt =
1

1 + λ̄+ Pbb

λ̄bt−1 + Et[xt+1] + Pbi

Et[xt+1]

xt

 (A.32)
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