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Abstract 
It is well-known that interest rates are extremely 
persistent, yet they are best modeled and 
understood as stationary processes. These 
properties are contradictory in the workhorse 
Gaussian affine term structure model in which 
persistent data often result in unit roots that imply 
non-stationarity. We resolve this puzzle by 
proposing a term structure model with volatility-
induced stationarity. Our model employs a level-
dependent conditional volatility that maintains 
stationarity despite the presence of unit roots in the 
characteristic polynomial corresponding to the 
conditional mean. The model is consistent with key 
characteristics of U.S. Treasury data and obtains 
term premia that are economically plausible and 
consistent with survey data. Compared to the 
Gaussian affine term structure model, we improve 
out-of-sample forecasting of the yield curve. 

Resume 
Det er velkendt at renter er ekstremt persistente, 
men bedst modelleres og forsås som stationære 
processer. Disse egenskaber er modsigende i de 
populære Gaussiske affine rentemodeller, hvor 
persistente data ofte resulterer i enhedsrødder, der 
medfører ikke-stationaritet. Vi løser denne 
uoverensstemmelse ved at foreslå en rentemodel 
med volatilitetsinduceret stationaritet. Vores model 
introducerer en niveauafhængig betinget variance 
der sørger for at processen er stationær på trods af 
en enhedsrod i det karakteristiske polynomie 
svarende til den betingede middelværdi. Modellen 
er konsistent med vigtige karakteriska i rentedata 
fra USA og estimerer økonomisk plausible 
risikopræmier. Vi forbedrer også prædiktion af 
rentekurven sammenholdt med den Gaussiske 
affine rentemodel. 
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Abstract

It is well-known that interest rates are extremely persistent, yet they are best mod-

eled and understood as stationary processes. These properties are contradictory in

the workhorse Gaussian affine term structure model in which persistent data often

result in unit roots that imply non-stationarity. We resolve this puzzle by proposing

a term structure model with volatility-induced stationarity. Our model employs a

level-dependent conditional volatility that maintains stationarity despite the pres-

ence of unit roots in the characteristic polynomial corresponding to the conditional

mean. The model is consistent with key characteristics of interest rate data. In an

empirical macro-finance application, we obtain term premia that are economically

plausible and consistent with survey data. Compared to the Gaussian affine term

structure model, we improve out-of-sample forecasting of the yield curve. Our em-

pirical evidence suggests that volatility-induced stationarity is unspanned by the

yield curve.
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1 Introduction

Many macro-finance term structure models are specified by vector autoregressive (VAR)

models with Gaussian and homoskedastic shocks. While these models are celebrated for

their tractability, they are inconsistent with key characteristics of U.S. Treasury yield

data. This paper introduces a novel class of discrete-time term structure models that

can generate yield curve dynamics supported by the data. Specifically, we bridge macro-

finance term structure modeling with the double-autoregressive (DAR) model studied in

Ling (2004) and Nielsen and Rahbek (2014).

We are motivated by three stylized facts of nominal bond yields that standard VAR

models fail to accommodate. First, U.S. Treasury bond yields are extremely persistent

and formal tests often fail to reject the presence of unit roots. When VAR models are

presented with highly persistent data, they imply a sharp distinction between I(0) and I(1)

models. While I(0) models are stationary, they fail to match the degree of persistence

in the yield data (Goliński and Zaffaroni, 2016). On the other hand, I(1) models are

sufficiently persistent but non-stationary, which is counterfactual from both theoretical

and empirical viewpoints (Beechey et al., 2009). Second, the data exhibit periods of

rapid changes perhaps marking the beginning and end of monetary policy cycles. Finally,

interest rates exhibit time-varying conditional volatility.1

To accommodate these stylized facts, we develop a term structure model with mul-

tivariate DAR dynamics. The DAR model is a vector autoregression with conditional

volatility that depends on lagged levels of the process. Thus, in particular, the model

is consistent with conditionally heteroskedastic interest rates. To fix ideas, consider the

univariate DAR model from Ling (2004):

xt = φxt−1 +
(

ω + ψx2t−1

)1/2
zt (1)

with zt ∼ i.i.d. N (0, 1). A crucial feature of the model is that stationarity is not ruled out

by the presence of a unit root, φ = 1. Instead, the stationarity condition depends on both

the conditional mean through φ and the conditional variance through ψ. Therefore, the

1Heteroskedastic interest rates have been acknowledged by non-Gaussian affine term structure models
(Dai and Singleton, 2000), which have been studied in discrete time by Le et al. (2010). However, these
models fail to capture the first two stylized facts that we emphasize. We provide a formal comparison
between our approach and the affine framework in the paper.
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model is said to exhibit volatility-induced stationarity. By allowing for unit roots without

implying non-stationarity, the DAR model is consistent with the stylized fact that interest

rate data are persistent but best described by stationary processes. The DAR model can

also generate the jump behavior of interest rates by a sequence of shocks with the same

sign. These shocks accumulate in the conditional variance so that when a shock of the

opposite sign arrives, it is weighted by a large conditional variance that pushes the process

rapidly downwards. Thus, the DAR model is consistent with the stylized facts of interest

rate data.

We present an empirical application with a macro-finance state vector consisting of

the one-month U.S. Treasury bill rate, the ten-year Treasury bond yield, and measures of

inflation and real activity. The data guide a model with reduced rank in the autoregressive

coefficient and long-run equilibria given by the yield spread and a Taylor rule. We there-

fore implement the DAR model with these features and benchmark our results against the

cointegrated VAR model.2 Our empirical analysis shows that the misspecification of the

VAR model has both econometric and economic consequences that can be alleviated by

the DAR model. Econometrically, we show that the DAR model passes misspecification

tests of the standardized residuals that the corresponding VAR model fails. Economically,

we emphasize the well-known problem that VAR models distort model-implied term pre-

mia because they fail to match the persistence of the data with a stationary model. In

the following, we illustrate this so-called persistence problem and how the DAR model

can remedy this limitation of linear models.

Term premia are here defined by the residuals of the yield curve that are not explained

by the expectations hypothesis, which asserts that yields of long maturities are determined

by expected future short rates only. Thus, term premia can be estimated based on model-

implied forecasts of the short rate. In the stationary VAR, these forecasts quickly revert

to the unconditional mean defined by the model. Therefore, the expectations hypothesis

of the stationary VAR predicts nearly constant yields, and virtually all variation in the

yield curve is assigned to term premia. This issue, named the persistence problem, has

been recognized by Jardet et al. (2013), Kozicki and Tinsley (2001), and Shiller (1979). In

the cointegrated VAR model with the yield spread as cointegrating relation, forecasts of

future short rates converge to a level that is proportional to the ten-year yield. In result,

2Term structure modeling based on the cointegrated VAR model has been considered in Chernov and
Creal (2019).
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the expectations hypothesis explains most of the variation in the yield curve, resulting in

nearly constant term premia.3

In sum, the VAR framework can either generate term premia that are approximately

proportional to the yield curve or constant. Interestingly, the DAR model can generate

a richer set of term structure decompositions than the VAR models by reconciling unit

roots and stationarity. In particular, the DAR model predicts term premia that are time-

varying, but much less correlated with the yield curve than explained by the stationary

VAR model. Indeed, we find that the DAR model matches expected future short rates

as measured by the Survey of Professional Forecasters better than the stationary and

cointegrated VAR models.

Given these promising results related to the modeling of macro-finance dynamics,

we embed the DAR model into a macro-finance term structure model with no-arbitrage

restrictions. Assuming a standard exponential-linear stochastic discount factor preserves

the DAR model under the pricing measure. We propose a quadratic approximation to

facilitate analytical computation of no-arbitrage bond yields. Our model obtains an in-

sample fit of the yield curve comparable to the Gaussian affine term structure model

(GATSM) that is based on the VAR model. In fact, the quadratic component of our

bond yield formula that is generated from volatility-induced stationarity explains practi-

cally no variation in the yield curve. This result can be interpreted as volatility-induced

stationarity being unspanned by the yield curve, which is consistent with the literature on

unspanned stochastic volatility (USV) (Collin-Dufresne and Goldstein, 2002, 2009, Creal

and Wu, 2015, Joslin, 2017). In contrast, the DAR term structure model does outperform

the GATSM in terms of out-of-sample performance across almost all maturities from one

to ten years and forecasting horizons of 3, 6, and 12 months. Importantly, the DAR model

also outperforms the random walk, which is a competitive benchmark for standard term

structure models (Duffee, 2002).

Volatility-induced stationarity in interest rate data was first studied by Conley et al.

(1997) who consider Markov diffusion models with constant volatility elasticity as in the

CKLS model in Chan et al. (1992). Conley et al. (1997) apply these models to overnight

effective federal funds rates and conclude that ”when interest rates are high, local mean

reversion is small and the mechanism for inducing stationarity is the increased volatility”.

Nicolau (2005) also shows that the federal funds rate can be modelled by a process that

3This observation also explains why the cointegrated VAR has been used to test the expectations hy-
pothesis, e.g., in Campbell and Shiller (1987), Hall et al. (1992), and Shea (1992).
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exhibits volatility-induced stationarity. Nielsen and Rahbek (2014) extend these analyses

by modeling two interest rates, namely the one- and three-month Treasury bill rates,

allowing for reduced rank. Their implementation, however, does not impose no-arbitrage

restrictions. This paper contributes to this literature by (i) proposing a no-arbitrage

model for the entire term structure and (ii) allowing for more than two factors, e.g., the

usual level, slope, and curvature factors of the yield curve as suggested by Litterman and

Scheinkman (1991) and macroeconomic factors as in the macro-finance term structure

literature (Ang and Piazzesi, 2003, Ang et al., 2006, Diebold et al., 2005, Duffee, 2006,

Hördahl et al., 2006, Joslin et al., 2014, Rudebusch and Wu, 2008). We are the first to

suggest that the persistence problem can be resolved by volatility-induced stationarity.

Other methodologies have been suggested to overcome the persistence problem. One

strand of literature focuses on the well-known statistical problem that the autoregressive

parameter of stationary VAR models is downwardly biased in small samples when data are

persistent. To tackle this problem, Kim and Orphanides (2007) and Kim and Orphanides

(2012) augment the data with survey forecasts and Bauer et al. (2014) suggest a bias-

correction that results in stable term premia. This approach is conceptually different from

that taken in this paper in which linear dynamics is abandoned to introduce nonlinearity

in the form of volatility-induced stationarity. In result, we show empirically that term

premia implied by our model have different properties from those obtained by Bauer

et al. (2014). Abbritti et al. (2016) and Goliński and Zaffaroni (2016) suggest that long

memory represents a realistic, intermediate case between I(0) and I(1) GATSMs. Along

these lines, Jardet et al. (2013) consider near-cointegration implemented by averaging the

parameter estimates of the stationary and cointegrated VAR models. The resulting term

premia coincide with those of the DAR model during the zero-lower bound regime, but

differ elsewhere.

The paper is structured as follows. Section 2 introduces the DAR model and discusses

how unit roots can be reconciled with stationary dynamics through volatility-induced sta-

tionarity. The empirical analysis of the DAR model using a set of macro-finance risk fac-

tors is conducted in Section 3. In Section 4, we embed the DAR process into a no-arbitrage

term structure model and use this model to assess the implications of volatility-induced

stationarity on the yield curve. Finally, Section 5 compares the volatility specification of
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the DAR model to other specifications from the literature. Conclusions follow in Section

6.

2 Double Autoregressive Models

DAR models specify both the conditional mean and the conditional variance in terms of

lagged levels of the process. The conditional mean is equivalent to that of the VAR, while

the conditional variance can be specified based on various multivariate GARCH models.

In general, the p-dimensional DAR model with one lag in both the conditional mean and

the conditional variance is given by

Xt+1 = µ+ ΦXt + Ω
1/2
t+1εt+1,

Ωt+1 = f(Xt),

where εt+1 ∼ i.i.d. N (0, Ip) and f : Rp → Rp×p is a function that maps the levels of the

process Xt into a symmetric and positive definite matrix. Next, we specify the conditional

variance, Ωt+1.
4

2.1 Conditional Variance Specification

We specify the conditional variance such that (i) symmetry and positive definiteness is

imposed by construction; (ii) the number of parameters is feasible for estimation; and (iii)

we can establish time series properties of the model. The BEKK ARCH model in Engle

and Kroner (1995) specified in levels rather than residuals satisfies these requirements.

The resulting DAR model is given by

Xt+1 = µ+ ΦXt + Ω
1/2
t+1εt+1,

Ωt+1 = Σ0Σ
′

0 + Σ1XtX
′

tΣ
′

1,

εt+1 ∼ i.i.d. N (0, Ip).

(2)

where Σ0 is lower triangular with strictly positive elements on the diagonal. This unique

Cholesky factor ensures that the conditional variance matrix is positive definite without

imposing further parameter restrictions. The p× p matrix Σ1 determines the sensitivity

of the conditional volatility to the level of the process realized in the previous period. In

the special case where all elements of this matrix are zero, the model reduces to a VAR.

4Note that we adopt the notation from the GARCH literature and denote the conditional variance given
Xt by Ωt+1.
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Economically, the model allows uncertainty as measured by the conditional variance

to increase with the levels of the yield curve factors. By including macroeconomic variables

in the model, we can accommodate the hypothesis that a higher inflation rate increases

uncertainty about monetary policy (Ball, 1992, Fischer and Modigliani, 1978, Friedman,

1977, Logue and Willett, 1976).5 Also, the model is consistent with Hayford (2000) who

finds that inflation Granger causes unemployment uncertainty. Due to these economic

channels of heteroskedasticity, we present a macro-finance empirical application in Section

3.

2.2 Stationarity Condition and Time Series Properties

Nielsen and Rahbek (2014) show that Xt given by (2) is globally stationary and geomet-

rically ergodic if the Lyapunov exponents are strictly negative, i.e.,

γ (Φ,Σ1) = lim
ξ→∞

[

E

(

log ‖

ξ
∏

t=1

(Φ + et)‖

)]

< 0, (3)

where et is a p×p matrix that is i.i.d. normally distributed with mean zero and covariance

matrix given by Σ1⊗Σ1. We note that this condition is determined by both the conditional

mean through Φ and the conditional variance through Σ1. Thus, stationarity can be

induced by both the mean and the variance.

The stationarity condition in (3) motivates a classification of the DAR model into

four cases: (i) non-stationary I(1) models, (ii) models that are stationary due to the con-

ditional volatility only, (iii) models with both mean- and volatility-induced stationarity,

and (iv) stationary models without volatility-induced stationarity, that is I(0) models.6

To characterize the properties of the DAR model, we look at these cases separately.

(i) I(1) models

Assume that the characteristic polynomial corresponding to the conditional mean exhibits

one or more unit roots. In addition, suppose that the parameter Σ1 in the conditional

variance is not sufficiently large to ensure stationarity through a strictly negative top-

Lyapunov exponent. Formally, let λ1, . . . , λp denote the eigenvalues of Φ. Then, |λi| = 1

for i = 1, . . . , q ≤ p, |λj| < 1 for j = q + 1, . . . , p, and γ(Φ,Σ1) ≥ 0. If the number of

unit roots equals the dimension of the model, i.e., if q = p, then the model can be made

5This hypothesis has been tested comprehensively in the literature, see for instance Chang (2012), Fountas
(2010), Golob (1994), Hartmann and Herwartz (2012), and Kim and Lin (2012).
6We abstract from cases where the characteristic polynomial corresponding to the conditional mean has
solutions outside the unit circle although (3) can be satisfied under such cases.
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stationary by first differencing. Otherwise, the rank of Φ− Ip is reduced to r = p− q, and

Φ can be parametrized by Φ = Ip + αβ ′, where α and β are p× r matrices. Furthermore,

if β ′Xt is stationary given an initial distribution, we say that Xt is cointegrated with

cointegrating vector β 6= 0 as defined by Johansen (1995) for the I(1) VAR model, i.e.,

for Σ1 = 0p×p. Due to the presence of unit roots, the constant term µ is aggregated into

a linear trend if not restricted appropriately as a constant in the cointegrating relations.

(ii) Purely volatility-induced stationary models

The DAR model is purely volatility-induced stationary if the conditional mean exhibits

one or more unit roots, but the top-Lyapunov exponent is strictly negative due to a

sufficiently large level effect in the conditional variance: |λi| = 1 for some i = 1, . . . , q ≤ p,

|λj | < 1 for j = q + 1, . . . , p, and γ(Φ,Σ1) < 0. Thus, the model is stationary despite the

presence of unit roots because of the dynamics of the conditional volatility. Crucially, we

note that if the conditional volatility was not time-varying, the model would belong to

the non-stationary class of I(1) models described in case (i).

In general, the model does not have any finite unconditional moments. Thus, sta-

tionarity is not equivalent to mean-reversion in the traditional sense, where the process

reverts back to a level given by the unconditional mean. Instead, the process will tend to

spend most time at the level at which the conditional variance is low, i.e., at zero. What

happens as the process moves away from zero, say, due to a series of positive shocks?

Increasing values of Xt accumulate in the conditional variance so that the stochastic com-

ponent becomes larger as the process moves farther away from zero. Since the error term

is normally distributed and thus symmetric, a negative innovation will eventually arrive,

which pushes the process downwards. In this way, the process can quickly return to its

stable level. It will take another series of innovations of the same sign for the process

to repeat this pattern. Theoretically, nothing prevents that the innovation will continue

to be positive such that the process never returns towards its stable level. However, this

event happens with zero probability because the innovation term is Gaussian.7 Thus, it

is not a relevant concern for the empirical application of the model.

Finally, Nielsen and Rahbek (2014) show that due to volatility-induced stationarity,

the constant term µ does not accumulate into a linear trend as is the case in I(1) models.

7For a sequence of i.i.d. variables ε1, ε2, . . . , εT , where εi is symmetrically distributed with mean zero,
Pr(ε1 > 0, ε2 > 0, . . . , εT > 0) = 0.5T .
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(iii) Mean- and volatility-induced stationary models

Suppose that all eigenvalues of Φ are inside the unit circle, |λi| < 1 for all i = 1, . . . , p, and

the conditional variance is level-dependent. For empirically relevant values of Σ1, it will

be the case that γ(Φ,Σ1) < 0 and the model is stationary.8 Stationarity is ensured jointly

by Φ and Σ1, hence, the model exhibits both mean- and volatility-induced stationarity.

The unconditional mean, variance, and autocovariance are given by

E (Xt) = (Ip − Φ)−1
µ,

vec [Var (Xt)] = (Ip2 − Φ⊗ Φ− Σ1 ⊗ Σ1)
−1 vec

(

Σ0Σ
′

0 − Σ1 (Ip − Φ)−1
µµ′ (Ip − Φ′)

−1
Σ′

1

)

,

Cov (Xt, Xt−m) = ΦmVar(Xt).

To understand the model dynamics intuitively, consider a case where E(Xt) > 0 such

that the level of mean-reversion is different and exceeds the level at which the model has

low conditional variance. When the process is at zero, the stochastic component is small

due to a small conditional variance, and the process is mainly controlled by the conditional

mean that drives the process towards its unconditional mean. Thus, the transition from

levels close to zero to the unconditional mean resembles that of the stationary VAR

model. Above the unconditional mean, however, the stochastic component is attributed

more weight as the conditional variance is increased by the process being away from zero.

In the case of a negative shock, the process will quickly revert to the unconditional mean

as both the conditional mean and stochastic component drive the process downwards.

A positive shock, on the other hand, implies that the conditional mean and conditional

variance work in opposite directions.

(iv) I(0) models

Let the eigenvalues of Φ be inside the unit circle and the conditional variance be constant:

Σ1 = 0p×p and |λi| < 1 for all i = 1, . . . , p. Then, the DAR model reduces to the stationary

VAR whose properties are well-known. Since the conditional variance is constant, the

model is stationary purely due to the absence of unit roots in the characteristic polynomial

corresponding to the conditional mean.

8Ling (2004) shows in the univariate case that extremely large values of Σ1 can result in non-stationarity.
We will not pay attention to this empirically irrelevant case.
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2.3 Numerical Illustrations

We illustrate these properties numerically by simulating paths of the model in each of the

four cases. Consider a sample of length T = 300 generated from univariate DAR models

with the following parameter values:

(i) I(1) model : (µ, Φ, Σ0, Σ1) = (0.01, 1, 0.1, 0).

(ii) purely volatility-induced stationary model : (µ, Φ, Σ0, Σ1) = (0.01, 1, 0.1, 0.3).

(iii) Mean- and volatility-induced stationary model : (µ, Φ, Σ0, Σ1) = (0.01, φ, 0.1, 0.3).

(iv) I(0) model : (µ, Φ, Σ0, Σ1) = (0.01, φ, 0.1, 0).

We repeat the simulation exercise for two different values of the autoregressive coefficient

in the cases (iii) and (iv): φ = 0.99, which is close to the unit-root case and an empirically

relevant value, and φ = 0.95 to illustrate the model when the mean-reversion effect is

stronger. Results are shown in Figure 1. The I(1) model is a random walk and the

I(0) model is a stationary AR process that fluctuates around the unconditional mean

illustrated by the dotted blue line. When pure volatility-induced stationarity is present,

the process tends to spend most time around zero, where volatility is low. As the process

moves away from zero, volatility increases which can generate spikes as those observed

around t = 225 and t = 275 in the simulation sample. However, as soon as a negative

innovation is realized, the process returns quickly to more stable levels. The dynamics

of the mean- and volatility-induced stationary model, case (iii), depends crucially on the

autoregressive parameter. When φ = 0.99, i.e., close to unity, the process behaves almost

like the purely volatility-induced stationary model, see panel (a). With a stronger degree

of mean-reversion, see panel (b), the DAR model resembles the I(0) model.

2.4 Likelihood

The process Xt in (2) is conditionally Gaussian given Xt−1 with conditional mean and

variance equal to

Et−1 (Xt) = µ+ ΦXt−1,

Vart−1 (Xt) = Ωt = Σ0Σ
′

0 + Σ1Xt−1X
′

t−1Σ
′

1.

Thus, the log-likelihood function is given up to a constant by

L(ΘP) = −
1

2

T
∑

t=1

[

log|Ωt|+ (Xt − µ− ΦXt−1)
′Ω−1

t (Xt − µ− ΦXt−1)
]

,
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Figure 1: Simulated Path of Univariate DAR Models
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Note: Simulated paths of sample length T = 300 generated by univariate DAR models
with parameters (µ,Φ,Σ0,Σ1) given by (0.01, 1, 0.1, 0) in case (i), (0.01, 1, 0.1, 0.3) in case (ii),
(0.01, φ, 0.1, 0.3) in case (iii), and (0.01, φ, 0.1, 0) in case (iv) with φ = 0.99 in Panel (a) and
φ = 0.95 in Panel (b).
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where we note that Ωt is a function of Σ0 and Σ1 given in (2) and the parameters are

given by ΘP = {µ,Φ,Σ0,Σ1}. Consistency and asymptotic normality of the maximum

likelihood estimator has been established in the univariate case by Ling (2004); in a

bivariate model under certain parameter restrictions by Nielsen and Rahbek (2014); and

in the multivariate setting but with a diagonal conditional covariance matrix in Zhu et al.

(2017). Since there are no results available for the general multivariate specification,

we confirm by simulations that the maximum likelihood estimators exhibit reasonable

properties, i.e., are approximately Gaussian and centered around their true values.9

3 Empirical Analysis

For the empirical analysis, we focus on the purely volatility-induced stationary model

versus the special case when the conditional volatility is constant, i.e., the I(1) VAR model.

We consider a macro-finance setting for two reasons. Fist, macroeconomic variables are

important predictors of term premia (Joslin et al., 2014, Wright, 2011). Second, the

volatility specification in (2) has an economic motivation involving inflation rates and

unemployment as discussed in Section 2.1. In particular, we model the short and long ends

of the yield curve (rt, Rt) and two macroeconomic measures interpreted as respectively

inflation (πt) and real activity (gt). Let Xt be the vector containing these variables,

Xt = [rt, Rt, πt, gt]
′.

3.1 Data

We use monthly data between January 1985 and December 2016 measured end-of-month.

The short rate is the one-month U.S. Treasury Bill rate from the Fama Treasury Bills

Term Structure Files available at CRSP. We define the long rate by the ten-year U.S.

Treasury bond yield from Gürkaynak et al. (2007).

The macroeconomic variables are constructed following the approach in Ang and

Piazzesi (2003) and Goliński and Zaffaroni (2016). The inflation measure, πt, is given

by the first principal component of standardized series of CPI and PPI data from the

U.S. Bureau of Labor Statistics. The measure of real activity, gt, is the first principal

component of standardized data on the unemployment and employment growth rates

from the U.S. Bureau of Labor Statistics; the industrial production index from Federal

9The simulation results are available upon request.
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Table 1: Interpretation of the Macroeconomic Factors

Explained (pct) Empirical correlation coefficients

CPI PPI UNEMP EMP PROD HELP

πt 85.49 0.92 0.92 - - - -

gt 65.75 - - -0.71 0.93 0.71 0.87

Note: The percentage of variation in respectively inflation data (CPI, PPI) and data
related to real activity (unemployment rates, UNEMP, employment growth rates,
EMP, the production index, PROD, and the HELP index, HELP) explained by
respectively the inflation measure (πt) and the real-activity measure (gt). Empirical
correlation coefficients are shown as well.

Reserve Economic Data; and the help-wanted-advertising-in-newspapers (HELP) index

from Barnichon (2010).

Table 1 details how πt and gt correlate with the underlying observed data as well as

the fraction of total variation they capture. The inflation variable, πt, is highly correlated

with both inflation measurements and explains 85 pct of the total variation in these data.

The variable measuring real activity, gt, correlates strongest with employment growth rate

and the HELP index. Correlation with the unemployment rate is negative as expected.

Our measure of real activity captures 66 pct of the variation in the underlying observables.

The data for Xt = [rt, Rt, πt, gt]
′ are exhibited in Figure 2. The series appear ex-

tremely persistent and use of conventional unit-root and stationarity tests indeed identify

unit roots, see Table 2. Therefore, modeling these data using a VAR model involves the

implicit assumption that interest rates are generated by non-stationary processes, which

is puzzling from both theoretical and empirical standpoints. To alleviate this problem,

we propose the DAR model for these persistent and stationary data.

3.2 Model Specification and Estimation

To achieve a well-specified model, we allow for an extensive lag structure in the conditional

mean. We find that this generalization is sufficient to match the data and thus we leave

the conditional variance as specified in (2). The resulting generalized DAR model is given

13



Figure 2: Monthly Interest Rates and Macroeconomic Factors
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Note: The interest rates, rt and Rt, are the 1-month Treasury bill rate and the 10-year Treasury
bond yield. The inflation measure, πt, is the first principal component of CPI and PPI rates.
Real activity, gt, is measured the first principal component of the unemployment rate, the growth
rate of employment, and the industrial production and HELP indices.

Table 2: Testing for Unit Roots

Null hypothesis rt Rt πt gt

ADF test unit root
2.16 3.19 -16.98 -14.83

[0.44] [0.17] [0.00] [0.01]

KPSS test stationarity
1.49 1.89 0.39 0.43

[0.00] [0.00] [0.08] [0.06]

Note: Augmented Dickey-Fuller and KPSS tests for respectively unit
roots and stationarity. P-values in brackets.

by

Xt+1 = µ+ ΦXt +
K
∑

k=1

Γk∆Xt−k + Ω
1/2
t+1εt+1,

Ωt+1 = Σ0Σ
′

0 + Σ1XtX
′

tΣ
′

1,

εt+1 ∼ i.i.d. Np(0, Ip)

(4)
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for K ≥ 1.10 As we focus on the purely volatility-induced stationary case, we decompose

Φ = Ip+αβ
′, where α and β are of dimension p×r with the rank of Φ satisfying 0 ≤ r ≤ p.

The parameters of the model are ΘP = {µ, α, β,Γ1,Γ2, . . . ,ΓK ,Σ0,Σ1}.

The data suggest a reduced rank of r = 2 and a lag length of K = 3, when spec-

ification testing is conducted with use of conventional methods for VAR models. With

these choices, the DAR model appears to be well-specified. In fact, compared to the

corresponding cointegrated VAR (CVAR) model that appears as the special case when

Σ1 = 0p×p, the DAR model removes autocorrelation and improves normality tests of the

standardized residuals, see Table 3. The DAR model obtains the lowest AIC value and

the likelihood values of the models are significantly different when compared by a LR test.

Moreover, we note that the estimated top-Lyapunov exponent in the DAR is strictly neg-

ative.11 Therefore, the process is indeed volatility-induced stationary. Further estimation

details and parameter estimates are provided in Appendix A.

Long-Run Equilibria

The long-run equilibria in the DAR model are estimated, up to a constant, by

β̂ ′

1Xt ∝ rt − 3.672πt − 1.681gt,

β̂ ′

2Xt ∝ Rt − rt,

see Table 9 in Appendix. One relation is the spread between long and short rates as in

Hall et al. (1992). The other is given by the short rate, inflation, and real activity. Since

the short rate follows the federal funds rate closely, this relation mimics the dual mandate

of the Federal Reserve (Fed). In addition, the signs of the estimates are intuitive: a low

10The associated top-Lyapunov exponent is given by

γ = lim
ξ→∞

[

E

(

log ‖

ξ
∏

t=1

(Φ̃ + ẽt)‖

)]

,

where ẽt has dimension p(K + 1)× p(K + 1) and is i.i.d. normal with mean zero and covariance matrix
equal to Σ̃1 ⊗ Σ̃1. Φ̃ and Σ̃1 are defined by

Φ̃ =





















Φ+ Γ1 Γ1 − Γ2 . . . ΓK − ΓK−1 −ΓK

Ip 0p×p . . . 0p×p 0p×p

0p×p Ip 0p×p 0p×p

...
. . .

...

0p×p 0p×p . . . Ip 0p×p





















, Σ̃1 =





Σ1 0p×pK

0pK×p 0pK×pK



 .

11The Lyapunov exponents are obtained by the efficient and numerically stable algorithm described in
Nielsen and Rahbek (2014).
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Table 3: Misspecification Testing

DAR CVAR

Log-likelihood 6986 6823

AIC -13806 -13507

Top-Lyapunov -0.004

rt Rt πt gt rt Rt πt gt

Ljung-Box
7.71 1.67 0.61 4.96 3.72 1.48 1.05 5.75

[0.10] [0.80] [0.96] [0.29] [0.44] [0.83] [0.90] [0.22]

Engle’s ARCH
23.81 4.37 2.53 1.58 36.15 9.92 20.82 0.60

[0.00] [0.04] [0.11] [0.21] [0.00] [0.00] [0.00] [0.44]

Kolmogorov-Smirnov
0.07 0.06 0.06 0.06 0.09 0.06 0.10 0.05

[0.05] [0.09] [0.12] [0.16] [0.00] [0.12] [0.00] [0.12]

Note: Log-likelihood values, Akaike information criteria (AIC), and top-Lyapunov exponent of the
DAR model. Residual specification tests: Ljung-Box test of no autocorrelation. Engle’s test of no
ARCH effects. Kolmogorov-Smirnov test of standard normal distribution. P-values in brackets.

interest rate is associated with high levels of inflation and real activity. Also, we note

that the estimated adjustment matrix places more weight on the yield spread relation

compared to the dual mandate, see appendix. These results are practically identical for

the CVAR model.

3.3 Conditional Volatilities

Model-implied conditional variances are exhibited in Figure 3. In the DAR model, condi-

tional variances are highly time-varying and fluctuate around the constant levels estimated

by the CVAR model. With exception of the short rate, which is subject to money market

noise (Piazzesi, 2005) and institutional effects (Hilton, 2005), the factors exhibit coun-

tercyclical volatility. In particular, there are pronounced spikes at the outbreak of the

financial crisis in 2007/08. Volatilities are small and nearly constant during the zero-lower

bound regime in the aftermath of the crisis.

The DAR model allows all variables to exhibit volatility-induced stationarity and

furthermore, the conditional heteroskedasticity can be driven by all variables. This general

setting allows us to make statements about (i) which variables exhibit volatility-induced
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stationarity? and (ii) what variables drive this feature? From Figure 3, the short rate

stands out with a highly volatile conditional variance that ranges from high and rapidly

changing to low and stable. From the estimation results provided in Appendix A, the

conditional variance of the short rate is given by

Vart (rt+1) = (95.7rt + 18.9Rt + 15.2πt)
2
,

where insignificant coefficients are suppressed. Thus, volatility-induced stationarity in the

short rate is mainly driven by the short rate itself, but also by the long rate and inflation.

Figure 3 also shows the conditional correlations in the DAR model. We note that

these are time-varying, which suggests that the flexibility offered by DAR models in terms

of time-varying conditional correlations in contrast to Ap(p) models is indeed necessary to

fit the data. The short rate correlates positively with the long rate through the majority of

the sample implying that the monetary transmission mechanism from short to long rates

works in normal times. However, the correlation becomes negative following recessionary

periods.

3.4 Term Premia

Next, we show that volatility-induced stationarity impacts model-implied term premia.

Term premia are defined by an accounting identity that decomposes the bond yield, Yt,n,

into the yield that would prevail if investors were risk neutral, Ỹt,n, and a residual, the

term premium, TPt,n: Yt,n = Ỹt,n + TPt,n. By definition,

Ỹt,n = −
1

n
logEt

(

exp

[

−
n−1
∑

i=0

rt+i

])

, (5)

where Et(·) is the conditional expectation given the filtration at time t under physical

probabilities and rt is the short rate. Using observed yields for Yt,n, the term premium

follows by computing Ỹt,n.
12

Model-implied term premia with maturity of ten years, n = 120, are shown in Figure

4. Besides comparing the DAR and CVAR models, we also report term premia implied

by the stationary VAR model. The models agree that term premia are countercyclical,

which is consistent with the intuition on how risk premia behave. However, the DAR

model implies stronger cyclicality than the VAR models.

12The expectation in (5) can either be simulated or approximated by the method that will explained in
Section 4.2, where the Q-parameters are replaced by the corresponding parameters under the P-measure.
Here, we report term premia obtained by approximation.
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Figure 3: Estimated Conditional Variances and Correlations

1985 1995 2005 2015
0

500

1000

1985 1995 2005 2015
50

60

70

80

90

1985 1995 2005 2015
50

100

150

200

250

300

1985 1995 2005 2015
15

20

25

1985 1995 2005 2015
-0.5

0

0.5

1985 1995 2005 2015
-1

-0.5

0

0.5

1

1985 1995 2005 2015

-0.4

-0.2

0

0.2

1985 1995 2005 2015
-0.2

0

0.2

0.4

0.6

1985 1995 2005 2015
0

0.1

0.2

0.3

0.4

1985 1995 2005 2015
-0.6

-0.4

-0.2

0

Note: Estimated conditional variances (in bps) in the DAR and CVAR models. Conditional
correlations are reported for the DAR model. Shaded areas mark recessionary periods defined
by NBER.
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Figure 4: Ten-Year Term Premia
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Note: Ten-year term premia implied by the DAR, CVAR, and stationary VAR models. The
ten-year yield is plotted for reference. Shaded areas mark recessionary periods defined by NBER.

We make two observations regarding the VAR models. First, the stationary VAR

model implies that term premia are downward-sloping corresponding to the down-trending

long rate. In fact, the correlation between the ten-year term premium of the stationary

VAR model and the ten-year yield is 0.91. This high correlation reflects the strong

mean reversion of stationary VAR models that implies that Ỹt,n is nearly constant. In

result, almost all of the variation in yields is attributed to term premia. This persistence

problem has previously been recognized in the literature (Abbritti et al., 2016, Goliński

and Zaffaroni, 2016, Jardet et al., 2013, Kozicki and Tinsley, 2001, Shiller, 1979). Second,

we note that the CVAR model predicts an almost constant ten-year term premium in the

range of 3-4 pct throughout the entire sample even as the ten-year yield falls toward 2 pct

towards the end of the sample. It is, however, counterintuitive that the term premium

is well above the yield itself for a long period of time, as it means that investors expect

future short rates to become highly negative. The stable term premium in the CVAR

model is a direct implication of the model result that the short rate adjusts to the yield

spread as a long-run stable relation. In turn, Ỹt,n converges to the long rate such that no

residual variation can be assigned to the term premium.

The flexibility of the DAR model allows for term premia that are more time-varying

than those of the CVAR model, but not close to perfectly correlated with yields as in the
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Table 4: Matching Survey Expectations

DAR CVAR VAR

3M 34.55 37.34 39.15

6M 44.92 53.63 58.54

12M 74.45 91.98 106.09

Note: Root mean squared errors in bps of forecasts of the
short rate in the DAR, CVAR, and stationary VAR models
compared to the expected 3-month Treasury bill rate from the
Survey of Professional Forecasters. Forecasting horizons are 3,
6, and 12 months. Lowest errors across models are boldfaced.

stationary VAR model. To numerically evaluate the DAR model’s ability to decompose

interest rates, we compare model-implied expectations of short rates with market expec-

tations measured by survey forecasts. The survey data are from the Survey of Professional

Forecasters (SPF) conducted by the Federal Reserve Bank of Philadelphia on a quarterly

basis. We use median forecasts of the three-month Treasury Bill rate as a proxy for the

short rate. We compare these data to expectations computed by respectively the DAR

model and the cointegrated and stationary VAR models. Table 4 compares root mean

squared errors between model-implied and survey expectations for forecasting horizons of

3, 6, and 12 months. The results unambiguously show that volatility-induced stationar-

ity help matching market expectations. We interpret this result as an indication that the

DAR model provides a more accurate term structure decomposition than the cointegrated

and stationary VAR models.

Alternative Solutions to the Persistence Problem

Bauer, Rudebusch, and Wu (2012) (hereafter BRW) suggest that the persistence problem

of the stationary VAR model can be resolved by correcting for the well-known downward

bias in the autoregressive coefficient matrix. Figure 5 compares model-implied five-by-five

year forward term premia of the DAR, CVAR, and stationary VAR models compared to

those in BRW, which are available at the quarterly frequency from 1990:Q1 to 2009:Q1

from the AEA website associated with the paper.13 Descriptive statistics of the forward

term premia are given in Table 5.

13BRW consider a macro-finance term structure model where the factors are given by the first three
principal components of the yield curve along with two unspanned macro risks constructed by smoothed
inflation and GDP growth data.
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Figure 5: Five-by-Five Year Forward Term Premia
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Note: Five-by-five year forward term premia implied by the DAR model and the bias-corrected
I(0) VAR model in Bauer et al. (2012) (BRW). Shaded areas mark recessionary periods defined
by NBER. Data are in quarterly frequency.

For the considered sample and at the quarterly frequency, the BRW forward term

premia are as stable as those of the CVAR both with an empirical standard deviation

of 0.6. Therefore, we expect that the BRW model encounters the same problem as the

CVAR model if extrapolated into the zero-lower bound regime. Moreover, the BRW

forward term premia are negatively correlated with the forward rate. To the extent that

higher levels of yields are associated with more volatility, we would expect the correlation

to be positive as predicted by the DAR and VAR models.

The persistence problem is also considered in Jardet et al. (2013), who suggest an

averaging estimator that combines the parameter estimates of the stationary VAR and

CVAR models. We adopt their weighting scheme to combine our estimated VAR models,

which give term premia as depicted in Figure 6.14 The term premia estimated by the

averaging model are in-between those of the stationary VAR and CVAR models and thus

highly stable. In result, this model cannot produce term premia that are either below

or above the estimates of the VAR models. The averaging model will therefore differ

from the DAR model in most of the sample per construction. An exception is during the

14Jardet et al. (2013) chooses a weighting scheme such that the forecasting error of the future path of
short rates is minimized. In result, the stationary VAR estimates are weighted by 0.2617 which implies
a weight on the CVAR model equal to 0.7383.
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Table 5: Empirical Standard Deviations and Correlations of Five-by-Five Year Forward Term
Premia

DAR CVAR VAR BRW

Standard deviation 1.39 0.59 1.06 0.60

Correlation with forward rate 0.50 0.09 0.89 -0.09

Correlation matrix:

DAR 1

CVAR 0.85 1

VAR 0.70 0.33 1

BRW 0.38 0.60 0.20 1

Note: Empirical standard deviations of five-by-five-year forward term premia implied by the
DAR, CVAR, and VAR models and the bias-corrected I(0) VAR model in Bauer et al. (2012)
(BRW). Correlations with the forward rate as well as correlations between the models are
reported as well. All data are in quarterly frequency from 1990:Q1 to 2009:Q1.

zero-lower bound regime, where the term premia of the DAR model and averaging model

coincide.

4 Volatility-Induced Stationary Term Structure Modeling

This section casts the DAR model analyzed thus far into a macro-finance term structure

model. We consider a four-factor term structure model with the observable state vector

Xt = [rt, Rt, πt, gt]
′ whose dynamics is given by (4).

4.1 Stochastic Discount Factor and Q-Dynamics

We adopt the standard linear-exponential stochastic discount factor given by

Mt+1 = exp

(

−rt −
1

2
Λ′

tΩt+1Λt − Λ′

tΩ
1/2
t+1εt+1

)

, (6)

where Λt is the market price of risk with risk measured by the conditional variance, Ωt+1.

We specify the market price of risk such that the factor dynamics under the risk-neutral

Q-measure follows a DAR model. Moreover, to reduce the number of parameters we treat

lagged variables as unspanned factors as in Joslin et al. (2013). Thus, the lag structure

determines the dynamics under the real-world measure but is not priced in the term
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Figure 6: Ten-Year Term Premia
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Note: Ten-year term premia implied by the DAR, CVAR, and stationary VAR models along
with the model averaging estimator (AVG) that combines the parameters of the VAR and CVAR
models with weights equal to respectively 0.2617 and 0.7383. The ten-year yield is plotted for
reference. Shaded areas mark recessionary periods defined by NBER.

structure cross-section. The market price of risk is defined by:

Λt = Ω−1
t+1

[

(µ− µQ) +
(

Φ− ΦQ
)

Xt +

K
∑

k=1

Γk∆Xt−k

]

, (7)

with risk-neutral Q-dynamics given by the following DAR model:

Xt+1 = µQ + ΦQXt + Ω
1/2
t+1ε

Q
t+1,

Ωt+1 = Σ0Σ
′

0 + Σ1XtX
′

tΣ
′

1,

εQt+1 ∼ i.i.d. Np(0, Ip).

(8)

We note that the market price of risk is time-t measurable as Ωt+1 depends on Xt. Finally,

per construction of the state vector, the short rate and the state vector are related by

rt = ι′1Xt where ι
′

1 is a unit vector with one in the first entry. With these assumptions,

the special case where Σ1 = 0p×p corresponds to the GATSM based on the CVAR model

rather than the stationary VAR model that is standard in GATSMs. In the following, we

use the acronym GATSM to describe the model based on the CVAR specification that is

nested in our model.
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4.2 Bond Pricing

The no-arbitrage price of a zero-coupon bond with n+ 1 periods to maturity is given by

Pt,n+1 = Et (Mt+1Pt+1,n) ,

where Et(·) denotes the conditional expectation given Ft = {Xt, Xt−1, . . . , X1} under

real-world probabilities. Our model does not admit a closed-form bond price expression

that satisfies this equation. Instead, we propose an exponential-quadratic approximation

that allows the conditional covariance matrix to affect bond yields. This is similar to the

GATSM in which the closed-form solution depends on the constant conditional variance,

see Ang and Piazzesi (2003). Also, we make sure that for Σ1 = 0p×p, bond yield compu-

tation must coincide with the solution of the GATSM. Appendix B shows that such an

approximation can be obtained by controlling the dynamics of the conditional variance

under the Q-measure. The resulting approximation is given by

Pt,n =exp (An +B′

nXt + C ′

nvec (XtX
′

t)) , (9)

where

An = An−1 +B′

n−1µ
Q + C ′

n−1

(

vec
(

µQµQ′

)

+ vec (Σ0Σ
′

0)
)

+
1

2
B′

n−1Σ0Σ
′

0Bn−1

B′

n = −ι1 +B′

n−1Φ
Q + C ′

n−1

(

ΦQ ⊗ µQ + µQ ⊗ ΦQ
)

C ′

n = C ′

n−1

(

ΦQ ⊗ ΦQ + Σ1 ⊗ Σ1

)

+
1

2

(

[B′

n−1Σ1]⊗ [B′

n−1Σ1]
)

initiated at n = 0 with A0 = 0, B0 = 0p×1, C0 = 0p2×1.
15 The associated approximated

bond yield is given by

Yt,n = −
1

n
log (Pt,n) = −

1

n
An −

1

n
B′

nXt −
1

n
C ′

nvec (XtX
′

t) . (10)

The approximated bond yield expression is similar to the solution of the class of

quadratic term structure models (QTSMs) studied in Leippold and Wu (2002), Ahn et al.

(2002), and Realdon (2006). Thus, the DAR term structure model and the QTSM can

produce similar shapes of the yield curve. However, the source of the quadratic term

and thus the loading recursions are highly different across the two model frameworks:

15To evaluate the approximation error, we proxy the exact solution by averaging 10,000,000 paths of

exp
(

−
∑n−1

i=0
ι′1X̂t

)

, where X̂t is simulated under the Q-measure according to (8). Then, this simulated

bond price is converted to yields. We repeat this procedure for all months of January in the sample using
parameter values reported in Table 6. The approximation error is largest for the ten-year yield, for which
the average absolute error is 38 bps corresponding to 6.94 pct of the average ten-year yield level.
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Table 6: Estimated Q-Dynamics

DAR term structure model GATSM

(µQ)′×100 -0.007
(0.001)

0.001
(0.000)

-0.046
(0.003)

-0.018
(0.003)

-0.010
(0.006)

0.001
(0.000)

-0.029
(0.034)

-0.002
(0.026)

ΦQ

0.758
(0.018)

0.242
(0.000)

0.093
(0.090)

0.225
(0.078)

0.905
(0.001)

0.111
(0.000)

0.013
(0.003)

0.076
(0.002)

-0.008
(0.016)

1.007
(0.000)

-0.001
(0.082)

-0.003
(0.070)

-0.010
(0.000)

1.009
(0.000)

0.001
(0.003)

-0.002
(0.002)

0.886
(0.010)

-0.756
(0.000)

0.477
(0.049)

-0.887
(0.043)

0.156
(0.000)

-0.104
(0.000)

0.879
(0.002)

-0.145
(0.001)

0.807
(0.019)

-0.738
(0.000)

-0.438
(0.093)

0.138
(0.080)

0.168
(0.001)

-0.168
(0.000)

-0.089
(0.003)

0.783
(0.002)

Note: Estimated parameters related to the Q-dynamics, µQ and ΦQ, in the DAR term structure
model and the GATSM. The parameters are estimated given Θ̂P = {µ̂, α̂, β̂, Σ̂0, Σ̂1, Γ̂1, Γ̂2, Γ̂3}
from Section 3. Standard errors in paranthesis.

whereas the quadratic bond yield in our model stems from the variance specification in

the DAR model, the QTSM imposes this non-linearity through a quadratic specification

of the short rate. This difference is particularly highlighted in the macro-finance model

considered in this paper in which the short rate is a factor itself. In this setting, the

short-rate specification is linear per construction and the QTSM reduces in this case to

the GATSM.

4.3 Estimation

We estimate µQ and ΦQ by non-linear least squares given the parameters obtained for

the factor dynamics in Section 3, Θ̂P = {µ̂, α̂, β̂, Σ̂0, Σ̂1, Γ̂1, Γ̂2, Γ̂3}.16 The data are U.S.

Treasury bonds yields from Gürkaynak et al. (2007) with maturities n = 1, 2, . . . , 10

years. The results are shown in Table 6. The DAR model remains stationary under the

Q-measure with a top-Lyapunov exponent of −0.017.

4.4 In-Sample Fit

Figure 7 shows how the DAR term structure model matches the unconditional first and

second empirical moments of the yield curve cross-section compared to the GATSM. We

observe that the models fit the yield curve and moreover, that the models are practi-

16This two-step estimation method is a common approach in the macro-finance term structure literature,
see for instance Ang and Piazzesi (2003), Ang et al. (2006), and Wright (2011).
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Figure 7: In-Sample Yield Curve Fit
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Note: Empirical unconditional mean and standard deviation of observed and model-implied yields in
the DAR term structure model and GATSM.

cally identical in this respect. To explain this similarity, we compare estimated factor

loadings An and Bn in Figure 8. Indeed, the DAR term structure model does not imply

different loadings from those obtained by the GATSM. In Figure 9, we plot the com-

ponent that prices volatility-induced stationarity, −n−1C ′

nvec (XtX
′

t) from (10). This

component accounts for a very small part of yields across all maturities, which confirms

that the quadratic component generated by volatility-induced stationarity is not priced

by the yield curve. Since the time-varying conditional variance of the DAR model only

affects bond yields through a convexity effect, this finding is consistent with Joslin and

Konchitchki (2018) who show that convexity effects under the Q-measure are small.

4.5 Out-of-Sample Performance

We assess the out-of-sample performance through a rolling-window forecasting exercise.

In particular, we estimate the models with one lag in the factor dynamics as in (2), for the

sample from January 1985 to December 2005 (T = 252). Using these estimated models,

the yield curve is forecasted 3, 6, and 12 months ahead. We repeat this procedure by re-

estimating the models based on a rolling-window sample of length T = 252 from January

2006 to December 2015. This period contains events that are difficult to forecast including

the financial crisis of 2007/08 and the zero-lower bound regime. Root mean squared
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Figure 8: Factor Loadings
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Figure 9: Quadratic Component of Model-Implied Bond Yield
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errors from this exercise are presented in Table 7 along with random walk forecasts. The

DAR term structure model outperforms both the GATSM and the random walk almost

uniformly across all maturities. The exceptions are forecasts of the 10-year yield and

the 12-month ahead forecast of the 9-year yield. The differences between the models’

forecasting performance are larger for shorter maturities reflecting that volatility-induced

stationarity is generated by the short end of the yield curve. Thus, volatility-induced

stationarity clearly improves out-of-sample forecasting of the yield curve.

5 Volatility Specifications in the Term Structure Literature

We conclude the paper by comparing the volatility specification of the DAR model in (2)

with models that are common in the discrete-time term structure literature. The standard

specification is the Poisson-Gamma mixture from Le et al. (2010), which underpins the

discrete-time equivalents of the Am(p) models in Dai and Singleton (2000). We also

consider a related class of models given by Wishart autoregressive models.
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Table 7: Out-of-Sample Performance

DAR model GATSM Random Walk

3M 6M 12M 3M 6M 12M 3M 6M 12M

Average 58.06 71.77 87.42 69.07 88.21 102.74 63.37 79.48 125.61

1Y 65.90 85.18 113.43 99.57 131.34 168.83 65.53 102.71 175.08

2Y 63.23 78.86 99.29 86.35 111.69 136.38 64.60 91.40 156.03

3Y 61.77 75.03 90.18 77.96 99.04 115.84 64.20 83.29 140.76

4Y 60.24 72.83 85.93 72.16 90.75 103.14 63.82 78.08 129.29

5Y 58.33 70.88 83.53 67.52 84.74 94.88 63.45 75.12 120.86

6Y 56.33 69.02 81.94 63.50 79.94 89.03 63.12 73.64 114.60

7Y 54.55 67.39 80.76 59.96 75.87 84.56 62.80 73.00 109.85

8Y 53.24 66.16 79.95 56.90 72.36 80.96 62.47 72.73 106.11

9Y 52.64 65.56 79.46 54.35 69.37 78.05 62.07 72.54 103.05

10Y 54.36 66.78 79.72 52.42 66.95 75.77 61.60 72.28 100.44

Note: Root mean squared errors from forecasting the yield curve using the DAR term structure model
and the GATSM. The models are estimated on a rolling window starting with the sample from January
1985 to December 2005. Forecasts by the random walk are reported for reference. The minimum value
obtained for each forecast horizon and maturity is boldfaced. Reported in bps.

Poisson-Gamma mixtures: discrete-time Am(p) models

Starting with the seminal work of Duffie and Kan (1996), a substantial literature17 has

considered term structure models with conditional variance of the form

Ωt+1 = V













α1 + β ′

1Zt 0

. . .

0 αp + β ′

pZt













V ′, (11)

where Zt is a vector of length m with 0 ≤ m ≤ p. The conditional density of Zi,t,

i = 1, . . . , m, given Zt−1 is defined as a Poisson mixture of standard gamma distributions,

which ensures that Zi,t > 0. The models allow m variables to drive the time-varying con-

ditional variance of all factors, which gives rise to the notation Am(p) for p-factor models.

17In the discrete-time setting see Darolles et al. (2006), Gourieroux and Jasiak (2006), Gourieroux et al.
(2002), Le et al. (2010). Continuous-time models are detailed in Dai and Singleton (2000) which contains
further references.
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We note that the DAR model can also restrict the number of factors that determine the

volatility of all factors by adding structure to the matrix Σ1.

The Poisson-Gamma mixture model requires the volatility factors to be strictly pos-

itive processes. Le et al. (2010) argue that this assumption is consistent with models of

habit formation as in Campbell and Cochrane (1999) and Wachter (2006) and the long-run

risk model in Bansal and Yaron (2004). In the former framework, surplus consumption

is argued to be central for the dynamics of risk premia, while Zt is given by a standard

deviation in the latter. However, more recent literature shows that variations in inflation

and real activity predict risk premia (Joslin et al., 2014). As these macro risks can be

both positive and negative, the Am(p) models are not well-suited for modeling this feature

of the data. In contrast, our volatility specification accommodates volatility factors that

are conditionally Gaussian, hence can take values on the entire real axis.

The structure in (11) implies that conditional volatilities are diagonal up to a time-

invariant linear transformation. Gourieroux and Sufana (2011) show that this assumption

is not necessary and limits the generality of the Am(p) models. Dai and Singleton (2000)

recognize a trade-off in the Am(p) models between the structure of correlations and the

number of volatility factorsm. At the extreme, Ap(p) models do not allow for conditionally

correlated factors and restrict their unconditional correlation to be non-negative. The

additional flexibility of our DAR model relieves this tension as we allow factors to be

conditionally correlated regardless of the number of volatility factors. Furthermore, given

that unconditional moments exist, i.e., when the DAR model belongs to case (iii), the

unconditional correlation between factors can be both positive and negative.

Wishart autoregressive processes

Gourieroux et al. (2009) and Gourieroux and Sufana (2011) propose a volatility specifi-

cation based on the Wishart autoregressive (WAR) process:

Ωt+1 =

K
∑

k=1

zk,tz
′

k,t,

zk,t = Ψzk,t−1 + Σzǫk,t, ǫk,t ∼ N (0, Ip).

Since the conditional volatility is a sum of quadratic forms, the specification ensures

symmetry and positive definiteness. Our volatility specification resembles a WAR process

with K = 1. There are, however, two important distinctions: (i) we allow the conditional

volatility to exhibit a time-invariant level equal to Σ0Σ
′

0, and (ii) the outer product in our
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specification is given by conditional Gaussian variables weighted by Σ1. These features

facilitate volatility-induced stationarity.18.

6 Conclusion

This paper presented a novel class of macro-finance term structure models based on the

double-autoregressive model. The dynamic model is consistent with key stylized facts of

interest rate data that the VAR framework fails to accommodate. A defining feature of

our model is that it exhibits volatility-induced stationarity implying that the conditional

variance of the model can maintain stationarity even in the presence of unit roots in the

conditional mean. We showed that this property is important for decomposing the term

structure into expected future short rates and term premia. We embedded the DAR model

into a no-arbitrage term structure model and provided an approximation for computing

model-implied bond yields analytically. Volatility-induced stationarity helps forecasting

bond yields. However, compared to the GATSM based on a VAR model, there are no

in-sample improvement of the DAR model. This can be interpreted as evidence that

volatility-induced stationarity is unspanned by the yield curve. Thus, our findings are

consistent with the notion of unspanned stochastic volatility. Future work may focus on

volatility-induced term structure models in which the conditional volatility is unspanned

by construction.

18Stationarity of the WAR process requires that the eigenvalues of Ψ are inside the unit circle (Gourieroux
et al., 2009)
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A Specification and Estimation of the DAR

We specify the model in (4) by use of conventional methods. In particular, the rank is

determined by the likelihood-ratio test in Johansen (1991), which is based on the VAR,

with critical values obtained using the wild bootstrap procedure in Cavaliere et al.

(2014). The test model is specified with a restricted constant, i.e., a constant term

appears in the cointegrating relations only.19 The lag structure of the test is specified by

general-to-specific LR tests, information criteria, and misspecification tests. For the

choice of 3-months lags, the residuals are not autocorrelated according to univariate

Ljung-Box tests, see the right panel of Table 3 in the body of the paper. The

likelihood-ratio test, for which results are reported in Table 8, suggests a reduced rank

of r = 2. We interpret these findings as indications that the DAR model in (4) may be

well-specified by r = 2 and lag length K = 3 as well. The left panel of Table 3 confirms

this presumption.

Table 8: Rank Testing

r ≤ 0 r ≤ 1 r ≤ 2 r ≤ 3

90.89 32.62 15.99 5.06

[0.00] [0.03] [0.07] [0.11]

Note: Likelihood-ratio test of the null r ≤
{0, 1, 2, 3} against r = p. P-values obtained with
the wild bootstrap in brackets.

We estimate (4) with r = 2 and K = 3 by maximum likelihood under just-identifying

restrictions. Then, we impose further restrictions to obtain models with economically

sensible interpretations. The restrictions are imposed sequentially starting with setting

the most insignificant estimates to zero first in the relations β ′Xt and then in the

adjustment matrix. At each step, the restrictions are tested by LR tests and the

short-run coefficient estimates are compared. Parameter estimates are given in Tables 9

and 10.

19If a constant is unrestricted, the cointegrated VAR model implies that the data contains a linear trend
(Johansen, 1996).



Table 9: Parameter Estimates Related to the Conditional Mean

DAR CVAR

µ′ (×10−4) -0.041
(0.060)

0.288
(0.217)

-0.273
(0.263)

-0.244
(0.106)

-0.637
(0.448)

-0.215
(0.119)

-0.122
(0.425)

-0.241
(0.095)

α′ 0 0 0.017
(0.008)

0.008
(0.003)

-0.016
(0.008)

0 0.017
(0.009)

0.009
(0.003)

0 -0.031
(0.021)

0 0 0.050
(0.027)

0 -0.033
(0.017)

0

β ′ 1 0 -3.672
(1.150)

-1.681
(0.611)

1 0 -3.097
(0.911)

2.174
(0.715)

-1 1 0 0 -1 1 0 0

Γ1 -0.175
(0.064)

0.059
(0.034)

0.027
(0.022)

0.036
(0.039)

-0.427
(0.076)

0.183
(0.088)

0.014
(0.060)

-0.064
(0.161)

-0.026
(0.034)

0.027
(0.055)

0.150
(0.050)

0.140
(0.102)

-0.028
(0.032)

0.034
(0.059)

0.148
(0.054)

0.069
(0.100)

0.039
(0.032)

0.032
(0.056)

0.444
(0.059)

-0.087
(0.113)

0.020
(0.030)

0.024
(0.056)

0.449
(0.077)

0.029
(0.140)

0.027
(0.016)

0.010
(0.027)

0.068
(0.022)

0.244
(0.048)

0.020
(0.015)

0.021
(0.027)

0.065
(0.023)

0.236
(0.049)

Γ2 -0.028
(0.072)

-0.032
(0.023)

0.011
(0.019)

0.014
(0.045)

-0.125
(0.082)

0.164
(0.080)

0.035
(0.065)

0.527
(0.165)

-0.035
(0.040)

-0.119
(0.055)

0.064
(0.044)

0.048
(0.106)

-0.025
(0.039)

-0.117
(0.053)

0.057
(0.048)

0.005
(0.114)

0.036
(0.032)

-0.063
(0.049)

-0.162
(0.066)

0.292
(0.118)

0.015
(0.033)

-0.035
(0.052)

-0.124
(0.079)

0.480
(0.137)

0.008
(0.017)

-0.015
(0.025)

0.025
(0.029)

0.187
(0.053)

0.010
(0.016)

-0.009
(0.025)

0.017
(0.033)

0.193
(0.049)

Γ3 -0.061
(0.056)

-0.022
(0.022)

-0.0359
(0.0220)

0.061
(0.038)

0.030
(0.074)

-0.064
(0.083)

-0.190
(0.062)

-0.070
(0.141)

-0.045
(0.034)

0.065
(0.058)

-0.090
(0.043)

0.001
(0.096)

-0.026
(0.034)

0.056
(0.061)

-0.078
(0.044)

-0.063
(0.099)

0.007
(0.029)

0.064
(0.051)

0.122
(0.056)

-0.084
(0.113)

0.009
(0.030)

0.066
(0.056)

0.063
(0.070)

0.050
(0.111)

-0.039
(0.015)

-0.015
(0.025)

0.034
(0.025)

0.288
(0.052)

-0.035
(0.014)

-0.017
(0.024)

0.032
(0.028)

0.278
(0.053)

Note: Estimates of parameters related to the conditional mean of the DAR and CVAR models.
Standard errors in parentheses.
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Table 10: Parameter Estimates of the Volatility Dynamics

DAR CVAR

Σ0 (×10−3) 0.045
(0.010)

0.369
(0.022)

0.049
(0.037)

0.217
(0.012)

0.029
(0.015)

0.228
(0.010)

-0.016
(0.040)

0.022
(0.016)

0.247
(0.017)

0.020
(0.013)

-0.007
(0.016)

0.275
(0.016)

0.012
(0.015)

0.014
(0.007)

0.002
(0.009)

0.113
(9,995)

0.013
(0.005)

0.017
(0.005)

-0.001
(0.008)

0.114
(0.005)

Σ1 -0.096
(0.013)

-0.019
(0.006)

-0.015
(0.006)

-0.008
(0.005)

-0.015
(0.014)

0.007
(0.010)

0.012
(0.011)

-0.028
(0.012)

-0.006
(0.018)

-0.007
(0.011)

-0.012
(0.018)

0.076
(0.016)

-0.002
(0.006)

-0.000
(0.004)

-0.008
(0.007)

-0.0074
(0.007)

Note: Estimates of parameters related to the conditional volatility in the DAR and CVAR models.
Standard errors in parentheses.
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B Bond Yield Approximation

Define εQt = Ω
1/2
t εQt . From the factor dynamics under the Q-measure in (8), write

XtX
′

t =µ
QµQ′

+ µQX ′

t−1Φ
Q′

+ ΦQXt−1µ
Q′

+ ΦQXt−1X
′

t−1Φ
Q′

+
(

µQ + ΦQXt−1

)

εQ
′

t

+ εQt

(

µQ′

+X ′

t−1Φ
Q′

)

+ εQt ε
Q′

t ,

or by using the vectorization operator, vec (A), that stacks the columns of the matrix A

into a vector and its relation with the Kronecker product denoted ⊗,

vec (XtX
′

t) =vec
(

µQµQ′

)

+
(

ΦQ ⊗ µQ + µQ ⊗ ΦQ
)

Xt−1 +
(

ΦQ ⊗ ΦQ
)

vec
(

Xt−1X
′

t−1

)

+
(

I4 ⊗
(

µQ + ΦQXt−1

)

+
(

µQ + ΦQXt−1

)

⊗ I4
)

εQt + vec
(

εQt ε
Q′

t

)

.

Next, we compute the conditional expectation given Ft−1 = {Xt−1, . . . , X1} under

Q-measure probabilities, EQ
t−1(·), of this expression. It follows that

E
Q
t−1 (vec (XtX

′

t)) =vec
(

µQµQ′

)

+
(

ΦQ ⊗ µQ + µQ ⊗ ΦQ
)

Xt−1 +
(

ΦQ ⊗ ΦQ
)

vec
(

Xt−1X
′

t−1

)

+ vec (Ωt) .

To derive a bond yield expression in closed-form, we introduce the following

approximation:

vec (XtX
′

t) ≈vec
(

µQµQ′

)

+
(

ΦQ ⊗ µQ + µQ ⊗ ΦQ
)

Xt−1 +
(

ΦQ ⊗ ΦQ
)

vec
(

Xt−1X
′

t−1

)

+ vec (Ωt) ,

where ≈ denotes an equality that is valid only approximately. Given this equation, the

zero-coupon bond price takes the form

Pt,n+1 =exp
(

An+1 +B′

n+1Xt + C ′

n+1vec (XtX
′

t)
)

.

It is straightforward to prove this claim and derive recursive formulas for the loadings:

logPt,n+1 =− rt + An +B′

n(µ
Q + ΦQXt) + C ′

nvec
(

µQµQ′

)

+ C ′

n

(

ΦQ ⊗ µQ + µQ ⊗ ΦQ
)

Xt

+ C ′

n

(

ΦQ ⊗ ΦQ
)

vec (XtX
′

t) + C ′

nvec (Ωt+1) + logEQ
t

[

exp
(

B′

nε
Q
t+1

)]

=− rt + An +B′

n(µ
Q + ΦQXt) + C ′

nvec
(

µQµQ′

)

+ C ′

n

(

ΦQ ⊗ µQ + µQ ⊗ ΦQ
)

Xt

+ C ′

n

(

ΦQ ⊗ ΦQ
)

vec (XtX
′

t) + C ′

nvec (Ωt+1) +
1

2
B′

nΩt+1Bn.
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Gathering terms result in factor loading recursions given by

An+1 = An +B′

nµ
Q + C ′

n

(

vec
(

µQµQ′

)

+ vec (Σ0Σ
′

0)
)

+
1

2
B′

nΣ0Σ
′

0Bn

B′

n+1 = −ι1 +B′

nΦ
Q + C ′

n

(

ΦQ ⊗ µQ + µQ ⊗ ΦQ
)

C ′

n+1 = C ′

n

(

ΦQ ⊗ ΦQ + Σ1 ⊗ Σ1

)

+
1

2
([B′

nΣ1]⊗ [B′

nΣ1]) .

To be consistent with rt = ι′1Xt, the recursions are initiated at n = 0 with A0 = 0,

B0 = 0p×1, C0 = 0p2×1.
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