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Abstract

This volume is a monograph on the geometric structure of a certain class
of (“comprehensive”) compact polyhedra called Cephoids. A Cephoid is a
Minkowski sum of finitely many standardized simplices. The emphasis rests
on the Pareto surface of Cephoids which consists of certain translates of
simplices, algebraic sums of subsimplices etc.

Cephoids appear in Operations Research (Optimization), in Mathematical
Economics (Free Trade theory), and in Cooperative Game Theory.

In particular, in the context of Cooperative Game Theory the notions of a
Cephoid serves to construct “solutions” or “values” for bargaining problems
and non–side payment games.
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Preface

Within this volume we describe the geometric structure of a certain class of
(“comprehensive”) compact polyhedra in

�
n
+, called Cephoids. A Cephoid is

a (Minkowski, algebraic) sum of finitely many standardized simplices, called
DeGua Simplices (referring to DeGua [4]). The outward or Pareto surface
of a deGua Simplex is a simplex as well (of lower dimension), but the outward
or Pareto surface of a Cephoid is generally much more involved and consists
of certain translates of simplices, algebraic sums of subsimplices etc. To
completely describe this structure is the main purpose of this book.

Cephoids appear in Applications of Mathematics like Operations Research
(Optimization), in Mathematical Economics (Free Trade theory), and in Co-
operative Game Theory.

A first and rather simple example is the “Rucksack”– or “Knapsack”–problem,
which constitutes an elementary exercise in Linear Programming.

A further example discussed by Economists exhibits rudimentary concepts
of Cephoids in the context of “Ricardian Production” which establishes the
comparative advantages of free trade between countries or economies with
different specialization abilities (David Ricardo [23]). We mention Graham,
[8], Jones [11], McKenzie [14]. Amazingly, Jones computes by hand and
without any underlying idea of the structure he is dealing with, an extremal
of a cephoid in 10 dimensions which is a sum of 10 deGua simplices – quite
a formidable achievement. Though there are indications that these authors
have been aware of a need for treating the general structure, economists have
never attempted to provide a full scenery of the realm. Naturally, they feel
that this is a Mathematical objective and not an Economical one.

Finally, in the context of (Cooperative) Game Theory authors have been
applying the notions of a Cephoid more or less explicitly in the context of
constructing “solutions” or “values” for non–side payment games or bargain-
ing problems. Most important we mention Maschler–Perles [22]; see also

III
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Pallaschke–Rosenmüller [18]).

It would seem that authors in Convex Geometry or Convex Analysis have
not been interested in studying Cephoids. This may be so as Cephoids are
subsets of

�
n
+ and we assume them to be comprehensive, i.e., containing

the full south-west orthant of any point located within. This assumption
– dictated by some obvious restrictions of models in economical context –
seems to be alien to the protagonists of Convex Geometry. The general sum
of simplices in

�
n is possibly much more complicated structure, yet the study

of Cephoids has eluded the attention of researchers in that field.

The term “Cephoid” will be made more suggestive during the development
of our theory. Originally the term referred to the “cephalopodic” structure
discovered in the family of maximal faces. The present name is more man-
ageable.

However, we want to remind the reader of an almost synchrone sounding topic
in astronomy. Here, a “Cepheid” is a variable star with periodic changes in
radiance being connected to absolute brightness. As the spectrum can be
well identified, a comparison of the apparent brightness and the absolute
brightness allows for a rather exact determination of the distance. Thus,
Cepheids have been found to establish pegs in the universe to measure the
distances to galaxies and nebulae. (“The Shapley–Curtis debate”). In this
context, the name of Harlow Shapley surfaces – we use the opportunity
to cite both Shapleys in the context of this volume.

As to the origin of the Theory of Cephoids, this volume is based on a series of
papers by the author and Diethard Pallaschke, see [18],[17], [19], [16],
[15], [29].

Diethard’s activity and influence was decisive for the bouquet of final results,
it cannot be overestimated. Within every level of the new concept, its devel-
opment and extension, its applicability and smooth handling Diethard was
essentially involved; full credit goes to his essential contribution.
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Chapter 1

Cephoids:
Sums of DeGua Simplices

Within this chapter, we provide introductory definitions and motivations.
Some notations are standard and nevertheless presented. Some others – es-
pecially the essential description of our basic structure, the Cephoid – are not
and we strive to provide a uniform notation. There are also a few conventions
used in Convex Geometry (and not necessarily familiar to the Mathemati-
cal Economist) or in Mathematical Economy (not necessarily familiar to the
Geometrician) that have to be brought on board to satisfy parts of the com-
munity embarking.

We provide a few introductory examples. These are mainly taken from the
geometric background and ranging in two, three, or four dimensions, thus
providing ample opportunity to view the appropriate sketches. But, on the
other hand, it seems worthwhile (as a motivation for those sailing with us
that are not familiar with the waters of Convex Geometry) to provide the
basic applications we will treat in extenso later on.

1
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1 Notations and Definitions

We consider specific convex compact polyhedra located within the nonnega-
tive orthant of

�
n. To this end, let I := {1, . . . , n} denote the set of coordi-

nates of
�

n, the positive orthant is
�

n
+ := {x = (x1, . . . , xn) | xi ≥ 0 , i ∈ I}.

Let ei denote the ith unit vector of
�

n and e := (1, . . . , 1) =
∑n

i=1 e
i ∈ �n

the “diagonal” vector. The notation CovH A is used to denote the convex
hull of a subset A of

�
n
+.

Given a vector a = (a1, . . . , an) > 0 ∈ �
n
+ with positive coordinates, we

consider the n multiples ai := aie
i (i ∈ I) of the unit vectors. The the set

(1) ∆a := CovH
{
a1, . . . ,an

}

is the Standard Simplex or for short, the Simplex resulting from a (we
use capitals in this context). Figure 1.1 represents a Simplex in

�3
+.

a1 a2

a2

∆a

Figure 1.1: The Simplex in
�3

+ generated by a = (a1, a2, a3)

Next, for J ⊆ I we write
�

n
J := {x ∈ �n xi = 0 (i /∈ J)}. Accordingly, we

obtain the Standard Subsimplex or just Subsimplex
(2)
∆a

J := {x ∈ ∆a xi = 0 (i /∈ J)} = ∆a ∩ �n
J = CovH

{
ai i ∈ J

}
.

There is a second type of simplex we want to associate with a positive vector
a ∈ �n

+. This is the one spanned by the vectors ai plus the vector 0 ∈ �n
+,

that is
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(3) Πa := CovH
{
0,a1, . . . ,an

}
.

In order to distinguish both types verbally we call Πa the deGua Simplex
associated to a, paying homage to J.P. de Gua de Malves [4] who generalized
the Pythagorean theorem for simplices of this type. Consistently we write,
for any J ⊆ I the corresponding deGua Subsimplex of Πa as

Πa
J := {x ∈ Πa xi = 0 (i /∈ J)}

= Πa ∩ �n
J = CovH

{
{0}{ai i ∈ J}

}
.

(4)

A set A ⊆ �
n
+ is called comprehensive if, for any x ∈ A it contains

all vectors y ∈ �
n
+ satisfying y ≤ x (inequalities between vectors to be

interpreted coordinatewise). The comprehensive hull of a set A ⊆ �n
+ is

given by

CmpH A :=
{
y ∈ �n

+ ∃x ∈ A : y ≤ x
}

.

clearly we have also

Πa = CmpH ∆a , Πa
J = CmpH∆a

J ,

and Figure 1.2 indicates the deGua Simplex Πa generated by a. All vectors
below ∆a including the vector 0 ∈ �3

+ are included.

a1

a2

a3

Πa

0

Figure 1.2: The deGua Simplex Πa; a = (a1, a2, a3)
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In the terminology of Convex Analysis, ∆a is themaximal (outward) face
of Πa. Here we prefer the MathEcon notation, calling ∆a the Pareto face
of Πa.

A normal to some convex set C in some (boundary) point x̄ ∈ C is a vector
that generates a separating hyperplane. A vector that is a normal to some
face F of a convex set C in all points of F is called normal to F .

∆a admits of a normal

na :=

(
1

a1
, . . . ,

1

an

)
.

All other normals to ∆a are positive multiples of this one, i.e., the normal
cone to ∆a is

N
a := {tna t > 0} .

We refer to this situation saying that the normal of ∆a is “unique up to a
multiple” or “essentially unique” etc.

The projection of na to
�

n
J+ is denoted by naJ := na | �n

J+

. The subface

∆a
J of the Pareto face admits of a normal cone Na

J generated by the normals

{naJ ′ J ⊆ J ′ ⊆ I} .

Certain operations on convex sets are a standard in Convex Geometry. For
two subsets A,B ⊆ �n

+ the algebraic or Minkowski sum is

A+B := {x+ y x ∈ A, y ∈ B}
and for λ ∈ �+ the multiple of A is defined via

λA := {λx x ∈ A} .

If A and B are convex sets, then the sets A+B and λA are also convex and
if A and B are polytopes, so are A +B and λA.

Now we are in the position to define the subject of this treatise, a Cephoid
which is a Minkowski sum of deGua Simplices. More precisely, we introduce
for some integer K the set

K := {1, . . . , K} .

Definition 1.1. Let
{
a(k)

}
k∈K denote a family of positive vectors and let

(5) Π =
∑

k∈K
Πa(k)

be the Minkowski sum. Then Π is called a Cephoid.
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There are basically two ways to describe the structure of a polyhedron or,
more specifically, a Cephoid. One approach is provided by constructing the
extremal points and the other one consists of a description of the faces or
rather the maximal faces of such a polyhedron. Both methods are in a certain
sense dual to each other and both sets of data provide easy access to the other
one. E.g., if we have a description of the maximal faces, then it is not hard
to also provide a list of the extremal points or vertices of the polyhedron.
First of all we concerned with the maximal outward faces of a Cephoid which
constitute the Pareto subface. We provide the following

Definition 1.2. 1. A face F of a Cephoid Π is maximal if, for any face
F 0 of P with F ⊆ F 0 it follows that F = F 0 is true.

2. The (outward or) Pareto surface of a compact convex set (specifi-
cally: of a Cephoid Π) is the set

(6) ∂Π := {x ∈ Π 6 ∃y ∈ Π, 6 ∃i ∈ I : y ≥ x, yi > xi } .

3. The points of the Pareto surface are called Pareto efficient.

4. Maximal faces in the Pareto surface are called Pareto faces.

The vector 0 is always an extremal point of a Cephoid in
�

n but it is not
Pareto efficient. All other extremal points of a Cephoid are Pareto efficient.

Definition 1.3. Let Π =
∑

k∈K Πa(k)
be a Cephoid and let i ∈ I. Define

(7) Π(−)i := Π ∩ �I\{i} .

Then Π(−i) constitutes a maximal face of Π but not a Pareto face. Π(−i) is
called the i–face of Π.

Indeed, Π(−i) is clearly a maximal face but not located in the Pareto surface
as not all points of Π(−i) are Pareto efficient (Definition 1.2). All maximal
faces of a Cephoid Π are either Pareto faces or intersections of Π with some
�

I\{i} as in (7). On the other hand, Π(−i) ⊆ �n
I\{i}+ is a Cephoid in its own

right, generated by the family of vectors

{
a
(k)
I\{i}

}
k∈K

.

We also introduce a notation for the reduction of a Cephoid in members of
the family as follows.
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Definition 1.4. Let Π =
∑

k∈K Πa(k)
be a Cephoid and let k ∈K. Define

(8) Π[−k] =
∑

k∈K\{k}
Πa(k)

Then Π[−k] is called the k–missing Cephoid to Π. This is a Cephoid in
�

n
+.

Clearly, ∆a is the only Pareto face of Πa; similarly for ∆a
J and Πa

J . The
Pareto surface of a general Cephoid will be the main topic of our discussion.

The following well known theorem (see e.g. Ewald [7] or Pallaschke–
Urba´nski [20]) is basic tool for testing Pareto efficiency of a sum of poly-
hedra.

Theorem 1.5. Let A and B be compact convex sets and let x ∈ A and y ∈ B
be Pareto efficient vectors of A and B respectively. Then x+ y is a Pareto
efficient vector in A + B if and only if the normal cone of A in x and the
normal cone of B in y have a nonempty intersection. That is, if and only if
A and B admit of a joint normal in x and y respectively.

On the other hand, every extremal point z of A + B is the sum z = x + y
of two extremal points x ∈ A and y ∈ B, such that the intersection of the
normal cones of x,y, z has a nonempty intersection.

Similarly, we have for faces or extremal sets of two convex and compact sets
the following

Theorem 1.6. Let A and B be compact convex sets and let F 1 ∈ A and
F 2 ∈ B be faces of A and B respectively. Then F 1 + F 2 is a face of A +B
if and only if the normal cone of F 1 with respect to A and the normal cone
of F 2 with respect to B have a nonempty intersection. That is, if and only
if A and B admit of a joint normal in F 1 and F 2 respectively.

On the other hand, every face F of A + B is the sum F = F 1 + F 2 of two
faces F 1 of A and F 2 of B, such that the intersection of normal cones of
F ,F 1,F 2 have a nonempty intersection.

Remark 1.7. Let
{
a(k)

}
k∈K denote a family of positive vectors and let Π(k) := Πa(k)

denote the corresponding deGua Simplices. Then

(9) Π := CovH

{
⋃

k∈K
Πa(k)

}
= CovH

{
⋃

k∈K
Π(k)

}
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is a deGua Simplex. We will use the term “maximum” for this convex hull referring
to the partial ordering induced by inclusion on convex sets; hence we write

(10) Π =
∨

k∈K
Π(k).

Clearly, if

a?i := max
k∈K

a
(k)
i (i ∈ I) ,

then a? := (a?i )i∈I yields Π = Πa?
. The operation

∨
is well defined for any

family of Subsimplices as well. Therefore, given a family
{
c(k)
}
k∈K of positive

coefficients and a family
{
J (k)

}
k∈K

, the deGua Simplex

(11)
∨

k∈K
ckΠ

(k)

J(k) .

is well defined.
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2 First Examples and Non–Degeneracy

Examples in lower dimensions can be informally discussed as the geomet-
rical aspects are obvious. Indeed, any comprehensive compact polyhedron
Π in two dimensions is a Cephoid. For, such a polyhedron is completely
described by the line segments that constitute the Pareto surface and these
line segments uniquely determine the deGua Simplices involved.

To make this somewhat more precise we discuss, in what follows, the nature
of Cephoids in 2 dimensions.

a(1)2

a(2)1

K21

K12
K(x̄)

Π(1)

Π(2)

Π = Π(1) +Π(2)

x̄ = a(1)2 + a(2)1

Figure 2.1: Cephoids and normal cones in
�2

+

Example 2.1. The first sketch (Figure 2.1) shows the situation for two deGua
Simplices Π(1) and Π(2) in two dimensions. Each deGua Simplex Π(k) is a triangle
determined by some positive a(k), represented by its extremals a(k)1,a(k)2.

The resulting Cephoid, i.e., the sum Π = Π(1) + Π(2) of the two triangles in
�2

+

– represented by the right hand side in Figure 2.1 – is a polyhedron with Pareto
surface given by two line segments. These line segments are translates of the
ones characterizing the DeGua Simplices in the left hand sketch. The translation
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takes place by one of the extremal points of the other deGua Simplex respectively.
The extremals a(1)1 of Π(1) and a(2)2 of Π(2) ad up to a vertex/extremal x̄ =
a(1)1 + a(2)2 of Π. The normal cone K(x̄) at Π in x̄ is indicated. This is the
intersection of the normal cone K1 at Π(1) in a(1)1 and the normal cone K2 at
Π(2) in a(2)2.

Thus, figure 2.1 shows the most simple version of a Cephoid and demonstrates the
essential role of the normal cones of the deGua Simplices involved.

x̄

Π(1)

Π(4)

a(1)1

a(4)2

Π(1) +Π(2) +Π(3) +Π(4)

Π(1) + a(2)2 + a(3)2 + a(4)2

K(x̄)

Figure 2.2: Cephoids in
�2

+: Summing 4 deGua Simplices

Similarly, Figure 2.2 depicts a Cephoid in
�2

+ which is a sum of four deGua
Simplices. The Pareto surface consists of four line segment; each one of these is a
translate of one of the generating Simplices ∆a(k)

. The translation is performed
by extremals of the other deGua Simplices. The vertex/extreme point x̄ is a sum
of vertices/extreme points of the four deGua Simplices involved. E.g., if, in the
right hand sketch, we count the deGua Simplices involved according to increasing
slope, then we find

x = a(1)1 + a(2)1 + a(3)2 + a(4)2 .

The normal cone K(x̄) is the intersection of the normal cones K(2)1 (at Π(2) in
da(2)1 and K(3)2 (at Π(3) in da(3)2.
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This way the generation of Cephoids in
�2 appears to be straightforward. .

Clearly, the vertices of the Cephoid are obtained (uniquely!) by a sum of vertices
of the deGua Simplices involved. The converse is not true. Not every sum of
vertices of the deGua Simplices involved results in a vertex of the Cephoid. This is
a consequence of the results of Convex Geometry explained in Section 1: the sum
of two vertices is a vertex if and only if both vertices admit of a common normal .

◦ ˜˜˜˜˜˜ ◦

We demonstrate that any convex compact comprehensive polyhedron in
�2

is a sum of triangles as depicted in Figure 2.2. For more than two dimensions,
this statement is not true – it turns out that in 3 dimensions convex compact
comprehensive polyhedra in general cannot be expected to be Cephoidal.

Example 2.2. Consider a compact convex comprehensive polyhedron Π ⊆ �2
+

as in Figure 2.3. Observe that the Pareto surface of this polyhedron consists of
finitely many line segments including a finite number of vertices or extremal points.
Any such line segment is described by two vertices (cf. Figure 2.3).

Π

x1

x2

x̄

Figure 2.3: A general Cephoid in 2 dimensions

Let there be K different line segments. For line segment k ∈ K = {1, . . . ,K},
draw a line parallel to the x1 axis through the right hand vertex and a line parallel
to the x2 axis through the left hand vertex of line segment k ∈K. The intersection
of these two lines together with the two extremals defines a triangle. This triangle
constitutes a translated deGua simplex in two dimensions. Call the lengths of the

lower and the left side of this triangle a
(k)
1 and a

(k)
2 respectively.
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Then define

(1) a(k) := (a
(k)
1 , a

(k)
2 ).

Obviously the polyhedron Π can be written as

(2) Π =
∑

k∈K
Πa(k)

.

In other words, Π is the sum of the triangles (i.e., deGua Simplices) as constructed
above. Hence, in a very elementary way, Π is a cephoid as the sum of the the deGua
Simplices involved.

If it so happens that the slopes
a
(k)
1

a
(k)
2

of the line segments are strictly decreasing in

k (i.e. triangles in Figure 2.3 enumerated from “left to right”), then the Pareto
faces of Π (i.e. the line segments) are given by

(3) F (k) :=
∑

l<k

a(l)1 +∆a(k)
+
∑

l>k

a(l)2 (k ∈K).

Also, the extremal x̄ of Π as indicated would be given by

(4) x̄ =
∑

k≤4

a(k)1 +
∑

k>4

a(k)2.

In general, if the ordering of the slopes is arbitrary, we just have to to employ a
suitable permutation generating the correct ordering. We can then write down the
analogs to (3) and (4) accordingly.

◦ ˜˜˜˜˜˜ ◦

Combining we obtain

Theorem 2.3. A comprehensive compact convex polyhedron in
�2

+ is a
Cephoid.

Example 2.4. Now we turn to three dimensions. We continue our preliminary
geometrical approach, discussing the sum of two deGua Simplices in

�3, say Πa

(blue) and Πb (red). The sum is the Cephoid Π = Πa + Πb. Figure 2.4 shows a
version of both the original Simplices and the resulting Cephoid.

Now, the normal of ∆a is also a feasible normal for the extremal b(1) of ∆(b).
Hence, there appears a translate ∆a + b(1) on the Pareto surface ∂Π of Π. A
similar remark applies for ∆b + a(2).

However, there appears a new shape on the Pareto surface of Π, a parallelogram
or rhombus.
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∆a + b(1)

∆b + a(2)

∆a
23 +∆b

13

1

2

3

Figure 2.4: The sum of 2 deGua Simplices in
�3

+
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In order to appreciate the situation regarding the rhombus, consider Figure 2.5
which depicts the situation in Πa. First, the normal na is the one to the Simplex
∆a. There is also a normal na,23 to ∆a

23 locaten within
�3

23+. Hence, the normal
cone to ∆a

23 is seen to be Ka,23.

1

Πa

na

na

na,23
Ka,23

Figure 2.5: Normals to ∆a

Similarly, we observe the situation on ∆b as depicted in Figure 2.6. Again we
start with the normal nb to ∆b. Also a normal nb,13 to ∆b

13 is locaten within
�3

13+.
Therefore, the normal cone to ∆b

13 is seen to be Kb,13.

With some phantasy, the reader realizes that the cones Ka,23 and Kb,13 do have a
nonempty intersection which defines a common normal to these two Subsimplices.

Therefore, the sum ∆a
23 +∆b

13 is a Pareto face of Π. The shape of this face is the
sum of the two line segments involved, which is the rhombus.

There are no further Pareto faces of Π, thus the Pareto surface ∂Π consists of:
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1

Πb

nb

nb

nb,13

Kb,13

Figure 2.6: Normals to ∆b

1. Translates of ∆a and ∆b,

2. The rhombus ∆a
23 +∆b

13 .

Next, a sum of three deGua Simplices is depicted in Figure 2.7. It can be seen
(and will later on be clarified by our general theory) that

1. Each of the generating Simplices yields a translate on the Pareto surface ∂Π
of the Cephoid.

2. Any two Simplices generate a rhombus on the Pareto surface ∂Π of the
Cephoid.

We carry this visual argument one step further. Let us add a further deGua
simplex to the Cephoid of Figure 2.7 such that its surface has a joint normal with
the central vertex of that Cephoid.

The result is the Cephoid indicated in Figure 2.8. First we observe the translates
of each of the generating Simplices by means of three vertices of the other deGua
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Figure 2.7: The sum of three deGua Simplices

Figure 2.8: Adding a further deGua simplex
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Simplices. Then there is a rhombus generated by each pair of the Simplices involved
with suitable vertices of the third and fourth deGua Simplex involved.

◦ ˜˜˜˜˜˜ ◦

The above examples involve deGua Simplices that commonly enjoy a distinc-
tive feature: the deGua Simplices are “non homothetic” in a very strict sense.
Not only do they not admit of a joint normal. But also any two Subsimplices
admit of at most one joint normal – if any.

Figure 2.9: A sum of two prisms with degeneracy

This last requirement is a substantial one. What happens by omitting it,
is demonstrated in Figure 2.9. Here the two generating summands have
Subsimplices in the 12–plane that are homothetic, i.e., translated dilatations
of each other, and hence admit of exactly the same normal cone. As a result,
there appears a trapezoidal face on the surface of the Cephoid that is the sum
of the red Simplex and the green Subsimplex in the 12–plane. Obviously the
statement that translates of any generating Simplex appear on the Pareto
surface of the Minkowski sum is incorrect in this case. Similarly, it is not
true that any two Simplices generate exactly one rhombus.

We consider a family including homothetic deGua (Sub-) Simplices degen-
erate. This applies to the example of Figure 2.9. By contrast, the previous
examples (e.g. Figure 2.7, Figure 2.8) will called nondegenerate.
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We provide a precise definition of the term “nondegeneracy”. Essentially one
has to make sure that the dimension of the joint normal cones of a family of
Subsimplices is obtaine by counting the coordinate indices involved. Right
now, we provide a formal definition only, the interpretation of the equations
involved in terms of normals of Simplices will be gradually become clear.

Thus,the appropriate version of a nondegenerate family is best captured by
the following definition.

Definition 2.5. A family a• =
{
a(k)

}K
k=1

of positive vectors is called non-
degenerate if the following conditions hold true:

1. For any system of nonempty index sets J (1), . . . ,J (K) ⊆ I with

⋃

k∈K
J (k) = I

the system of linear homogeneous equations in the variables
x1, . . . , xn;λ1, . . . , λK given by

(5) a
(k)
i xi − λk = 0 (i ∈ J (k), k ∈K)

has a space of solutions Π of dimension

(6) dimΠ = n +K −
∑

k∈K
jk

with jk = |J (k)|.

2. For any I(0) ⊆ I the restricted system

(7) a•
∣∣∣
I(0)

:=
(
a(k)

∣∣∣
I0

)
k∈K

obtained by restricting the vectors to I(0) satisfies the condition of
item 1 in

�
I(0)

.

The term nondegenerate will also be applied to the corresponding family
of deGua Simplices

(8)
{
Πa(k)

}K

k=1
=:

{
Π(k)

}K
k=1

as well as to the Cephoid generated by a nondenerate family a•.
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Theorem 2.6. A nondegenerate Cephoid is uniquely represented as a sum
of (nonhomothetic) deGua Simplices.

The proof follows from [30] Theorem 3.2.8.

The following sketch of Figure2.10 suggests the general shape of a Cephoid
in
�3.

Figure 2.10: The general Cephoid in
�3

For dimensions exceeding 3 the picture gets increasingly complicated. The
Pareto surface of a Cephoid involves not just translated Simplices and rhombi.
In each dimension new types of polyhedra appear on the surface, being gen-
erated as sums of certain Subsimplices of the deGua Simplices involved.



Chapter 2

The Structure of ∂Π:
Representation

Viewing the examples of the previous chapter we notice that the structure
of the Pareto surface depends essentially on the relations between various
subsimplices and their normal cones. More exactly, a Pareto face is provided
by a nonempty intersection of the normal cones of the various subsimplices
involved in its construction. What is less important is the actual size of the
various Pareto faces.

We would like to represent the relative position of the maximal faces by
implementing a bijection of the Pareto surface ∂Π ⊆ �

n onto the K–fold
unit Simplex K∆e ⊆ �

n such that the structure of the Pareto surface is
preserved. This means that the partially ordered set of Pareto faces can be
uniquely recognized on that Simplex. Since we can represent K∆e in n− 1
dimensions this allows for better insight regarding the Pareto surface for up
to 4 dimensions.

Thus, the procedure serves to greatly improve the understanding of the “typi-
cal” appearance of the various shapes of possible Pareto surfaces of Cephoids.

Within this Chapter, we describe the appropriate version of “projecting” the
surface of a cephoid on the Simplex K∆e in a “canonical fashion”. We call
the result – the “Canonical Representation”.

We then proceed by applying our representation to the simple examples in-
duced by Chapter 1.

19
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1 The Canonical Representation

The structure exhibited in Figures 2.4, 2.7, and 2.8 reflects a certain position
of the Pareto faces; in the three dimensional case we obtain triangles and
diamonds. Given a set of normals, the relative size of the faces is less relevant.
In what follows we want to emphasize the structure and make it more visible.
To this end we construct a mapping of the surface structure of a Cephoid
on a suitable positive multiple of the unit Simplex such that both structures
are “combinatorically equivalent”, i.e., the posets (partially ordered sets) of
subfaces are isomorphic (see Ewald [7]).

The poset will be exhibited on a multipleK∆e = ∆Ke of the unit simplex ∆e.
Naturally, this multiple is generated by a family of copies of the unit Simplex
∆e. Clearly, this family does not satisfy the requirement of nondegeneracy.
Hence we formulate a slightly relaxed version of nondegeneracy as follows.

Definition 1.1. A family a• =
{
a(k)

}
k∈K of positive vectors is called weakly

nondegenerate if there is a partition ofK, sayK =
⋃r

ρ=1Lρ, such that the

members of each family
{
a(k)

}
k∈Lρ

are homothetic and a family
{
a(k)

}
ρ=1,...,r

of representatives of each Lρ is nondegenerate (in the sense of Definition 2.5
of Chapter 1). In other words, the family is nondegenerate up to homothetic
copies.

In particular, a family of identical copies of the unit deGua Simplex is weakly
nondegenerate. The poset of Pareto faces in this case is not uniquely defined
ex ante. however, we will find a way to induce a poset given the poset of a
Cephoid Π that satisfies nondegeneracy.

Now we fix a family a• =
{
a(k)

}
k∈K of positive vectors; we focus on the

Cephoid Π :=
∑

k∈K Π(k) and its Pareto surface ∂Π.

We take K copies of the vector e := (1, . . . , 1) which we denote by

a0(1), . . . ,a0(K). As in Section 1 of Chapter 1 we write a0(k)i := a
0(k)
i ei,

where a
0(k)
i denotes the ith coordinate of a0(k) and ei is the ith unit vector.

For every k ∈ K let Π0(k) := Πe and ∆0(k) := ∆e be a copy of the unit
deGua Simplex and the unit Simplex respectively. The (homothetic) sums
generated are denoted by

Π0 :=
∑

k∈K
Π0(k) = ΠKe = KΠe
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and
∆0 :=

∑

k∈K
∆0(k) = ∆Ke = K∆e

respectively. Trivially we have

∂Π0 = ∆0 .

The family a0• = {a0(k)}k∈K is degenerate in the sense of Definition 2.5 of
Chapter 1 as all Simplices and subSimplices involved are homothetic. Weak
nondegeneracy suffices for our purpose.

We now indicate a procedure to generate a copy of the poset of ∂Π on ∆0 =
∂Π0. First, we generate a “grid” on the surface ∆0 = K∆e by the set of
integer vectors

(1) E0 :=

{
k = (k1, . . . , kn), ki ∈ �0 (i ∈ I),

∑

i∈I
ki = K

}
.

These vectors can be seen as sums of vertices of the Simplices ∆0(k) in various
ways. More precisely, given arbitrary pairwise disjoint sets K1, . . . ,Kn with⋃

i∈IK i =K, we obtain a grid vector

(2) k =
∑

k∈K1

a0(k)1 + . . .+
∑

k∈Kn

a0(k)n ,

and all grid vectors are obtained this way.

With the vertices of ∂Π this is different: by nondegeneracy every vertex is a
unique sum of certain vertices of the ∆a(k)

involved. (But not every sum of
such vertices is necessarily Pareto efficient). Now we make this more precise
by defining a mapping i• which associates the various vertices of the Simplices
involved to a vertex u ∈ ∂Π.

Definition 1.2. 1. Let E0 be defined as in (2). Denote the set of vertices
of ∂Π by E. We define a mapping κ : E → E0 as follows:

2. Let u ∈ E. Let

(3) i• := K → I

be defined by the representation of u as the unique sum of vertices of
the {∆(k)}k∈K, i.e., by

(4) u = ai• :=
∑

k∈K
a(k)ik .
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3. Let u be a vertex on ∂Π and let i• be the corresponding mapping as
described by (3) and (4). Then

(5) u0 := κ(u) :=
∑

k∈K
a0(k)ik

is the Canonical Representation of u on ∆0 = ∂Π0 .

4. Let F be a face of ∆ and let u1, . . . ,uL be its extremal points. Then
the convex hull of the images, i.e.,

(6) κ(F ) := F 0 := CovH{κ(u1), . . . ,κ(uL)},

is the Canonical Representation of F on ∆.

5. Let V be the poset of faces of ∆ and let

(7) V0 := κ(V) := {κ(F ) F ∈ V}

be the collection of images of faces under the mapping κ. Then V0 is
the Canonical Representation of V on ∆.

Theorem 1.3. V0 is a partially ordered set (poset) which is isomorphic
to V. Hence (∆,V) and (∆0,V0) are combinatorically equivalent.

Proof:

This is a standard procedure in convex geometry (see e.g. Pallaschke
and Urbański [20]). The mapping κ is bijective between the vertices of ∆
and the appropriate subset of grid vectors as described in equations (1) and
(2). The minimum of two faces (whenever it exists) is obtained by taking
the intersection of the corresponding two sets of extremal points. Similarly,
if the maximum of two faces exists, then it is obtained via the union of
the sets of extremal points. Each Representation of a vertex is one hand a
vector k as described in (1). On the other hand, given the natural ordering
on K = {1, . . . , K}, it is described or “labelled” via some function i• by
(i1, . . . , iK).

q.e.d.

Somewhat sloppily, we use the term “Canonical projection” and “Canonical
Representation” for the mapping κ as well as for images under the mapping
– or even for triples like V0,V, bsk. We consider this construction to be useful
for better understanding the Pareto surface ∂Π or rather the poset V of some
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Cephoid Π. The reason is that the image is decreased in dimension, i.e., V0

is located on the (n− 1)–dimensional Simplex ∆0 = K∆0. Disregarding the
various sizes opens the view for the poset structure. In what follows, we will
illustrate this within 3 dimensions. Later on, we will attempt to visualize
the surface of 4–dimensional Cephoids on a suitable positive multiple of the
unit Simplex of

�3 (a tetrahedron). This will most vividly demonstrate the
new type of a Pareto face appearing in 4 dimensions and hence open up the
alley to a general understanding of the Pareto surface of a Cephoid.
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2 Examples, Simple Classfication

We consider non–degenerate Cephoids in 3 dimensions. The shape of the
Pareto surface is completely described by presenting all Pareto faces, as
the lower dimensional facets are given as (joint) subfaces. To “classify” a
Cephoid, we consider the relative size of the summands involved to be irrel-
evant, it is only the relative position that matters. That is, we refer to the
Canonical Representation.

Example 2.1 ( The Circle ). The first example is the sum of three deGua
Simplices listed in in Figure 2.7 of Section 2 repeated here for convenience.

Figure 2.1: Three deGua Simplices: The “Circle”

To have a name for reference and better mnemotechnial impact, we dubb this
Cephoid (or rather the family leading to the same Canonical Representation) “the
Circle”. The Canonical Representation is rather obviously given by Figure 2.2.
The term “clockwise orientation” emphasizes the contrast to Example 2.2 which
folllows below and explains the notation.

We describe the Pareto surface as follows. First, we use the colors to denote the
deGua Simplices involved, so write Πgreen,∆green instead of Πa,∆a etc. Then, as
it suffices to list the coordinates/indices of the subSimplices involved in order to
describe Pareto faces by just listing the indices involved; e.g. the rhombus

(1) ∆green
{12} +∆blue

{23} +∆red
{3}

is conveniently written

(2)
green blue red

12 23 3
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Figure 2.2: The Circle – Clockwise. Canonical Representation

etc. To identify this polyhedron observe that it is the sum of a green and a blue line,
hence a rhombus generated by the green and blue deGua Simplex and translated
by the third vertex of the red deGua Simplex. Also, we see that it involves one first
coordinate and two copies of the coordinates 2, 3 respectively, hence it is located
on the 23–boundary of Π – which leads to a Canonical Representation so that the
image is touching the 23–edge of the image Simplex 3∆e. One can now clearly
identify the gree–blue rhombus in Figure 2.2.

Now consider the set of Pareto faces

(3)

green blue red

123 3 3

12 23 3

1 123 1

The rhombi of green and blue involved are given by

(4)

green blue

123 3

12 23

1 123

These rhombi obey a “moving index principle”: in each line there is exactly one
common index and each subsequent line is obtained from the one above by shifting
one index from the left to the right (and canceling the previous double). One can
verify that a similar diagram holds for blue vs red and red vs. green. Later on, we
will see that there is a systematic behind this feature.

◦ ˜˜˜˜˜˜ ◦

Our presentation so far is predominantly intuitive and based on geometric
considerations. A precise description of the Pareto faces will follow later on.
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However, at this preliminary stage we point out that a formal description of
the Pareto surface will have to be supported by computational methods that
serve to generate Pareto faces and the complete Pareto surface by appropriate
algorithms.

Again we postpone a precise treatment; algorithms as such will be explained
later. However, one can visualize the results – at least for simple examples
treated above. The programming language we employ is ��� , and the
computational results will appear in a TEX environment indicating their
origin.

The following starts with the presentation/outprint of the above Example 2.1
in just that context. Our notation is based on the shorthand representation
of Pareto faces as explained by (1) and (2). Accordingly, a Cephoid will
be represented by a matrix A, the rows of which correspond to the vectors{
a(k)

}
k∈K.

We start with the Cephoid “Circle”. The name is now augmented by calling
it “clockwise” (i.e., mathematically negative orientation). The term empha-
sizes the contrast to the subsequent version “Circle – counterclockwise” (i.e.,
mathematically positive orientation) which is presented below.

Now we write the data of the Cephoid “Circel – clockwise”, listing the matrix
the complete set of its Pareto faces as obtained via an algorithm in ��� .

Example 2.2 ( The Circle – Results of Algorithmic Treatment ). The
results of the algorithmic procedure are presented as follows.

��� ������� ����	� 

 �	������ ����������� �

� � �
� �� ��
�� � ��

������ ���� �� ������� ����	� 

 �	������ �

� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
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The Canonical Representation is the one depicted in Figure 2.2. The reader is
obliged to identify the Pareto faces shown in the figure with the algorithmic results
as suggested above. In particular, the Pareto faces mentioned in Formula (3)
appear in the list generated although in a different order (due to the nature of the
algorithm employed).

A closer inspection of Figure 2.2 reveals that there is indeed an orientation of of the
rhombi. This orientation is “clockwise” (mathematically negative) as from each
triangle (Pareto face resulting from the original Simplex) the adjacent diamond
requires a motion in the clockwise sense.

Now, there exists indeed a version of “The Circle” with the reverse orientation –
counterclockwise or mathematically positive. This version is (Canonically) Repre-
sented by Figure 2.3.

Figure 2.3: The Circle – counterclockwise

A geometrical inspection shows that the group of maximal facets corresponding
to (3) is obtained by changing the middle 1 in column red from 1 to 3. Thus we
obtain

(5)

green blue red

123 3 3

12 23 3

1 123 1,

which again reveals the vague idea of the “moving index principle”. A complete
treatment of this phenomenon and its relation to permutations will be postponed
until we have the theory available.
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Again we indicate the results of an algorithmic treatment of this kind of “Circle –
counterclockwise”:

��� ������� ����	� 

 ��������	������ ����������� �

�� �� �
� � �

�� � ��

������ ���� �� ������� ����	� 

 ��������	������ �

� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �

◦ ˜˜˜˜˜˜ ◦

Example 2.3. This example reflects an attempt to classify all sums of 3 deGua
Simplices in 3 dimensions, for short all 3 × 3 Cephoids. We sketch a canonical
representation and some representative that was obtained by our algorithm.

The first type of Cephoid as given by the Canonical Representation of Figure 2.4
is dubbed the Windmill by obvious reasons.

A Cephoid (a matrix A =
{
a(k)

}
k∈K) is given by the following printout:

��� ������� ������		 �

� � �
� � �

� � �
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Figure 2.4: The Windmill

������ ���� �� ������� ������		 �

� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �

Some further types of 3× 3 Cephoids are indicated as follows.

Inductive types are the result of a sum of 2 deGua Simplices and a third one.
Implicitly, a classification of “sums of two” is offered.

Figure 2.5: 1st Inductive type

The Saw is also obtained by an inductive procedure – in two ways.

The attempt to construct a simple representative for the Canonical Representation
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Figure 2.6: 2nd Inductive type

Figure 2.7: The Saw – a 3rdInductive type
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via the matrix

A =




2 3 2
1 4 0
5 2 6




fails, as it results in a programming error. This matrix does not satisfy non–
degeneracy. We slightly change it to “Saw100” which is A′ := 100A + 3. Then
the algorithmic treatment is successful.

��� ������� �� �

� � �
� � �
� � �

��� ������� ������

��� ��� ���
��� ��� �
��� ��� ���

������ ���� �� ������� ������

� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �

◦ ˜˜˜˜˜˜ ◦
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Example 2.4. The following “sum of 4” has been already introduced in Chapter

2 Section 2 (see Figure 2.8).

Figure 2.8: A sum of four deGua Simplices – Odot

This Cephoid is now dubbed Odot as it reflects a (Clockwise) Circle with a point
in the center: �. The following shows a concrete example of Cephoid with the
shape indicated. Again, the way to obtain this description via an algorithmic
treatment is left to future chapters.

��� ������� ���� � ��� ���������	 ���� �� ���
����	� �	������ � ��� ����	� �	������ ��

� � �
� �� ��

�� � ��

��� ���� � ��� �� ���� ��� ��� ���� ���� �� ���
����	� �	������ 
 	����	� ����������� ��� �� ������� �� �

����
�� �� ��
�� ��� ���
��� �� ���
��� ��� ���
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������ ���� �� ���� �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
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One can identify the Pareto faces in Figure 2.8 by inspecting the above list. For
example, the first line, the Pareto face given by

2 2 123 2

reflects a triangle translated via the second extremal of all deGua Simplices in-
volved, obviously, this is the deGua Simplex/triangle containing the extremal in
the second coordinate direction which is the red one. From which we conclude,
that third column represents the contributions of the red deGua Simplex.
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Figure 2.9: Odot – Canonical Representation

Similarly, the third line in the list, i.e.,

1 2 3 123

reflects a triangle translated to the Pareto Surface via the extremals in all three
directions of the deGua Simplices involved – this is necessarily the brown one, i.e.,
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the one added to the Circle Clockwise by the augmenting it with the last line in
the matrix ODOT.

We conclude that the last column reflects the brown deGua Simplex and its Sub-
Simplices respectively.

Figure 2.9 shows the Canonical Representation of Odot. Each DeGua Simplex
generates a copy of itself plus a diamond with each of the other ones. E.g., “Blue”
provides a sequence of 3 diamonds which is indicated by the blue hatched rhombi
that also offer a second color accordingly. One recognizes the “orientation” (“clock-
wise”) involved in this example.

◦ ˜˜˜˜˜˜ ◦

Finally, we show the Canonical Representation of a possible “sum of seven”
(Figure 2.10). Of course, the source is not made precise, that is, we do
not present a concrete matrix yielding this type of Cephoid. Here again,
any two deGua Simplices generate a rhombus on the Pareto surface of the
resulting Cephoid. These rhombi are sums of one–dimensional SubSimplices
plus vertices of the 5 remaining Simplices. Now consider the path of the
rhombi related to the “central” (brown) deGua Simplex. Here, for the first
time, we observe a “cephalopodic” structure generated by the Pareto faces
involving the central deGua Simplex. A “tentacle” is sent out towards each
of the boundaries.
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Figure 2.10: Canonical Representation of a sum of 7



Chapter 3

Faces and Normals

The Pareto surface of a Cephoid is described by exhibiting the Pareto faces.
So far we have used geometrical ideas and algorithmic results (of algorithms
not explained) to present a first access to the structure of a Pareto face of
a Cephoid. Now we are going to develop formal procedures to simultane-
ously characterize and compute Pareto faces (and further “outward faces”)
as well as the corresponding normals. Our procedure starts with a necessary
condition to be satisfied by a Pareto face - the Coincidence Theorem. This
then opens up the alley to further analytical treatment of the structure of a
Cephoid.

35



36 ? Faces and Normals ? Chapter III ?

1 Adjustment of Faces:

The Coincidence Theorem

Within this section, we embark on a characterization of the Pareto faces of
a Cephoid Π =

∑
k∈K Π(k), i.e., “outward faces” of dimension n − 1. The

following Coincidence Theorem lists the properties of such a face and its
normal in relation to the subfaces of the deGua Simplices involved and the
corresponding normal cones.

A (Pareto) face F is necessarily a Minkowski sum of certain subfaces of the
summands which are deGua Simplices. Hence these subfaces are Standard
Subsimplices (just written Subsimplices) of lower dimension - possibly just
one–dimensional and hence an extremal point.

More precisely, given a Pareto face F of ∂Π, then for each k ∈K there is an
index set J (k) ⊆ I and a corresponding Subsimplex ∆

(k)

J(k) of ∆
(k) such that

(1) F =

K∑

k=1

∆
(k)

J(k)

holds true.

Definition 1.1. 1. Let F be a Pareto face of a Cephoid Π satisfying (1).

We call the sets J (k) the reference sets and the family J =
(
J (k)

)
k∈K

the reference system of F .

2. For i ∈ I define

Ki := |{k ∈K i ∈ J (k)}| − 1 ,

such that Ki + 1 is the number of appearances of i within the various
reference sets of F . We define

L := {l ∈ I Kl ≥ 1} ,

that is, L ⊆ I contains those coordinates l ∈ I that appear in at least
two of the J (k). Thus, for l ∈ L,

(2) Kl := |{k ∈K l ∈ J (k)}| − 1 ≥ 1 .

The set L is called the adjustment set. L := |L| denotes the power
of the adjustment set.
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Clearly, the reference system defines F uniquely. The adjustment set will
serve to determine the normal of F . The normalization of the numbers Ki

by diminishing the number of appearances by 1 will be justified at once by
our results below.

Because of Theorem 1.6 there must be a common normal n to the subfaces
described by the reference system. This normal is also a normal to the Pareto
face under consideration. As the dimension of F is n − 1, the normal n is
unique up to a multiple factor.

The following is a precise formulation of the situation induced by a Pareto
face. It is a necessary condition resulting from Pareto efficiency.

Theorem 1.2 (The Reference Theorem). Let Π =
∑

k∈K Πa(k)
be a

Cephoid with K ≥ 2 and let F be a Pareto face of ∂Π. Let n? be the normal
to F . Then the following holds.

1. For each k ∈K there is an index set J (k) and a corresponding Subsim-
plex ∆

(k)

J(k) of ∆
(k) such that

(3) F =

K∑

k=1

∆
(k)

J(k)

holds true. The vector n? is a also normal to ∆
(k)

J(k) (k ∈K). Thus in
particular, the linear function x 7→ n?x attains its maximum relative
to ∆(k) on ∆

(k)

J(k); we write

(4) max
x∈∆(k)

n?x = max
x∈∆(k)

J
(k)

n?x =: tk .

2. In view of Definition 1.1 the following holds true.

(a)
∑

l∈LKl = K − 1

(b) L = |L| ≤ K − 1.

(c) J (k) ∩ L 6= ∅ (k ∈K).

3. Let a
(k)
L = a(k)

|L (k ∈K) be the restriction of a(k) to
�

n
L+ =

�
n
+ |L

and let ΠL :=
∑

j∈K a
(k)
L be the Cephoid generated in

�
n
L+ by the

restricted family
{
a
(k)
L

}
k∈K

. Then

(5) ΠL =
∑

j∈K
a
(k)
L =

∑

j∈K
Π(k) ∩ �n

L
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and the intersection

(6) FL := F ∩ �n
L =

(
K∑

k=1

∆
(k)

J(k)

)
∩ �n

L =

K∑

k=1

∆
(k)

J(k) ∩
�n

L

is a Pareto face of ΠL, hence has dimension L− 1.

Proof:

1stSTEP : As F is a Pareto face, we can apply Theorem 1.15 in Ewald [7],
see also Theorem 3.1.1 in Pallaschke–Urbanski [20]. Accordingly, there

is, for each k ∈K, a subface ∆
(k)

J(k) of ∆
(k) such that

(7) F =

K∑

k=1

∆
(k)

J(k)

holds true. Moreover, n? is a normal to every ∆(k) (k ∈K).

2ndSTEP :

Let jk := |J (k)| (k ∈K). Then each summand ∆(k) contributes a dimension
of jk−1 to F . Consequently, in order to produce the proper dimension (n−1)
of a Pareto face, we must have

j1 − 1 + j2 − 1 + · · ·+ jK − 1 ≥ n− 1

and by our non-degeneracy assumption we obtain

(8) j1 − 1 + j2 − 1 + · · ·+ jK − 1 = n− 1

or

(9)
∑

k∈K
jk = K + n− 1 = n+ (K − 1) ≥ n + 1 .

Now, as

(10)
⋃

k∈K
J (k) = I = {1, . . . , n},

(9) shows that some of the indices i ∈ I must appear at least twice in the
reference sets J (k) so that a total of K − 1 multiple appearances occurs.
Hence the adjustment set L is certainly nonempty. More than that, in view
of the definition of the integers Kl we know

(11) l appears Kl + 1 times .
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Consequently it follows from (9), that and (10)

(12) K1 + · · ·+KL = K − 1

holds true, which is item 2a. Obviously, it follows that L = |L| ≤ K − 1 is
the case, that is, we have verified item 2b.

3rdSTEP : Now we turn to item 2c. We have to show that every J (k)

contains at least one index l which appears in some other J (i′), i.e., verify
J (k) ∩L 6= ∅ for every k ∈K.

Let us assume that this is not true. Then there exists a k∗ ∈ K with
J (k∗)∩L = ∅ and this implies that for all k ∈K\{k∗} we have J (k)∩J (k∗) = ∅
and hence ∆

(k)

J(k) ⊂
�

n−jk∗ for all k ∈ K \ {k∗}. Now consider the Cephoid
obtained by omitting k∗ and jk∗ , i.e.,

Π[−k?] = Π? :=
∑

k∈K\{k∗}
Π(k) ⊂ �n−jk∗ .

By non-degeneracy we may apply the analogue to (9) to Π?. We have K − 1
members in the family of deGua Simplices and hence the analog formula is

∑

k∈K

k 6=k∗

jk = (n− jk∗) + (K − 1)− 1 = n +K − jk∗ − 2

which implies
∑

k∈K
jk =

∑

k∈K

k 6=k∗

jk + jk∗ = n+K − jk∗ − 2+ jk∗ = n+K − 2 < n+K − 1,

explicitely contradicting (9).

4thSTEP : Finally, we turn to the proof of 3.

Clearly

Π
(k)

J(k) ∩
�n

L = Π
(k)

J(k)∩L as well as ∆
(k)

J(k) ∩
�n

L = ∆
(k)

J(k)∩L

and hence dim
(
∆

(k)

J(k) ∩
�

n
L

)
= |L ∩ J (k)| − 1. Consequently, the dimension

of the polyhedron

(13)
∑

k∈K
∆

(k)

J(k) ∩
�n

L =
∑

k∈K
∆

(k)

L∩J(k) ⊆ F
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is

(14)
∑

k∈K
(|L ∩ J (k)| − 1) =

(
∑

k∈K
|L ∩ J (k)|

)
−K .

Now, recall the notation in Definition 1.1: any index in L appears Kl + 1
times. Hence

(15)
∑

k∈K
|L ∩ J (k)| =

∑

k∈K
(Kl + 1) = (

∑

k∈K
Kl) + L = K − 1 + L .

Combining (14) and (15) we see that the dimension of the polyhedron (13)

is indeed L − 1. It follows that
∑

j∈K
∆

(k)

J(k) ∩
�n

L is a face of dimension L − 1

of the Cephoid ΠL. Since
∑

j∈K
∆

(k)

J(k) ∩
�n

L ⊆
(
∑

j∈K
∆

(k)

J(k)

)
∩ �n

L = F ∩ �n
L,

and dim (F ∩ �n
L) ≤ L− 1, we find that

FL = F ∩ �n
L =

(
∑

j∈K
∆

(k)

J(k)

)
∩ �n

L =
∑

j∈K
∆

(k)

J(k) ∩
�n

L

is a maximal face of the Cephoid ΠL of dimension L−1, hence a Pareto face.

q.e.d.

Definition 1.3. Let Π =
K∑

k=1

Π(k) be a Cephoid with K ≥ 2. Let

F =

K∑

k=1

∆
(k)

J(k)

be a Pareto face of Π with normal n?. Let L be the adjustment set corre-
sponding to F .

1. The set

(16) � :=
{
(k, l) l ∈ L, J (k) 3 l

}
⊆K × I

is called the set of characteristics of F . Sloppily we may also refer
to the family

(17) L(k) := L ∩ J (k) (k ∈K)

as to the characteristics.
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2. The linear system of equations in variables (ck, λl), ((k, l) ∈ �) given
by

(18) cka
(k)
l = λl ((k, l) ∈ �).

is called the linear adjustment system (corresponding to F ).

3. The Cephoid ΠL given by (5) and identified by Theorem 1.2 is called
the L–reduced Cephoid (of F ).

4. The Pareto face F L of ΠL as given by (6) and characterized by 1.2 is
called the L–reduced Pareto face (of F ).

Theorem 1.4 (The Coincidence Theorem). Let Π =
K∑

k=1

Π(k) be a

Cephoid with K ≥ 2. Let

F =
K∑

k=1

∆
(k)

J(k)

be a Pareto face of Π with normal n?. Let L be the adjustment set corre-
sponding to F and let � be the characteristics.

Then the following holds true.

1. The linear adjustment system (18) has a positive solution

(19) (c•,λ•) =
{
(ck, λl)}(k,l)∈�

}

which is unique up to a positive multiple.

2. n? is (up to a positive multiple) exactly the normal of the deGua Simplex

(20) Π? = CovH

(
⋃

k∈K
ckΠ

(k)

)
=:

∨

k∈K
ckΠ

(k)

(see (10) in Chapter 1 Section 1 for the definition).

3. Whenever l ∈ L satisfies l ∈ J (k) ∩ J (k∗), then the deGua Simplices
ck∆

(k)

J(k) and ck∗∆
(k∗)

J(k∗) have a joint vertex cka
(k)l = ck∗a

(k∗)l.
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4. The quantities

(21) a?i := max
k∈K

cka
(k)
i > 0,

yield the normal via n? =
(

1
a?1
, . . . , 1

a?n

)
up to a positive multiple.

Proof: The normal n? of F induces the linear function x 7→ n?x. For k ∈K,
denote by tk > 0 be the maximum of this function on the deGua Simplex
Π(k). This maximum is attained precisely (because of non-degeneracy) on

∆
(k)

J(k) .

Let

(22) t? := max
k∈K

tk

and

(23) ck :=
t?

tk
> 0 (k ∈K).

Then, for all k ∈K, the maximum of the linear function x 7→ n? · x relative
to the deGua Simplex ckΠ

k is equal to t? and achieved on ck∆
(k)

J(k).

Pick l ∈ L with l ∈ J (k′) ∩ J (k′′). Then necessarily

n?l ck′a
(k′)
l = n?l ck′′a

(k′′)
l ,

i.e.
ck′a

(k′)
l = ck′′a

(k′′)
l .

Hence, there is a positive constant λl > 0 such that for all k with l ∈ J (k)

(24) cka
(k)l = λl

holds true. Consequently, (c•,λ•) is a solution to the linear system of equa-
tions (18).

As the linear function x 7→ n?x achieves its maximum t? > 0 relative to every
deGua simplex ckΠ

k precisely on ck∆
(k)

J(k), it follows that it is constant on

Π? = CovH

(
⋃

k∈K
ckΠ

(k)

)
=

∨

k∈K
ckΠ

(k)
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with value t? > 0. Therefore n? is a normal of the Simplex Π?.

Define the vector a? = (a?1, . . . , a
?
n) via

a?i := max
k∈K

cka
(k)
i > 0 (i ∈ I).

Then clearly Π? = ∆a?

. Consequently, n? is a positive multiple of the vec-

tor
(

1
a?1
, . . . , 1

a?n

)
. Therefore, all components of n? are positive and can be

computed via the solution of the linear system (18).

Finally, it follows from non–degeneracy that the solution space of the system
(18) has dimension 1. For the number of variables is K + L. The number of
equations is

K1 + 1 + · · ·+KL + 1 = K − 1 + L.

q.e.d.

Example 1.5. We return to our first significant Example 2.4 of Section 2
Chapter 1. The Cephoid is Π = Πa + Πb as recalled in Figure 1.1. Consider
the Pareto face F = ∆a

23+∆b
13 which is the sum of two 1–dimensional Simplices.

As L = {3} the adjustment takes place in a way such that the third coordinate
of c3∆

a and c3∆
b coincide.

To see this more clearly, observe that we have L = {3} and

�
=
{
(k, l) l ∈ L,J (k) 3 l

}
=
{
(k, 3) 3 ∈ J (k)

}
= {(1, 3), (2, 3)} .
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∆a + b(1)

∆b + a(2)

∆a
23 +∆b

13

1

2

3

Figure 1.1: The sum of 2 deGua Simplices recalled
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Therefore, the linear adjustment system in variables c1, c2, λ3 is

c1a3 = λ3 , c2b3 = λ3 .

We choose the solution

c̄1 = b3, c̄2 = a3, λ̄3 = a3b3 .

This leads to adjusted Simplies c̄1∆
a = ∆c̄1a with

c̄1a = (a1b3, a2b3, a3b3) = (a1b3, a2b3, λ̄)

and c̄2∆
b = ∆c̄2b with

c̄2b = (a3b1, a3b2, a3b3) = (a3b1, a3b2, λ̄) .

Figure 1.2 shows the original two Simplices as well as the two adjusted versions
such the third coordinates both equal λ3.

1

λ3

a1b3

a3b2

c̄1∆
a

c̄2∆
b

Figure 1.2: Adjusting two Simplices
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Next we proceed ostensively as the quantities a and b have not been defined but
by the geometrical sketch. We obtain

a?1 = max{a3b1, a1b3} = a3b1

(the red adjusted Simplex has the larger 1st coordinate) and

a?2 = max{a2b3, a3b2} = a2b3

(the blue adjusted Simplex has the larger 2nd coordinate). Clearly, a?3 = λ̄3; this is
the common length of the two third coordinates of the deGua Simplices involved.
Thus, Π? and ∆? are spanned by the maximal coordinates of the extremals of the
adjusted Simplices as depicted in Figure 1.3. Obviously, the Simplex ∆? is also
spanned by the adjusted multiples of the two SubSimplices involved, i.e., by c1∆

a
23

and c2∆
b
13. Figure 1.3 plausibly shows that this Simplex has the same normal as

the Pareto face F we started out with.

1

3

c1∆
a

c2∆
b

∆?

Figure 1.3: Fitting ∆?

◦ ˜˜˜˜˜˜ ◦
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Definition 1.6. Let F =
∑K

k=1∆
(k)

J(k) be a Pareto face of a Cephoid Π =
∑

k∈K Π(k) ⊂
�

n
+. The (unique up to a positive multiple) positive solution

(25) (c•,λ•) = {(ck, λl)}(k,l)∈�
defines the adjustment coefficients.

Remark 1.7. By expanding/shrinking ∆
(k)

J(k) via ck the SubSimplices involved in
a Pareto face are adjusted in a way such that the linear function x 7→ n?x takes

the joint maximal value t? on each ck∆
(k)

J(k) . Clearly for l ∈ L ∩ J (κ), one has

(26) a?l = max
k∈K

cka
(k)
i = cκa

(κ)
l = λl .

that is, geometrically the coefficients λl reflect the common length of the lth coor-

dinate of the adjusted Simplices cκ∆
(κ)

J(κ) with index set J (κ) containing l.
◦ ˜˜˜˜˜˜ ◦

Remark 1.8. Let Π =
∑

k∈K a
(k) be a Cephoid. Let l ∈ I and consider the

vector a(?)l :=
∑

k∈K a
(k)l. This vector is a multiple of the lth unit vector, hence

Pareto efficient, i.e., located in ∂Π.

Consider a Pareto face F such that a(?) ∈ F . In this situation we have L = {l}
and Kl = K − 1, Ki = 0 (i 6= l). We claim that the Pareto face containing a(?)i

is uniquely defined. This is of course a consequence of nondegeneracy; however,
we want to elaborate on the situation at this instant.

Therefore, consider the situation K = 2 (the general version is treated in the
subsequent Theorem).

So let Π = Πa + Πb. Fix l ∈ I and suppose that there are two Pareto faces
containing al + bl, then there must be two Pareto faces F = ∆Ja + ∆Jb and
F ′ = ∆J ′a + ∆J ′b containing al + bl. These faces must have a joint subface of
dimension 1 containing al + bl, which must be of the form

(27) ∆a
{lj} +∆b

{l} and ∆a
{l} +∆b

{lj}.

For indeed, assume that w.l.g that Ja 6= Ja′
and there is an index j 6= l, j ∈ Ja

such that j /∈ Ja′
. As j /∈ L |Ja| ≥ |Jb| and hence |J ′a| ≤ |J ′b|. As j /∈ L

necessarily j ∈ J ′b which is (27).

The one dimensional subfaces described by (27) constitute and edge at al + bl

located in F and F ′ respectively, hence located in ∂Π. The second vertex of this
edge is aj + bl and al + bj respectively. Necessarily, these edges are parallel line
segments, hence for some real λ we have

(aj + bl)− (al + bl) = λ
(
(al + bj)− (al + bl)

)



48 ? Faces and Normals ? Chapter III ?

i.e.
aj − al = λ(bj − bl)

hence (aj , al) = λ(bj , bl) , which contradicts our nondegeneracy assumption (Defi-
nition 2.5 in Section 1 Chapter 2).

◦ ˜˜˜˜˜˜ ◦

The following Theorem provides the appropriate generalization referring to
the adjustment characteristics.

Theorem 1.9. Let Π =
∑

k∈K Π(k) be a Cephoid and let F and F ′ be
Pareto faces with adjustment sets L and L′. Let � and �′ be the character-
istics.

Then

1. � 6= �′

2. The characteristics or equivalently the subface FL uniquely determine
a Pareto face F .

3. Hence F L and F L′ are different and the intersection satisfies

dim (FL ∩ FL′) < min{L, L′} ,

i.e., the assignment of a Pareto face to the L–dimensional subface gen-
erated by the adjustment indices is unique.

Proof:

The characteristics of a Pareto face, i.e., set �, determine the linear adjust-
ment system which in turn determines the normal. As the normal determines
a Pareto face, it follows that so does �.

q.e.d.
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2 Adjacent Faces

Some considerations as presented for Pareto faces can be repeated for lower
dimensional (outward) faces. Thus, the concepts of reference system, adjust-
ment set and characteristics are obviously not depending on the maximality
of a face in ∂Π.

In particular, this holds true for a face F ? ⊆ ∂Π of dimension n−2. Whenever
F ? is a subset of a Pareto face F , the reference systems J and J? of F and
F ? will differ by exactly one index. More precisely:

Theorem 2.1. Let F ∈ ∂Π be a Pareto face of a Cephoid Π =
∑

k∈K a
(k)

with reference system J and adjustment set L. Also, let Let F ? ∈ ∂Π be a
subface of F with dimension n− 2 with reference system J? and adjustment
set L?. Then the following holds true:

1. There is κ ∈K and j ∈ J (κ) such that

(1) J?(κ) = J (κ) \ {j} , J?(k) = J (k) (k ∈K \ {κ}).

2. L? ⊆ L, � = �? \ {(κ, j)} .

3.

(2) |L| − 1 ≤ |L?| ≤ |L|, |�?| = |�| − 1.

Definition 2.2. Let Π =
∑

k∈K Πa(k)
be a Cephoid. We call two Pareto

faces F and F ′ (with dimension (n − 1)) of ∂Π adjacent whenever their
intersection F ? = F ∩ F ′ ⊆ ∂Π is a subface in ∂Π with dimension (n− 2).

Now we can compare the reference system and the adjustment indices of two
adjacent Pareto faces.

Theorem 2.3 (The Neighborhood Theorem). Let Π =
∑

k∈K a
(k) be a

cephoid and let F ,F ′ be adjacent Pareto faces with an (n− 2)–dimensional
common subface F ? = F ∩ F ′ ⊆ ∂Π. Let J and J′ be the reference systems
and let L and L′ be the adjustment sets. Then there exist indices p, q ∈ K,
p 6= q, and i0, i1 ∈ I, i0 6= i1, with i0 ∈ L, i1 ∈ L′, such that the following
holds:

(3)

J (k) = J ′(k) (k 6= p, q)

J (p) = J ′(p) ∪ {i0}
J ′(q) = J (q) ∪ {i1} .
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Consequently, the characteristics of F ,F ′, and F ? satisfy

(4) � = �? ∪ {(p, i0)} , �′ = �? ∪ {(q, i1)}

Proof:

1stSTEP : Let

(5) F ? = F ∩ F ′ =
∑

k∈K
∆

(k)

J(k)∩J ′(k)

denote the common subface of F and F ′, dimension is n − 2. Counting
indices and referring to nondegeneracy (the same argument as in the proof
of Theorem 1.2 2ndSTEP , formula (8)) we obtain

∑

k∈K
J (k) ∩ J ′(k) = n− 2 +K .

As the corresponding sums for the two faces yield n− 1 +K, we must nec-
essarily find p, q such that

(6)
J (p) =

(
J (p) ∩ J ′(p)

)
∪ {i0} = J ′(p) ∪ {i0} = J?(p) ∪ {i0}

J ′(q) =
(
J (q) ∩ J ′(q)

)
∪ {i1} = J (q) ∪ {i1} = J?(q) ∪ {i1} .

Now p = q is not possible as we would have J (p) = J̃
′(p)

. This would imply
equal reference systems for both faces, hence they would coincide. Therefore
p 6= q.

3rdSTEP : Assume that i0 /∈ L and i1 /∈ L′ is the case. Then we have
� = �′. As the system � determines F uniquely, it would follow that
F = F ′ holds true. On the other hand, assume e.g. i0 ∈ L, i1 /∈ L′. Then for
the characteristics, we have �′ ⊆ �. Then it would follow that all equations of
the linear adjustment system generated by �′ appear in the linear adjustment
system generated by � as well. But both system must have maximal rank,
i.e., generate a solution space of dimension 1. Evidently, the two systems
have the same solution space, in which case the normals coincide. Hence
again we would find F = F ′, which cannot happen. Hence i0 ∈ L, i1 ∈ L′

is true. Finally i0 6= i1 for otherwise L = L′ again would imply F = F ′.

q.e.d.

Corollary 2.4. Let Π be a cephoid and let F ,F ′ be adjacent Pareto faces.
Let i0, i1 and p, q be given by (6) via Theorem 2.3.
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Also, let L? and �? denote the adjustment set and the characteristics of
F ? = F ∩ F ′. Then we have

1. The normal cone to F ? is the convex hull of the normal rays

(7) N? = CovH
{
{tn t ≥ 0} , {tn′ t ≥ 0}

}

spanned by the normals n and n′ of F and F ′ respectively,

2. N? is the positive part of two–dimensional subspace of
�

n of solutions
to the linear adjustment system corresponding to F ?, which is

(8) cka
(k)
l = λl ((k, l) ∈ �?).

in variables (ck, λl), ((k, l) ∈ �?) . Adding one of the equations

cpa
(p)
i0

= λi0 or cqa
(q)
i1

= λiq

to (8) results in the extremal rays corresponding to the normal cones
of F and F ′ respectively.

3. The extremals n and n′ of the normal cone of F ? (i.e., the normals
to F and F ′ respectively) can be normalized so that both coincide on
{i ∈ I \ {i0, i1}}. Then, w.r.t. coordinates i0, i1 we have

(9)
i0 i1

n : (. . . , λi0, . . . . . . , a?i1 , . . .)
n′ : (. . . , a?i0 , . . . . . . , λi1 , . . .) .

Proof: Concerning the last statement we observe that we can choose the
normalization t? to b equal for both F and F ′. Then the terms λi0 , λi1 result
from Remark 1.7

q.e.d.

So far we have considered the (n − 2)–dimensional intersection F ? of two
adjacent faces F and F ′. Now we start out with some (n − 2) dimensional
subface F ? of some Pareto face F and ask for a Pareto face that possibly
containes F ? and serves as the adjacent neighbor of F . However, observe
that F can be a boundary face hence has no adjacent neighbor containing
F ?. Thus, for the moment, we slightly change our viewpoint and include
maximal faces that are not Pareto faces.

To this end, we repeat Definition 1.3 in Section 1 Chapter1, slightly rephrased.
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Definition 2.5. For i0 ∈ I and a ∈ �n let a(−i0) = a | �n
I\{i0}

denote the

projection on
�

n
I\{i0}. Let Π(−i0) denote the Cephoid generated by the family

(10)
{
a(k)(−i0)

}
k∈K .

Then Π(−i0) is the i0–face of Π.

Theorem 2.6. Let F be a Pareto face of a cephoid Π with reference system

J =
{
J (k)

}
k∈K

and let n be the normal to F . Let (p, i0) ∈ (K, I) satisfy

i0 ∈ J (p), i0 /∈ L (hence |J (p)| ≥ 2). Define

(11) F ? :=
∑

k∈K−p

∆
(k)

J(k) +∆
(p)

J(p)\{i0}
.

Then then dimension of F ? is (n − 2). F ? = F ∩ Π(−i0) ⊆ ∂Π(−i0) is a
Pareto face of Π(−i0). F ? is as well an (n− 2) dimensional subface of F and
the second extremal to the normal cone of of F ? is

n? = n− ni0e
i0 = (n1, . . . , 0, , . . . , nn)

Proof: F ? ⊆ F is obvious; clearly the dimension of F ? is (n−2) and vectors
in F ? have a zero at coordinate i0. Thus we have to specify the normal cone.

However, the normal cone of Π(−i0) (viewed in
�

n) is spanned by ei0 hence
the one of F ? is spanned by n and ei0 , or equivalently by n and n?.

q.e.d.

Remark 2.7. There are two ways to view F ? and the normal n?. We can employ
the above Theorem 2.6 in which we compute the normal of F , then the normal
cone of F ? and finally, employ a projection argument. That is, we first work the
machinery to compute the normal of Theorems 1.2 and 2.4 for the Cephoid Π in
�n and view F ? as an (n− 1)–dimensional subface of ∂Π.

On the other hand, we can first apply the projection and then set up the machinery
of Theorems 1.2 and 2.4 for Π(−i0). Then we view F ? as a Pareto face of ∂Π(−i0)

in
�n

I\{i0}. Note that
�? =

�
as i0 /∈ L.

That is, with

proj−i0 :=
�n → �n

proj−i0(x) := x | �n\{i0}

the following diagram is commutative
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(12)

Π → F , F ? → �
=
�? → n, n?

proj−i0 ↓ ↓ proj−i0

Π(−i0) → F ? → �? → n? | �n\{i0}
.

◦ ˜˜˜˜˜˜ ◦

Now alternatively (to Theorem 2.6), consider the case that the (n − 2) di-
mensional subface F ? ⊆ F is obtained by omitting an index l0 ∈ L from the
reference system of F . Then there must be a Pareto face F ′ adjacent to F
such that F ? = F ∩ F ? is the case.

Theorem 2.8. Let F be a Pareto face of a cephoid Π with reference system
J. Let (p, l0) ∈ � such that |J (p)| ≥ 2. Let

(13) F ? :=
∑

k∈K\{p}
∆

(k)

J(k) +∆
(p)

J(p)\{l0}

be an (n− 2)–dimensional subface of F . Then there is some Pareto face F̃
of Π such that

F ? = F ∩ F̃ .

Proof:

The normal cone to F ? is described by Theorem 2.6. The one extremal of
the normal cone of F ? is provided by the normal n of F .Let ñ be the second
extremal of this cone. By the nondegeneracy assumption, this extremal can
either have exactly one zero coordinate ñi (in which case F ? is located in the
corresponding ∂Π(−i)), or else it is positive. In the latter case the theorem
is verified. However, if the neighboring face is a boundary face in the sense
of Theorem 2.6, then we have seen that the characteristics satisfy � = �?

(Remark 2.7). This is not compatible with the representation of F ? by (11)
as l0 ∈ � is missing in the reference system of F ?.

q.e.d.
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3 Extremal Points

At this stage, we insert some remarks concerning the (Pareto efficient) ex-
tremal points or vertices of a Cephoid. As we focus mainly on the Pareto
faces, we do this in passing; however we want to mention the topic as it
constitutes an alternative way of describing a Cephoid.

A compact convex polyhedron can be described by indicating all maximal
faces, that is intersections of supporting hyperplanes with the polyhedron
of maximal dimensions. In our present setup concerning a Cephoid Π we
distinguish between Pareto faces and maximal faces that are not Pareto effi-
cient, that is, intersections of Π with an (n−1) dimensional subspace

�
n
I\{i0}

for some i0 ∈ I. Such an intersection is, in turn, a Cephoid in its own
right, namely the one generated by the same family of positive vectors, but
restricted to

�
n
I\{i0}; we have denoted this Cephoid by Π(−i0). Needless to

say that in case of a Cephoid, the Pareto faces are sufficient to provide a
complete description of the polyhedron.

Alternatively, one can establish a list of the extremals, in our case vertices
and 0. The polyhedron is then obtained as the convex hull of its extremals
(Minkowski, Caratheodory, Krein–Milman). In a sense, both proce-
dures are dual to each other. Also, for a complete description it suffices to
indicate the vertices.

Without explicit proofs (which are more or less provided by our previous
results) we list the following statements concerning the Extremal Points of a

Cephoid Π =
∑

k∈K Πa(k)
=
∑

k∈K Π(k).

1. Every vertex of Π is of the form

(1) ai1,...,iK = a(1)i1 + . . .+ a(K)iK = a
(1)
i1
ei1 + . . .+ a

(K)
iK
eiK

with ik ∈ I (k ∈K).

2. A sum ai1,...,iK as in (1) is a vertex if and only if it is Pareto efficient.

3. Let

(2) F =
∑

k∈K
∆

(k)

J(k)

be a Pareto face of Π with reference system J =
{
J (k)

}
k∈K

.

Then, for each selection i1 ∈ J (1), . . . , iK ∈ J (K), the vector ai1,...,iK as
in (2) is a vertex of Π.
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4. In view of nondegeneracy, every extremal point ai1,...,iK belongs to ex-
actly n maximal faces of Π. If n > K holds, then necessarily not all
of these maximal faces are Pareto efficient. Rather some of them are
boundary faces of the form Π(−i0).

5. To every vertex ai1,...,iK of Π there exists a normal cone of dimension
n which is the intersection of the normal cones at the various DeGua
Simplices ∆

(k)

J(k) in the extremals a(k)ik (k ∈K).
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4 The Sum of Two deGua Simplices:

Cylinders

Presently we apply our results to the case K = 2. We consider the sum
Π = Πa + Πb two deGua Simplices with Pareto surface ∂Π. This case is
treated at length as it provides a first insight into the nature of Pareto faces
and thus suggests the path for further developments.

Theorem 4.1. Let F be a Pareto face of Π. Then there exists a unique l ∈ I
such that al + bl ∈ F . On the other hand, for every i ∈ I the vertex ai + bi

of ∂Π is contained in one and only one Pareto face F .

Moreover, for every Pareto face F with corresponding l ∈ I as above, the
following hold true:

1. The reference system J consists of two reference sets J1,J2 ⊆ I such
that

(1) F = ∆a
J1 +∆b

J2

with
|J1|+ |J2| = n + 1 .

and

(2) J1 ∩ J2 = {l}.

That is, the adjustment set is L = {l}. The characteristics can be
written

(3) L = {(1, l), (l, 2)} = {(a, l), (l, b)}

with an obvious abuse of notation for K = 2.

2. Accordingly, there are positive constants ca, cb such that caΠ
a and cbΠ

b

have exactly one common vertex; this is the the vertex

(4) caa
l = cbb

l .

3. The normal n? of F is (up to a positive multiple) exactly the normal of
the deGua Simplex

(5) ∆? = caΠ
a ∨ cbΠ

b .
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Proof: Clearly follows from Theorem 1.2, Theorem 1.4, and Remark 1.8
specified for K = 2.

q.e.d.

We can now exactly describe the Pareto surface of the sum of two polyhedra.
To this end, we introduce the following notation. Let ≺ be a total ordering
of I. We denote by

(6) T≺
j := {i ∈ I i ≺ j} ∪ {j}

the set of predecessors of j ∈ I including j with respect to ≺. Similarly, let

(7) S≺
j := {i ∈ I j ≺ i} ∪ {j}

denote the set of successors of j including j. Clearly

S≺
j ∩ T≺

j = {j} (j ∈ I)

holds. Combining we have the following

Theorem 4.2. 1. The sum of two deGua Simplices in
�

n has exactly n
Pareto faces. Each Pareto face is uniquely identified by a vertex al+bl

containing it.

2. For any sum of two deGua Simplices Π = Πa+Πb there exists uniquely
an ordering ≺ of I such that the Pareto faces are exactly described by

(8) F≺i := ∆a
S≺
i
+∆b

T≺
i

(i ∈ I).

3. In view of nondegeneracy, there are exactly n! “types” of sums of two
deGua Simplices. Each type corresponds to an ordering of I such that
the Pareto faces are given by equation (8).

Proof: Each Pareto face F of the surface contains exactly one vertex al+bl

of ∆ for some l ∈ I and, the other way around, for every i ∈ I, there
is exactly one face containing ai + bi. Thus , there is a bijection between
vertices and Pareto faces.

Now the Neighborhood Theorem (Theorem 2.3) and the subsequent results
of Section 2 require that each Pareto face is either a boundary face (with
one adjacent neighbor) or has two adjacent neighbors.

For l ∈ I, let F l denote the Pareto face featuring L = {l}. Now define
an ordering ≺ of I in a way such that each face F l is adjacent to two its
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neighbors in the ordering. That is l, l′ are neighbors in the ordering ≺ if and
only if F l,F l′ are adjacent.

Now, viewing the Neighborhood Theorem 2.3 (in particular formula (6) of
the proof), we observe that the transition from the reference set J la of F l to
the the reference set J l′a of F ′ w.l.g is performed by

J l′a = J la ∩ {l′}

(or vice versa for b). Thus, J la contains all the predecessors of l including
l with respect to the ordering ≺ which is as well the ordering of the Pareto
faces. That is, we have indeed

F l = F≺l

in the sense of (8).

q.e.d.

Thus for any two deGua Simplices the total ordering that generates the
Pareto faces as in formula (8) is uniquely defined. Therefore, we come up
with a formal definition.

Definition 4.3. 1. For any sum of two deGua Simplices Π = Πa + Πb

we shall say that ≺ as defined via Theorem 4.2 is ordering ∂Π.

2. Let
{
a(k)

}
k∈K be a family of positive vectors. Let k?, k′ ∈K and let

Π(k?k′) := Π(k?) + Π(k′) .

Let ≺ be the ordering of ∂Π(k?k′) and let the predecessors and successors
be defined by (6) and (7). Then, for k, k′ ∈K we define

(9) F kk′;≺i := ∆
(k)

S≺
i

+∆
(k′)
T≺
i

(i ∈ I).

The second item will be will be useful in generating translates of the faces of
each pair of a family

{
a(k)

}
k∈K on the Pareto surface of the corresponding

Cephoid, see later in Theorem 4.9.

Remark 4.4. Consider the case that the ordering ≺ is the natural one, i.e.,
1 ≺ 2 ≺ 3 ≺, . . . ,≺ n. Then we can indicate the Pareto faces using the reference
system, that is, by listing the reference sets S≺

j , T
≺
j (j ∈ I) according to formula
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(8) as follows.

(10)

1 1234 . . . n

12 234 . . . n

123 34 . . . n

. . . . . .

123 . . . n n

Obviously, a reference system and hence each face is obtained from its neighbor by
canceling the double appearing index (i.e., the on in L = {l})on the right side and
instead moving the next index to the left so that it appears double. Sloppily we
refer to this procedure as to the moving index principle for one index. Later
on, there will be a generalization for more than one index.

◦ ˜˜˜˜˜˜ ◦

Example 4.5. Subsequently, we demonstrate concrete examples obtained by com-
putational methods that will be explained later (Chapter 8). The order in which
the faces are listed is reversed due to the algorithm employed, yet, these are the
examples referring to Remark 4.4, thus demonstrating the “moving index princi-
ple”. The second example (“Cephoid CEPERN”) emerges from the first one by
permuting the columns to the reverse order.
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◦ ˜˜˜˜˜˜ ◦

Example 4.6. Again we consider our introductory simple Example 2.4 in Section

2 Chapter 1. See also Example 1.5, we repeat the sketch in in Figure 4.1.

We observe that a(1) + b(1) determines F 1 = ∆a + b1. Similarly a(2) + b(2)

determines F 2 = ∆b + a2. Finally the third face F 3 = ∆a
{23} +∆b

{13} corresponds

to a(3) + b(3). Hence we obtain a list of the Pareto faces as follows:

(11)

F≺2 = ∆a
2 +∆β

231

F≺3 = ∆a
23 +∆b

31

F≺1 = ∆a
231 +∆b

1 .

Now, using our notation explained above we obtain the list of reference systems
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∆a + b(1)

∆b + a(2)

∆a
23 +∆b

13

1

2

3

Figure 4.1: The familiar sum of 2 deGua Simplices
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as follows:

(12)

2 231

23 31

231 1

Clearly the underlying ordering is indicated by ≺ = (2, 3, 1). At each face F l,≺

the decisive index/coordinate appears double (in both reference sets) and exhibits
the coordinate l ∈ L which governs the adjustment.

◦ ˜˜˜˜˜˜ ◦

Example 4.7. Now consider the case K = 2 and n = 4. A Cephoid as well as its
Pareto surface are polyhedra in

�4. However, the canonical representation maps
both structures into

�3. Indeed the Simplex in which the canonical representation
appears is 2∆e, the two–fold unit Simplex. This can be sketched in

�2 as a
tetrahedron spanned by the vectors 2ei (i ∈ {1, 2, 3, 4}). Now, within this
representation, the Pareto faces are either translates of one of the generating deGua
Simplices or else a sum of a line segment and a triangle.

Consider the sketch of a canonical representation, as depicted in Figure 4.2. Here
Πa,∆a are painted in blue and Πb,∆b are painted in red. We tacitly assume that
a = a(1), b = a(2), this way inducing an enumeration of the family of vectors
generating the Cephoid Π = Πa +Πb = Πa(1) +Πa(2).

The left hand Figure in 4.2 corresponds to the ordering ≺ given by 2341. For, the
Pareto faces are given by

(13)

F≺2 = ∆a
2 +∆b

2341

F≺3 = ∆a
23 +∆b

341

F≺4 = ∆a
234 +∆b

41

F≺1 = ∆a
2341 +∆b

1 .

For every l ∈ I the coordinate l appears twice in the reference system

J(l) =
{
J l(1),J l(2)

}

(i.e., L = {l}) while simultaneously the face F≺l contains the vector 2el.

To be precise, what we see in these sketches are the canonical projections, hence
normalized to a unit length for each generating Simplex and SubSimplex respec-
tively. The essential feature is the relative location or more precisely, the lattice
structure of the Pareto surface.

E.g, in terms of the Cephoid Π, the SubSimplex ∆a
234 yields a basis and the

SubSimplex ∆b
41 yields a line segment generating a cylinder F≺4 = ∆a

234 +∆b
41.
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2e1

2e1

2e2

2e2

2e3

2e3

2e4

2e4

F≺1

F≺2

F≺3

F≺4

Figure 4.2: The sum of two deGua Simplices for n = 4

The vertices of this cylinder are

a2 + b4 = (0, a2, 0, b4), = a3 + b4 = (0, 0, a3, b4),a
4 + b4 = (0, 0, 0, a4 + b4) .

a2 + b1 = (b1, a2, 0, 0), = a3 + b1 = (b1, 0, a3, 0),a
4 + b1 = (b1, 0, 0, a4) .

Projected into the canonical representation, we obtain the copies

e2 + e4 = (0, 1, 0, 1), = e3 + e4 = (0, 0, 1, 1),e4 + e4 = (0, 0, 0, 2)

e2 + e1 = (1, 1, 0, 0), = e3 + e1 = (1, 0, 1, 0),e4 + e1 = (1, 0, 0, 1)

These are the vertices of the cylinder in the uppermost corner of the left-hand
sketch in Figure 4.2.

The reader may verify that the right-hand side version of Figure 4.2 corresponds
to the ordering 2431.

◦ ˜˜˜˜˜˜ ◦

Based on our observations we continue by exhibiting a few facts regarding a
general sum of K prisms. This will be a useful preparation for the general
discussion of cephoids to be presented later on. First of all, it is easy to see
that translates of all deGua Simplices will appear on the surface. The case
K = 2 treated so far shows this clearly, but it is a general feature for all
Cephoids.
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Theorem 4.8. Let
{
a(k)

}
k∈K be a (non–degenerate) family of positive vec-

tors. Let κ ∈ K. Then, for every l ∈ K \ {κ} the Simplex ∆(κ) has a joint
normal with exactly one vertex of ∆(l).

Proof: The normals that belong to all the vertices of ∆(κ) span the nonnega-
tive orthant

�
n
+. If two of these normals are joint to the one of ∆(l), then the

normal cone of a two dimensional subface of ∆(l) equals the corresponding
one of ∆(κ), which we have ruled out by nondegeneracy.

q.e.d.

Theorem 4.9 (The Translation Theorem). Let
{
a(k)

}
k∈K be a family of

(non–degenerate) positive vectors and let Π :=
∑

k∈K Π(k) be the Cephoid
generated. Then the following holds.

1. For each κ ∈K there appears a translate of ∆(κ) on ∂Π. Precisely, for
k ∈K \ {κ} there exists (uniquely) ik ∈ I with

(14) ∆{κ} = F κ;i• :=
∑

k∈K\{κ}
∆

(k)
ik

+∆(κ) =
∑

k∈K\{κ}
a(k)ik+∆(κ) ⊆ ∂Π .

(we use the notation ∆{κ} whenver there is no need to mention the
unique sequence i• := (ik)k∈K\{κ} explicitely)

2. Let k?, k′ ∈ K and let Πk?,k′ = Π(k?) + Π(k′). Let ≺ be the ordering of
∂Πk?,k′. Let i ∈ I and ≺ be be such that F k?k′;≺i is a Pareto face of
Πk?,k′ as constructed in Theorem 4.2, formula (8) (see Definition 4.3,
formula (9)). Then there appears a translate of F k?k′;≺i on ∂Π.

Precisely, for k ∈K \ {k?, k′} there exists (uniquely) ik ∈ I with

F {k?k′} = F k?k′;≺i;i• :=
∑

k∈K\{k?k′}
∆

(k)
ik

+ F k?k′;≺i

=
∑

k∈K\{k?k′}
a(k)ik + F k?k′;≺i ⊆ ∂Π .

(15)

(where ≺ and i• := (ik)k∈K\{κ?k′} are omitted if appropriate ).

Proof:

The proof employs obvious generalizations of the one for Theorem 4.8.

q.e.d.
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Thus each pair Πk? ,Πk′ transports all the Pareto faces of its sum to the
Pareto surface ∂Π of the total sum Π. It is rather clear that this situation
will be generalized in a way such that any triple of Cephoids taken from the
family will transport all its faces to ∂Π etc. Clearly, this opens the path for
inductive procedures to get hold of the structure of ∂Π through analyzing
Pareto faces of subfamilies.

Now we specify for the particular case that the face F k?k′;≺i is the sum of an
edge/line segment and an (n− 2) dimensional Simplex. We call such a sum
a cylinder, a notation we have sloppily used previously. In view of Theorem
4.2 and Definition 4.3 this means that the Pareto face in question is of the
form

(16) F k?k′;≺l := ∆
(k?)

S≺
l

+∆
(k′)
T≺
l

(l ∈ I).

such that, for j ∈ I with j ≺ l we have

S≺
l = {j, l} , T≺

l = I \ {j} .

that is, in the ordering ≺ of ∂Πk?,k′ the coordinat j is first and l is second.
Also L = {l} is the adjustment set of the face (16). Now we reformulate our
results as while varying the pairs taken from K follows.

Corollary 4.10. Let
{
a(k)

}
k∈K be a family of (nondegenerate) positive vec-

tors and let Π :=
∑

k∈K Π(k) be the Cephoid generated. Then the following
holds true.

1. For every pair k?, k′ ∈ K, k? 6= k′, there exists uniquely j, l ∈ I (the
first two indices in the ordering of Πk?,k′) such that the Simplices

∆
(k?)
jl and ∆

(k′)
I\{j}

admit of a joint normal n?′. Also, there are positive coefficients ck?, ck′
such that the deGua Simplices ckΠ

(k) and ck′Π
k′ are adjusted so that

the vertices in direction l are equal, i.e., c?ka
(k?)l = ck′a

(k′)l. These
coefficients are determined by the Coincidence Theorem 1.4.

2. n?′ is the normal of of the Simplex

∨{
ckΠ

(k), ck′Π
k′
}

as well as the normal of the Pareto face F k?k′;jl := ∆
(k?)
jl +∆

(k′)
I\{j} of

the sum
Πk?k′ = ck?Π

(k?) + ck′Π
k′
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3. For every k ∈K − {k?, k′} there exists a unique ik ∈ I such that Π(k)

admits of a joint normal with Πk?k′ in a(k)ik ; this is the coordinate ik
for which n?′ is admitted as a normal in a(k)ik .

4. Hence, for every pair k?k′ ∈ K, k? 6= k′, there exist uniquely j, l ∈
I, j 6= l, and a sequence i• = (ik)k 6=k?,k′ such that

(17) Ck?k′ := ∆
(k?)
jl +∆

(k′)
I\{j} +

∑

k 6=k?k′

a(k)ik = F k?k′;≺l +
∑

k 6=k?k′

a(k)ik

is a Pareto face of Π. If ≺ is the ordering of Π(k?k′), then j ≺ l are the
first indices in this ordering and the Pareto face can also be written

Ck?k′ = F k?k′;≺l +
∑

k 6=k?k′

a(k)ik

Observe that the basis of a cylinder is a n − 2 dimensional subface of Πk′

while the height is line segment from Πk?.

Definition 4.11. Let Π be a Cephoid. The Pareto face Ck?k′ described by
Corollary 4.10 is the cylinder generated by k? and k′. In view of (17) we

call ∆
(k′)
I\{j} the basis and ∆

(k?)
jl the height of the cylinder.
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5 The Tentacles

Each Simplex ∆(k?) produces a copy/translate ∆{k?} on the Pareto surface
of a Cephoid Π. The detailed description is presented by ∆{k?} as defined in
formula (14) of Theorem 4.9 of Section 4.

The same holds true for the cylinders Πk?k′ generated by each pair of the
family

{
a(k)

}
k∈K; here we refer to Ck?k′ as given by (17) of Section 4.

Now the family of cylinders has a vivid geometrical interpretation: a well
defined “path” of cylinders connects any (n− 2) dimensional SubSimplex of
F k?;i• with the boundary of ∂Π. Viewing this for the various subsimplices,
one gets the impression of “arms” or “tentacles” stretching from the deGua
copy towards the boundary. This feature generates the appearance of an
“cephalopod” and motivates the name “Cephoid” we have chosen.

In what follows we make this more precise; we start up with the appropriate
definition.

Definition 5.1. Let Π =
∑

k∈K Πa(k)
be a Cephoid. For some κ ∈K let

∆{κ} =
∑

k∈K\{κ}
a(k)ik +∆(κ) ⊆ ∂Π

be the translate of the deGua Simplex ∆(κ) according to (14). Define, for
j ∈ I,

(1) K
(κ)
j := K \ ({κ} ∪ {k ∈K ik = j})

Then the set of cylinders

(2)
�(κ)

j :=
{
Ck?κ k? ∈K(κ)

j

}

is the tentacle system generated by ∆(k′).

Let us try to imagine the geometrical meaning: given κ, ∆(κ), and the corre-
sponding deGua translate∆{κ}, we consider for j ∈ I the (n−2) dimensional
subface

(3) F (κ){−j} = F {−j} :=
∑

k∈K\{κ}
a(k)ik +∆

(κ)
I\{j}

. This subface is an (n − 2) dimensional Simplex which employs the same
family of basis vectors as ∆{κ}, that is, the family a?• =

{
a(k)ik

}
k∈K .
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Intuitively for each k ∈K(κ)
j , one can imagine that the sum in (7) indicates

that the Simplex is moved by one step from the basis vector Kej towards
the boundary K∆e{−j}

.

In particular, wheneverK
(κ)
j = ∅, then all of the vectors a(k)ik satisfy a

(k)ik
j =

0, hence F (κ){−j} has just zero coordinates at j and hence constitutes a
boundary subface of ∆{κ}.

Theorem 5.2 (The Tentacles). For every κ ∈ K and j0 ∈ I the tentacle

system
�(κ)

j0
generates a coherent path of cylinders connecting F {−j0} of ∆{κ}

with the boundary Π−j0. These cylinders are

(4) C{k1,κ} , C{k2,κ}, . . . ,C{k?,κ},

where

(5) {k1, k2, . . . , k?} = K
(κ)
j0

:= {k ∈K \ {κ} ik = j0} .

We refer to the system as well as to the path of cylinders as to a tentacle.

Proof:

1stSTEP : If

(6) ∆{κ} =
∑

k∈K\{κ}
a(k)ik +∆(κ)

is a boundary face, then there is nothing to prove (and K
(κ)
j0

= ∅). Assume
that the subface

(7) F {−j0} :=
∑

k∈K\{κ}
a(k)ik +∆

(κ)
I\{j0}

is not located on the boundary. Then not all vectors under the sum can have
zero j0–coordinates, hence

K0 := K
(κ)
j0

= {k ∈K \ {κ} ik = j0} 6= ∅ .

Abbreviate

(8) a?0 :=
∑

k∈K\(K0∪{κ})
a(k)ik ,

this is the part of the sum in (7) that has 0 at coordinate j0. Then ∆{κ} is
written

∆{κ} = a?0 +
∑

k∈K0

a(k)j0 +∆(κ)
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while the subface is written

(9) F {−j0} = a?0 +
∑

k∈K0

a(k)j0 +∆
(κ)
I\{j0} .

Now we apply the Neighborhood Theorem (2.3). As ∆{κ} is not a boundary
face, there must be a Pareto face adjacent to ∆{κ} such that the intersection
is exactly F {−j0}. Necessarily this Pareto face must be obtained by summing
a line segment to F {−j0}.

We claime that this line segment must originate from some k1 ∈ K0 and
must be of the form ∆

(k1)
j0l1

for some l1 ∈ I \ {j0} such that the Pareto face
we have reached is of the form

(10) C{k1,κ} = a?0 +
∑

k∈K0\{k1}
a(k)j0 +∆

(k1)
j0l1

+∆
(κ)
I\{j0}

Indeed, to see this compare (9) and (10). One of the vectors a(k)j0 listed
in the sum is necessarily also a vertex of the line segment, for F {−j0} is a
subface of ∆{κ} as well as of C{k1,κ}. This way we have found a Pareto face
adjacent to the starting deGua translate; this is the cylinder generated by
the pair Πk1 and Πκ.

2ndSTEP :

Now we continue by constructing the next adjacent face, if any. To this end,
we first of all focus on the subface of C{k1,κ} given by

F {−k1} := a?0 +
∑

k∈K0\{k1}
a(k)j0 + a(k1)l1 +∆

(κ)
I\{j0}

which one obtains by means of the second vertex of the above line segment.If
this is not a boundary face, then again there is the next neighbor which is

C{k2,κ}a?0 +
∑

k∈K0\{k1,k2}
a(k)j0 + ak1l1 +∆

(k2)
l2j0

+∆
(κ)
I\{j0}

with some k2 ∈ K0 and l2 ∈ I \ {j0}. The argument is the same as above,
based on the conectivity of the subface F {−k1}. Clearly l2 is the adjustment
index corresponding to ∆

(k2)
l2j0

and ∆
(κ)
I\{j0}.

3rdSTEP :

Continuing this process, we obtain a sequence of Pareto faces (and subfaces),
each one adjacent to its predecessor and each one being a cylinder generated
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by ∆
(κ)

J(κ) and some ∆
(k)

J(k) and some ∆
(k)

J(k) with k ∈K0 being taken from the
remainders in K0 that have not been employed. The adjustment index lk is
always different from j0.

Finally, when K0 is exhausted we have obtained the last cylinder

a?0 +
∑

k∈K0\{k?}
a(k)lk +∆

(k?)
l?j0

+∆
(κ)
I\{j0}

with the last subface

F {k∗} := a?0 +
∑

k∈K0\{k?}
a(k)lk +a(k?)l? +∆

(κ)
I\{j0} = a

?0 +
∑

k∈K0

a(k)lk +∆
(κ)
I\{j0}

where k? is the last element of K0 in the order of construction and l? chosen
accordingly (that is, l? 6= j0 is the the element in the last adjustment set, the

one of ∆
(k?)
l?j0

and ∆
(κ)
I\{j0}).

Now, none of the vectors under the sum does have a positive coordinate j0
as always lk 6= j0 ; neither has the vector a?0. Consequently, F {k∗} is a
boundary subface, i.e., F {k∗} ⊆ Π−j0.

q.e.d.

Remark 5.3. The vector a?0 = a(κ)?j0 defined in (8) or more precisely by

(11) a(κ)?0 :=
∑

k∈K\(K(κ)
j0

∪{κ})

a(k)ik ,

indicates the distance of ∆{κ} to the boundary Π−j0 . For, each vector a(k)ik

with ik 6= j0 moves the deGua translate ∆{κ} one step further in direction of
the boundary {x xj0 = 0}. Vaguely speaking, in “barycentric coordinates” the
j0–vertex of that deGua translate has coordinate

∑

k∈K\K(κ)
j0

a(k)ik =
∑

k∈K\(K(κ)
j0

∪{κ})

a(k)ik + a(κ)j0

which is 0 if that translate is located in the j0 vertex of ∂Π and
∑

k∈K a
(k)
j whenever

it is located on the opposite boundary of ∂Π.

This is even more clearly seen in the framework of the canonical representation.
In K∆e the hyperplanes {x xj0 = t} represent points of equal distance to the

boundary {x xj0 = 0}, that is, to K∆e−j0 for some j0 ∈ I.
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For example, consider the grid on K∆e for n = 3,K = 7 as depicted in figure 5.1.
We choose j0 = 2, so the lines {xj0 = t} are parallel to the basis {x2 = 0} and
represent points that are t steps away from that basis.

7e1 7e2

7e3

{x x2 = 0}

{x x2 = 2}

Figure 5.1: The Grid, n = 3, K = 7

Next consider Figure 5.2.

The translate ∆{κ} is the brown triangle in the center. Its second vertex is 3 steps
away from the boundary {x2 = 0}, the opposite line segment 2 steps. We find a
tentacle of 2 brown cylinders (rhombi in this case) connecting that line segment
to the boundary {xj0 = 0}. These are the rhombi C1κ created by ∆(κ) and ∆(1)

(blue lines) and C2κ created by ∆(κ) and ∆(2) (grey).

Note the tentacle of ∆(1) (the image of) which (under the canonical projection)
is located in the vertex 7e1 of 7∆e. The only tentacle is the one leaving at the
basis opposite to this vertex and stretching all the way through six rhombi until
it reaches the opposite boundary of K∆e. Of course, the rhombus C1κ is exactly
the crossing point of both arms.

◦ ˜˜˜˜˜˜ ◦

Remark 5.4 (The Cephalopodic Structure). The above construction ex-
plains the name of “Cephoid” chosen for our topic: the translate ∆{κ} of a deGua



72 ? Faces and Normals ? Chapter III ?

7e1
7e2

7e3

∆(κ)

{x x2 = 0}

∆(1)

∆(2) Cκ1

Cκ2

Figure 5.2: Tentacles in 3 Dimensions, K = 7

Simplex on the Pareto surface of a Cephoid appears in a shape resembling the
center/head of a cephalopod. There are arms/tentacles stretching from this cen-

ter towards each boundary. Each tentacle – represented by the system �{κ}
j in

direction j – connects the center with the boundary {x xj = 0}.

◦ ˜˜˜˜˜˜ ◦

We finish this section by adding two observations regarding the number of
cylinders and the size of the tentacles in a Cephoid.

Corollary 5.5. 1. For n = 3 any pair of deGua Simplices generates
one cylinder (rhombus in this case), hence the number of cylinders is
K(K−1)

2
=
(
K

2

)
.

2. For n > 3, any pair of deGua Simplices generates two cylinders, hence
there are K(K − 1) cylinders on ∂Π.

3. Let κ ∈K. The number of cylinders in the tentacle
�

κ
j0

is

∣∣�κ
j0

∣∣ =
∣∣∣K(κ)

j0

∣∣∣ = | {k ∈K \ {κ} ik = j0} | .
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6 The Sum of Three DeGua Simplices:

Blocks

Analogously to the presentation in Section 4 this section is devoted to the
special treatment of the case K = 3, i.e., the sum of three deGua Simplices in
detail. Fortunately, we can still visualize the situation for n=4. Indeed, while
a Cephoid Π is a subset of

�4
+, its Pareto surface ∂P is three dimensional.

Especially, when we concentrate on the canonical representation, then we
consider a multiple of the unit Simplex in

�3
+. As we are capable of viewing

this by sketches in the two-dimensional paper space
�2 we can visualize and

explain some features that are new in comparison to the situation within the
“sum of two” realm treated in Section 4.

For a start consider the case n = 3. We write Π = Πa + Πb + Πc, as usual
∂Π is the Pareto surface of Π. Now, K contains just three indices. For
any a Pareto face F of Π any reference set must contain an element of the
adjustment set L.

Next, a Pareto face cannot have a reference system J = {{12}{13}{23}},
for then L = {123} would contradict |L| ≤ K − 1 = 2 ( item 2a of the
Reference Theorem 1.2).

Clearly, this leaves only two choices for the adjustment set L: with suitable
indices we have either L = {l} or L = {l0, l1}. Accordingly, we reformulate
the Coincidence Theorem for this particular case.

Theorem 6.1. Let K = n = 3. Let F ⊆ ∂Π be a Pareto face of Π. Then

1. Either there exists uniquely l ∈ I such that al + bl + cl ∈ F holds true.
That is, L = {l} and F contains a unique multiple of a unit–vector.
Thus, with suitable J (k) ⊆ I (k = 1, 2, 3)

(1) F = ∆a

J(1) +∆b

J(2) +∆c

J(3)

such that l ∈ ∩3
k=1J

(k).

2. Or else there is a unique pair l1, l2 ∈ I such that L = {l1, l2}. That
is, with suitable J (k) ⊆ I (k = 1, 2, 3) we have

(2) F = ∆a

J(1) +∆b

J(2) +∆c

J(3)

such that {l1, l2} ⊆ J (k) holds true for one k while the other two index
sets contain either l2 or l2 and not both.
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Moreover,F ∩∆{l1,l2} is a nondegenerate interval located within the rel-
ative interior of ∆{l1,l2}.

3. There are positive constants ca, cb and cc (unique up to a positive mul-
tiple) such that the normal n? of F is (up to a positive multiple) exactly
the normal of the deGua Simplex

(3) ∆? = caΠ
a ∨ cbΠ

b ∨ ccΠ
c .

Example 6.2. Let n = K = 3. Then, by Theorem 4.9, we obtain 3 translates
of the generating simplices. Also, by Corollary 5.5 we obtain 3 diamonds/rhombi
on the Pareto Surface ∂Π of Π. More Pareto faces are not feasible by our above
introductory remarks.

The tentacle system generated by (the translate of) each Simplex consists of two
rhombi/diamonds. Any two Simplices share exactly one diamond. As there are no
further Pareto faces, the number of faces is always 3 + 3 = 6.

This enhances our understanding of the examples presented preliminarily in Sec-
tion 2 of Chapter 2. E.g., reconsider Examples 2.1 and 2.2 of Chapter 2, i.e., the
Circle. Our graphic representations rests on the canonical projection. Thus the
lattice structure of the faces of ∂Π is projected on the Simplex 3∆e. We sketch
∆a in green, ∆b in blue and ∆c in red.

The result is Figure 6.1. the Circle. To interpret this, recall that the Pareto
faces of a sum of two are reflected by a set of orderings and the “moving index
principle” (Remark 4.4). For the Circle, the orderings are indeed “cyclic” as they
are induced by the cyclic subgroup of permutations of three elements. We find

Figure 6.1: The circle

the orderings

(4) 123 231 312

for a vs. b, a vs. c, and b vs. c.
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More precisely, the sum of ∆a and ∆b has three Pareto faces which are described
by

(5)

a b

123 3

12 23

1 123

As there a three deGua Simplices involved, we obtain the complete description of
the Pareto faces generated by a and b by adding a suitable vertex of c which yields
the following list.

(6)

a b c

123 3 3

12 23 1

1 123 1

To verify/read this result, observe that (in terms of the canonical representation)
∆a (“green”) is indeed located at the vertex 3e3 = e3 + e3 + e3 corresponding to
L = {3}. Also, ∆b (“blue”) is located at the vertex 3e1 = e1+e1+e1 corresponding
to L = {1}. Moreover, we see that the common cylinder/rhombus/diamond is
∆a

12 + ∆b
23 shifted to the Pareto surface by c1 (corresponding to e1 within the

framework of the canonical projection). Thus, L = {1, 2}; the diamond generated
by green a and blue b is the one having a one–dimensional intersection exactly
with the Subsimplex 3∆e

12 = (3∆e ∩ {x3 = 0}).
Next , a similar diagram holds for b vs. c. we have

(7)

b c

231 1

23 31

2 231

which is augmented to

(8)

b c a

231 1 1

23 31 2

2 231 2

Finally c vs. a yields
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(9)

c a

312 2

31 12

3 312

which is augmented to

(10)

c a b

312 2 2

31 12 2

3 321 3

Listing all three diagrams as induced by the 3 permutations we obtain the complete
structure of ∂Π. The three diagrams list 9 faces, but each Simplex appears twice,
so we have indeed 6 Pareto faces.

◦ ˜˜˜˜˜˜ ◦

We have explained at length how to transfer our our lists into the sketch
of Figure 6.1. It is also worth exercising the other way around: looking at
the sketch one may want to identify e.g. the correct representation of the
diamond corresponding to c (red) and a (green) . One observes that the
generating Subsimplices are ∆c

31 and ∆a
12 as the line segments defining the

green–red diamond are parallel to the line segments 3∆e
31 and 3∆e

12. To find
the augmenting vector we observe that the diamond in question has a non–
trivial interval in common with 3∆e

13, which means that 2 is the missing
index in L, thus necessary the diamond is

∆c
31 +∆a

12 +∆b
3 – or in shorthand as above – {31}{12}{3} .

Example 6.3. For the next example, we revisit the Windmill represented by
Figure 2.4. See also the preliminary treatment in Section 2 of Chapter 2. This
cephoid involves

the three orderings

(11) 132, 321, and 213

between the three pairs which refer to the acyclic subgroup of permutations of
three elements. Again a complete description has to involve a suitable vertex of
the third deGua Simplex.

◦ ˜˜˜˜˜˜ ◦
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Figure 6.2: The windmill

Next we turn to the case n = 4, K = 3.

We can still depict the canonical representation (not the Pareto surface) as
the projection is a structure located on the Simplex spanned by the vectors
3ei (i ∈ {1, 2, 3, 4}) of �4. This Simplex is 3–dimensional and has the shape
of a tetrahedron in

�3.

From Theorem 4.9, we know that there are three translates of the three
Simplices involved on ∂Π.

In addition, each deGua Simplex involved generates two cylinders, one with
each of the other two deGua Simplices involved. There is also the tentacle
system (Definition 5.1, Theorem 5.2) which generates tentacles consisting of
cylinders. Thus, we find immediately 9 Pareto faces.

In addition to these, there appears exactly one additional Pareto face which
has the shape of a parallelepiped or for short a block . We formulate this as
follows.

Lemma 6.4. Let Π be a cephoid with n = 4 and K = 3. Then ∂Π has
exactly 10 faces. There are 3 translates of the generating deGua Simplices,
6 cylinders, and one parallelepiped or block. The block is necessarily of the
shape

(12) ∆a
Ja +∆b

Jb +∆c
Jc

with |Ja| = |Jb| = |Jc| = 2.

Proof: For any Pareto face the adjustment set L has at most 2 elements.
Therefore, any Pareto face contains either a vertex or cuts the interior of
an (n − 2) dimensional boundary, via the subface F L. (cf. the Reference
Theorem 1.2). In the framework of the canonical representation this means



78 ? Faces and Normals ? Chapter III ?

that any image of a Pareto face either contains a threefold basis vector 3ei

or else cuts properly into an edge of 3∆e (the intersection is an interval).

On the other hand, each edge intersects exactly 3 Pareto faces.

Indeed, for j0 ∈ I consider the Pareto faces of the Cephoid Π(−j0). The
tentacle system of Π for each deGua Simplex involved shows an arm that ends
on Π(−j0), thus one finds the bases of the final cylinders in the tentacle system.
That is, the Pareto faces of ∂Π(−j0) are generated by the projected deGua
Simplices Π(k)(−j0). Consequently, any 2–dimensional edge shows exactly 3
intersections of Pareto faces in ∂Π(−j0), hence 3 intersections of Pareto faces
in ∂Π.

Now, the 4–dimensional unit Simplex (and its multiples) has 4 vertices and
6 edges. Each vertex is contained in exactly one Pareto face and each edge
contains one additional line segment which is the intersection with a fur-
ther Pareto face of ∂Π. Consequently, we obtain 10 Pareto faces. As all
cylinders and translates of deGua Simplices are already listed, the tenth face
necessarily involves an edge from each of the deGua Simplices.

q.e.d.

In the following, we describe a situation using the canonical representation.
We find exactly 3 translate of deGua Simplices, 6 cylinders, and one block.
These examples reflect only a geometrical sketch, at this stage we do not
present a precise numerical description. Later we present the numerical treat-
ment of such Cephoids.

Example 6.5. The first example can be seen as a circle of 3 in
�4. The canonical

representation of this polyhedron is presented in Figure 6.3. Viewing the 124–
Subsimplex we observe the structure of the Circle as described in Example 6.2.

Accordingly, the translates of the Simplices are located in the corners 3el (l =
1, 2, 4) of ∂Π. These Pareto faces show an adjustment set L = {l} for some
l = 1, 2, 4. The fourth Pareto face containing the vertex 3e3 (hence L = {3} is a
cylinder with a red basis and a green height. All the other cylinders and the block
have an adjustment set L with 2 elements leading to a proper one–dimensional
intersection with some edge of the 3–fold unit Simplex. In particular, the block is
seen to be

(13) ∆a
12 +∆b

23 +∆c
34 ,

such that L = {23}. We list the three orderings referring to each sum of two



? Section 6: The Sum of Three ? 79

a

b

c

1

2

3

4

Figure 6.3: A circle of 3 deGua Simplices in 4 dimensions.

deGua Simplices, these are

(14)
a b b c c a

1234 2341 4312

This is not complete representation, but the orderings appear again in the full
description of all Pareto faces, where a suitable vertex is added to each of the faces
generated. As it turns out, the single block corresponds to a further ordering, this
one is already suggested by formula (13) to be 1234. Thus, a full description of all
Pareto faces is given as follows:

(15)

a b c b c a c a b

1234 4 4 2341 1 1 4312 2 2
123 34 4 234 41 1 431 12 2
12 234 4 23 341 1 43 312 3
1 1234 1 2 2341 2 4 4312 4

a b c

12 23 34

Generalizing this in an obvious way we obtain:

Theorem 6.6. Let n = 4 and K = 3. Let (a(k))Kk=1 denote a (non–degenerate)
family of positive vectors in and let

Π =
K∑

k=1

Πa(k)
=

K∑

k=1

Π(k)

be the Cephoid generated. Then the Pareto faces of Π are given as follows:
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1. There are three orderings
kk?≺ , each one referring to a pair of deGua Simplices

Π(k),Π(k?) (k, k? ∈ K), which yield the Pareto faces in the corresponding
sum of these two deGua Simplices .

2. To each of these Pareto faces there corresponds a unique vertex of the third
deGua Simplex such that the result is a Pareto face of Π.

3. There is a further ordering representing exactly one block. This block is
uniquely defined by either one of the following requirements:

(a) The block covers exactly the missing vertex or interval in an edge that
is not covered by the above faces constructed from the sums of two.

(b) The block is adjacent to at least one face generated by each of the sums
of two.

Proof: This is an obvious result. q.e.d.

Going back to the table (15) in Example 6.5, we can deduce from the upper set
of three matrices (representing the sums of two plus a vertex) that the interior
interval of edge 23 is not covered by a Pareto face and that indeed the edge 23
does not intersect any translate of ∆b. As the edge 23 intersects a translate of ∆a

12

and of ∆c
24 it is clear that ∆b

23 is the missing edge.

As for the second argument, observe that

(16)
a b c

12 234 4

is adjacent to the block. This cylinder stems from the sum of ∆a and ∆b. It is,
by the way, also adjacent to its predecessor

(17)
a b c

123 34 4

which precedes within the same ordering, as the third vertex (i.e. 4) does not
change. Similar, if we look to the second ordering (referring to b and c), then we
observe that

(18)
a b c

1 23 341

is adjacent to the block as well as to its predecessor in the ordering.

Finally, let us look to the third ordering, the one defined by a and c. Here indeed
the block has two neighbors which are



? Section 6: The Sum of Three ? 81

(19)
a b c

21 2 134
213 3 34

These two have been adjacent as far as the sum of Πa and Πc was concerned. But
the unique vertex of b that renders these Pareto faces to become Pareto faces of
Π changes from 2 to 3, so they are no longer adjacent but both adjacent to the
block.

◦ ˜˜˜˜˜˜ ◦

Example 6.7. We provide two additional sketches of Cephoids which are a sum
of three deGua Simplices in

�4.

The first sketch (Figure 6.4) shows two translates of deGua Simplices located at
the corners, thus F blue 1 and F yellow 3 have reference sets L = {1} and L = {3}.
The translate of “red” is F red 14 with L = {14}.

Figure 6.4: A further sum of 3 deGua simplices

The Pareto faces at vertices 3e2 and 3e4 are cylinders. The block is

∆blue
24 +∆red

23 +∆yellow
14 .

Finally, we consider the Cephoid in Figure 6.5. The interesting feature is the
structure of the 3-dimensional subfaces. They resemble two examples for 3 × 3
Cephoids known to us. The Subsimplex ∆124 (in the canonical representation)
shows the Windmill and the Subsimplex ∆234 reflects the Circle. Thus, Figure 6.5
is called “the Marriage of a Windmill and a Circle”. The block is

∆blue
34 +∆red

23 +∆green
14 ,

so similar to the one as in Figure 6.4. The formal description is as follows.
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Figure 6.5: The Marriage of a Windmill and a Circle
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◦ ˜˜˜˜˜˜ ◦

We are now in the position to comprehensively describe the case K = 3 as
follows.

Theorem 6.8. Let K = 3 and K ≤ n − 1. Then a Cephoid Π has n +
(
n

2

)

Pareto faces.
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Proof: Consider the canonical representation.

There are
(
n

2

)
edges of the deGua Simplex ∆Ke used for the representation

and each of them has a proper cut with exactly 3 Pareto faces. On the other
hand, each Pareto face is either a 1–face (hence contains a vertex) or a 2–face
(hence intersects exactly one edge properly and contains no vertex. Thus,
the total number of faces is indeed n +

(
n

2

)
, i.e., the number of vertices plus

the number of edges in the canonical representation.

q.e.d.

Theorem 6.9. Let Π be a sum of 3 DeGua Simplices in
�

n
+ and assume that

no block contains a vertex. Then Π is characterized by 4 orderings. Three
orderings correspond to each pair of deGua Simplices. These generate all
together (n− 3) Pareto faces according to the moving index principle for one
index (see Remark 4.4). A further order which is connecting all three deGua
Simplices generates

(
n−3
2

)
faces according to the moving index principle.

Proof:

By Theorem 4.2 any two deGua Simplices generate an ordering and hence n
Pareto faces of their sum according to the moving index principle (Remark
4.4). Each of these generates a Pareto face of the sum of three deGua Sim-
plices Π when combined with a proper vertex of the third deGua Simplex
(Theorem 4.8, Theorem 4.9). Clearly, the three translates of the deGua Sim-
plices (each one with a suitable vertex of the other two) appear twice within
this scheme, hence the total number of Pareto faces that correspond to pairs
of two deGua Simplices equals 3n− 3.

In view of Theorem 6.8, the number of the remaining Pareto faces is then

n +

(
n

2

)
− 3(n− 1) =

(
n− 2

2

)

These Pareto faces have to be sums involving at least an edge from each
Simplex, hence the size of each index set J (k) k = 1, 2, 3 is at least two. As
they have to be neighbors each of them has to be obtained from another one
by the neighborhood theorem (Theorem 2.3, Section 2, Chapter3). Thus,
the two common indices have to be moved according to the moving index
principle.

The number of reference sets triplets J (1),J (2),J (3) to be obtained by the
moving index principle is indeed

(
n−2
2

)
. To see this, consider the natural
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ordering 1, 2, . . . , n. Then, first of all, there is one triplet of reference sets of
the type

1, 2, . . . , n− 2 ∗ n− 2, n− 1 ∗ n− 1, n .

Next, we have two triplets involving the first (n − 3) for the first index set;
these are

1, 2, . . . , n− 3 ∗ n− 3, n− 2, n− 1 ∗ n− 1, n,

and
1, 2, . . . , n− 3 ∗ n− 3, n− 2, ∗ n− 2, n− 1, n ;

i.e., we obtain two triplets by moving the second index.

similarly, we will obtain three triplets fixing the first (n− 4) indices etc.

Thus we have

1 + 2 + 3 + . . .+ n− 3 =

(
n− 2

2

)

systems which exactly generate the missing number of Pareto faces.

q.e.d.

Example 6.10. For n = 7, assuming that the ordering is the natural one, the
blocks are suggested by the moving index principle for two indices as follows:

12345 56 67

1234 456 67

1234 45 567

123 3456 67

123 345 567

123 34 4567

12 23456 67

12 2345 567

12 234 4567

12 23 34567

◦ ˜˜˜˜˜˜ ◦



Chapter 4

Duality

We introduce a notion of duality for Cephoids. Quite naturally, duality for
Cephoids is established by duality of the matrices involved. Given a Cephoid
represented by a matrix

{
a(k)

}
k∈K , the dual Cephoid is obtained by the

transpose of that matrix.

The idea is then extended to Pareto faces. Again we define the appropriate
canonical version of duality. Then there is a natural bijection mapping the
faces of a Cephoid onto the dual Pareto faces of the dual Cephoid.

All operations are rather straightforward induced by just interchanging I
and K.

85
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1 Duality: Cephoids and Pareto Faces

A Cephoid is provided by a family of positive vectors or, equivalently, by
a positive matrix, the rows of which represent the various deGua Simplices.
The dual Cephoid to be introduced now is provided by the transposed matrix.
More precisely, we supply the following definition.

Definition 1.1. Let a• =
{
a(k)

}
k∈K be a family of positive vectors and Π =

Πa•
=
∑

k∈K Πa(k)
be the Cephoid generated. Put ā

(i)
k := a

(k)
i (i ∈ I, k ∈K).

We call the family

(1)
(
ā(i)
)
i∈I

the dual family and the Cephoid

(2) Π̄ = Πā•
=
∑

i∈I
Πā(i)

the dual Cephoid.

More detailed,
(
Π, Π̄

)
constitutes a dual pair. Yet, it is convenient to speak

of the “primal” and “dual” Cephoid despite the fact that each is “the dual”
of the other one. If the “primal” family a• is regarded as a matrix , then the
“dual” family is represented by the transposed matrix (ā

(i)
k )i∈I,k∈K. Within

this context we assume nondegeneracy. The notion is extended to hold true
simultaneously for the primal and dual Cephoid simultaneously.

We continue by immediately introducing duality for Pareto faces.

Definition 1.2. Let F be a Pareto face of a Cephoid Π =
∑

k∈K Πa(k)
and

let J =
(
J (k)

)
k∈K

be the reference system. Define, for i ∈ I

(3) J̄
(i)

:=
{
k ∈K i ∈ J (k)

}
.

Then we call

(4) J =
(
J̄

(i)
)
i∈I

the dual reference system.

Clearly we have, for any k ∈K

(5) J (k) =
{
i ∈ I k ∈ J̄ (i)

}
,

so (J, J) again constitute a dual pair. Now we introduce
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Definition 1.3. Let F be a Pareto face of Π =
∑

k∈K Πa(k)
. Then

(6)
�

:= {(k, i) i ∈ J (k)} = {(i, k) k ∈ J̄ (i)}

is called the cross–reference system of F .

Obviously,
�
yields both families, the reference system and it’s dual simul-

taneously as cuts in coordinate directions. As a consequence, we have

(7) n+K − 1 =
∑

k∈K
|J (k)| = |�| =

∑

i∈I
|J̄ (i)| .

We continue by

Definition 1.4.

(8)

L̄ :=
{
k ∈K k is in at least two different J̄

(i)
}

=
{
k ∈K J (k) contains at least two different indices i

}

=
{
k ∈K |J (k)| ≥ 2

}

is the dual adjustment set.

The analogous property of the (“primal”) adjustment system reads now

(9)
L :=

{
i ∈ I i is in at least two of the J (k)

}

=
{
i ∈ I |J̄ (i)| ≥ 2

}
.

Recalling the notation for the characteristics

(10) � :=
{
(k, l) l ∈ L, J (k) 3 l

}
=
{
(k, l) l ∈ L(k)

}
,

we obtain the dual version

(11)
� :=

{
(i, s) s ∈ L̄, J̄ (i) 3 s

}
=
{
(i, s) s ∈ L̄(i)

}

=
{
(i, s) i ∈ J (s), J (s) ≥ 2

}
,

which is of course the dual characteristics w.r.t.F .

Now we identify the dual face to some Pareto face F of Π. As it turns
out, the linear adjustment system as defined for the primal face supplies the
normal for the dual face immediately.
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Theorem 1.5. Let Π =
∑

k∈K Πa(k)
be a Cephoid and Π its dual. Let F

be a Pareto face of Π with reference system J. Let J be the dual reference
system.

Next, let

(12) (c?,λ?) = (c?k, λ
?
l )(k,l)∈�

be a solution of the linear adjustment system corresponding to F (see Defi-
nition 1.3 of Section 1 Chapter 3).

Then

(13) F̄ :=
∑

i∈I
∆̄

(i)

J̄
(i).

is a Pareto face of Π̄ with adjustment set L̄ and normal c?.

Proof:

We return to the situation in Section 1 of Chapter 3.

Let n? denote the normal of F ; then we know that the function x 7→ n?x

attains its maximal value – say tk – relative to the Simplex ∆(k) exactly on
the Subsimplex ∆

(k)

J(k) . Moreover, the joint maximal value t? is attained on

every c?k∆
(k)

J(k) (with a suitable choice of c?k, say c?k = t?

tk
).

Consequently, we have

n?c?ka
(k)i

{
= t? ((k, i) ∈ �

)
< t? ((k, i) /∈ �

)

which can as well be written

(14) n?
ia

(k)
i c?k

{
= t? ((k, i) ∈ �

)
< t? ((k, i) /∈ �

)
.

Equivalently we have

c?ka
(i)
k n?

i

{
= t? ((k, i) ∈ �

)
< t? ((k, i) /∈ �

)

which is also

(15) c?n?
i ā

(i)k

{
= t? (k ∈ J̄ (i)

)

< t? (k /∈ J̄ (i)
) .
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Now, equation (15) shows that, for each i ∈ I, the function y 7→ c?y attains

its maximal value t? relative to n?
i∆

(i)
exactly on n?

i∆
(i)

J̄
(i). Thus, c? is normal

to

(16) ∆̂ :=
∨

i∈I
n?
i∆

(i)
.

2ndSTEP : Since J (k) 6= ∅ for all k ∈K, there is, for any k ∈K, some i ∈ I
such that i ∈ J (k) holds true. Therefore

⋃

i∈I
J̄

(i)
=
⋃

i∈I

{
k ∈K i ∈ J (k)

}
=K

Now, as ∆̂ is spanned by n?
i∆

(i)

J̄
(i), we conclude that the dimension is dim ∆̂ =

K−1, that is, the Simplex ∆̂ has maximal dimension. Write r̄i := |J̄ (i)| (i ∈
I). Then we have for the dimension of the spanning Subsimplices

∑

i∈I
dim ∆

(i)

J̄
(i) =

∑

i∈I
(|J̄ (i)| − 1)

= (
∑

i∈I
r̄i)− n = (n+K − 1)− n = K − 1 ,

(17)

where the second equation follows from |I| = n and the third one from
equations (7).

3rdSTEP : The function y 7→ c?y takes its maximal value relative to ∆
(i)

exactly on ∆
(i)

J̄
(i) ; this value is t?

n?
i
for i ∈ I. Therefore it is seen that

(18) F̄ =
∑

i∈I
∆̄

(i)

J̄
(i).

as specified in (13) is a face of Π̄ with normal c?. We will establish that it is
a Pareto face.

First of all, we show that |J̄ (i) ∩ J̄ (j)| ≤ 1 for all i 6= j. Assume that, on the

contrary, we have r, s ∈ J̄ (1) ∩ J̄ (2)
for some r 6= s. In view of (14) we obtain

the following equations:

n?
ra

(1)
r c?1 = n?

sa
(1)
s c?1

n?
ra

(2)
r c?2 = n?

sa
(2)
s .c?2
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Dividing both equations we obtain

a
(1)
r c?1

a
(2)
r c?2

=
a
(1)
s c?1

a
(2)
s c?2

,

that is,

a
(1)
r

a
(2)
r

=
a
(1)
s

a
(2)
s

,

contradicting nondegeneracy.

Consequently, all Subsimplices ∆
i

J̄
(i) are located in pairwise orthogonal sub-

spaces. This implies

(19) dim

(
∑

i∈I
∆

(i)

J̄
(i)

)
=
∑

i∈I
dim ∆

(i)

J̄
(i) = K − 1 ,

meaning that F̄ is indeed a Pareto face.

q.e.d.

Definition 1.6. Let Π =
∑

k∈K Πa(k)
be a Cephoid and Π its dual. Let F be

a Pareto face of Π with reference system J and let F be the dual face with J

as the dual reference system.

Recall the linear adjustment system with respect to the face F which is

(20) cka
(k)
l = λl ((k, l) ∈ �).

The dual linear adjustment system (dual to F or J or (20)) is the linear
system of equations in variables (n•, µ•)

(21) a(i)s ni = µs ((i, s) ∈ �).

Using only primal terms, this system is written

(22) a
(s)
i ni = µs

(
(i, s) ∈ I ×K, i ∈ J (s), J (s) ≥ 2

)

Remark 1.7. Analogously to the situation in Theorem 1.5, every solution n? of
the system (21) (or (22)) provides a normal to the primal face F . The adjustment
coefficients of the primal face constitute the normal of the dual face and vice versa.
Thus, the system (21) directly serves to compute the normal of the primal face.

◦ ˜˜˜˜˜˜ ◦
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Remark 1.8. The set L̄ is the adjustment set for F̄ . We write L̄ := |L̄|. Now
let s ∈ L̄, say s ∈ J̄ (i0) ∩ J̄ (i1) for suitable i0, i1 ∈ I. Then the vertex

(23) n?
i0
ā(i0)s = n?

i1
ā(i1)s

is common to the deGua Subsimplices n?
i0
Π̄ā(i0)

J̄
(i0)

and n?
i1
Π̄ā(i1)

J̄
(i1)

. Now recall that,

for i ∈ I \ L, the set J̄
(i)

consists of just one element. Therefore, using (7) and

writing r̄i := |J̄ (i)|, we obtain

(24)

∑

i∈L
r̄i =

∑

i∈I
r̄i −

∑

i∈I\L
r̄i =

∑

i∈I
r̄i −

∑

i∈I,r̄i=1

r̄i

= (n+K − 1)− (n − L) = K + L− 1

or

(25)
∑

i∈L
|J̄ (i)| = K + L− 1 =

∑

k∈K
|L(k)|,

the last equation is formula (15) of , Section 1 of Chapter 3. .

The analog equation connecting the primal reference sets with the dual adjustment

sets in size is based on the definition L̄
(i)

:= L̄ ∩ J̄ (i)
(i ∈ I) and reads

(26)
∑

k∈L̄
|J (k)| = n+ L̄− 1 =

∑

i∈I
|L̄(i)|.

◦ ˜˜˜˜˜˜ ◦

Corollary 1.9. Let (Π, Π̄) be a dual pair. Let F and F̃ be adjacent maximal

faces of Π. Then the dual faces F̄ and
¯̃
F are adjacent.

Proof: Let J =
(
J (k)

)
k∈K

and J̃ =
(
J (k)

)
k∈K

be the reference systems

to F and F̃ respectively. By the Neighborhood Theorem there are indices

k0, l0 ∈K as well as p, q ∈ I such that p /∈ J (k0), q ∈ J̃ (k0)

(27) J̃
(k0)

= J (k0) ∪ {p} , J̃
(l0)

= J (l0) \ {q}

while for all indices k ∈K, k 6= k0, l0 the reference sets J
(k) and J̃

(k)
coincide.

are equal. Inspection of Definition 1.2 shows that

(28) ˜̄J
(p)

= J̄
(p) ∪ {k0} , ˜̄J

(q)

= J̄
(q) \ {l0}
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while for all i 6= p, q the reference sets J̄
(i)

and
¯̃
J

(i)

coincide. From this it

follows that F̄ and
¯̃
F are adjacent. q.e.d.

As it turns out, the complete lattice structure of ∂Π is not preserved during
the transition to the dual. We will see that within the examples of the next
section.
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2 Duality: Examples

We return to our earlier examples to review them in the light of duality
theory.

Example 2.1. We start out by revisiting Example 4.7 of Section 4 Chapter 3
which deals with K = 2, i.e., the “sum of two”. Again we write Π = Πa + Πb.
The Pareto surface ∂Π is completely described by an ordering or permutation ≺.
Thus, for some i0 ∈ I a typical Pareto face is of the shape

(1) F≺i0 = ∆a
{i|i�i0} +∆b

{i|i0�i}.

The reference system for F≺i0 is therefore
{
J (1),J (2)

}
= {{i|i � i0}, {i|i0 � i}} .

The dual Cephoid is located in two dimensions, hence it is of the shape indicated in
Chapter 1, Section 2 by Figure 2.3. Thus, the Pareto surface consists of family
of line segments. The canonical representation results in the one–dimensional
Simplex n∆e = n∆(1,1).

Now fix some Pareto face F≺i0 as in (1). Then the corresponding dual reference

system is J =
{
J̄
(i)
}
i∈I

given by

(2) J̄
(i)

= {k ∈K i ∈ J (k)}, (i ∈ I)

which specifies to

(3) J̄
(i)

= {1} (i ≺ i0) and J̄
(i)

= {2} (i0 ≺ i)

while for i ∈ I \ {i0} while for i = i0 we obtain

(4) J̄
(i)

= {1, 2}.

Hence the dual face to F≺i0 is

(5) F̄
≺i0 =

∑

i≺i0

ā(1)i +∆
(i0)
{1,2} +

∑

i0≺i

ā(2)i .

We realize that F̄
≺i0 is the line segment ∆

(i0)
{1,2} translated to the Pareto surface

of Π by the appropriate axis vectors. Thus, the Pareto surface of Π̄ is a linear

curve with line segments being the translates of the various ∆
(i0)
{1,2} . If i0 is the

first w.r.t. ≺, then the Pareto face

F̄
≺i0 = ∆

(i0)
{1,2} +

∑

i 6=i0

ā(2)i .
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is the “uppermost” line segment, i.e., the first in the ordering induced by the slope
when we begin with the smallest slope (in absolute value). Thus, it is seen that ≺
also represents the ordering of the line segments within the Pareto surface of the
dual Cephoid according to slope.

We specify this example a bit more: consider Figure 4.2 which represents a case
K = 2, n = 4. We repeat the sketch of the canonical representation in Figure 2.1
of Chapter 3.

2e1

2e1

2e2

2e2

2e3

2e3

2e4

2e4

F≺1

F≺2

F≺3

F≺4

Figure 2.1: The sum of two prisms for n = 4

Assuming that the translate of ∆a occupies the first vertex of the sum (i.e., 2e1),
and the translate of ∆b the second one, the left hand version of Figure 2.1 corre-
sponds to the ordering ≺ = (2341). The 3-dimensional faces are given by

(6)

F≺2 = ∆a
2 +∆b

2341

F≺3 = ∆a
23 +∆b

341

F≺4 = ∆a
234 +∆b

41

F≺1 = ∆a
2341 +∆b

1 .

The ordering ≺ represents the neighborhood structure of the four faces simulta-
neously indicating the unique extremal vector ci = ai + bi assigned to a face. If
we start with F≺2 containing c2, then the unique neighbor is F≺3 containing c3

etc.. Thus, while running through the extremals ci according to ≺ one also passes
from one face to it’s neighbor.

The same situation prevails with respect to the dual Cephoid Π̄. The dual face
to F≺2 i.e., generated by the reference system J = {{2}, {2341}} is F̄

≺2
which is

given by
J = {{2}, {12}, {2}, {2}}
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i.e.,

F̄
≺2

= ∆
(1)
{2} +∆

(2)
{12}+∆

(3)
{2} +∆

(4)
{2}

this is a translate of ∆̄
(2)
{12} by means of a(1)2 + a(3)2 + a(4)2. Similarly,

F̄
≺3

= ∆
(1)
{2} +∆

(2)
{1} +∆

(3)
{12} +∆

(4)
{2}

is a translate of ∆
(3)
{12}. The further two dual faces are.

F̄
≺4

= ∆
(1)
{2} +∆

(2)
{1} +∆

(3)
{1} +∆

(4)
{12}

and

F̄
≺1

= ∆
(1)
{12} +∆

(2)
{1} +∆

(3)
{1} +∆

(4)
{1} .

The Pareto surface ∂Π̄ is sketched together with its canonical representation in
Figure 2.2. When we start in the uppermost face and run through the faces

P

∆
(1)
{12}

∆
(1)
{12}

∆
(2)
{12}

∆
(2)
{12}

∆
(3)
{12}

∆
(3)
{12} ∆

(4)
{12}

∆
(4)
{12}

Figure 2.2: The dual surface and its canonical representation

according to ≺, then we pass all faces in downwards direction.

◦ ˜˜˜˜˜˜ ◦

Example 2.2. Next we recall the“Marriage of a Windmill and a Circle” as in-
troduced in Example 6.7 of Section 6, Chapter 3, see Figure 6.5. The canonical
representation (with n = 4,K = 3) is repeated hereby (Figure 2.3). There is also
a POV version (Figure 2.4).

We use a, b, c for the primal family assuming that ∆(a) corresponds to “blue”,
∆(b) corresponds to “red”, and ∆(c) corresponds to “green”. Then the following
is a list of the Pareto faces.
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∆(a)

∆(b)

∆(c)

Γ(b)(a)

Γ(a)(b) Γ(a)(c)

Γ(c)(b)

Γ(b)(c)

Γ(c)(a)

B(a)(b)(c)

Figure 2.3: The Marriage of a Windmill and a Circle

(7)

Name J (a) J (b) J (c)

∆(a) {1234} {2} {1}
Γ(a)(c) {234} {2} {12}
Γ(a)(b) {134} {23} {1}

∆(b) {4} {1234} {1}
Γ(b)(c) {4} {234} {14}
Γ(b)(a) {14} {123} {1}

∆(c) {3} {3} {1234}
Γ(c)(b) {3} {23} {124}
Γ(c)(a) {34} {2} {124}

B(a)(b)(c) {34} {23} {14}
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Figure 2.4: The Marriage - POV Version

The formal presentation based on an algorithmic result is also copied from Section

6, Chapter 3.
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Now consider the dual Cephoid focusing on Figure 2.3. The dual Cephoid is the
sum of 4 DeGua Simplices in 3 dimensions. We denote the dual family by

{
ā(i)
}
i∈I

The canonical representation is given by the following sketch.

∆̄(a) ∆̄(b)

∆̄(c)

Γ̄(b)(a)Γ̄(a)(b)

Γ̄(a)(c)

Γ̄(c)(b)

Γ̄(b)(c)

Γ̄(c)(a)

B̄(a)(b)(c)

Figure 2.5: The Dual Marriage

The Pareto faces are listed in the same order as their primal counterparts and
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indicated accordingly. We obtain the following image.

(8)

Name J
(1)

J
(2)

J
(3)

J
(4)

∆̄(a) {13} {12} {1} {1}
Γ̄(a)(c) {3} {123} {1} {1}
Γ̄(a)(b) {13} {2} {12} {1}

∆̄(b) {23} {2} {2} {12}
Γ̄(b)(c) {3} {2} {2} {123}
Γ̄(b)(a) {123} {2} {2} {1}

∆̄(c) {3} {3} {123} {3}
Γ̄(c)(b) {3} {23} {12} {3}
Γ̄(c)(a) {3} {23} {1} {13}

B̄(a)(b)(c) {3} {2} {12} {13}

◦ ˜˜˜˜˜˜ ◦





Chapter 5

The Recursive Structure

For a Cephoid Π, the maximal (but not Pareto efficient) faces Π(−i) (i ∈ I)
obtained by intersecting Π with the (n − 1) dimensional boundaries of the
positive orthant each constitute a Cephoid in

�
n
I\{i}+ which inherits the

Pareto efficient structure. On the other hand, the characteristics and in
particular the “L–reduced” version of some Pareto face (see Definition 1.3
in Chapter 3) determine that Pareto face completely. Therefore, we expect
that every Pareto face is described by its lower dimensional boundary faces.

This way we obtain a recursive structure that organizes the Pareto surface of
a Cephoid. This structure is now exhibited more precisely. As a first result,
we will be able to enumerate the faces and to provide a first algorithm for
computing the faces.

101
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1 Universal Quantities

First of all within this section we provide the means to enumerate the Pareto
faces of a Cephoid. We show that the total number of Pareto faces of a
Cephoid is a quantity that depends on K and n only - independent on the
particular choice of the family a• =

{
a(k)

}
k∈K . We start by identifying

the minimal subspace a face of a Cephoid is “rooted” in.

Definition 1.1. Let Π be a Cephoid and let F be a Pareto face of Π. Let
J ⊆ I.

1. We say that F has a proper J–cut if

(1) dim(F ∩ �+
J ) = |J | − 1.

2. Proper cuts are ordered by inclusion. A minimal proper cut is a
proper cut with minimal dimension.

3. F is called l–based (or just an l–face) if the dimension of the minimal
proper cut is l − 1.

That is, the intersection of the Pareto face F with a boundary subspace is
the Pareto face of the Cephoid in that subspace generated by the restrictions{
a
(k)
J

}
k∈K

(see Theorem 1.2 and Theorem 1.4 in Chapter 3). Hence, that

intersection has the full dimension of a surface relative to the boundary
subspace.

Verbally, a 1–face contains a vertex, a 2–face cuts properly into a 2 dimen-
sional subspace of

�
n
+ but does not contain a vertex, etc. E.g., we know

that for K = 2 every face is 1–face (Theorem 4.2 of Chapter 3). An n-face
or n-based Pareto face is one that is properly contained in

�
n
+ but does not

touch a lower-dimensional boundary subspace.

The results of Section 1 Chapter 3 can be reformulated as follows.

Lemma 1.2. Let F be a Pareto face of a Cephoid Π. Then F is an l–based
face for some l ≤ min{K−1, n−2}. The boundary

�+
L of

�
n
+ that yields the

minimal proper cut is uniquely defined by the adjustment set L (Definition
1.1 Chapter 3).

The proof is an immediate consequence of the Coincidence Theorem 1.4
Chapter 3.
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Remark 1.3. The projection of a de Gua Simplex ∆(k) onto some subspace yields
the corresponding Subsimplex. Restricting the summation to a subspace amounts
to adding de Gua Simplexes within this subspace and generating a cephoid of lower
dimension. In general, Pareto faces (actually all kind of faces) can disappear by
the restriction to lower dimensions. However, if a Pareto face intersects a subspace
of lower dimension properly, then the intersection is a Pareto face of the restricted
Cephoid.

In particular, for K ≤ n − 1, consider a Pareto face with adjustment set set L.
If the restriction to some lower dimensional

�
J respects L (i.e., L ⊆ J), then

F ∩�+
J is indeed a Pareto face. Then, F ∩�+

J is indeed an l–based face with the
same set of boundary indices.

The recursive procedure is essentially based on this property of Cephoids: l–based
faces appear already in lower dimensions, hence can be enumerated and charac-
terized recursively.

◦ ˜˜˜˜˜˜ ◦

Definition 1.4. Let a• =
{
a(k)

}
k∈K be an (n.d.) family of positive vectors

and let Π =
∑

k∈K Πa(k)
be the Cephoid generated. The number of Pareto

faces of Π is denoted by f(K, n) = f(K, n)a
•
. The number of n–based faces

is denoted by h(K, n) = h(k, n)a
•
.

The upper script a•
will be be necessary until we have verified that it can

indeed be omitted. In what follows we do not always write it (for clarity),
but it is always thought to be carried along.

Remark 1.5. For K ≤ n we know that ha
•
(K,n) = 0 as every Pareto face

cuts properly into an (n − 2)–dimensional subface. Indeed, This follows from the
construction of the L–reduced subface (Definition 1.3 and Theorem 1.2) which
yields a dimension of the L–reduced Cephoid ΠL of dimension dim (F ∩ �n

L) ≤
L− 1 ≤ K − 2.

For example, the Cephoid “Odot” (Figure 2.8 Chapter 2) is an example with
K = 3 and n = 4 with one “interior” Pareto face.

Also note that fa•
(K, 1) = ha

•
(K, 1) = 1 and fa•

(K, 2) = K, ha
•
(K, 2) = K −

2 (K ≥ 2) holds true immediately.

◦ ˜˜˜˜˜˜ ◦

Lemma 1.6. For every K ∈ �

(2) fa•
(K, n) =

min{K,n}∑

l=1

(
n

l

)
ha•

(K, l).
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Proof: Consider the case K ≤ n − 1. We collect the faces according to
the minimal subface they are sharing a proper cut with. In view of the
Coincidence Theorem, the dimension of such a subface is at mostK−1. Each
Pareto face is represented uniquely by its minimal proper cut (cf. Remark
1.3). Therefore the number of (K − 1)–based faces of ∆ can be obtained by
counting the (K − 1)–based faces in each of the

(
n

K−1

)
restrictions of of ∆

with dimension K − 1 etc.

The second formula follows by Proposition 1.2.

q.e.d.

On the other hand, if we know the total number of faces for some dimension
n, then we can compute the number of “interior” faces by subtracting all
faces that properly cut into some boundary face, formally:

Corollary 1.7. For K ≥ n

(3) ha•
(K, n) = fa•

(K, n)−
((

n

n− 1

)
ha•

(K, n− 1) + . . . nha•
(K, 1)

)
.

Now we are in the position to prove:

Theorem 1.8. The number of Pareto faces is universal, i.e., there is a
function f : � × � → � such that, for any (n.d.) family

{
a(k)

}
k∈K of

positive vectors in
�

n it follows that

(4) f(K, n) = f(K, n)a
•
.

Proof:

For n = 2 the number of line segments is always K (Example 2.2 Chapter

1). For K = 2 the number of Pareto faces is n by Theorem 4.2 Chapter

3. Actually, one statement follows from the other one by duality, compare
Example 2.1 Chapter 4.

We proceed by induction in n.

Let K ≤ n. In view of formula (2), we can compute the number f(K, n) by
means of the numbers

(5) h(K,K − 1), h(K,K − 2), . . . , h(K, 1).

because of K − 1 < K ≤ n the second arguments are l < n
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The numbers h(K, l) in turn can be computed successively in terms of the
number f(K, l) and h(k, l′) for l′ < l < n via formula (3) of Corollary 1.7.
Thus h(K, l) as used in (5) is universal. Hence, f(K, n) can be computed
recursively using numbers that – by induction – are universal.

Finally, for n ≤ K, the result follows by duality.

q.e.d.
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2 The Number of Pareto Faces

Now we are going to provide the exact shape of the function f that indicates
the number of Pareto faces. As we know that it is universal, i.e., does not
depend on the particular choice of the family a•, it suffices to compute it for
some representative family and the corresponding n.d. Cephoid. To this end,
we start by constructing a family of “’Test Cephoids”. The members of this
family are specified by a particular location of all subfaces added by (say)
the deGua Simplex ∆(K) to some Pareto face. We want all these subfaces of
∆(K) to be located on the boundary

�
n
I\{n}, hence Pareto faces generating

faces of Π(−n) as well.

Remark 2.1. To enlighten the situation we have in mind recall that, for a Cephoid

Π and some Pareto face F =
∑

k∈K ∆
(k)

J(k) of Π with normal nF , the following are
equivalent.

1. n ∈ J (K), n /∈ L.

2. F ∩Π(−n) is a Pareto face of Π(−n).

3. The normal cone of F has an extremal which is the normal of F ∩Π(−n).

This follows from the Reference Theorem 1.2 and and the Coincidence Theorem
1.4 as discussed in Section1 of Chapter 3.

◦ ˜˜˜˜˜˜ ◦

The following Lemma illustrates the idea extensively in the case of a sum of
two deGua Simplices. The generalization is then obvious.

Lemma 2.2. 1. Let a be a positive vector and let Πa be the coresponding
deGua Simplex. Then there exists an open set of postive vectors b such
that for any face

F = ∆a
Ja +∆b

Jb

of Π = Πa +Πb with |Jb| ≥ 2 it follows that n /∈ L.

2. Let

(1) Π−K =
∑

k∈K\{K}
Πa(k)

be a Cephoid. Then there exists an open set of vectors b(K) generating
deGua Simplices ∆(K) such that the following holds true:
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For any Pareto face

F =
∑

k∈K
∆

(k)

J(k) of Π =
∑

k∈K
Πa(k)

with

|J (K)| ≥ 2 and n ∈ J (K)

it follows that n /∈ L.

(2)

Proof: 1stSTEP :

By Theorem 4.2 the Pareto faces of Π correspond to an ordering ≺ of I. If
n is the last index with respect to this ordering, then the Pareto faces are
indicated by

(3)

i ijl . . . n

ij ijl . . . n

ijl l . . . n

. . . . . .

ijl . . . n n

(inspect Remark 4.4). That is, all Pareto faces with the exeption of the last
one are characterized by some L = {i} with i 6= n. Obviously, these are
all Pareto faces with |J (b)| ≥ 2. Hence, given a, all positive vectors b (such
that Πa +Πb is n.d.) can be decomposed into classes corresponding to some
i0 ∈ I being the last index with respect to ≺, say

(4) Bi0 := {b i0 is last w.r.t. ≺ induced by Πa +Πb} .

Thus, e.g., (3) reflects orderings such that the corresponding vectors β are
located in Bn

By symmetry reasons, all Bι0 are open sets with positive Lebesgue measure,
in particular, this holds true for the set Bn.

Now we have a precise method of describing this open set as follows. In view
of Example 2.1 the ordering ≺ is exactly represented by the ordering of the
faces of the dual Cephoid Π according to the slopes of the dual faces (i.e., line

segments). The slope of line segment ∆
(i)

is ( in absolute value, i.e.,omitting
the sign)

(5)
a
(i)
2

a
(i)
1

=
a
(2)
i

a
(1)
i

=
bi
ai

.



108 ? The Recursive Structure ? Chapter V ?

The “last” segment is the one with maximal slope (absolutely), hence we
obtain

(6) Bi0 =

{
b

bi0
ai0

>
bi
ai

(i ∈ I \ {i0})
}

.

Thus, the set of all vectors b as claimed by our Lemma is

(7) Bn =

{
b

bn
an

>
bi
ai

(i ∈ I \ {n})
}

,

which is an open set with positive Lebesgue measure as required.

We note that nn = (an, bn) is the normal to the line segment ∆
(n)

. Thus

(7) reflects the fact that ∆
(n)

has no a(i)2 in common with its normal cone,
hence no a(i)2 appears in the translation

∑

i∈I\{n}
a(i)1 +∆

(n)

12 =
∑

i∈I\{n}
a(i)1 +∆

(n)

12 .

2ndSTEP :

To generalize this to the case of a sum of Π(?K) of K−1 deGua Simplices and
an additional DeGua Simplex ∆(K), one observes that the normals/slopes of
all subfaces of ∆(K) have to satisfy certain inequalities corresponding to (7),
simultaneously for all ∆(k) k ∈K \ {K}.

q.e.d.

Theorem 2.3 (The Test Cephoid). There is an open set of families{
a(k)

}
k∈K such that the resulting Cephoids Π =

∑
k∈K Πa(k)

satisfy condition
(2).

Figure 2.1 indicates the Canonical Representation of a Test Cephoid for n =
3. The DeGua Simplex ∆(K) is drawn in red, two further deGua Simplices
(and their tentacles) are indicated. The Pareto faces involving some ∆

(K)
J

with |J | ≥ 2 occupy the boundary {x x3 = xn = 0}.
Figure 2.2 suggests that, by induction, we can construct a family of Cephoids
such that the Pareto faces involving some ∆(k) with ∆

(k)
J , |J ≥ 2| occupy

exactly the “kth layer” of the representation.

Now we can compute the number of faces of a Cephoid which is a sum of K
deGua Simplices in n dimensions. We know that this number is universal,
hence it suffices to compute it for the class of Test Cephoids.
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Figure 2.1: A Test Cephoid for n = 3

Figure 2.2: A Test Cephoid with layers according to K
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Theorem 2.4. Let K ≥ 2 and let
{
a(k)

}
k∈K be a family of positive vectors

in
�

n generating a Test Cephoid

Π =
∑

k∈K
Πa(k) ⊂ �n

+

as in Theorem 2.3.

Then the number f(K, n) of Pareto faces of Π is universal and satisfies the
following difference equation:

(8)
f(K, 2) = K (K ≥ 2) , f(2, n) = n (n ≥ 2)
f(K, n) = f(K − 1, n) + f(K, n− 1) (K, n ≥ 3)

Proof:

Let Π[−K] be the Cephoid

Π[−K] :=
∑

k∈K\{K}
Πa(k) ⊂ �n

+

generated by the first K − 1 members of the family. A Pareto face of Π is
given via

F =

K−1∑

k=1

∆
(k)

J(k) +∆
(K)

J(K)

We partition the set F of all Pareto faces of Π into

F = F[−K] ∪ F? =
{
F |J (K)| = 1

}
∪
{
F |J (K)| > 1

}
.

Now, for any F ∈ F[−K] the summand from ∆(K) consists of some basis
vector a(K)i = a

(K)
i ei only and there is a unique face

F [−K] :=
K−1∑

k=1

∆
(k)

J(k)

of the Cephoid Π[−K] corresponding to F .

On the other hand, let F ∈ F?, then |J (K)| ≥ 2 and by construction n /∈ L.
That is, n is not contained in any further J (k) (k 6= K). Hence, there
corresponds uniquely the Pareto face

F ? := F |�I\{n} =

K−1∑

k=1

∆
(k)

J(k) +∆
(K)

J(K)\{n}
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which is a Pareto face of

Π(−n) := Π|�I\{n} .

The correspondence is obviously bijective. Therefore we obtain

f(K, n) = |F| = |F[−K]|+ |F?|
= |{Pareto faces of Π[−K]}|+ |{Pareto faces of Π(−n)|
= f(K − 1, n) + f(K, n− 1) .

(9)

The result holds true generally because the function f is universal, hence the
computation for the Test Cephoid suffices.

q.e.d.

Inspect Figures 2.1 and 2.2 once again. In both cases, one can nicely see, that
the number of Pareto faces involving K (i.r. “red”) is exactly the number
of Pareto faces for n = 2, i.e., the number of line segments with the same
number of DeGua Simplices involved. Also, the remaining Pareto faces are
exactly those in 3 dimensions but with K − 1 (not “red”, that is) DeGua
Simplices involved.

Next, we compute the function f in a closed form as follows.

Theorem 2.5. The number of faces of an (n.d.) Cephoid given as a sum of
K deGua Simplices in dimension n is

(10) f(K, n) =

(
n +K − 1

n

)
−
(
n+K − 2

n

)
.

Proof: Observe that generally for natural numbers k, n one has
(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Therefore, the difference equation:

(11)
f(K, 2) = K (K ≥ 2) , f(2, n) = n (n ≥ 2)
f(K, n) = f(K − 1, n) + f(K, n− 1) (K, n ≥ 3)

yields the function as indicated because of

f(K − 1, n) + f(K, n− 1) =

(
n +K − 2

n

)
−
(
n+K − 3

n

)

+

(
n +K − 2

n− 1

)
−
(
n+K − 3

n− 1

)

= f(K, n),

q.e.d.
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3 Computating the Pareto faces

We continue by pointing out an algorithm that provides the Pareto faces of a
Cephoid recursively. We consider families of positive vectors, always assumed
to be n.d..

(1) a• :=
(
a(k)

)
κ∈K

Let P(•) denote the operation of the power set to a set. Consider the mapping

F(K,n; ?) :
{
a• :=

(
a(k)

)
κ∈K

a• is a positive n.d. family
}
→ P

(
(P(I))K

)

a• → {J = (J (1), . . . ,J (K)) J is the reference system of a Pareto face of a•
}

(2)

which associates with a set of positive vectors in
�

n
+ the finite set of reference

systems corresponding to the Pareto faces of Π. According to Theorem 2.5
we know that |F(K, n;a•)| = f(K, n) can be recursively computed, indepen-
dently of a•. We now indicate that a recursive computation can as well be
obtained for the function F – of course depending on the particular family
a•.

We start with n = 2. In this case the Pareto surface consists of line segments
Let 2 ≤ K ∈ � and let a• =

{
a(k)

}
k∈K be a family. Assume that the slopes

of line segments
a
(k)
1

a
(k)
2

are strictly decreasing in k. Then the Pareto faces of Π

are given by

(3) 2F (k) :=
∑

l<k

a(l)1 +∆a(k)

+
∑

l>k

a(l)2 .

The corresponding reference sets are given by

(4) 2J(k) :=





J (1) = . . . = J (k−1), = {1},
J (k) = {1, 2},

J (k+1) = . . . = J (K) = {2}.





This way, all faces are completely described. For short – this way a Pareto
face will appear in A Programming Language – we write 2F (k)

(5) 2F (k) :=
1 1 . . . 12 . . . 1 1
1 2 . . . k . . . (K − 1) K



? Section 3: Computating the Pareto faces ? 113

The actual shape of this quantity depends on the Programming Language –
in APL it is just a K–vector.

Thus, for n = 2, we have a simple algorithm to describe all faces, a method
which works also as a first step in s recursive procedure .

For completeness, we formulate this as a

Theorem 3.1 (Begin of recursion). Let n = 2. Then the Pareto faces
are translated line segments. If the slopes of the line segments are strictly
decreasing in k, then Formulae (3) and (4) or (5) yield a description of the
Pareto faces, i.e.,

(6) F(K, 2;a•) =
{
2J(k) k ∈K

}

If the ordering is not the one according to 1, . . . , K, then one can apply an
appropriate permutation.

Remark 3.2. For K = 2 we can compute all faces utilizing a duality argument.
Clearly, one can also apply the discussion centering around Theorem 4.2 and in
particular Remark 4.4 of Chapter 3 but the results will be related in a natural way.
As duality will be used within our development of an algorithm, we formulate the
following theorem as part of the algorithmic treatment.

◦ ˜˜˜˜˜˜ ◦

Theorem 3.3 (Computing The Dual Cephoid).
Regard the family

{
a(k)

}
k∈K as a K × n matrix. Then the dual family{

ā(i)
}
i∈I is the transpose of this matrix. The Pareto faces of the dual family

are dual to the primal Pareto faces in the sense of Theorem 1.5 of Chapter
4.

Remark 3.4. Let K ≥ n. Let F be a Pareto face of Πa•
and let J be the

corresponding reference system. Then there is at least one k0 ∈K such that J (k0)

is a singelton, i.e. for some i0 ∈ I we have

(7) J (k) =
{
a(k)i0

}
.

(with a(k)i0 = a
(k0)
i0
ei0 ).

This follows from the Reference Theorem 1.2, see also Theorem 4.8 of Chapter 3;
also consult formula (8) in Chapter 3 which shows that the dimension of a Pareto
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face (i.e. n − 1) will be exceeded if each J (k) in the reference set has a size jk
exceeding 2.

Consequently, there is a Pareto face F [−k0] of

Π[−k0] :=
∑

k∈K\{k0}
Πa(k)

such that
F = F [−k0] + a(k0)i0

holds true.

The coordinate i0 is found following the argument e.g. given in Theorem 4.8 in
Chapter 3: The normals to ∆(k0) at all vertices a(k0)i (i ∈ I) of ∆(k0) span

�n
+.

Therefore, the normal to F [−k0] belongs to one (and only one) of the normal cones
of these vertices.

The vector a(k0)i0 such that the normal computed above is located within the
normal cone to ∆(K) at a(K)i0 . However, as the mapping x 7→ nx attaines its
maximum on F [−k] and F has the same normal n, it is clear that i0 is determined
as the maximizer of {a(K)i i ∈ I}, that is

(8) na(K)i0 = max
i∈I

na(K)i

◦ ˜˜˜˜˜˜ ◦

In order to cast this into an algorithm, we formulate this again within three
theorems:

Theorem 3.5 (Computing the normal). Computing the normal of a
Pareto face F is done by Theorem 1.4 of Chapter 3, that is, given the adjust-
ment set L of F one has to solve the linear adjustment system (18) and then
compute the normal according to Formula (21) in the Coincidence Theorem
1.4 of Chapter 3.

Theorem 3.6 (Translating a Pareto face of K− 1 ). Let k0 ∈ K and
let F [−k0] be a Pareto face of Π[−k0]. Let n[−k0] be the normal to this face.

Choose i0 ∈ I to be the maximizer of n
[−k0]
i a

(k0)
i , that is

(9) n
[−k0]
i0

a
(k0)
i0

= max
i∈I

n
[−k0]
i0

a
(k0)
i0

then
F [−k0] + a(k0)i0 = F [−k0] +∆

(k0)
i0

is a Pareto face of Π.
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Theorem 3.7 (The Case K ≥ n). Assume K ≥ n .

1. Compute all faces F [−k0] of Π[−k0] (k0 ∈K) according to Recursion for
K − 1 deGua Simplices.

2. For each such face F [−k0] compute the normal n[−k0] according to The-
orem 3.5

3. For each k0 ∈K choose i0 ∈ I according to Theorem 3.6.

(10) n
[−k0]
i0

a
(k0)
i0

= max
i∈I

n
[−k0]
i a

(k0)
i

4. For each k0 ∈K, list the Pareto face

F [−k0] + a(k0)i0 = F [−k0] +∆
(k0)
i0

in F(K, n;a•).

Remark 3.8. The procedure explained in Theorem 3.7 is very time and space
consuming, thus slows down the computation considerably. Preferably, one re-
stricts the computation to the case K = n and computes all cases K > n by using
the dual Cephoid. By Theorem 3.3, this involves just transposing the matrix which
represents the family

{
a(k)

}
k∈K .

◦ ˜˜˜˜˜˜ ◦

Remark 3.9. Finally we consider the case K ≤ n− 1. Now any Pareto face F

(11) F =

K∑

k=1

∆
(k)

J(k)

has an adjustment set L with |L| ≤ K − 1 ≤ n − 2. Now consider the Cephoid

ΠL :=
∑

j∈K a
(k)
L generated in

�n
L by the restricted family

{
a
(k)
L

}
k∈K

. Then

ΠL =
∑

j∈K
Π(k) ∩�n

L

features the Pareto face

FL =

K∑

k=1

∆
(k)

J(k)∩L .
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The adjustment set L generates the normal n[L] (to F as well), so we can construct
the Pareto face F my choosing, for each k ∈ K, the maximizers of the mapping
x 7→ n[L]x over ∆(k), i.e., those i∈I which satisfy

(12) n
[L]
i0

a
(k)
i0

= max
i∈I

n
[L]
i a

(k0)
i ,

that is,

(13) J (k) = {i0 ∈ I i0 satisfies (12)}

◦ ˜˜˜˜˜˜ ◦

Combining we obtain:

Theorem 3.10 (The Case K < n). Assume k < n. For any i1, i2 ∈ I let
I1 := I \ {i1, i2} and let ΠI1 be (n − 2)– dimensional boundary Cephoid

generated by the family
{
a
(k)

I1

}
k∈K

. Let F 1 be a Pareto face of ΠI1 and let

L be the adjustment system. Compute the normal n[L] of this face according
to Theorem 3.5. Then the F as defined via (12) and (13) is a Pareto face
of Π. All Pareto faces of Π are being obtained by running through all pairs
i1, i2 (but some may appear multiply).



Chapter 6

The Reference Vector

A Pareto face F of a Cephoid corresponds uniquely to the family of Subsim-
plices of the various DeGua Simplices involved. This family is the reference

system J =
{
J (k)

}
k∈K

. The reference vector is the list of cardinalities of

those Subsimplices; essentially it indicates their dimensions. Given the recur-
sive structure we have now available, we shall prove that the correspondence
between reference vectors and Pareto faces is bijective.

117
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1 The Reference Vector

Definition 1.1. Let Π =
∑

k∈K Πa(k)
be a Cephoid and let

F =

K∑

k=1

∆
(k)

J(k)

be a Pareto face of Π. We write rk := |J (k)| (k ∈ K) and call r =
(r1, . . . , rK) the reference vector of F .

We shall show that, for any Cephoid Π, the correspondence between reference
vectors and Pareto faces is a bijective mapping. To this end, we tentatively
introduce the notion of a “reference code” as a vector which a priori does
not stem from a face of a Cephoid.

Definition 1.2. Let n,K ∈ �. A positive vector r = (r1, . . . , rK) ∈ �K is
said to be a (K, n)–reference code if

(1) 1 ≤ rk ≤ n (k ∈K)

and

(2)
K∑

κ=1

rk ≤ K + n− 1

holds. A reference code r is maximal if an equation prevails in (2).

Thus, a reference vector of a Pareto face of a Cephoid is a maximal reference
code.

Theorem 1.3 (The Bijection Theorem). Let a• =
{
a(k)

}
k∈K be a

nondegenerate family of positive vectors in
�

n. Let Π =
∑

k∈K Π(k) be the
Cephoid generated by a•. Then, for every maximal (K, n)–reference code
r, there exists uniquely a Pareto face F of Π =

∑
k∈K Π(k) with reference

system

(3)
{
J (k)

}
k∈K

such that

(4) |J (k)| = rk (k ∈K) ,

i.e., r is the reference vector of F .
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Proof: 1stSTEP : For n = 2 the Theorem is obvious. For K = 2 the
Theorem follows from Theorem 4.2 of Chapter 3 – or else by duality.

Now we proceed by induction.

2ndSTEP :

First of all, assume K ≤ n− 1. Let F be a Pareto face and let

F =

K∑

k=1

∆
(k)

J(k)

be the representation via the reference system. The reference vector is de-
noted by r = (r1, . . . , rl, . . . , rK). Also, let L be the set of adjustment indices.
As L = |L| ≤ n− 2, there are at least two indices, say 1 and n, that do not
belong to L. As a consequence F |�I−1

and F |�I−n
are Pareto faces of Π(−1)

and Π(−n) as generated by the families a•|�I−1
and a•|�I−n

respectively. The
reference vectors are (r1, . . . , rκ − 1, . . . , rK) and (r1, . . . , rl − 1, . . . , rK) with
suitable κ, l ∈ K such that rκ, rl ≥ 2. By induction, these reference vectors
uniquely determine the reference systems

{
J (k) \ {1}

}
k∈K

,
{
J (k) \ {n}

}
k∈K

of two Pareto faces of Π(−1) and Π(−n) respectively. Hence the reference
system {

J (k)
}
k∈K

of F is uniquely determined by r. This shows, that there is at most one face
corresponding to a reference code, provided K ≤ n− 1 holds true.

But for K ≥ n we know that every maximal face is the sum of at most n− 1
subfaces of the ∆(k) plus a number of vertices from the remaining ones. By
the above argument, with respect to the n− 1 faces that yield reference sets
of size at least 2, these reference sets are uniquely defined. The remaining
vertices, however, are uniquely defined as well.

Thus, a reference code defines a Pareto face uniquely, if at all.

3rdSTEP :

On the other hand, given a family a• and the cephoid Π generated, let
F(K, n) be the set of Pareto faces of Π. ( F is the “listing function” of the
Pareto faces). Let Π|−n be the cephoid generated by the family a|�I−n

of
vectors projected onto

�
I−n and let F(K, n − 1) denote the family of its

Pareto faces.
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Similarly, let Π(−K) =
∑K−1

k=1 Π(k) be the sum of the first K−1 deGua Sim-
plices and let F(K − 1, n) denote the system of Pareto faces of this cephoid.
The induction hypothesis applies to both cephoids constructed.

Now, let F ∈ F(K, n) and let r be its reference vector. First of all, assume
that rK = 1 is the case, that is, F consists of a Pareto face F (−K) of Π(−K)

plus a vertex of ∆(K). By induction, the Pareto face F (−K) is uniquely
defined by (r1, . . . , rK−1) and the remaining vertex of∆(K) is uniquely defined
as well. On the other hand, every Pareto face Π(−K) together with a suitable
unique vertex of ∆(K) yields a face in F(K − 1, n). Thus, F(K − 1, n) and{
F ∈ F(K, n) rK = |J (K)| = 1

}
are bijectively mapped into each other in

a canonical way.

4thSTEP :

Next, let F ∈ F(K, n) be such that rK = |J (K)| ≥ 2 is true. By induction,
there is a unique Pareto face, say F ? ∈ F(K, n−1) of Π|�I−n that corresponds
to the reference vector (r1, . . . , rK − 1). By the first step, we conclude that

(5)
{
F(K, n) |J (K)| ≥ 2

}
≤ |F(K, n− 1)|

holds. But by Theorem 2.4 of Section 2 Chapter 5 we know that |F(K, n)| =
f(k, n) satisfies

F(K, n) = F(K − 1, n) + F(K, n− 1).

Hence, equation prevails in formula (5) and hence there is indeed for every
maximal code r a Pareto face that has r as its reference vector.

q.e.d.

Corollary 1.4. Let a• =
{
a(k)

}
k∈K be an (n.d.) family of positive vectors

in
�

n and let Π =
∑

k∈K Π(k) be the Cephoid generated

1. Then, for every k ∈ K and every i ∈ I there is a bijection P(i) which
maps {

F ∈ F(K, n) |J (k)| = 2
}

on

F
(−i)(K, n− 1) :=

{
F F is a Pareto face of a•|�I\{−i}

}

This bijection is obtained by associating with any Pareto face F with
reference code r, rk ≥ 2, the Pareto face on ∂Π(−i) := ∂Π �I\{i}

defined via r − ek.
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2. There is a bijection of F := {F |F is a Pareto face of Π} onto the set
of maximal (K, n)–reference codes, i.e., the set of vectors satisfying

(6) 1 ≤ rk ≤ n (k ∈K)

and

(7)
K∑

κ=1

rk = K + n− 1

We now drop the notion of a “reference code” and henceforth refer to any
vector of natural number satisfying (6) and (7) as to a (K, n)–reference vector
or just a reference vector if the context is obvious. Note that a (K, n)–
reference vector can also be seen as a (K − 1, n+ 1–reference vector or as a
(K + 1, n− 1)–reference vector.
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2 An Algorithm via Reference Vectors

The Bijection Theorem 1.3 in a straightforward way induces a further algo-
rithmic procedure for computing the Pareto faces of a Cephoid. The idea is
to run through a list of the reference vectors and, to each reference vector,
compute the corresponding face.

Again the procedure is recursive. It is based on the idea that, for K ≥ n,
a reference vector has at least one coordinate that equals 1. We sketch the
argument as it essentially consists of a reformulation of known facts.

Lemma 2.1. For K ≥ n any (K, n)–reference vector has at least one coor-
doinate equal to 1.

This is an immediate Consequence of the corresponding theorem for Pareto
faces, see e.g. Remark 3.4 and references to the Coincidence Theorem and
the Reference theorem. Of course, it is much easier to directly deduce this
from the definition of a reference vector, say from (7).

Indeed, if a reference vector satisfies rk ≥ 2 holds true for all k ∈ K, then
we have

n+K − 1 =
∑

k∈K
rk ≥ 2K,

that is, n− 1 ≥ K.

Let us denote the set of reference vectors by R(K, n). Recall the function
f(•, •) as defined in Theorem 1.4 and specified in Theorem (2.4) of Chapter
5. f denotes the number of faces of a Cephoid – universally, i.e., independent
of the generating family. Then we have

Theorem 2.2. For (K, n) ∈ �× � we have

(1) R(K, n) = {(r?, 1) r? ∈ R(K − 1, n)} ∪
{
r̂ + eK r̂ ∈ R(K, n− 1)

}
.

Moreover,

(2) |R(K, n)| = f(K, n)

Proof: Easy: because of

R(K, n) = {r r ∈ R(K, n) rK = 1} ∪ {r r ∈ R(K, n) rK ≥ 2}
the first statement is seen immediately. The second follows at once as the
recursive equations (8), Section 2 Chapter 5 defining f obviously holds true
for the number of reference vectors as well.

q.e.d.
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Remark 2.3. The recursive structure for the reference vectors is a much easier
matter than the one for Pareto faces and their numbers. As we have seen, Theorem
2.2 can be proved without mentioning the results of Chapter 5, it is solely a
statement referring to certain vectors in

�K . Moreover, for the reference vectors,
this theorem provides immediate access to a recursive construction as formula (1)
defines the set R(K,n) in terms of the two sets of a lower level of the recursion.
This fact we use to construct a recursive procedure for the construction of Pareto
faces as well.

As for the concrete description of the set of reference vectors, it is useful to recall
that – say in ��� – the set R(K,n) ought to be represented as a matrix. For
the sake of clarity call this matrix R(K,n); the reference matrix. Formally we
define that matrix recursively as follows.

◦ ˜˜˜˜˜˜ ◦

We use �1 := � \ {1}.

Definition 2.4. Let (K, n) ∈ �1×�1. Define R(K, n) recursively as follows:

For n = 2:

(3) R(K, 2) =




2 1 1 . . . 1 1
1 2 1 . . . 1 1
1 1 2 . . . 1 1

. . .
1 1 1 . . . 2 1
1 1 1 . . . 1 2




∈ �K × �K (K ∈ �1),

For K = 2:

(4) R(2, n) =




K 1
K − 1 2
K − 2 3

. . .
2 K − 1
1 K




∈ �n × �2 (K ∈ �1),
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For K, n ≥ 3:

R(K, n) =







R(K − 1, n)

1
1
.
.
.
1




R(K, n− 1) +




1
1
.
.
.
1







=




r?1 , . . . , r?(K−1) , 1

. . .

. . .

. . .
r?′1 , . . . , r?′(K−1) , 1

r̂1 , . . . . . . . . . r̂K + 1
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

r̂′1 , . . . . . . . . . r̂′K + 1




(5)

Within our algorithmic approach, we consider the case K ≥ n and treat
the alternative K < n via an application of the Duality Theorem as in the
algorithm of Section 3 of Chapter 5.

Now, given some family
{
a(k)

}
k∈K and the resulting Cephoid Π =

∑
k∈K Πa(k)

,
consider the case that rK = 1. This corresponds to all vectors in the upper
half of the matrix R(K, n).

Then the vector (r1, . . . , r(K−1)) is a reference vector for the cephoid

Π[−K] :=
∑

k∈K\{K}
∆(k) .

Therefore, we can obtain the Pareto face F [−K] of Π[−K] corresponding to
this reference vector by a recursive procedure as Π[−K] is a sum of (K − 1)
deGua simplices in

�
n. It remains to construct the Pareto face of Π that

results from adding a (unique) vertex a(K)i0 of ∆(K) to F [−K]. This vertex is
at once computed according to Theorem 3.6 of Chapter 5.
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Thus, adding a(K)i0 to F [−(K−1)] yields a Pareto face of Π which has the
correct reference vector r.

Next consider all vectors r wit r(K−1) = 1 that have not been covered so far,
i.e., those in the lower half of the matrix R(K, n). In order to obtain the
corresponding Pareto faces, we first compute the Pareto faces of

Π[−(K−1)] :=
∑

k∈K\{(K−1)}
∆(k) .

Then we list the reference vectors (of length (K − 1)) to these Pareto faces.
Eliminate those that correspond to reference vectors that have already been
covered, i.e., take only those faces that correspond to reference vectors that
have not been covered in the first step – apart from the 1 at coordinate
(K − 1).

Now proceed as above: Construct the Pareto face of Π that results from
adding a (unique) vertex a(K−1)i1 of ∆(K−1) to F [−(K−1)]. This vertex is at
once computed according to Theorem 3.6 of Chapter 5. Adding a(K−1)i1 to
F [−(K−1)] yields a Pareto face of Π which has the correct reference vector r.

Next, proceed to all reference vectors with coordinate r(K−2) = 1 that have
not been covered so far etc.

Combining these considerations within the following Theorem we obtain an
algorithm for computing all Pareto faces of a Cephoid via the reference vec-
tors.

Theorem 2.5. Let a• {a(k)
}
k∈K be a family of positive vectors and let Π =∑

k∈K Πa(k)
be the Cephoid generated. The set F(K, n;a•) of Pareto of Π is

obtained as follows.

1stSTEP :

If n = 2 or K = 2, then apply the Theorem “Beginn of recursion”,i.e.,
Theorem 3.1 of Chapter 5.

2ndSTEP : If K < n, then apply the dualization process twice as described
in the Theorem “Computing the Dual” , i.e., 3.3 of Chapter 5.

4thSTEP : Assume K ≥ n. Compute the reference matrix R(K, n). For
k0 ∈K take the subset K \ {k0} with k − 1 elements.

5thSTEP :

Beginn the recursion (“backwards”) with k0 = K and proceed until k0 = 1.

Compute all faces of Π[−K] corresponding to the family
{
a
(k)
k∈K−{K}

}
.
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To any such face F [−K], compute the normal n[−K] by the Theorem “Com-
puting the Normal”, i.e., by Theorem 3.5 of Chapter 5.

6thSTEP : Apply Theorem 3.6 of Chapter 5 (“Translating a Pareto
face” ). This way, find the unique vertex a(K)i0 of ∆(K) which admits n[−K]

as a normal to ∆(K). Then F [−K] + a(K)i0 is a face of the family Π.

7thSTEP :

Eliminate all reference vectors from the matrix R(K, n) with coordinate rK =
1, i.e., the first group in formula (5). Call the resulting matrix R[−K].

8thSTEP : Assume now the procedure has been performed forK,K−1, . . . , k0+
1. The remaining matrix of reference vectors is R[−(k0+1)].

9thSTEP :

Compute all Pareto faces of the family
{
a
(k)
k∈K−{k0}

}
. Compute the (K−1, n)–

reference vectors of all these faces. Augment these vectors by a coordinate
rk0 = 1 to obtain (K, n) reference vectors. Reduce the set of Pareto faces to
those the reference vectors of which appear in R[−(k0+1)].

10thSTEP :

To any remaining face F [−k0], compute the normal n[−k0] by the Theorem
“Computing the Normal”, i.e., by Theorem 3.5 of Chapter 5.

11thSTEP :

Apply the Theorem “Translating a Pareto face” , i.e., Theorem 3.6 of
Chapter 5. That is, find the unique vertex a(k0)i0 of ∆(k0) which admits n[−k0]

as a normal to ∆(k0). Then F [−k0] + a(k0)i0 is a Pareto face of Π.

12thSTEP :

Eliminate all reference vectors from the matrix R[−(k0+1)] with coordinate
rk0 = 1. Call the resulting matrix R[−k0]. Proceed with the recursion as
in the 8thSTEP :



Chapter 7

Graphs on the Pareto Surface

The partially ordered set (the poset) of Pareto faces - the Pareto surface - has
extensively been discussed in Chapter 2. We have predominantly focused on
the Pareto faces and their neighborhood structure. Now we want to exhibit
an even more detailed picture of the Pareto surface.

To this end, we exhibit the graphical properties of reference sets. Also, we
introduce the graph representing the poset, its nodes, and links as well as
the relation to the reference vectors.

127
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1 The Reference Graph

We have intensely discussed necessary conditions for Pareto faces. In partic-
ular properties of the reference system, of the adjustment set, and the way
the corresponding linear adjustment system determines the normal.

Now we want to investigate sufficient conditions. We start out with a family
a• =

{
a(k)

}
k∈K generating a Cephoid

Π = Πa•
=
∑

k∈K
Π(k)

with Π(k) = Πa(k)
(k ∈K). Given a family of subsets of I, say

J =
{
J (k)

}
k∈K

,

we assign to every index set J (k) the Subsimplex

∆
(k)

J(k) = ∆
(a(k))

J(k) = CovH
({
a(k)l

}
l∈J(k)

)
⊆ ∆a(k)

= ∆(k).

Now we look for conditions that ensure these Subsimplices to be the sum-
mands of a Pareto face

(1) F =
∑

k∈K
∆

(k)

J(k)

of the cephoid Π

To specify these conditions it is first of all necessary to exhibit some further
properties of a reference system associated with a Pareto face. On the other
hand, we want to treat some of those properties in a more general way. We
start by a definition that lists the obvious requirements.

Definition 1.1. Let
J =

{
J (k)

}
k∈K

be a family of subsets of I. J is called an admissible system if the following
conditions are satisfied:

1.
⋃

k∈K
J (k) = I

2.
∑

k∈K
|J (k)| =

∑

k∈K
jk = K + n− 1 .
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3. For any two different indices k, l ∈K the sets J (k) and J (l) contain at
most one common index.

4. For every index k ∈ K there exists an index k′ ∈ K with k 6= k′ and(
J (k) ∩ J (k′)

)
= 1.

Thus, the reference system of a face of a cephoid is admissible.

For every admissible system J we denote by L ⊆ I the set of indices that
appear in at least two of the members J (k) of the family. L is called the set
of critical indices (corresponding to J). Accordingly,

(2) Lk := L ∩ J (k)

defines the critical system

(3) L =
{
L(k)

}
k∈K

.

The critical system obviously inherits the defining properties from its parental
admissible system, i.e., we have:

1.
⋃

k∈K
L(k) = L

2. For any two different indices k, k′ ∈ K the sets L(k) and L(k′) contain
at most one common index.

3. For every index k ∈ K there exists an index k′ ∈ K with k 6= k′ and(
L(k) ∩ L(k′)

)
= 1.

We use this a motivation to define abstract systems L with these properties.

Definition 1.2. Let L ⊆ I and let

L =
(
L(k)

)
k∈K

.

be a system of subsets of L. We say that L is L–admissible if the conditions
1., 2., and 3. are satisfied.

Thus, the critical system of an admissible set is L–admissible with respect
to the set L of critical indices.

We wish to associate a graph to an admissible L–system as follows.
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Definition 1.3. The (undirected) graph associated to an admissible L–
system L is the pair

(4) (L,E)

given as follows. The nodes of the graph are the elements of the family L. An
edge or arc of the graph is a pair E = (Lk,Lk′) such that Lk∩Lk′ 6= ∅ holds
true. Colloquially we say that Lk and Lk′ are connected if E = (Lk,Lk′) is
an edge.

As graph as defined above may have cycles, i.e., in our case a sequence of
nodes L(k1),L(k2), . . .,L(kT ) such that , for any t ∈ {1, . . . , T − 1} the nodes
L(kt) and L(kt+1) are connected and L(k1) = L(kT ) is the case. We call a cycle
proper if the same index l ∈ L is involved in each edge, i.e., if

(5) L(kt) ∩L(kt+1) = {l}

holds true for some l ∈ L and all t ∈ {1, . . . , T − 1}. Otherwise, we call the
cycle improper .

Now we are in the position to proceed with a refinement of our above defini-
tion.

Definition 1.4. An L–admissible family of index sets

L =
{
L(k)

}
k∈K

is called a pre–adjustment system if the following conditions are satisfied:

1. L := |L| ≤ K − 1 holds true.

2.
∑

k∈K
|L(k)| =:

∑

k∈K
Lk = K + L− 1 .

3. There are at least two indices k∗, k◦ such that |Lk∗| = |Lk◦| = 1 holds
true. That is, the associated graph has at least two boundary nodes.

4. The associated graph (L,E) is connected.

5. The associated graph (L,E) has no improper cycles.
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An admissible family of index sets

J =
{
J (k)

}
k∈K

is called a pre–reference system if the critical set L induces a critical
system L that is a pre–adjustment system. The corresponding linear pre–
adjustment system is the linear system of equations formed in analogy to
(18) of Section, 1 Chapter 3.

A reference system resulting from a Pareto face has the properties listed
above. Indeed, a reference system induces a set L of adjustment indices as
well as an adjustment system which is L–admissible. The associated graph
is called the adjustment graph . Now we have

Lemma 1.5. Let F be a Pareto face of a cephoid Π = Πa•
. Then the

adjustment graph has no improper cycles.

Proof: If the graph has an improper cycle, then the linear adjustment system
admits of the trivial solution only. More precisely, let (w.l.o.g)

L(1),L(2), . . .L(κ),L(1)

constitute an improper cycle. Then we find indices l1, l2, . . . , lκ such that

l1 ∈ L(1) ∩ L(2), l2 ∈ L(2) ∩L(3), . . . , lκ ∈ L(κ) ∩L(1)

holds true. Consider the following subsystem of the linear adjustment system,
given by

(6)

c1a
(1)
l1

= λl1

c2a
(2)
l1

= λl1

c2a
(2)
l2

= λl2

. . . . . . . . .

cκa
(κ)
lκ−1

= λlκ−1

cκa
(κ)
lκ

= λlκ

cκa
(1)
lκ

= λlκ.

This is a system with 2κ variables and 2κ equations. If we write aik := a
(k)
li
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just for the moment, the coefficient matrix is

(7)

1 κ κ+ 1 2κ



a11 : 1
a21 : 1
a22 : 1

a23 : 1
. . . : . . .
. . . : . . .

aκκ−1 : 1
aκκ : 1

a1κ : 1




.

We claim that the matrix (7) has full rank. To see this, subtract an a1κ–
multiple of the last column from the first column and, thereafter, omit the
last column and the last row. Next, add an a1κ

aκκ
–multiple of column κ to

column 1. Then, the last row contains the entry aκκ only. Hence (7) has full
rank if and only if the following matrix (8)

(8)

1 κ− 1 κ 2(κ− 1)



a11 : 1
a21 : 1
a22 : 1

a23 : 1
. . . : . . .
. . . : . . .

aκ−1κ−2 : 1
aκ−1κ−1 : 1

a1κaκκ−1

aκκ
: 1




has full rank. By induction, we see that (7) has full rank indeed.

q.e.d.

Lemma 1.6. Let F be a Pareto face of a cephoid Π = Πa•
. Then the

adjustment graph is connected.

Proof: The proof runs quite analogously to the one of the previous Lemma
1.5. If the adjustment graph can be decomposed into two disjoint graphs,
each part admits of an independent solution of the linear adjustment system.
Hence the solutions span a linear space of dimension at least two – in which
case the normal is not uniquely defined up to a constant. So the Lemma
follows from the Coincidence Theorem 1.4 of Chapter 3.
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q.e.d.

Lemma 1.7. Let F be a Pareto face of a cephoid Π = Πa•
. Then the

adjustment graph has at least two boundary nodes.

The proof is obvious because the adjustment graph has no improper cycles.

Corollary 1.8. Let a• =
{
a(k)

}
k∈K be a family of positive vectors. Let

F be a Pareto face of the corresponding Cephoid Π. Then the reference
system defining F is a pre–reference system. The adjustment system is a
pre–adjustment system.

Clearly, to any pre–adjustment system that arises from a pre–reference sys-
tem we may associate the polyhedron

(9) FL :=
∑

k∈K
∆

(k)

L(k).

Now we have

Theorem 1.9. Let J =
{
J (k)

}
k∈K

be a family of subsets of I. Then

(10) F =
∑

k∈K
∆

(k)

J(k)

is a Pareto face of the Cephoid Π generated by a• if and only if the following
holds.

1. J is a pre–adjustment system.

2. The solution (c?, λ?) to the linear pre–adjustment system of equations
satisfies

(11)
c?ka

(k)
l = λ?

l ((k, l) ∈ �)
≥ c?k′a

(k′)
l ((k, l) /∈ �).

Proof: The inequalities in item 2 ensure that the vector n? =
(

1
a?1
, . . . , 1

a?n

)

constructed via

(12) a?i := max
k∈K

c?ka
(k)
i (i ∈ I)

constitutes a linear function that achieves its maximum relative to ∆(k) ex-
actly on ∆

(k)

J(k) , thus is a normal to Π and, clearly, the normal to F . q.e.d.
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2 The Pareto surface as a Graph

We return to the topics discussed in Section 5, recall in particular the
tentacle system of Section 5 of Chapter 3.

The tentacle system exhibited in Chapter 3 focusses on a deGua Simplex,
say ∆(κ) = ∆a(κ)

for some κ ∈ K, which is a summand of a Cephoid Π =∑
k∈K Πa(k)

. For such a summand a translate ∆{κ} appears on the Pareto
surface ∂Π of Π (the Translation Theorem 4.9 of Chapter 3). This translate

is the center of a system of tentacles
�(κ)

i (i ∈ I). Each of these tentacle
systems connects the translate ∆{κ} with the corresponding boundary

Π(−i) = ∂Π �I\{i}

via a the system of its cylinders (Theorem “ The Tentacles” 5.2 of Chapter
3 , see also Remark 5.4 about the cephalopodic structure).

Now we exhibit the structure of the Pareto surface ∂Π of a Cephoid Π in
more detail. To this end observe that the above description of the center and
tentacles of a “cephalopodic” structure is at best represented by introducing
the notion of a graph.

I will then be seen that every face generates a Pareto tentacle system. By this,
we mean a well–defined system of Pareto faces connected by the adjacency
relation. More precisely, we are talking about connected subgraphs of the
system of all Pareto faces.

For the present discussion, we include also boundary faces of a Cephoid Π
that are not Pareto efficient, i.e., the faces

(1) Π(−i) = Π ∩ {x ∈ Π xi = 0} (i ∈ I) .

which can as well be seen as the Cephoids generated by the restrictions

{
a(k)

| �n
I\{i}

}

k∈K
.

These are maximal faces of Π but not Pareto faces.

For the construction of the graph we use the nodes given by the maximal
faces of ∂Π which have a dimension (n − 1). The edges are provided by
the (n− 2)–dimensional subfaces of maximal faces that are common to two
faces. So any two nodes are connected by an edge whenever the two faces
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under consideration do have a common (n − 2) dimensional subface. That
is, whenever two Pareto faces are adjacent in the sense of Definition 2.2 of
Chapter 3. Or else, whenever some Pareto face has an (n− 2)– dimensional
intersection with some non Pareto efficient maximal face Π(−i).

For short we denote the (n− 2) dimensional subfaces of a Pareto face by the
term P–Subface. We do have special versions of P–subfaces. E.g., the cylinder
bases ∆

(k?)
jl as exhibited in Corollary 4.10 and Definition 4.11 of Chapter 3.

Also we point to the P–Subfaces appearing in the tentacle system, i.e., in
Formula (3) of Section 5, Chapter 3.

This justifies the following

Definition 2.1. Let Π =
∑

k∈K Πa(k)
be a Cephoid.

1. A P–subface is an (n − 2) dimensional Pareto efficient subface of a
Pareto face of Π.

2. An edge is a P–subface that is the intersection of two maximal faces.

3. A node is a maximal face.

4. For i0 ∈ I an i0–boundary node is a maximal face Π(−i0).

5. The Pareto graph or P–graph of Π is the graph P = (V,E) with
nodes

V := {F F is a node } = {F F is a Pareto face of ∂Π}

and edges

E := {E E is a node } = {E E is a P–subface common to two Pareto faces } .

Two nodes are connected by an edge if – as maximal faces – they are adjacent;
the edge connecting them is the joint P–subface. If a maximal face F (a node)
is i0–boundary, then there is the unique subface E(−i0) connecting F with
the graph ∂Π(−i0) as an edge.

Remark 2.2. We extent the notion of a reference vector to P–subfaces as well
in a canonical fashion. For, in view of the Neighborhood Theorem 2.3, and in
particular Formula (5), we know that a P–subface has a representation

(2) E =
∑

k∈K
∆

(k)

J(k)
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such that rk := |∆(k)

J(k) | (k ∈K) satisfies

(3)
∑

k∈K
rk = K + n− 2 ,

that is. r = (r1, . . . , rK) is a (K, (n − 1)) reference vector. Naturally, the corre-
spondence between (K, (n− 1))–reference vectors and P–subfaces is not bijective.
Rather consider the following Theorem as a list of possibilities.

◦ ˜˜˜˜˜˜ ◦

We list some properties of the P–graph. All of these have appeared in varying
contexts in previous chapters.

Theorem 2.3. Let Π =
∑

k∈K Πa(k)
be a Cephoid and let F =

∑
k∈K ∆

(k)

J(k)

be a Pareto face of Π. Let r = (r1, . . . , rK) be the reference vector of F .

1. If, for some p ∈ K we have rp ≥ 2, then there is q ∈ K and a Pareto
face F ′ such that F and F ′ are adjacent and the reference vector for
F ′ is r = (r1, . . . , rq + 1, . . . , (rp − 1), . . . , rK).

The edge E connecting the nodes F and F ′ is the P–subface E = F∩F ′

with reference vector r0 = (r1, . . . , rq, . . . , rp − 1, . . . , rK).

2. Also, if for some p ∈K, we have rp ≥ 2, then for every i0 ∈ I there is a
P–subfaceE(−i0) ∈ �n

I\{i0} with reference vector r
0 = (r1, . . . , rq, . . . , rp−

1, . . . , rK) which is a Pareto face of ∂Π(−i0) = ∂Π|�n
I\{i0}

.

3. A Pareto face F is connected to an i0–boundary node if and only if
i0 /∈ L and there is some p ∈K such that i0 ∈ J (p) and |J (p)| ≥ 2 .

4. On the other hand, if for some p ∈ K, we have rp = 1, then there is
some i1 ∈ I such that F is the translate of some face F ′ of the Cephoid
Π[−p] =

∑
k∈K\{p}Π

a(k)
, i.e.,

F = F ′ + a(p)i1 , F ′ =
∑

k∈K\{p}
∆

(k)

J ′(k) .

Then F is not an i1–boundary node. All other edges of F are those of
F ′ seen as a node in the P–graph of Π[−p].

Proof: Consider the representation F =
∑

k∈K ∆
(k)

J(k) of F via the reference
sets.
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1stSTEP : As to item 1, for rp = |J (p)| ≥ 2 there is some index i0 ∈ J (p)

which is an adjustment index, i.e., i0 ∈ L and hence

E =
∑

k∈K\{p}
∆

(k)

J(k) + ∆
(p)

J(p)\{i0}

is an edge which necessarily connects some other Pareto face; the rest is done
as in the Neighborhood Theorem 2.3.

2ndSTEP : Next, item 2 follows from the Bijection Theorem 1.3 applied to
∂Π(−i0).

3rdSTEP : As to item 3, it is clear that in this case

E =
∑

k∈K\{p}
∆

(k)

J(k) + ∆
(p)

J(p)\{i0}

is a Pareto face of ∂Π(−i0) with the same adjustment set L.

4thSTEP : Finally, to item 4. In this case, one has 1 = rp = |J (p)|, hence
F is a translate of some face F ′ =

∑
k∈K\{p} of the Cephoid Π[−p] which is

generated by the family {
a(k)

}
k∈K\{p} .

Necessarily, the translation takes place by some vector a(p)i1 with i1 ∈ L.
q.e.d.

Next, we exhibit a further version of the ‘ ‘Cephalopodic structure”.

Definition 2.4. Let Π =
∑

k∈K Πa(k)
be a Cephoid and let F =

∑
k∈K ∆

(k)

J(k)

be a Pareto face of Π. Let J be th reference system and r the reference vector.

Let p ∈K be such that rp = |J (p)| ≥ 2.

1. fork ∈K the reference vector

(4) r − ep + ek

is called the p–k–vector of F (r is the p–p–vector).

2. The node (Pareto face) corresponding to the p–k–vector r−ep+ek (k ∈
K) according to the Bijection Theorem is denoted by F −p,+k and called
the p–k–node derived from F .

3. For i ∈ I, the P–subface located in ∂Π(−i) := ∂Π �n
I\{i}

corresponding

to the reference vector r − ep is denoted by Ep,(−i) (or Ep,(−i)(F ) if
applicable).
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4. An edge (P–subface) F 0 of some p–k–face F−p,+k with reference vector
r − eK is called a p–k–edge.

5. The P p–graph Pp of F is the subgraph of P given by the p–nodes and
the connecting edges; denoted Pp = (Vp,Ep) (or Ep,(−i) if applicable).

Our aim is to show that the family of p–k–faces constitute a simple connected
graph without circles which terminates exactly on the (n − 2)–dimensional
boundary of ∂Π.

Lemma 2.5. There are K p–k––faces (including F = F −p,+p). For i0 ∈ I,
there exists a p–k–face F̂ such that F̂ ∩ �n

(I\{i0}) = E
p,(−i0)(F ).

Proof: The existence of ∂Π(−i0) follows as in item 2. There has to be a
Pareto face including this P–subface as a boundary face which necessarily
has a reference vector augmented at one coordinate.

q.e.d.

Lemma 2.6. Let F−p,+q be a p–q–face. Then the number of p–q–edges of
F−p,+q is at least 2. More precisely, the number of edges is

(5)
rq ≥ 2 , for q = p, i.e., for F = F−p,+p

rq + 1 ≥ 2 , for q 6= p

Proof: Consider the case q 6= p. Let
{
Ĵ

(k)
}

k∈K
denote the reference system

of F−p,+q. Then |Ĵ (q)| = rq + 1 ≥ 2 holds true. For every i0 ∈ Ĵ
(q)

the
system

(6)
{
Ĵ

(k)
}
k∈K−q

, Ĵ
(q) \ {i0}

constitutes a reference system defining an P–subface of F−p,+q which is a
p–q–edge.

Similarly, for p = q, given the reference system J =
{
J (k)

}
k∈K

of F = F−p,+q

we see that for i0 ∈ J (p) the system

(7)
{
J (p)

}
k∈K−p

, J (p) \ {i0}

constitutes a reference system defining an P–subface of F which is a p–p–
edge.

q.e.d.
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Lemma 2.7. Let F−p,+q be a p–q–face and let F̂
0
be p–q–edge. Let i0 ∈ I

such that the reference system of F̂
0
is given by (6) or (7) respectively. If

i0 is not an adjustment index of F−p,+q, then F̂
0
= Pi0(F ), that is, F is

connected to the i0–boundary node Π(−i0).

Proof: See item 3 of Theorem 2.3. q.e.d.

Lemma 2.8. Let F̄ = F−p,+q and F̂ = F−p,+l be different p–*–faces.

Let J̄
(p)
, Ĵ

(p)
denote the reference set corresponding to ∆(p) for each of these

Pareto faces respectively. If |J̄ (p) \ Ĵ (p)| ≥ 2 or |Ĵ (p) \ J̄ (p)| ≥ 2 holds true,

the F̄ and F̂ are not adjacent.

Proof: Obvious by the Neighborhood Theorem (Theorem 2.3 of Chapter
3).

q.e.d.

Theorem 2.9. Let Π =
∑

k∈K Πa(k)
be a Cephoid. Let

F =
K∑

k=1

∆
(k)

J(k)

be a Pareto face with rk = |J (k)| (k ∈ K) and rp ≥ 2. The P p–graph Pp of
F is a simple connected graph without cycles, that is, a tree. F is the root
of this tree.

1. For every i0 ∈ I there is a path from F to the i0–boundary node Π(−i0)

via the (last) boundary edge Ep,(−i0)(F ).

2. The number of appearances of i0 within the reference system of each
of the nodes along the path from F to Π(−i0) decreases by 1 at each
consecutive node.

Proof: Pick some i0 ∈ I.
1stSTEP :

First of all, we consider the case that i0 ∈ J (p) holds true. As rp ≥ 2, we can
in this case construct the edge ((n− 1)–dimensional subface)

◦
F i0 =

∑

k∈K\{p}
∆

(k)

J(k) +∆
(K)

J(p)\{i0}
.
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If i0 /∈ L, then this edge connects F to the Π(i0). If so, we are done.

2ndSTEP :

Alternatively, (still assuming i0 ∈ J (p)) let i0 ∈ L and hence
◦
F i0 is not a

i0–boundary edge. According to Neighborhood Theorem 2.3 and Theorem
2.8 of Chapter 3, there exists κ ∈K and an adjacent face F̃ with reference
system J̃ changed exactly at positions q and κ, i.e.,

J̃
(q)

= J (q) \ {i0} , J̃
(κ)

= J (κ) ∪ {i1}
for a suitable i1 ∈ I. The reference vector is

r̃ = (r1, . . . , rκ + 1, . . . , rp − 1, . . . , rK) .

and hence F̃ = F−p,+κ is an (adjacent) p–κ–face. The adjustment set is

L̃ and the number of appearances of i0 has been diminished by 1. Also,
according to the Neighborhood Theorem, we have i1 ∈ L̃.
3rdSTEP :

If it so happens that i0 ∈ J̃
(κ)

, then we proceed once again as in the 1st and
2ndSTEP : Either i0 /∈ L̃, then F̃ is connected to the i0–boundary and we

are done. Or else, we remove i0 from J̃
(κ)

an add a suitable index to some

J̃
(γ)
. Then we have reached a further p–γ–face F̂ = F−p+γ at which the

number of appearances of i0 is reduced by 1. Clearly F̂ is adjacent to F̃ .
The reference vector is

r̂ = (r1, . . . , rγ + 1, . . . , rκ, . . . , rp − 1, . . . , rK) ;

obviously F̂ = F−p+γ is a π–γ–node adjacent to F̃ = F−p,+κ.

Thus, at this stage, we have reduced the number of appearances of i0 by two
and we have done this by running through adjacent p–?–nodes consecutively.

4thSTEP :

Alternatively to the 3rdSTEP suppose now that i0 /∈ J̃ (κ)
holds true.

Then we need more steps to construct a face adjacent to F̃ which is a p–?–
node and yet has the number of appearances of i0 diminished by 1.

To this end we focus on i1 ∈ J̃
(κ) ∩ L as specified in the 3rdSTEP . We

can remove i1 from J (κ) and add another index to some J (λ); the result is a
p–λ–face F ? with reference vector

r? = (r1, . . . , rλ + 1, . . . , rκ, . . . , rp − 1, . . . , rK)
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and reference sets changed at positions λ and κ, that is

J?(κ) = J (κ) \ {i1} , J?(λ) = J (λ) ∪ {i2}
but also

(8) i0 /∈ J?(κ) .

Now, any index i ∈ J̃ (κ)∩L̃ can play the role of i1, i.e., there are more indices
feasible for the above procedure besides i1. We then perform the procedure
for all of them.

This way we construct one or more paths (of P) at which the number of
appearances of i0 is constant but one can always proceed along some p–γ′–
face.

5thSTEP :

The path can never return to F because any other path leaving F is char-
acterized by a missing index i9 6= i0 instead of i0. No face with missing
index i9 is a neighbor to a face with missing index i0 by Lemma 2.8. By
a similar argument, the path cannot return to another face met during the
construction.

Whenever a path branches off as in the 4thSTEP , then we can follow all
branches and the resulting paths.

As there are only finitely many p–?–vectors, the index i0 must eventually

occur. That is, at some stage we find a face
˜̂
F with reference vector

˜̂r = (r1, . . . , rν + 1, . . . , rµ . . . , rκ, . . . , rp − 1, . . . , rK)

such that i0 ∈ ˜̂
J

(ν)

holds true. We can, therefore, proceed by removing i0

from
˜̂
J

(ν)

and replacing it by some i7 /∈ ˜̂J
(µ)

for a suitable µ, i.e., by turning

to some node
̂̂
F such that

̂̂
J

(ν)

=
˜̂
J

(ν)

\ {i0} ,
̂̂
J

(µ)

=
˜̂
J

(µ)

∪ {i7} .

implies a reference vector

̂̂r = (r1, . . . , rµ + 1, . . . , rν , . . . , rκ, . . . , rp − 1, . . . , rK)
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Observe now, that
̂̂
F is also adjacent to F̃ that we constructed in the

3rdSTEP and left in the 4thSTEP . Indeed i1 has been removed from J̃
(κ)

in the 4thSTEP and position κ has not been changed thereafter. On the

other hand, position ν is reached the first time. That is we have i1 /∈ ̂̂
J

(κ)

and i7 /∈ J̃ (µ)
and

hence

̂̂
J

(κ)

= J̃
(κ) \ {i1} ,

̂̂
J

(µ)

= J̃
(µ) ∪ {i7} .

Therefore, the p–ν–node
̂̂
F is adjacent to F̃ and again has the number of

appearances of i0 diminished by one.

So now we are again in the situation of the 1st and 2ndSTEP : Either i0 /∈ ̂̂L,
then

̂̂
F is connected to the Π(−i0) and we are done. Or else, the number of

appearances of i0 in the face
̂̂
F can reduced by 1 once again.

6thSTEP :

Obviously we can proceed in this way, reducing the appearances of i0 until

i0 /∈
̂̂̂
L is the case. Then we have found a face with an edge Ep,(−i0)(F ).

Hence the path constructed in the p–P graph connects F and the boundary
node Π(−i0).

Thus the p–P graph has boundary nodes at each ∂Π(−i) (i ∈ I), all of them
being connected without loops and circles via the central node F .

q.e.d.

Remark 2.10. We can regard the number of appearances of some i0 in the

components ∆
(k)

J(k) of F as a measure for the distance of the node F to the i0–

boundary Π(−i0) as this number is diminished by each step along the connecting
branch (“tentacle”) of the p–P graph. See the corresponding statement in Remark
5.3 of Chapter 3.

◦ ˜˜˜˜˜˜ ◦

Example 2.11. Compare the “Cephalopodic Structure” as explained in Remark
5.4 of Chapter 3. We copy Figure 5.2. If the central F equals ∆(κ), then obviously
the tentacles as described in Theorem 5.2 represent the paths leading from the
central node towards the boundary; in this case a path from the center to the
boundary is exactly described by a tentacle. As the “depths” or “distances”(i.e.,
the number of appearances) w.r.t. the various i0 add up to the numberK of DeGua
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Simplices involved, it is clear that the total number of faces with all possible paths
to the boundaries adds up to K.

7e1
7e2

7e3

∆(κ)

{x x2 = 0}

∆(1)

∆(2) Cκ1

Cκ2

Figure 2.1: The P –Graph in 3 dimensions–canonically represented

However, Theorem 2.9 deals with an arbitrary Pareto face as the center, not just a
translate of a DeGua Simplex. So, if in Figure 2.1 we chose e.g. the Pareto faceCκ1

as the central node F of our considerations, then clearly a path to the boundary
{x x2 = 0}, i.e., to Π(−2) connects directly while a path to the boundarie faces
Π(i1) and Π(i2) has to move via ∆(κ). From which it follows that both of the lattter
paths proceed jointly until ∆(κ) is reached. Hence the total number of nodes in all
possible paths exceeds K – while the number of p–?–nodes is obviously K (Lemma
2.5).

◦ ˜˜˜˜˜˜ ◦
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3 Identifying Boundary Subfaces

Let
{
a(k)

}
k∈K be a family of positive vectors and let Π =

∑
k∈K Πa(k)

be the

Cephoid generated. For i0 ∈ I consider the Cephoid Π(−i0) generated by the

restricted family

{
a(k)

|�n
I\{ι0

}

k∈K
. A Pareto face F (−i0) of this Cephoid is

also a P–subface of Π and as such an i0 boundary edge.

The (K, n − 1)–reference vector r(−) of F (−i0) identifies this Pareto face
uniquely when all considerations are restricted to

�(−i0). But for i1 6= i0 the
same reference vector also defines a unique Pareto face of the corresponding
Cephoid Π(−i1). The number of Pareto faces is in each case f(K, n− 1) and
the reference vector provides a means to identify them.

Geometrically, these Pareto faces look alike in each boundary, as the number
rk of subfaces of each ∆(k) is equal. However their position within the Pareto
surface of the Cephoids Π(−i0) or Π(−i1) respectively may change considerably
as the corresponding restricted Cephoids do have differing data.

Now, the graph Pp as developed in Section 3 provides a method to establish
the identification also via some path of the Pareto graph P.

Theorem 3.1. Let Π be a cephoid. For i0 ∈ I let Ei0 a boundary P –subface
located in Π(−i0), i.e., a Pareto face of Π(−i0). Let r− be the reference vector
of Ei0. Then, for any ι1 ∈ I, i1 6= i0, there is a sequence

F {1},F {2}, . . . ,F {p}

of Pareto faces of Π with the following properties.

1. Ei0 is a P –subface of F {1}

2. Any two consecutive elements of the sequence F {q},F {q+1} are adjacent
and the common edge (P -subface) has reference vector r−.

3. F {p} is adjacent to Π{−i1}.

4. The link Ei1 between F {p} and Π{−i1} has reference vector r−.

Proof:

Let F {1} be the Pareto face of Π containing Ei0 as a P –subface. In Theorem
2.9 replace i0 by i1. Then follow the path towards the i1 boundary edge as
provided. q.e.d.
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In the following example, the subface Ei0 can be nicely identified by the
colors. For, if we assign colors to the generating DeGua Simplices (blue, red,
green, and yellow in the example), then a subface with a certain reference
vector r− can exactly be followed by identifying colors and dimensions. E.g.,
if r−k = r−blue = 2, then this means that there is a blue edge/line segment of
dimension 1 involved in every P –subface with r− as reference vector.

Example 3.2. The cephoid “FourFour” is a sum of four prisms in four dimensions.
It is given by the matrix

(1) A =




701 502 303 104
205 116 1007 128
139 110 611 512
67 230 444 777




Figure 3.1 shows the canonical representation within the Simplex 4∆e.

Figure 3.1: The canonical representation of FourFour

The faces of “FourFour” are represented as follows.
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The computational result does not list the colours. In order to identify them,
observe e.g. the (translate of) the yellow deGua Simplex. It is located in the first
vertex 4e1 of the above (canonical) representation. There is exactly one Pareto
face in our list which is

(2) ∆g :
blue red green yellow
1 1 1 1234

which carries the full deGua Simplex at position 4. Hence we derive that “yellow”
is listed in the fourth position. The others are obtained similarly.
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Now we exhibit a path. Consider the block without yellow edges - shown as the
last Pareto face in our above list.

(3) By :
blue red green yellow
12 13 24 2

,

the reference vector of which is (2, 2, 2, 1). This block we choose to be F {1}. We
choose p = red, the p–k–vectors are then given by

(2, 1, 2, 1) + ek (k ∈K) .

the P–subfaces suggested by the reference vector (2, 1, 2, 1). The block By has the
square F 3 as the boundary node at ∂Π(−3) (the left front side of the tetrahedron).
This in our above notation is the P –subface Ei0 . Here, the description is

(4) F 3 :
blue red green yellow
12 1 24 2

,

and the reference vector of is r− = (2, 1, 2, 1).

The adjacent face F {2} is the cylinder that consists of a green triangle and a blue
line segment; it is given by

(5) Zgr,b :
blue red green yellow
12 3 234 2

.

The Link E2 = By ∩Zgr,b has the correct reference code (2, 1, 2, 1).

At Zgr,b the path has two branches, the boundary basis E4 at the lower subsim-
plex is part of the cylinder. Thus, the path from Π−3 to Π−4 (the lower base
subsimplex) ends here and the identification between the blue–green squares is
completed.

If we follow the second path, we reach a block without red. This one is difficult to
recognize, it consists of three line segments of blue, green, and yellow color and is
described by

(6) Br :
blue red green yellow
12 3 34 24

.

The final face is the cylinder consisting of a blue triangle and a green line segment.
It is described by

(7) Zb,gr :
blue red green yellow
123 3 34 4

.

This cylinder has boundary subfaces E1 (at the right front side) and E2 (at the
rear side of the tetrahedron), thus we have found all P –subfaces Ei, i ∈K.
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Figure 3.2 shows all paths as indicated by the above sequence. The four maximal
faces have been isolated from Figure 3.1. The P–subface corresponding the ref-
erence vector r− = (2, 1, 2, 1) in each Pareto face consists of a square with blue
and green line segments as edges. One can nicely identify such a P–subface within

Figure 3.2: The Paths of Example 6.8

each of the 4 Subsimplices of the Simplex 4∆e (the white tetrahedron)

◦ ˜˜˜˜˜˜ ◦



Chapter 8

Computing Faces:
���

Within our present framework, an algorithm is a Mathematical object; more
or less the description of a recursively defined function the domain of which
is the set of positive matrices interpreted as Cephoids. Algorithms in this
sense have been documented in Chapters 5 and 6.

To implement such an algorithm as a working program in a computer lan-
guage (��� in our case) is of course a different task. For the curiosity of the
IT–minded reader we want to exhibit a glimpse into the programs written
along the guidelines of those previous Chapters.

Therefore we present a choice of programs resulting from algorithms for the
computation of faces and apply them to particular examples. The program-
ming is performed in ��� ; indeed we have used results of these programs
in previous chapters in the context of examples.

Those interested in a concrete set of programs and subroutines (a ”workspace”
in ��� ) might consider contacting the author.

149
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1 Algorithms in ���
We start with a (partial) description of an ��� workspace named “CEPHALGF”
- that is a collection of functions and variables to be employed for computing
the data of a Cephoid. Essentially these data are the Pareto face – repre-
sented by its collection of reference systems – and the corresponding set of
reference vectors.
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Next, just for curiosity, we present the most important function in this
workspace which is “∆FC” – i.e., the Face Creator.

� �
 ��� � ��� �	�	�	�	��	����	���� 	�����	� 	���	�	������ 	����� �
� �
 � ����������������������������������������������������������� �
 � ������ �		 ���� �� ��� ������� ���������� �� ���� �
 � � � � ������ � �� �
 � ��� ������� ���������� � � ������ � ���� ��������� ��� �
 � ����� ������� ��� ���	���� �� � � � ������ ������������ �
 � � ���� �� �
 � ����������������������������������������������������������� �
� ��
 � ����������������������������������������������������������� ��
 � �� ��� ���� ���� � ���� ��
� ��
� ��
� ��
 ��������
 � �� ������
� ��
� ��
 � ����������������������������������������������������������� ��
 � �� ��� ��� �� ��� ���� ��
� ��
 � �� �  � � ��� ��� �� ��
� ��
 ������� ��	�� ��
 ���� ���������	 �� ��
 ��� ��
� ��
� ��
 � �� �  � � ��� ��� �� ��
 ��	��� ��
 ������� ��	����� ��
 �������� ����



160 ? Computing Faces: ��� ? Chapter VIII ?

� ��
 ���� ���������	 �� ��
 ��� ��
� ��
 � ����������������������������������������������������������� ��
 � ����������������������������������������������������������� ��
 � �� ���� �� ���� � � � � �������� ��� �		 ���� ��� �� ������� ��
 � ���� ��� ��������� ��
 �� ��
 � ����� � �� ��� ���������� �� ��� �� ��
 � ��������� �� ���� ��� ���	 ����	� ���� ��
 � ������ ��� ���	��� ��
� ��
 ��	���� �� ��
 ������������ ��
� ��
 ��� � ���	��� ��� � �� ��
� ��
 ��� ��
� ��
 � ����������������������������������������������������������� ��
 � ����������������������������������������������������������� ��
 � � � ��� ��� ��������� 	��� �� ��
� ��
 � ������������������������������������������������� ��
 ���� �� ��
 ���� ��
 �������� ��
 ������������� ��
� ��
 � ������������������������������������������������� ��
 �� �� ��
 ��������
����������� ��
 ���� �	�������������
� ��
 � ������������������������������������������������� ��
 � ������ ��� ����	� ���� ��� �������� �������� �� �� ��
 ���� � ��� ��� ��
 � ��� ��� ������� �� �� ��
 �������������������������������������� ��
 � �� ��� ��� ��� �������� ����������� � ���	���� �� ��
 � ��� ��������� �������� �� ��� ��� ���� ����	��	�� ��
 � �� �� ��� � ��� ��������� �� ������� ��� ������������



? Section 1: Algorithms in ��� ? 161

� ��
 � �	� �� �� ������ ��� ����� � ����� �� ��	���� ����� �� ��
 � ���� ���� � � ��� ��� � ������ ����� � ������� ����� ��
 � �� ��� ������ ��������� �� ��
 �� ��
 � ��� � ��� �������� ������������ �� ��
 � ����������� ������� �		 ������� ��
 � �� ��� � � �� ���� ��� ������ � ����	�� ��
 � ���� � ����� ����� � ��� ��� �� ��� �� ����	��� ��
 � � ����	� �� ��� ���� ������ �������� �� ��
� ��
 � �������� ��������� �� ��
� ��
 ���� ��� ���������� ����� ��������� �� ��
 ����� � ��������� ����� ��
� ��
 � ������������������������������������������������� ��
 � ��� ��������� ������ �������� � ��� �������� ���� ���� ��
 � ��������� ������ ���� ��� ������� ��������� ��� �� ��
 � �� � ��� �� ��� ��� ������ � �	����� ������ �� ��� �	� ����� ��
 � ���� ���� ��� ����� �����		�� ���� ���� ����	�� �� ����� ��
 � ���� ��������� �� ��
� ��
 ���� ��
 ����������������� ��
 	����� �� ��
 �� ������� ������������� ��
 ���	� � ����� �� 	
� ��
 ������ ��
 �� ���	� ����������� ��������
 �	���������
 ������������������������������������������������������
 ���� �����
����
 � ��� ��� ��������� ������ ��� ���� ��� ��� �� ��������
 � ���� ��� ����� ��������� �� ��� ���� �������� �� �������
 � ������� ��������� ��� �����
 � ���� �� ����� � ��������� �� ��������
 � ��� ���� � ��������� �� ��� �����
����
����
 ����������� ���������
 ����� � ������ ���
 �����



162 ? Computing Faces: ��� ? Chapter VIII ?

����
 �����
 ������� ���������
 ��������� ���
���������
 �����
 � ��� ������� ������
����
 �������
 � ����������������������������������������������������
 �� �

2 Examples: Large Cephoids

For completeness we repeat some of the examples already discussed in pre-
vious chapters. The first one is the “saw” (see Section 2 Chapter 2). As
the naive version considered contains zeros and possibly other degeneracies
we construct a slightly modified version by adding 100 and perturbing the
example.
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The next one is the notorious windmill (see Section 2, Chapter 2, Figure
2.4 – and Section 6, Chapter 3, Figure 6.2).
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The following is a simple 3× 4 example – The Cephoid KKK34:
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The Cephoid *Blue* has our special attention. We provide two lists (over-
lapping in a sense): The first set of faces is obtained by taking two of the
involved deGua Simplices and constructing the permutations that create all
their faces ( Section 4 Chapter 3). The resulting faces of the Cephoid
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“BLUE” are then seen in the light of the “moving index principle”. The
second list is just the result of applying ∆FC – hence contains all Pareto
faces.
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Finally, we compute the list of faces of a “large” example. Again, this is just
a matter of curiosity – one is not to read all the data but inspect them for
possible compositions of interest.
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Chapter 9

Applications:
Optimization

The remainder of this volume is dedicated to various applications for which
Cephoids turned out to be relevant. We point out those topics in Applica-
tions of Mathematics in which Cephoids appear naturally in context: these
are Optimization (“Operations Research”), Mathematical Economics, and
Cooperative Game Theory.

The first example is the Standard Rucksack Problem which deals with a
simple optimization procedure. Later on, we will turn to Free Trade Theory
and applications in the Theory of Cooperative Games.
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1 The Rucksack Problem:

An Interpretation in Linear Programming

Suppose a hiker wanting to ascend a mountain wishes to limit the weight
of his rucksack to a unit (of 20 kg). He intends to pack various foods i =
1, . . . , n. The weight per unit of food i is given by 1

ai
. Now, the hiker wants

to obtain maximal nourishment from what he carries and it is known that,
for i ∈ I, the nutritive quality of a unit of food i is given by some quantity
ni.

Consider any plan x = (x1, . . . xn) ∈
�

n
+ of the hiker, implying that he takes

the quantity xi of food i. Then the weight to be attached to this collection
of foods is

n∑

i=1

xi

ai

and must not exceed 1. Therefore, the hiker has to solve the Linear Program
suggested by

max

{
n∑

i=1

nixi x ∈ �n
+,

n∑

i=1

xi

ai
≤ 1

}
= max

{
n∑

i=1

nixi x ∈ Πa

}
.

This kind of a simple Linear Program is generally called a “rucksack prob-
lem”.

Now it so happens that there is a small elevator available at the mountain
area. This device is very sturdy, so the weight to be carried is not a re-
striction, at least as far as foods are concerned. However, the volume to be
transported is limited; for convenience assume that the device carries a unit
in volume maximally.

If food i ∈ I yields a volume of 1
bi

per unit, then any plan y ∈ �n of trans-
porting a volume of yi (i ∈ I) by the elevator results in a total volume
of

n∑

i=1

yi
bi
,

hence maximal nourishment is obtaint by solving the Linear Program sug-
gested by

max

{
n∑

i=1

niyi y ∈ �n
+,

n∑

i=1

yi
bi

≤ 1

}
= max

{
n∑

i=1

niyi y ∈ Πb

}
.
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Finally, a hiker having both, his rucksack and the elevator available is looking
for

max

{
n∑

i=1

nixi x ∈ �n
+, x = x′ + x′′ , x′ ∈ Πa ,x′′ ∈ Πb

}

which is

max

{
n∑

i=1

nixi x ∈ Πa +Πb

}
.

Therefore, let us consider a family a• = (a(1), . . . ,a(K)) =
(
a(k)

)
k∈K of

positive vectors generating the cephoid

Π = Πa•
=

K∑

k=1

Π(k)

with Π(k) = Πa(k)(k ∈ K), and suppose we want to maximize the linear
functional x 7→ nx. Then we can see each Π(k) as representing a production
process called “line k”. All lines produce the same good (“nourishment”).

A unit of raw material or production factor i put into activity at line k
requires an amount of 1

a
(k)
i

of the capacity of line k. The production processes

or lines can be operated independently and the results can be added. Thus,
maximizing the linear functional defined above amounts to determining

max





n∑

i=1

nixi x ∈ Πa•
=

K∑

k=1

Π(k)



 .

The maximizers or optimal elements of this Linear Program are to be found
in the Pareto faces of Π = Πa•

. Clearly, we are now motivated to consider
the description of the Pareto faces which has been provided in the previous
chapters of this volume.

Suppose now F is a Pareto face of Π containing maximizing elements, more
precisely, assume it so happens that the normal n? of F is the objective
function of the Linear Program. That is, consider the case that n? = n

happens to be true. Now, for F , let c? denote the adjustment coefficients
which can be computed employing the linear adjustment system. Now there
is a global rucksack problem suggested via

max

{
n?x x ∈

∨

k∈K
c?kΠ

(k)

}
= max

{
nx x ∈

∨

k∈K
c?kΠ

(k)

}
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the optimal solutions of which contain the ones of the original many line
problem (suggested by the Cephoid Π). The deGua Simplex

Π̂ :=
∨

k∈K
c?kΠ

(k)

represents the new “global” production line which is obtained via

a?i = max
k∈K

cka
(i)
k ,

i.e., Π̂ = Πa?

. Thus, the capacities are defined by

1

a?i
=

1

maxk∈K cka
(i)
k

= min
k∈K

1

cka
(i)
k

.

This is readily interpreted as follows: we may adjust the capacities of the var-
ious production lines appropriately (to admit comparison of productivity !)
and then take the minimal capacity in order to obtain the global production
process.

The optimal solutions are of the form c?ka
(k)i(i ∈ J (k)). Finally, we obtain

(1)

max

{
nx x ∈

∨

k∈K
c?kΠ

(k)

}
= max

{
n?x x ∈

∨

k∈K
c?kΠ

(k)

}

= n?c?ka
(k)i

= t?

= n?
i a

(k)
i c?k

= n?
i ā

(i)
k c?k

= n?
i ā

(i)kc?

= t?

= max

{
yc? y ∈

∨

i∈I
n?
i Π̄

(i)

}

= max

{
yc? y ∈

∨

i∈I
niΠ̄

(i)

}

which is the “duality theorem of Cephoidal Programming”.



Chapter 10

Applications:
Free Trade

Our next example for Cephoids deals with a more than 200 years old concept
in Macroeconomics. This theory is considered to be the basis of Free Trade
Theory. It is the model of David Ricardo. Ricardo’s theory establishes a
first version of efficiency gains when Free Trade is admitted. as compared
to production in autarky. The author is greatly indebted to Wolfram F.
Richter who pointed out to him the relevance of the subject in context with
the theory of Cephoids. As a result, the subsequent presentation is a version
of [24].
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1 Ricardian Free Trade

As to the basis for our presentation, we refer to David Ricardos Volume
“On the Principles of Political Economy and Taxation”, see [23]. There
are quite a few modern reprints, we also cite McKenzie [14], Jones [11]
or – for a textbook reference – Caves et al. [2]. Ricardo considers a
model of two countries (Britain and Portugal), each of them producing two
commodities (cloth and wine) but at different production costs (essentially in
labor). We exhibit the general structure if one admits an arbitrary number
of commodities produced by an arbitrary number of countries – which turns
out to be a Cephoid.

We start with a single country producing in autarky. Let I := {1, ...n}
denote the commodities and let L denote the country’s supply of labor .
Then we set up a “Ricardian” model of production and trade as follows.

Let b̂i > 0 denote the input coefficient i.e., the amount of labor required
to produce one unit of commodity i ∈ I. Then âi := 1

b̂i
> 0 is the

productivity of labor with respect to commodity i ∈ I, i.e., the number
of units of commodity i that can be produced with the input of one hour of
labor.

We write xi for a quantity of commodity i ∈ I. Then x = (x1, . . . xn) ∈
�

n
+ is

a plan according to which the amount xi of commodity i is being produced.
This plan results in an aggregate amount

n∑

i=1

xib̂i ,

of labor reqired to produce the vector x. The plan x is feasible if the
aggregate demand does not exceed the total supply of labor L. Consequently,
the feasible plans are represented by the (deGua) Simplex

{
x ∈ �n

+

n∑

i=1

xib̂i ≤ L

}
.

We introduce the notation ai := Lâi, hence bi := 1
ai

= 1
Lâi

= b̂i
L

is the
relative amount of labor neccessary in order to produce a unit of commodity
i. Accordingly a = (a1, . . . , an) is the capacity vector .
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Then the above feasible set can as well be rewritten as

(1)

{
x ∈ �n

+

n∑

i=1

xib̂i ≤ L

}
=

{
x ∈ �n

+

n∑

i=1

xib̂i
L

≤ 1

}
=

{
x ∈ �n

+

n∑

i=1

xi

Lâi
≤ 1

}
=

{
x ∈ �n

+

n∑

i=1

xi

ai
≤ 1

}
=: Πa .

That is, we obtain the DeGua Simplex generated by the capacity vector a.

The efficient plans are given by the Simplex

∆a =

{
x ∈ �n

+

n∑

i=1

xi

ai
= 1

}

which is the Pareto surface of Πa.

An efficient plan x is said to be supported by a price vector p = (p1, . . . , pn)
if px maximizes th linear funtional x→ px over Πa.

The efficient production plan ai := aie
i ∈ ∆a allots all labor available to

the production of one commodity i; these plans represent complete special-
ization of the economy. The total amount of labor available is employed
to produce just one commodity i.

Figure 1.1 represents the familiar DeGua Simplex – now reinterpreted as a
feasible set of production plans for 3 commodities. The completely special-
izing production plans appear as the vertices of the Simplex. Consequently,
the length ai (i ∈ I) of the line segments from the origin to a vertex represent
the capacities.

Recall that input coefficients are given by bi =
1
ai
. The input coefficients can

be seen as the coordinates of a price vector

n := (
1

a1
, . . . ,

1

an
) = (b1, . . . , bn)

which is supporting for all efficent production plans of the Simplex ∆a. For
short, n is supporting ∆a. Geometrically, this vector is the normal to ∆a.
All price vectors supporting ∆a are multiples of n, thus up to a multiple, the
supporting prices to ∆a are uniquely determined.

We now enhance our model by introducing several countries into the pro-
duction scene, we assume that there are K countries each one producing
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a1 a2

a2

Πa

∆a

Figure 1.1: Efficient Plans – the DeGua Simplex Πa

the same commodities i ∈ I. Then K := {1, . . . , K} denotes the list of
these countries. Each country k ∈K is characterized by a capacity vector
a(k) = (a

(k)
1 , . . . , a

(k)
n ) ∈ �

n. Accordingly, for each country the feasible

production plans are provided by the DeGua Simplex Π(k) := Πa(k)
.

A set of feasible production plans, one for each country, is a production plan
schedule, that is, a list (x(1), . . . ,x(K)). The aggregate production of the
world economy resulting thereby is given by the sum x(1)+ . . .+x(K). Thus,

(2)
Π = Πa•

:=

K∑

k=1

Πa(k)

=
{
x(1) + . . .+ x(K) x(1) ∈ Π(1), . . . ,x(K) ∈ Π(K)

}

is the set of aggregates of production schedules, for short the global plans .
Obviously, we obtain a sum of deGua Simplices, that is, the aggregate pro-
duction schedules constitute a Cephoid.

We recall the sketch presented in Section 1 of Chapter 1. Now we interpret
the first two sketches in Figure 1.2 as representing the situation for two
countries and two commodities. Then the feasible production sets for each
country are represented by the triangles ∆a(1)

and ∆a(2)
. The global plans

appear as the (algebraic) sum of these triangles in
�2

+, represented by Π.
The Cephoid Π′ is a sum of 4 triangles.
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a(1)1 + a(2)2

a(2)2

a(1)1

Π

Π′

∆a(2)

∆a(1)

Figure 1.2: Construction of global plans

According to Theorem 2.3 in Chapter 1, all polyhedral production plans (i.e.,
compact, convex comprehensice polyhedra with a piecewise linear Pareto
boundary) are being obtained as aggregate production plans of a certain set
of countries with suitable capacity vectors.

From an Economical viewpoint, the idea of “comparative advantages” is
relevant here: not every aggregation of complete specializations results in
a vertex of the cephoid, that is in a Pareto efficient global plan. The sum
of two vertices is a vertex if and only if they admit of a common normal
. That is to say, a production schedule of complete specializations in all
countries results in an efficient global plan if and only if there is a common
price vector supporting the plan of each country involved.

E.g. in Figure 1.2 we observe that a(1)1 + a(2)2 is Pareto efficient but, say,
a(1)2+a(2)1 is not. Even more significant, consider the case that, in autarky,
both countries are producing at the center of their capacities, i.e, country k
chooses

a(k)1 + a(k)2

2
=

(ak1, a
k
2)

2
=
a(k)

2
Then the global plan resulting if each country sticks to its production sched-
ule would be

a(1)

2
+
a(2)

2
= (

a11 + a21
2

,
a12 + a22

2
) < (a11, a

2
2) = a(1)1 + a(2)2 ,

as a21 < a11 and a12 < a22. There are no prices at which countries 1 and 2
can jointly and efficiently produce when each of them chooses the central
production plan.
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1

2

3

∆a + b1

∆b + a2

∆a
23 +∆b

13

Figure 1.3: Incomplete Specialisation

Similarly Figure 1.3 (again taken from Chapter 1) refers to the production
of 3 commodities in 2 countries. The resulting cephoid of global plans Π =
Πa+Πb has a Pareto surface ∂Π consising of translates of Simplices (∆a+b1

and ∆b + a2) and the parallelogram or rhombus ∆a
23 +∆b

13.

In the first case, (in order to produce efficiently) one country is completely
specialized while for the other one any efficient plan is admitted.

In the second the rhombus is a sum of two Subsimplices. Such a Subsimplex,
say ∆a

23, consist of vectors that are convex combinations of extremals a(2)2

and a(2)3 hence represent production plans involving commodities 2 and 3
only but not commodity 1. This we interprete naturally as a partial or
incomplete specialization of the country reflected by a on commodities
2, 3 while the country reflected by b partially specializes in commodities 1
and 3.

Generally, if x̄ =
∑K

k=1 x
(k) is efficient in Π =

∑K
k=1Π

a(k)
, then we use an

appropriate notation: we say that country k is completely specialized if
x(k) = a

(k)
i e

i = a(k)i holds true for some i ∈ I.
Also, given x̄, country k is said to be partially specialized if there is a
nonempty subset of commodities J (k) ⊆ I such that x(k) ∈ ∆

(k)

J(k).

Thus, plans at which economy k is partially specialized w.r.t the same subset
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J (k) of commodies used in production constitute the subsimplex ∆
(k)

J(k) ⊆ ∆(k).

For more than two countries and 3 commodities we repeat Figure 2.8 from
Chapter 1 which illustrates the situation.

Figure 1.4: Four Countries producing 3 commodities

For n = 3 the shape of maximal faces does not change. any Pareto face is the
sum of either 3 vertices and a full Simplex (the translates of a Simplex) or
else the sum of 2 vertices and two straight lines (the rhombi). The vertices
involved do not appear explicitly in the geometrical description. Generally,
with n commodities and K economies we obtain various patterns of partial
specialization.

Within this context we recall the reference vector which describes the great
abundance of possibilities: we know from Corollary 1.4 in Chapter 6 that
any such vector indicates uniquely a Pareto face, hence a possible market
equilibrium and hence the corresponding versions of specialization.

Thus an integer vector r = (r1, . . . , rK) satisfying

(3) 1 ≤ rk ≤ n (k ∈K)
K∑

κ=1

rk = K + n− 1

demonstrates a possible distribution of production among the countries,
where economy 1 specializes in r1 commodities, . . ., economy K specializes
in rK commodities. All reference vectors appear as possible partial special-
izations when production takes place “in” a Pareto face or equivalently in the
corresponding equilibrium.
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This way of organizing the world economy is uniquely determined: which r1
of the n commodities are produced by economy 1 . . . etc. and which rK of the
commodities are produced by economy K is uniquely specified by reference
vector via the bijection established by the above–mentioned Corollary.

Consequently, a pattern of specialization is a family of subsets J =
{J (1), . . . ,J (K)} satisfying ⋃

k∈K
J (k) = I

resulting from a Pareto face, i.e., representing a partial specialization for each
country. The resulting set of global plans is given by

(4) F =

K∑

k=1

∆
(k)

J(k) .

Pareto faces are sets of global plans that admit of a unique normal, i.e., prices
are unique (up to a multiple).

On the other hand, we can start out with a positive vector p > 0 to be
interpreted as a vector of prices ruling on the world market. Consider an
efficient plan x̄ ∈ �n

+ which is supported by p. That is we have

(5) px̄ = max {px x ∈ Π} ,

Now, if we take xk ∈ ∆(k) (k ∈ K) such that x̄ =
∑

{k∈K} x
(k), then we

know that p is supporting each Π(k) at x(k), i.e.,

px(k) = max
{
px x ∈ Π(k) (k ∈K)

}
.

The quantity pia
(k)
i is regarded as the value of a unit of labor in country k

when labor is used in production of commodity i. Therefore, the quantity

(6) wk(p) := maxi∈Ipia
(k)
i

is seen as the wage rate of country k supported by world prices p. That is,
this is the value of a unit of labor that can be maximally earned in country
k when labor is applied to the maximizing commodities.

Returning to the efficient plan x̄ supported by p, note that it is not efficient
to produce commodity i if it does not yield the maximal wage, i.e., if wk(p) >

pia
(k)
i , that is, we have

(7) wk(p) > pia
(k)
i → x

(k)
i = 0.
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That is, the maximizer x̄ must necessarily put positive weights only on the
maximizing coordinates of a(k).

Now, for k ∈K, let

(8) J (k)(p) =
{
i ∈ I pia

(k)
i = wk(p)

}

denote the set of commodities that can be produced without a loss at prices p.
Then the efficient vector x(k) introduced above will have positive coordinates
at most at coordinates i ∈ J (k)(p), that is we have

x(k) ∈ ∆
(k)

J(k)(p)
.

We consider J (k)(p) to be country k’s profile of specialization and the family

J(p) := {J (k)(p)}k∈K
in this context is suitably called a pattern of specialization supported
by p. Combining we formulate

Remark 1.1. Let F be a Pareto face of Π. Then the reference system of F is
the unique pattern of specialization supported by the normal p of F . This normal
represents the prices ruling the world economy when production takes place in an
efficient global plan x ∈ F . Prices and wages “in equilibrium” are connected via
(6). Country k ∈ K will produce only commodities that are efficient to world
prices in the sense of (7)

◦ ˜˜˜˜˜˜ ◦

In the next step the adjustment system and the generation of prices (under
the n.d. assumption) is being reinterpreted in the light of Ricardian Theory.
We imagine that world production takes place at some plan in a Pareto face

F =
K∑

k=1

∆
(k)

J(k)

of the aggregate production Cephoid Π. The adjustment set is L and the
characteristics are given by

� :=
{
(k, l) l ∈ L, J (k) 3 l

}
.

Accordingly, we obtain the linear adjustment system of equations in variables
(ck, λl), ((k, l) ∈ �) given by

(9) cka
(k)
l = λl ((k, l) ∈ �) ,
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see Section 1 of Chapter 3. We know that the solutions of (4) are unique
up to a multiple and the quantities

(10) a?i := max
k∈K

cka
(k)
i > 0, (i ∈ I) ; a?l := cka

(k)
l (k, l) ∈ �

yield the normal (= prices) via p? := n? =
(

1
a?1
, . . . , 1

a?n

)
up to a positive

multiple. Thus, for (k, l) ∈ �:

cka
(k)
l =

1

p?l
or p?l a

(k)
l =

1

ck
= wk .

That is, the inverse of the adjustment coefficients turn out to be the wage
rates in equilibrium. As

b
(k)
l =

1

a
(k)
l

=
1

Lâ
(k)
l

=
b̂
(k)
l

L

we also have

(11) p?l = wkb
(k)
l (k, l) ∈ � .

That is, prices are obtained by relative productivity evaluated with wages in
equilibrium .

Then , according to (10), the prices for commodity i are also

p?i = min
k∈K

1

cka
(k)
i

= min
k∈K

wkb
(ki)

with (11) prevailing whenever i = l ∈ L ∩ J (k) i.e., (i, k) ∈ �.
Combining we reformulate the idea of normal and adjustment in terms of a
Ricardian equilibrium as follows.

For any pattern of specialization J =
{
J (k)

}
k∈K

we define es previously

Ki := |{k ∈ K l ∈ J (k)}| − 1 , such that commodity i is produced by
Ki + 1 countries simultaneously. Accordingly, let L := {l ∈ I Kl ≥ 1}
denote those commodities that are produced in at least two countries. Hence,

(12) L = {l ∈ I Kl ≥ 1}

Definition 1.2. : Let J? be a pattern of specialization and let p? = (p?i )i∈I
andw? = (w?

k)k∈K be a vector of prices and wage rates respectively. (J?, π?,w?)
is called a market equilibrium if the following holds true.
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1.

(13) p?i = min
k∈K

w?
kb

(ki) .

Prices result from the least expensive production. The world economy
is reflected by a capacity vector

(14) a? = (a?k)k∈K with a?k =
1

p?k
(k ∈K).

2.

(15) p?l = w?
kb

(k)
l (k, l) ∈ � .

The wage rate of country k when producing any joint commodity is
supported by the prices.

3. J is supported by p?. For any joint production plan

x̄ =
∑

k∈K
x̄(k), x̄(k) ∈ ∆

(k)

J?(k)(k ∈K),

it follows that

(16) px̄(k) = px̄ (k ∈K)

as well as

(17) w?
k > p?i a

(k)
i implies x

(k)
i = 0 ((i, k) ∈ I ×K)

That is, commodities at which the wage rate of country k is not com-
petitive are not being produced in country k.

Now we have an equilibrium whenever production takes place “in” some
Pareto face.

Theorem 1.3. Let F be a Pareto face of a cephoid Π. Then there exists
a market equilibrium (J?, p?,w?) such that p? is the normal at F and the
adjustment coefficients c? define the wages. The world economy produces
with a capacity a? defined via the adjustment coefficients/wages such that
countries produce efficiently all commodities which are produced by at least
two countries.
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In this case the equilibrium data p?,w? are unique up to multiplication with
a positive real number. Or else, as is common in General Equilibrium Theory,
one could ask for normalization of price vectors (

∑
i∈I p

?
i = 1) and then claim

that equilibrium is unique.

Basically, equilibria exist at any Pareto efficient face, not just the maximal
ones. In particular, any extremal point of the Pareto surface generates equi-
libria, the prices result from the normal cone which has dimension n. As
any extremal point is an element of n maximal faces (not all of them Pareto
efficient), we obtain a set of equilibria corresponding to each Pareto face
involved exactly as in Theorem 1.3

The somewhat opaque discussion in McKenzie[14] concerning the question
whether world production will take place at some extremal (“specialization of
each country to one commodity”) or on a maximal face – or rather the “like-
lihood” of such global plans – is, in our view, begging the question. Which
type of “solution” within our model do we have in mind? What is the nature
of an equilibrium (to regard countries as price taking agents poses a certain
difficulty, it would seem) or of a cooperative solution (countries bargaining
about an agreement as to which global plan should be implemented – what
about “free trade” in this case ?). In any case, the knowledge of the nature
of maximal faces seems to be a necessity before proceeding to any kind of
solution concept.

One could think of a solution concept in the sense of Cooperative Game The-
ory. Though it is doubtful that economists are susceptible to this vague idea
we point out that there is a solution concept specially adapted to Cephoids.
We return to this concept in Chapter 11.

Example 1.4. We return to Figure 1.3 which describes the production of two
economies with 3 commodities, i.e., the Cephoid Π = Πa+Πb. The Pareto faces are
the rhombus ∆a

23+∆b
13 and the two translates of the generating deGua Simplices.

The rhombus is the sum of two Subsimplices, economy a (“blue”) specializing on
commodities {2, 3} and economy b (“red”) specializing on commodities {1, 3}. The
only adjustment index is 3, i.e., L = {3} holds true.

We adjust the third axis of both the Simplices. That is, we seek constants ca and
cb such that the vectors caa

3 and cbb
3 coincide. See also Figures 1.2 and 1.3 in

Chapter 3.

Appropriate multiples of the Subsimplices (“specializations”) ca∆
a
23 and cb∆

b
13

generate the triangle ∆? which is the Pareto efficient set of the world economy Π?.
This Pareto efficient set is represented by a green triangle in Figure 1.5.
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1

3

2

∆?

∆a + b1

∆b + a2

∆a
23 +∆b

13

Figure 1.5: The world economy of Figure 1.3

In Figure 1.5 we have a special arrangement as follows. There is one degree of
freedom in choosing the adjustment coefficients. Therefore, in this simple case
adjustment can be achieved in particular by choosing

ca :=
a3 + b3

a3
, cb :=

a3 + b3
b3

.

Then we have indeed caa
3 = cbb

3. Moreover, caa3 + cbb3 = a3 + b3 indicates that
the Π and ∆? coincide at the third coordinate, hence the whole rhombus ∆a

23+∆b
13

is located within ∆?.

This means that we have set the wages at

wa =
1

ca
=

a3
a3 + b3

= ba , wb =
1

cb
=

b3
a3 + b3

= bb ,

in other words, wages are dictated by (relative) productivity. We have

a? = (caa1, cbb2, caa3)

= (a1
a3 + b3

a3
, b2

a3 + b3
b3

, a3 + b3)

= (a3 + b3)(
a1
a3

,
b2
b3
, 1)

and hence prices are given by
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p =
1

a3 + b3
(
a3
a1

,
b3
b2
, 1) =

1

a1b2(a3 + b3)
(a3b2, a1b3, a1b2) .

◦ ˜˜˜˜˜˜ ◦

Remark 1.5. Suppose p is a positive vector of prices and J(p) is a pattern
of specializations supported by p. Consider the corresponding reference vector
r(p) ∈ �K with coordinates rk(p) = |J (k)(p)| (k ∈K). In view of nondegeneracy
the dimension of the subface of Π supported by p, i.e., of

F 0(p) :=
∑

k∈K
∆

(k)

J(k)(p)
,

is given by

d(p) :=
∑

k∈K
rk(p)−K.

In particular, if F 0 is a maximal face, then r(p) is the corresponding reference
vector and satisfies d(P ) = n − 1. And, on the other hand, if F 0 is a singleton
(hence necessarily an extremal of Π), then clearly d(P ) = 0 holds true.

◦ ˜˜˜˜˜˜ ◦

Let us call a pattern of specialization J compatible with a reference vector
r ∈ �K if |J (k)| = rk (k ∈ K) holds true, that is, if the profile of special-
ization J (k) assigned by J to each country k has cardinality rk. Now let F
be the unique maximal face associated with the vector r and let J be the
corresponding pattern of specialization, i.e., the reference system of face F .
We know that J collects exactly the maximizing coordinates pia

(k)
i for each

k, this is the meaning of formulae (6) and (8). Therefore, for all k ∈ K, we
know that

(18) pia
(k)
i ≤ wk (i ∈ J (k))

holds true with a strict inequality for at least one i if J (k) 6= J (k). Conse-
quently we have for all k ∈K

(19)
∏

i∈J(k)

pia
(k)
i ≤ wrk

k ,

again with a strict inequality if J (k) 6= J (k) holds true. Finally, we come up
with the inequality

(20)
∏

k∈K

∏

i∈J(k)

pia
(k)
i <

∏

k∈K
wrk

k =
∏

k∈K

∏

i∈J(k)

pia
(k)
i .
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This result in economical terms is reformulated in the following

Corollary 1.6. Let Π be nondegenerate and let r be a reference vector. Then
a pattern of specialization J is efficient (i.e., associated with r or yielding the
corresponding maximal face) if and only if it maximizes the associated product
of values of labor units among all patterns compatible with r.

For economists it is of interest that Jones [11] has a rudimentary statement
of the type of our corollary. However, his result concerns complete special-
izations (i.e., sums of extremals of the various Π(k))) only in which case it is
obvious that the product of labor values is not maximal whenever the result
of the summation is not an extremal in Π.

As an interesting detail in history Graham [8] produces a fascinating ex-
ample of an economy with 10 countries and 10 goods, i.e., a cephoid which
is the sum of 10 deGua Simplices in

�10. One is fascinated by his effort
to compute a price vector p and an efficient global production x̄ ∈ Π for a
10× 10 his example of a world economy.

Graham produces his Example via a table (”TABLEAU OF OPPORTU-
NITY COST RATES”) (see p. 91) from which a set of capacity vectors can
be derived by multiplying the first row with 10, the second with 20,... the
tenth with 400. The result is (W.F.Richter, private communication) the
matrix
(21)

10 100 80 220 800 250 70 440 510 870
20 240 240 380 1080 360 100 580 500 1920
30 420 90 450 630 1500 330 930 900 960
40 640 240 200 3840 1480 160 920 1440 560
50 1400 800 2400 600 1550 100 650 4050 1450
80 2880 400 560 3600 1840 960 3040 2960 2480
120 2160 480 1080 7560 4080 720 7200 5160 4200
200 3400 3600 5400 6600 9000 400 2800 10800 3400
300 9600 2100 3900 12900 3600 4800 24000 19200 15600
400 8400 8000 6800 25600 15200 1200 13600 10400 28800

The efficient production plan Graham computes (TABLE A1p) is

x̄ =
∑

k∈K
x̄(k)
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with

x̄1 = (0, 0, 0, 0, 800, 0, 0, 0, 0, 0) = 800e5 = a(1)5

x̄2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1920) = 1920e10 = a(2)10

x̄3 = (0, 0, 0, 0, 0, 1500, 0, 0, 0, 0) = 1500e6 = a(3)6

x̄4 = (0, 0, 0, 0, 3840, 0, 0, 0, 0, 0) = 3840e5 = a(4)5

x̄5 = (0, 0, 0, 2400, 0, 0, 0, 0, 0, 0, ) = 2400e4 = a(5)4

x̄6 = (0, 2880, 0, 0, 0, 0, 0, 0, 0, 0) = 2880e2 = a(6)2

x̄7 = (101 1/2, 0, 0, 0, 0, 0, 0, 110, 0, 0)

x̄8 = (0, 0, 0, 1204, 0, 4506 2/3, 0, 0, 2984, 0)

x̄9 = (0, 724, 0, 0, 0, 0, 1802, 7900, 4224, 0)

x̄10 = (48 2/3, 0, 3003 1/3, 0, 4907 2/3, 0, 0, 0, 0, 8892)

(22)

The resulting x̄ has positive coordinates in subsets of I reflected by a refer-
ence vector

r = (1, . . . , 1, 2, 3, 4, 4)

As this vector is a reference vector for n = K = 10 we conclude that x̄
necessarily is located within the (relative) interior of the maximal face cor-
responding to r – that is, Graham indeed computes an efficient pattern of
specializations, hence a maximal face of Π, which he is not aware of. The
author remarks that to do this has been a “tedious process of trial and error”
– to which one can only applaud. Exhibiting (fast) algorithms for computing
all faces of a cephoid is certainly a task justifying the same epitaph.

However, the presentation of the Pareto surface of Grahams example via
the list of reference system would explode this volume and tax the readers
patience substantially. For once, the number of Pareto faces is given by the
function f specified in (8) and (10) of Section 2 Chapter 5. We compute
readily

(23) f(10, 10) = 48620 .

Now view the Pareto surface of the example “LARBLUE” in Section 2
Chapter 7. This is 6× 7 Cephoid, hence the number of its faces is

(24) f(6, 7) = 462 .

Copying this example demonstrates the size of the problem in terms of nu-
merical computation: “LARBLUE” took 8 pages so listing the Pareto faces
of Graham’s example would take a volume of 842 pages.



Chapter 11

Applications:
Cooperative Games –
Bargaining

The remainder of this volume describes solution concepts in the Theory of
Cooperative Games that are based on Cephoids. We start with the most sim-
ple version of a Cooperative Game, that is, with ”Pure Bargaining Games”
or “Bargaining Problems”. These are Cooperative Games such that cooper-
ation is either agreed upon in a (the “grand”) coalition or else completely
fails – in which case the players are thrown back onto a “status quo position”
with no gains for anyone.

The Maschler–Perles Bargaining Solution establishes a convincing concept
for the solution of Bargaining Problems. It differs notably in esprit and
refinement from popular Bargaining Solutions – the Nash Solution and the
Kalai–Smorodinsky Solution – concerning the decisive axiom: ”superadditiv-
ity”. To us, this axiom appears to be much more appealing than, say, “Inde-
pendence of Irrelevant Alternatives” (Nash) or “(one player) Monotonicity”
(Kalai–Smorodinsky).

The original work of Maschler and Perles ([13],[22]) establishes the so-
lution for two players; superadditivity turns out to be necessary and sufficient
for the unique existence. The result hinges on the fact that every piecewise
linear compact convex comprehensive set in

�2
+ is a Cephoid.

For more than 2 players we present a generalization on Cephoidal Bargaining
Problems.

199
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1 Bargaining

A bargaining problem for n players consists of a “feasible set” (in
�

n) and a
“status–quo point”. Players can “cooperate” and thus agree on some point
of the feasible set. The result is then registered as a contract with some
law enforcing agency. If they do not agree, then the “status quo point” is
registered and executed.

Within this chapter we study essentially bargaining problems for 2 players
resulting in 2–dimensional feasible sets. Yet definitions may, in general, be
formulated for n persons i.e., feasible sets in n dimensions.

TheMaschler–Perles bargaining solution (Maschler–Perles [13], [22],
see also [27] for a textbook presentation) is a mapping defined on 2–dimensional
bargaining problems respecting anonymity, Pareto efficiency, and affine trans-
formations of utility. Moreover, this mapping is superadditive by which prop-
erty it is uniquely characterized. We elaborate on this concept in view of the
Theory of Cephoids.

Definition 1.1. Let x ∈ U ⊆ �n. Assume that {x ∈ �n x > x} 6= ∅.

1. U is called x–comprehensive if

U = {x ∈ �n x ≥ x} ∩CmpH U

holds true.

2. V = (x,U) is called a bargaining problem if U is compact, convex,
and x–comprehensive.

U is the feasible set ( of “utility vectors”) and x is the status quo point .
Players i ∈ I are involved in the bargaining process. They can either reach
an agreement (a “contract”) regarding some feasible utility vector, then they
receive utility xi (i ∈ I) each. Or else, they may fail to do so in which case
they are forced to accept the status quo point, i.e., receive utility xi (i ∈ I)
each.

Now let U denote the family of feasible sets and V the set of bargaining
problems. As a preliminary definition, a solution is a mapping ϕ that,
based on some axiomatic justification, assignes to each bargaining problem
V = (x,U) a Pareto efficient vector ϕ(V ). We define a solution also w.r.t.
a subset ∅ 6= V0 ⊆ V. That is we consider a mapping

(1) ϕ := V0 →
�n
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such that, for all V = (x,U) ∈ V0 it follows that ϕ(x,U) ∈ U is Pareto
efficient in U . For short, ϕ is called Pareto efficient .

There are two further requirements that a solution should satisfy, these are
scale invariance and anonymity.

“Rescaling utility ” is represented by an affine transformation of utility
which is a mapping

L :
�n → �n

L(x) = (α1x1, . . . , αnxn) + β (x ∈ �n)
(2)

with positive α = (α1, . . . , αn) and β ∈ �n. L acts on bargaining problems
canonically via

LV = L(x,U) = (L(x), L(U)) V ∈ V.

Hence a solution is said to be scale invariant if it commutes with all a.t.u’s,
i.e., if for any L one has

ϕ(LV ) = L(ϕ(V )) (V ∈ V)

or

ϕ ◦ L = L ◦ ϕ
(3)

The definition can be restricted to some L–invariant V0 ⊆ V, that is, satis-
fying LV0 = V0

Next, we discuss the notion of anonymity. Intuitively, this concept requires
a solution to be independent of the names of the players. More precisely, it
is supposed to respect permutations of the axes.

A permutation π : I → I acts on
�

n by permuting the axes, i.e., we define

π :
�n −→ �n,

π(x)i = xπ−1(i) (i ∈ I, x ∈ �n).

and hence canonically

π : V −→ V,

πV = π(x,U) = (π(x), π(U)) (V ∈ V).

A solution ϕ : V0 → �
n is said to be anonymous if, for any V ∈ V and

any permutation π, we have ϕ(πV ) = π(ϕ(V )), or for short, ϕ ◦ π = π ◦ ϕ
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(again with a possible restriction to some V0 ⊆ V which is “anonymous” in
an obvious sense).

Scale invariance and anonymity are standard axioms that naturally one im-
poses on a solution. Combining we come up with the definition as follows.

Definition 1.2. Let ∅ 6= V0 ⊆ V be scale invariant and anonymous. A
bargaining solution for V0 is a mapping

(4) ϕ := V0 →
�n

which is Pareto efficient, scale invariant, and anonymous.

From scale invariance it follows immediately that for suitable x,U

(5) ϕ(x,U) = x+ϕ(0,U).

As it turns out, most properties of solutions can be formulated for bargaining
problems with status quo point x = 0 and then eaasily carried over to the
general case via (5).

Therefore we – somewhat sloppily – will frequently write ϕ(U) := ϕ(0,U)
and consider ϕ as a mapping on some U0 ∈ U.

Now it turns out that one further axiom “characterizes” a bargaining solu-
tion and there are several such axioms in the tradition. These axioms are
e.g. “I.I.R” for the Nash Bargaining Solution and “one player monotonicity”
for the Kalai–Smorodinsky Bargaining Solution (See e.g. [27] for a text-
book treatment). In the present treatment, we single out “superadditivity”.
Thus we discuss the concept due to Maschler–Perles [22], see also [27],
chapter VIII, Section 4.

Consider a situation with two bargaining problems V = (x,U),V ′ = (x′,U ′) ∈
V. Formally, we consider the “sum” or “aggregation” of both these problems
which is

V + V ′ = (x+ x′,U +U ′) ∈ V .

Then we have

Definition 1.3. A bargaining solution is superadditive if, for all V ,V ′ ∈
V we have

(6) ϕ(V ) + ϕ(V ′) ≤ ϕ(V + V ′) .
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First note that “additivity”, that is requiring an equation in (6), is too much
to ask for: generically, the quantity ϕ(V )+ϕ(V ′) will not be Pareto efficient.
On the other hand, by superadditivity and scale invariance the inequality (6)
at once extends to

(7) ϕ(tV ) + ϕ(sV ′) ≤ tϕ(V ) + sϕ(V ′) (V ,V ′ ∈ V, t, s > 0).

.

Now, there are quite a few axiomatic justifications for superadditivity and –
most impressively – the axiom turns out to uniquely single out a bargaining
solution – in

�2 at least.

Let us divert for an interpretation; the characterizing axiom “superadditiv-
ity” results from one of the following stories.

Consider two bargaining problems, say V 1 and V 2. Imagine that there is
a lottery represented by a probability p = (p1, p2) ≥ 0; p1 + p2 = 1. The
lottery will choose the bargaining problem κ ∈ {1, 2} with probability pκ.
The players intend to enter a joint venture which involves the two games
and the probability of realizing them. Necessarily they have to agree on the
distribution of utility ex ante, that is, before the chance move takes place
and can be observed.

Now on one hand they can consider an agreement saying “if, for some
k ∈ {1, 2}, chance results in V k, then ϕ(V k) will be implemented”. This
agreement would essentially amount to a distribution of utility “ex post”,
that is, after the result has been observed. At the contracting instant, i.e.,
“ex ante”, this decision will result in an expected utility of �pϕ(U

•).

On the other hand, as players have to contract in advance, they can be seen to
face the “expected bargaining problem” �pV

• which is given via the feasible
set

�p(U
•) := p1U

1 + p2U
2.

and the expected status quo point

�p(x
•) := p1x

1 + p2x
2.

In view of this uncertainty and the requirement to contract “ex ante”, the
players may choose to agree on the solution ϕ(�pV

•).

A solution that (for any pair of bargaining problems and any lottery) satisfies

(8) ϕ(�pV
•) ≥ �pϕ(V

•) .
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is consistent with contracting “ex ante”.

Now, for a bargaining solution (8) is equivalent to (6) and (7). Thus a super-
additive solution resolves conflicts that may occur from having to make deci-
sions – agreements – under uncertainty by offering the payers a distribution
of utility consistent with the necessary contracting “ex ante”. Ideologically,
this interpretation is based on the notion of “von Neumann–Morgenstern
utility”.

There is a second interpretation that does not refer to a probabilistic set–up
in the background.

Two players – let us call them US and EU – are engaged in two “remote”
bargaining situations V 1 and V 2 ( one in Brussels and one in Washington)
simultaneously. Initially, these are separate affairs to be carried on by second–
ranking officials of the two administrations. One may regard agricultural
problems (in Washington): import and export of nutritional commodities,
the other one liberalizing the markets for cars and agreeing on joint standards
for vehicles under this aspect (in Brussels). Given ϕ, the representing officials
settle for ϕ(V 1) and ϕ(V 2) respectively and separately.

Later on, ranking officials realize that combining both bargaining projects
may be advantageous. A junctim evolved and government officials considered
giving in w.r. to one contract in favor of receiving concessions in the other
one. Both administrations consider concessions in V 1 versus gains in V 2

and vice versa. The utilities and the status quo point available are now
{x1+x2|x1 ∈ U 1,x2 ∈ U 2} =: U 1+U 2 and x1+x2. That is, players now
face the bargaining problem V 1 + V 2. The solution is then ϕ(V 1 + V 2).
Now, whenever the solution concept is superadditive, i.e., ϕ(V 1 + V 2) ≥
ϕ(V 1) +ϕ(V 2), then both players profit from a quid quo pro.
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2 The Maschler–Perles Solution

The bargaining solution developed by Maschler–Perles [22] the only su-
peradditive solution for 2 players – i.e., in 2 dimensions. For more than 2
dimensions there is no superadditive solution on V, see Perles [21]. Never-
theless, we shall discuss a generalization of the Maschler–Perles solution to
n dimensions in Chapter 12.

Our treatment follows the presentation in [28].

��

��

��

��

� �	 	 
�

x1x1

x2x2

U Π

Figure 2.1: Bargaining problems – smooth and polyhedral

A bargaining problem is polyhedral if the Pareto surface of the feasible set
U consists of line segments. For n = 2 the polyhedral bargaining problems
are exactly the ones with the feasible set U = Π being a Cephoid (Theorem
3.1, Chapter 5). Accordingly, the original idea of Maschler–Perles is
based on the observation that every polyhedral bargaining problem in

�2 is
Cephoidal. By continuity with respect to the Hausdorff metric the solution
is transferred to bargaining problems with a smooth Pareto curve.

We consider Cephoids Π =
∑

k∈K Πa(k)
with a further restriction imposed.

As it is sufficient to establish the solution on a dense subset with respect
to the Hausdorff topology, we restrict ourselves at the moment to families{
a(k)

}
k∈K which are dyadic (with the same fixed basis).

A positive vector a is dyadic (with basis T ) if there are integers t1, t2 such
that a =

(
t1
2T
, t2
2T

)
holds.

Simultaneously, we want to tentatively relax our condition of nondegeneracy
(not essential in two dimensions) as follows. Any DeGua Simplex (triangle)
Πa can be written as a (“homothetic”) sum of two of its copies shrinked by
a suitable factor. For example, we have

Πa =
1

2
Πa +

1

2
Πa = Π

1
2
a +Π

1
2
a.
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By this operation the area of the triangle Πa, say, π(a) := 1
2
a1a2, is divided

by 4, i.e.,

π(
1

2
a) =

1

4
π(a).

Therefore, if we start with a Cephoid resulting from a family of dyadic deGua
Simplices, we may assume that all deGua Simplices involved have equal area.
The bargaining problems having this property again form a dense subset of
the set of all bargaining problems. Similarly, whenever we deal with the sum
of two bargaining problems, we may assume that the summands, as well as
the sum, are dyadic with the same basis. This is formulated as follows.

Definition 2.1. We call a feasible set U (and a resulting bargaining problem
V = (x,U)) standard dyadic if U is a Cephoid obtained by a family{
a(k)

}
k∈K of dyadic vectors, all of them generating equal area, say 1

2
αT , i.e.,

(1) a
(k)
1 a

(k)
2 =

t
(k)
1 t

(k)
2

2T
= αT (k ∈K).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Each triangle equal area

r2
2T

s2
2T

s1
2T

r1
2T

Π

Figure 2.2: A standard dyadic bargaining problem

Observe again that, for the moment, we deviate from our standing assump-
tion of nondegeneracy when adopting the above definition: some of the gener-
ating deGua Simplices could be “homothetic”. However, the situation in

�2
+

requires little of our refined apparatus and there will be no clash of ideologies.

Frequently we assume that the enumeration of the deGua Simplices is such
that the normals are decreasing in k, i.e.,

(2)
a
(k)
2

a
(k)
1

↓k∈K
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The Maschler–Perles solution for a standard dyadic bargaining problem is
then defined inductively as follows:

Definition 2.2. Let

(3) Ud := {U U is standard dyadic }

and

(4) Vd := {V = (x,U) U is standard dyadic } .

The Maschler–Perles solution µ is the mapping

µ : Ud → �2
+

defined recursively as follows:

1. For K = 1, i.e., U = Πa, µ it is the midpoint of the line segment (the
Pareto curve), i.e.,

µ(U) =
a

2
.

2. Let K = 2. If both deGua Simplices are homothetic, then apply the
Definitioin in the first item mutatis mutandis. That is, as Π = Πa +
Πa = Π2a we have µ(Π) := a.

Assume that the two deGua Simplices are not homothetic. Then µ it is
the unique vertex of Π = Πa(1)

+Πa(2)
. E.g., if a

(1)
1 > a

(2)
1 and hence

a
(1)
2 < a

(2)
2 (as a

(k)
1 a

(k)
2 is equal for k = 1, 2), then

(5) µ(Π) := a(1)1 + a(2)2 = (a
(1)
1 , a

(2)
2 ) .

3. Let K ≥ 3. Assume that the ordering is chosen according to decreasing
slopes, i.e., (2) is satisfied.

Then µ is defined recursively via

(6)

µ(Π) = µ

(
∑

k∈K
Πa(k)

)

:= µ
(
Π(1) +Π(K)

)
+ µ


 ∑

k∈K−{1,K}
Πa(k)


 .



208 ? Bargaining ? Chapter XI ?

4. Let Vd denote the set of standard dyadic bargaining problems. Then,
for V = (x,V), define

(7) µ(V ) = x+ µ(0,Π) := µ(Π)

that is, translate the solution of (0,V) as defined by the first items via
x.

Figure 2.3 illustrates the construction on Ud. One takes the deGua Sim-
plices with the smallest and largest slope separately adding them up; this
constitutes bargaining problems Υ and Ψ. In view of the arrangement of the
slopes, the vertex of Υ admits all normals at the vertices of Ψ. Therefore,
the sum µ(Υ)+µ(Ψ) is Pareto efficient and employed to define the solution
of the sum Υ+Ψ. Clearly, we construct an additive solution in the particular
context.

µ(Υ)

µ(Ψ)

Υ

Ψ

Figure 2.3: Additivity of the solution

The above consideration yields the definition of µ as well as the additivity
within a certain context. Now we prove that µ generally is indeed superad-
ditive. We wish to provide two simple proofs. We refer the reader to [13],
[22] for the original versions which we will discuss to some extent later on.
It is sufficient to deal with the mapping on Ud.

Theorem 2.3. Let Π =
∑

k∈K Πa(k)
be a standard dyadic Cephoid in

�2.
Let

(8) Π = Υ +Ψ
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where

(9) Υ =
∑

k∈I
Πa(k) , Ψ =

∑

k∈J
Πa(k)

are both standard dyadic. Then

(10) µ(Π) ≥ µ(Υ) + µ(Ψ).

The first proof hinges on induction, thus it is close to the definition of the
solution as discussed above.

Proof: If Π is the sum of two DeGua Simplices (w.l.g. not homothetic) with
equal area, then µ(Π) is the unique vertex on the Pareto surface of Π while
µ(Υ) + µ(Ψ) is a non–Pareto efficient point on the line connecting 0 and
µ(Π). Hence (10) is obvious.

In order to perform the induction step, consider an arbitrary decomposition
such that

(11) Π = Υ +Ψ, Υ =
∑

k∈I
Πa(k) , Ψ =

∑

k∈J
Πa(k)

holds true.

1stSTEP : Assume that the indices 1 and K are jointly contained in one of
the above sets, say {1, K} ⊆ I. Then, as Π(1)+Π(K) admits of joint normals
at µ(Π(1) +Π(K)) with all other polyhedra involved, we have

(12)

µ(Π) = µ


Π(1) +Π(K) +

∑

k∈K−{1,K}
Πa(k)




= µ
(
Π(1) +Π(K)

)
+ µ


 ∑

k∈K−{1,K}
Πa(k)




(by Definition, see (6) )

≥ µ
(
Π(1) +Π(K)

)

+ µ


 ∑

k∈I−{1,K}
Πa(k)


+ µ

(
∑

k∈J
Πa(k)

)

(by induction hypothesis)

= µ

(
∑

k∈I
Πa(k)

)
+ µ

(
∑

k∈J
Πa(k)

)
.
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2ndSTEP : Suppose now, that we have 1 ∈ I and K ∈ J . Let L denote the
largest index in I, i.e., the one wich induces the largest slope (in absolute
value) of a line segment involved in Υ. Then we obtain

(13)

µ(Π) = µ


Π(1) +Π(L) +

∑

k∈I−{1,L}
Πa(k) +

∑

k∈J
Πa(k)




≥ µ

(
Π(1) +Π(L) +

∑

k∈J
Πa(k)

)
+ µ


 ∑

k∈I−{1,L}
Πa(k)




(by the 1stSTEP as{1, K} ⊆ J + {1, L})

≥ µ
(
Π(1) +Π(L)

)
+ µ

(
∑

k∈J
Πa(k)

)
+ µ


 ∑

k∈I−{1,L}
Πa(k)




(by induction hypothesis)

= µ

(
∑

k∈J
Πa(k)

)
+ µ


Π(1) +Π(L)

∑

k∈I−{1,L}
Πa(k)




(by Definition applied to Υ, see (6) )

= µ{Υ}+ µ{Ψ},

q.e.d.

We provide a second proof which refers to the construction of the solution.

Proof: The enumeration is such that the tangent slope decreases with the
index k. Since the products a

(k)
1 a

(k)
2 are all equal, it follows that the enumer-

ation satisfies

(14)
a
(1)
1 ≥ a

(2)
1 . . . ≥ a

(K)
1 ,

a
(1)
2 ≤ a

(2)
2 . . . ≤ a

(K)
2

W.l.o.g we may assume that K is even (otherwise split every polyhedron
homothetically in two). Then we know that

(15) µ(Π) =




K
2∑

k=1

a
(k)
1 ,

K∑

k=K
2
+1

a
(k)
2


 ,

that is, µ(Π) collects the K
2
largest vectors with respect to each coordinate.



? Section 2: The Maschler--Perles Solution ? 211

Now with respect to Υ we may as well assume that |I| is even. Thus, there
is a decomposition I = I1 + I2 with |I1| = |I2| such that

(16) µ(Υ) =

(
∑

k∈I1

a
(k)
1 ,

∑

k∈I2

a
(k)
2

)
.

The same holds true concerning Ψ with respect to a decomposition J = J1+
J2. Clearly, |I1 + J1| = |I2 + J2| = K

2
and hence

(17) µ1(Υ) + µ1(Ψ) =
∑

k∈I1

a
(k)
1 +

∑

k∈J1

a
(k)
1 =

∑

k∈I1+J1

a
(k)
1 ≤

K
2∑

k=1

a
(k)
1

as the last sum collects the largest K
2
coordinates, it equals µ1(Π) (see (15)).

that is we have

µ1(Υ) + µ1(Ψ) ≤ µ1(Π)

Performing the analogous construction for the second coordinate we obtain
(10).

q.e.d.

This consideration leads immediately to a preliminary uniqueness result.

Lemma 2.4. Let ϕ : Ud → �2
+ be a mapping satisfying

1. ϕ is Pareto efficient

2. ϕ chooses the midpoint for K = 1 and the unique vertex of Π = Πa(1)
+

Πa(2)
for K = 2 and non-homothetic DeGua Simplices.

3. ϕ is superadditive.

Then ϕ = µ.

Proof: ϕ coincides with µ for K = 1, 2 by definition.

Moreover, every superadditive solution ϕ is necessarily additive whenever
the solutions of the two summands admit of a joint normal.

To see this, consider Figure 2.3. Note that the sum of two Pareto efficient
vectors is Pareto efficient if and only if both admit of a joint normal. In Figure
2.3, the corner point of Υ admits of a joint normal with each Pareto efficient
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point of Ψ (some normal cones are indicated). By induction, ϕ(Ψ) = µ(Ψ)
and by definition ϕ(Υ) = µ(Υ). Therefore

ϕ(V ) ≥ ϕ(Υ) + ϕ(Ψ) = µ(Υ) + µ(Ψ) = µ(V )

But ϕ is Pareto efficient, hence we must have ϕ(V ) = µ(V ).

q.e.d.
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3 Smooth Pareto Surface:

The Surface Integral

The recursive definition of the Maschler–Perles solution provides uniqueness
at once. The fact that the solution is superadditive is proved by Maschler–
Perles [13], [22] using concepts of “speed” and the “traveling time” for
points on the Pareto surface of a Bargaining problem.

To this end, they first extend the solution to smooth bargaining problems.
Then they introduce a procedure reflecting the idea of having two points
travel on the Pareto curve, simultaneously starting at each player’s “bliss
point”. The speed of the motion is arranged that the product of velocities
in directions of both axes is equal at each instant.

The process reflects “concessions” continuously made by the players (Maschler
and Perles speak of a “Donkey Cart” moving along the Pareto surface). When
both points meet on the Pareto surface, the solution is reached.

This concept is then carried back to polyhedral problems to show superaddi-
tivity and hence the coincidence with the concept established for Cephoidal
Bargaining Problems. The reader may wish to consult Maschler–Perles
[13] or [27] (CH. VIII, Theorem 4.21, p.588 ) for more details.

We will in the present context provide a short descriptioin of the Maschler–
Perles solution for bargaining problems with arbitrary (polyhedral od smooth)
Pareto surface. For the moment we consider a class V0 such that the status
quo point is 0 and (for technical reasons) all normals are positive. Accord-
ingly we write ϕ(U) for ϕ(0,U) etc. Also we use the notation

(1) κ1 = κ1(U ) = max{t (t, 0) ∈ U}, κ2 = κ2(U) = max{t (0, t) ∈ U}

such that x1 = x1(U) = κ1e
1 and x2 = x2(U) = κ2e

2 denote the bliss
points for players 1 and 2 respectively.

Definition 3.1. A parametrization of ∂U is a bijective mapping

(2) x(•) := [a, b] → ∂U

such that

1. [a, b] is a nonempty interval, i.e., a < b,

2. x(•) is differentiable up to countably many points in [a, b].
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Example 3.2. The following examples establish the existence of parametrizations
as required by Definition 3.1.

Let U ∈ U and define a function

C : [0, κ1)] −→
�

by

(3) C(t) := max{s | (t, s) ∈ U}.

Then C is a concave and decreasing function, hence continuous at all points with
the possible exception of κ1. Moreover, C admits of an almost everywhere (Radon-
Nikodym) derivative (since it is decreasing and hence absolutely continuous). The
derivative exists except for at most countably many points. Therefore, if ∂U
does not contain a line segment parallel to the x2−axis, then we have found a
parametrization

(4)
xC : [0, κ1] −→ ∂U

xC(t) = (t, C(t)) (t ∈ [0, κ1])

of ∂U which is continuous, monotone decreasing in the second coordinate, and
almost surely differentiable.

Analogously, we may take the function

(5)
D : [0, κ2] −→ ∂U

D(s) := max{t | (t, s) ∈ U}

and parametrize ∂U by

xD : [0, κ2] −→
�2

xD(t) = (D(t), t) (t ∈ [0, κ2]),

provided there is no line segment parallel to the x1−axis.

◦ ˜˜˜˜˜˜ ◦

For any parametrization x(•) we denote the derivative

(6) ẋi(t) :=
dxi

ds
(t) (i = 1, 2).

In particular we observe that

(7) ẋC
1 (t) = 1, ẋC

2 (t) =
dC

ds
(t) = Ċ(t) (t ∈ (a, b) .
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Theorem 3.3. Let V ∈ V0.

1. For any parametrization x(•)

(8)

b∫

a

√
−ẋ1(t)ẋ2(t) dt

is finite and positive.

2. Let x̂ ∈ ∂U , a < x̂1 < κ1. Consider the parametrization xC as
described in Remark 3.2. Then the integral

(9)

x̂1∫

0

√
−ẋC

1 (t)ẋ
C
2 (t) dt =

x̂1∫

0

√
−Ċ(t) dt

is finite and positive.

3. Let x(•) : [a, b] → ∂U be a parametrization such that x(a) = x2 (the
blisspoint of player 2), Let x̂ ∈ ∂U and let t̂ ∈ [a, b] be such that
x(t̂) = x̂. Then
(10)

t̂∫

a

√
−ẋ1(t)ẋ2(t) dt =

x̂1∫

0

√
−ẋC

1 (t)ẋ
C
2 (t) dt =

x̂1∫

0

√
−Ċ(t) dt

and similarly
(11)

b∫

t̂

√
−ẋ1(t)ẋ2(t) dt =

κ1∫

x̂1

√
−ẋC

1 (t)ẋ
C
2 (t) dt =

κ1∫

x̂1

√
−Ċ(t) dt

that is, the integrals are independent of the particular parametrization.

We do not prove these technical details as they are standard w.r.t. line and
surface integrals. (See however [27], CH. VIII for a detailed treatment).

Consequently, as the integral under consideration is independent on the
parametrization we are justified to use notations like

∫

∂U

√
−dx1 dx2 =

x2∫

x1

√
−dx1 dx2 :=

b∫

a

√
−ẋ1(t)ẋ2(t) dt
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or in the case of item 3

x̂∫

x1

√
−dx1 dx2 :=

t̂∫

a

√
−ẋ1(t)ẋ2(t) .

Example 3.4. For a > 0 ∈ �2
+ consider in particular a deGua Simplex Πa ∈ U.

Choose the interval [0, a1] and define C(t) := a2 − a2
a1
t (0 ≤ t ≤ a1).

0

a2

a1

Πa

Figure 3.1: Parametrizing a deGua Simplex

Then

(12)

xC : [0, a1] −→
�2

xC(t) =

(
t, a2 −

a2
a1

t

)

parametrizes the Pareto curve ∆a of Π(a). Thus we compute the surface integral
to be ∫

∂U

√
−dx1 dx2 =

a1∫

0

√
−ẋC1 ẋ

C
2 dt =

a1∫

0

√
a2
a1

dt =
√
a1a2.

That is, we obtain (up to a factor 1
2) the squareroot of the area of Πa.

Now let Π =
∑

k∈K Πa(k)
be a cephoid. By a simple generalization we obtain for

the surface integral

(13)

∫

∂U

√
−dx1 dx2 =

∑

k∈K

√
a
(k)
1 a

(k)
2 .

In particular, if Π is standard dyadic and αT the common product resulting from
the deGua Simplices involved (Definition 2.1), then of course

(14)

∫

∂U

√
−dx1 dx2 = K

√
αT .
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Observe that in both cases the products a
(k)
1 a

(k)
2 have the dimension of an area.

However, as we apply the square root, the surface integral has the dimension of a
length.

◦ ˜˜˜˜˜˜ ◦

Lemma 3.5. Let Π ∈ Ud and recall the blisspoints x1 and x2 of both the
players. Then the Maschler–Perles solution is characterized by the equation

(15)

µ(V )∫

x1

√
−dx1 dx2 =

x2∫

µ(V )

√
−dx1 dx2 .

Proof: Let Π =
∑

k∈K Πa(k)
; we can assume the K is even and the deGua

Simplices involved are ordered according to decreasing slope. Let αT denote
the common product of the deGua Simplices involved as in Definition 2.1.
Then according to (15) we have

(16) µ(V ) = µ(Π) =




K
2∑

k=1

a
(k)
1 ,

K∑

k=K
2
+1

a
(k)
2




The surface integral collects the surface measure of the various deGua Sim-
plices, i.e., the squareroot of the areas. Therefore we have

µ(V )∫

x1

√
−dx1 dx2 =

K
2∑

k=1

√
a
(k)
1 a

(k)
2 =

K

2

√
αT

=
K∑

k=K
2
+1

√
a
(k)
1 a

(k)
2 =

x2∫

µ(V )

√
−dx1 dx2.

(17)

q.e.d.

Naturally, we make this to be the definition in general.

Definition 3.6. The mapping µ : U → �
n
+ defined by

(18)

µ∫

x̄1

√
−dx1 dx2 =

x̄2∫

µ

√
−dx1 dx2.
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is the Maschler–Perles solution. µ is extended to the mapping µ : V →
�

n via

(19) µ(V ) := µ(x,U) := x+ µ(U) .

Remark 3.7. Let U ∈ U and let x(•) be a parametrization of ∂U . Define

(20) T = T
x(•)
V

by

(21)

T∫

a

√
−ẋ1ẋ2 dt =

b∫

T

√
−ẋ1ẋ2 dt,

then

(22) µ(V ) := x(T ) = x(T
x(•)
V ) .

Indeed, the integrals do not depend on the particular parametrization.

In particular, we can interpret the “parameter t” of a parametrization as “time”.
Then x(•) describes the motion of a point along ∂U and ẋ(t) is the “velocity”
or “speed” of the movement of the point. The velocity is a vector pointing in
the direction of the motion – a tangency to the curve ∂U . The coordinates ẋ1(t)
and ẋ2(t) describe the components of the velocity in the directions of the axes.
Or, returning to the interpretation of an agreement point of players moving along
the Pareto curve, we imagine that they make concessions or gains respectively
depending on the direction the motion takes. Maschler–Perles like to speak of the
“Donkey Cart” (see also Figure 3.2).

Roughly, if the motion starts e.g. at player 2’s blisspoint x2 and moves from left
to right along the Pareto curve, then − ẋ2(t)

ẋ1(t)
reflects the the rate of concessions

player 2 is yielding to player 1 during the motion. This kind of process stops when
the agreement point reaches the Maschler–Perles solution.

Within this picture, Tx(•) is the traveling time (under x(•)) which the point
x(t) requires in order to reach the position of the Maschler–Perles solution when
starting from either one of the blisspoints.

◦ ˜˜˜˜˜˜ ◦

In order to make this even more lucid, we focus on a particular parametriza-
tion which exhibits a distinct view on the traveling time.
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Remark 3.8. Let U ∈ U and let x(•) : [a, b] → �2 be a parametrization.
Consider the strictly monotone function

f : [a, b] → �

given by

(23) f(t) :=

t∫

a

√
−ẋ1ẋ2 ds (t ∈ [a, b])

and let b̄ := f(b) such that
f : [a, b] → [0, b̄]

is a bijection. Let h be the inverse of f , i.e.,

(24)
h : [0, b̄] −→ [a, b]

h(s) = f−1(s) (s ∈ [0, b̄]) .

Using ′ for d
ds

for the (almost surely defined) derivatives, we obtain

(25) f ′ =
√

−ẋ1ẋ2 > 0 ; h′(s) =
1

f ′(f−1(s))
=

1

(f ′ ◦ h)(s)) (s ∈ [0, b̄]).

Consider a further parametrization ξ(•) defined by

(26)
ξ : [0, b̄] −→ �2

ξ(s) = x(h(s)) = (x ◦ h)(s) (s ∈ [0, b̄]) .

then we compute the derivatives in direction of the axis; these are for i = 1, 2:

ξ′i = (ẋi ◦ h) · h′ = (ẋi ◦ h)
1

f ′ ◦ h,

With some abbreviation of notation, we write this as

(27) ξ′i =
ẋi√−ẋ1ẋ2

.

As a consequence we obtain

(28) ξ′1 · ξ′2 =
ẋ1ẋ2(√−ẋ1ẋ2

)2 = −1 .

Formula (28) shows: If ξ is chosen for the parametrization (i.e., a time change
applied via (23) and (26)), then the point ξ(t) moves on ∂U with a velocity ξ̇ in a
way such that the product of the velocities in each coordinate direction is constant
and equals −1.
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x

ξ̇

ξ̇1

ξ̇2

U

Figure 3.2: The Donkey Cart

Now in this case the traveling time T := T
ξ(•)
U , as defined for ξ(•) via Remark 3.7

formula (20) or (21) respectively is obtained as follows. We have

(29)

T∫

0

√
−ξ̇1ξ̇2 dt =

b̄∫

T

√
−ξ̇1ξ̇2 dt i.e.

T∫

0

1 dt =

b̄∫

T

1 dt ,

which results in T = b̄− T , i.e.,

(30) T = T
ξ(•)
U =

b̄

2
.

Thus T = T
ξ(•)
U is the midpoint of [0, b̄].

In other words, if two particles move with a speed such that the product of veloc-
ities in coordinate directions equals -1 for each of them, and if they start at the
different endpoints of ∂U , then they will meet exactly at half the time needed to
traverse ∂U and they will meet at µ(V ).

Note that the parametrization ξ is almost surely uniquely defined by the require-
ment ξ̇1ξ̇2 = −1. For, if we return to the parametrization xC(•) as discussed in

Example 3.2, then we obtain equations ξ̇1ξ̇2 = −1 and ξ̇1
ξ̇2

= Ċ. Consequently

ξ̇2 = Ċξ̇1 = −Ċ
1

ξ̇2
ξ̇2 = −

√
Ċ .

In view of this observation we may conclude that

(31) T̄ (U) := T
ξ(•)
U

does not depend on the parametrization. (ξ does not significantly change by a
reverse of time).
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Definition 3.9. We call ξ the standard parametrization and

(32) T̄ (U) := T
ξ(•)
U

the standard traveling time,

Recall that the Maschler–Perles solution is

(33) µ(U) = ξ(T̄ (U )) .

Moreover, as
∫ µ(U)
x1 =

√
−dx1dx2 does not depend on the parametrization (The-

orem 3.3), we obtain immediately

(34)

µ(U)∫

x1

√
−dx1dx2 =

T̄ (U)∫

0

√
−ξ̇1ξ̇2 dt = T̄ (U ) = T

ξ(•)
U .

◦ ˜˜˜˜˜˜ ◦

0 a1

a2
U

Figure 3.3

Example 3.10. Let U ∈ U be a deGua Simplex Πa, that is a triangle as in
Figure 3.3. Then the standard parametrization is verified to be

ξ : [0,
√
a1a2] →

�2

ξ(t) =

(√
a1
a2

t, a2 −
√

a2
a1

t

)

(or its time reverse), thus the standard traveling time is the area generated by the
deGua Simplex, i.e.,

(35) T̄ (U) =
1

2

√
a1a2 .

◦ ˜˜˜˜˜˜ ◦



222 ? Bargaining ? Chapter XI ?

Theorem 3.11. 1. Let Π ∈ Ud and let αT be the common product of the
deGua Simplices involved. Then the standard traveling time is

(36) T̄ (U) = T
ξ(•)
U =

K

2

√
αT .

2. The standard traveling time is additive on standard dyadic Cephoids, ,
i.e., if Π,Π′ ∈ Ud are both polyhedral, then

(37) T̄ (Π + Π′) = T̄ (Π) + T̄ (Π′) .

Proof: The first statement follows exactly as in Example 3.4. For the second
we can assume that T and αT are common in both dyadic Cephoids. By
partitioning the deGua Simplices involved if necessary, we can also assume
the K is the same in the representation of both Π Π′.

Then Π + Π′ is the sum of 2K deGua Simplices and hence by (36)

(38) T̄ (Π + Π′) = K
√
T =

K

2

√
T +

K

2

√
T = T̄ (Π) + T̄ (Π′) .

q.e.d.

Theorem 3.12. µ is a bargaining solution on V.

Proof: It suffices to provide a proof for µ seen as a mapping on U. Pareto
efficiency is obvious. We prove scale invariance, it will then be obvious how
to do anonymity.

Discussing the situation on U, it suffices to consider (positive) linear trans-
formations L :

�2 → �2, given by

L(x) = (α1x1, α2x2) (x ∈ �2)

with (0 < α ∈ �2).

Now, if x(•) parametrizes ∂U , then it is not hard to see that (L ◦ x)(•)
parametrizes ∂L(U ). And if T = T

x(•)
V is such that

T∫

a

√
−ẋ1ẋ2 dt =

b∫

T

√
−ẋ1ẋ2 dt ,
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then it follows that

(39)

T∫

a

√
− ˙L1 ◦ x1

˙L2 ◦ x2 dt =

T∫

a

√
−α1ẋ1α2ẋ2 dt

=
√
α1α2

T∫

a

√
−ẋ1ẋ2 dt

=
√
α1α2

b∫

T

√
−ẋ1ẋ2 dt

=

b∫

T

√
− ˙L1 ◦ x1

˙L2 ◦ x2 dt

holds true. Consequently we have T
L◦x(•)
LU = T

x(•)
U and

(40) µ(LU) = L ◦ x(TL◦x(•)
LU ) = L ◦ x(T x(•)

U ) = L(µ(U)) .

q.e.d.

We have established the uniqueness of a superadditive bargaining solution
on Ud (and Vd) preliminarily by Lemma 2.4. We now have to complete this
task.

Theorem 3.13. µ is the unique superadditive bargaining solution on Vd.

Proof: Let ϕ be any other superadditive bargaining solution on Vd.

1stSTEP :

By scale invariance and anonymity it is clear that, for any deGua Simplex
Πa, it follows that ϕ(Πa) is the midpoint a

2
. For, by choosing an appropriate

rescaling one can transform Πa into Πe, which is completely symmetric and
hence (by anonymity) yields ϕ(Πe) = (1

2
, 1
2
).

2ndSTEP :

Next, let Π = Πa + Πb all ingredients being standard dyadic. The situation
is depicted in Figure 3.4. We know that the area of both Πa and Πb is equal.

Consider the linear transformation of utility L :
�2 → �2 given by

L(x1, x2) = (a2x1, b2x2) (x ∈ �2
+)
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Πa

Πb
a2

b1

Figure 3.4: Summing two dyadic deGua Simplices

After the transformation the left side of L(Πa) and the lower side of L(Πb)
have equal length a2b1. Nevertheless, both deGua Simplices after the trans-
formation do have equal area as before, as the area is simultaneously mul-
tiplied by a2b1. Then necessarily L(Πa) and L(Πb) have to be equal up to
reflection along the diagonal; the situation is depicted in (Figure 3.5).

L(U)

L(πb)

L(Πa +Πb)

Figure 3.5: After the Transformation

Consequently L(Πa + Πb) = L(Πa) + L(Πb) is symmetric. As ϕ is Pareto
efficient and anonymous, we conclude that

ϕ(L(Πa) + L(Πb)) = ϕ(L(Πa +Πb)),

and hence is the unique edge of L(∂Π). Consequently ϕ(Πa + Πb) is the
unique edge of ∂Π.
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3rdSTEP : We have now proved that ϕ satisfies all conditions of Lemma
2.4, hence ϕ = µ,

q.e.d.

In order to expand this result to V one has to rely on a continuity property
as µ employes the surface integral. One can base the main argument on the
Hausdorff topology applied to U and then , in a natural manner to V.

Within our present context, we will just outline the procedure. The details
are to be found with Maschler–Perles [13] or – for a textbook version
– in [27]. One starts by extending the Hausdorff topology on compact sets
to bargaining solution in an obvious manner. One then shows that µ is
continuous on U.

Clearly, the bargaining problems in Ud are dense within U. Thus, we are in
the position to claim that a unique superadditive and continuous bargaining
solution exists on U. For completeness, we cite this as a Theorem.

Theorem 3.14 (Perles-Maschler [13]). There exists a uniquely defined
superadditive and continuous bargaining solution on U. This is the Maschler–
Perles solution.
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4 Cephoids: The Surface Measure

We now return to our topic – Cephoids – and review the Maschler–Perles
solution under a slightly changed aspect.

The “donkey card” of Maschler and Perles reflects the intuitive idea of a point
traveling along the Pareto surface with a certain speed. This speed is deter-
mined by two forces pulling in the direction of the axis (the donkeys pulling
in different directions). The product of these velocities can be normalized to
be −1 (in the standard parametrization).

This process – applied for two such vehicles or points on the Pareto surface –
represents the concept of two players yielding to the demands of the opponent
continuously until a point of stability is reached: at the Maschler–Perles
solution each player has conceded the same amount of “utils”.

Now we change our intuition as follows: we consider a surface measure defined
on the Pareto surface with a density (w.r. to the Lebesgue measure on the
Pareto surface) corresponding to the traveling speed as mentioned above.

We start out with a deGua Simplex Πa. We associate a surface measure
α :=

√
a1a2 to the Pareto surface ∆a of Πa. More generally, to some

interval I ∈ ∆a with length (Lebesgue measure) ` we associate the surface
measure

(1) ι∆(I) =

√
a1a2√

a21 + a22
=

α

`
λ(I) .

such that the total is indeed ι∆(I) = α . This way we generate a measure ι∆
on ∆a with density α

`
; we call this the surface measure.

Next let
Π̂a :=

α√
2
Πe = Π

α√
2
e

be an appropriate multiple of the the unit deGua Simplex. The length
(Lebesgue measure) of the Pareto surface ∆̂a is α. Therefore we can es-
tablish the mapping

κ̂ : ∆a → ∆̂a

by the agreement

(2) κ̂(ai) =
α√
2
ei (i = 1, 2)

and

(3) κ̂(ta1 + (1− t)a2) := tκ̂(a1) + (1− t)κ̂(a2) (0 ≤ t ≤ 1) .
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The mapping κ̂ transports the measure ι∆ from ∆a to ∆̂a this measure is

(4) κ̂ι∆ := ι∆ ◦ κ̂−1 .

The result is

(5) (κ̂ι∆)(∆̂
a) = ι∆(κ̂

−1(∆̂a)) = ι∆(∆
a) = α ,

and because of linearity of κ̂ (equation (3)) we obtain the Lebesgue measure

on ∆̂a, i.e.,

(6) κ̂ι∆ = λ on ∆̂a .

This procedure is now generalized to an arbitrary Cephoid in two dimensions,
mapping the Pareto surface on a suitable multiple of the unit Simplex. To
this end, consider a Cephoid Π =

∑
k∈K Πa(k)

. We explicitely assume that
the ordering of the line segments follows the slopes as previously. Then, to
every line segment ∆(k) = ∆a(k)

and its translate within ∂Π we assign the
surface measure ι∆(•) as above. The surface measure yields

(7) ι∆(∆
(k)) =

√
a
(k)
1 a

(k)
2 := αk (k ∈K) .

Performing this sumultaneously for all k we obtain ι∆(•) on ∂Π(k) such which
has a piecewise constant density with respect to Lebesgue measure (which is

αk√
a
(k)
1 +a

(k)
2

on ∆(k)). We call ι∆ the surface measure on the Pareto surface

∂Πa of Π.

Now we proceed as in the construction of the canonical representation in
Chapter 2: For k ∈K we define a multiple of the unit Simplex

(8) Π̂(k) :=
1√
2
αkΠ

e = Π
αk√
2
e

such that the surface has length λ(∆̂(k)) = αk. Then we put

(9) Π̂ :=
∑

k∈K
Π̂(k) = (

∑

k∈K

1√
2
αk)Π

e =:
1√
2
αΠe .

the Pareto surface
∂Π̂ = α∆e = ∆̂

is a multiple of the unit Simplex with length

(10) ι∆(∆) =
∑

k∈K

1√
2
αk =

1√
2
α .
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∆(1)

∆(2)

∆(3)

∆(4)

∆(5)

∆̂(1)

∆̂(2)

∆̂(3)

∆̂(4)

∆̂(5)

κ̂

κ̂
−1

Π Π̂

Figure 4.1: Mapping ∂Π onto ∆̂

which is the length of ∂Π in terms of the surface measure.

Accordingly, we construct a bijective and piecewise affine mapping κ̂ : ∆ →
∆̂ exactly in analogy to the canonical mapping κ defined in Chapter 2. We
proceed by mapping the translate of ∆(k) (as a part of ∂Π) on the correspond-

ing copy of ∆̂(k) such that the order dictated by the slopes |a
(k)
2

a
(k)
1

| is respected.

So, if ∆(1) has the smallest slope |a
(1)
2

a
(2)
1

|, then the translate of ∆(1) is the line

segment in the uppermost left corner of ∂Π and this is mapped on a line seg-
ment of length α1 in the uppermost left corner of ∆̂ etc. Figure 4.1 indicates
the procedure.

Formally, one proceeds as in Chapter 1. A “grid” on the Pareto surface

(11) ∂Π̂ =
1√
2
α∆e

is provided by the vectors

(12) â(1) :=
1√
2
(0,
∑

l∈K
αl
2), â

(k) :=
1√
2
(
∑

l≤(k−1)

αl
1,
∑

l≥k

αl
2) (k ∈K) .

These vectors generate Simplices

(13) ∆̂(k) = [â(k−1), â(k)] (k ∈K)

on ∆̂ the order of which reflects the ordering of the ∆(k), i.e., follows deacreas-
ing slope. The mapping κ̂ is then extended in the obvious affine way to
preserve the lattice structure (the poset).
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Combining we formulate

Theorem 4.1. The poset V̂ generated on ∆̂ is isomorphic to the poset V.
Hence (∂Π,V) and (Π̂, V̂) are combinatorically equivalent.

Proof:

Same as in Chapter 2 Section 1, Theorem 1.3.

q.e.d.

Definition 4.2. Let Π =
∑

k∈K Πa(k)
be a Cephoid in

�2
+. Let

(14) ∆̂ := α∆e =
1√
2

(
∑

k∈K

√
a
(k)
1 a

(k)
2

)
Πe .

We call ∆̂ the measure preserving representation of Π. The mapping

(15) κ̂ := ∂Π → ∆̂

is the measure preserving mapping. The endpoints (blisspoints) of ∆̂

are x̂1 := 1√
2
(α, 0) and x̂2 := 1√

2
(0, α); the center point of ∆̂ is denoted

by

(16) µ̂ :=
1

2
√
2
αe .

Naturally, µ̂ = µ(Π̂) is the Maschler–Perles solution to the bargaining prob-

lem (0, Π̂.

Theorem 4.3. Let Π =
∑

k∈K Πa(k)
be a Cephoid. Let Π̂ denote the measure

preserving representation and let κ̂ denote the measure preserving mapping.
Then the Maschler–Perles solution of (0,Π) is the inverse image of the center
point, i.e.,

(17) µ(Π) = κ̂
−1 (µ̂) = κ̂

−1
(
µ(Π̂)

)
= κ̂

−1

(
1

2
√
2
αe

)
.

Proof: Consider the function f =
�

[x1,µ(Π)] defined on ∂Π. f is being

transported to ∆̂ via f̂ := f ◦ κ̂−1. Since κ̂ is bijective and κ̂(x1) = x̂
1,

the vector x? := κ̂ (µ(Π)) yields

f̂ =
�

[x̂1,x?] .
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The integral behaves under the transformation of variables initiated by κ̂ as
follows:

∫

∂Π

fdι∆ =

∫

∆̂

f ◦ κ̂−1d(κ̂ι∆) =

∫

∆̂

f̂d(κ̂ι∆) =

∫

∆̂

f̂dλ ,

which is

µ(Π)∫

x1

dι∆ =

∫

∂Π

�

[x1,µ(Π)]dι∆ =

∫

∂Π

fdι∆

=

∫

∆̂

f̂dλ =

∫

∆̂

�

[x̂1,x?]dλ =

x?∫

x̂1

dλ = λ([x̂1,x?]) .

(18)

Now we perform the same operation for the function
�

[µ(Π),x2]. Then analo-
gously

(19)

x2∫

µ(Π)

dι∆ =

x2∫

x?

dλ = λ([x?,x2]) .

However, the integrals in (18) and (19) are equal according to Definition 3.6
as they are

µ(Π)∫

x1

dι∆ =

µ(Π)∫

x1

√
−dx1dx2 and

x2∫

µ(Π)

dι∆ =

x2∫

µ(Π)

√
−dx1dx2

see also (34).

Therefore,
λ([x̂1,x?] = λ([x?,x2])

which shows that x? = µ̂ is the centerpoint of ∆̂. Thus

κ̂ (µ(Π)) = x? = µ̂ ,

q.e.d.

Figure 4.2 illustrates the procedure. The length of each segment in ∆̂ equals
the square root of the area of the corresponding triangle on ∂Π.
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µ̂
µ

κ̂
−1
Π

Figure 4.2: µ as the inverse image of the center point.





Chapter 12

The Surface Measure
and the µπ Solution

Within this chapter, we present a generalization of the Maschler–Perles so-
lution to n dimensions. As a general superadditive solution does not exist
(Perles [21]), we have to restrict our discussion to some narrower domain
in some way or other. Naturally, we restrict our interest to Cephoids.

Hence, we follow the path indicated in Section 4 of Chapter 11. Thus, we
focus on Cephoids as feasible sets of bargaining problems for n players and
elaborate on the concept of the surface measure. To this end, for any Cephoid
we adjust the (higher dimensional) “volume” of a Pareto face such that the
result has the correct dimension and size of a surface to be assigned to that
Pareto face. The measure preserving mapping is then arranged to map the
complete Pareto surface to a suitable multiple of the unit Simplex endowed
with the Surface Measure. The solution envisioned is then the inverse of the
center point under the measure preserving mapping.

233



234 ? The µπ Solution ? Chapter XII ?

1 Preliminary Example: Three dimensions

As an introductory exercise consider the “sum of two” deGua simplices as
indicated in Figure 2.4. This image appeared very early in Chapter 1 of
our presentation, see Figure 2.4 of that Chapter. The figure represents a
Cephoid

Π = ∆a +∆b ,

the surface of which shows the two translates of the deGua Simplices involved
and a rhombus

Λab = Λab
23 13 = ∆a

23 +∆b
13

This rhombus is the sum of two Subsimplices of ∆a and ∆b.

∆a

∆a(2)
+ b

∆a
23 +∆b

13 =: Λab

1

2

3

Figure 1.1: The sum of two deGua Simplices

For the Maschler–Perles solution in two dimensions the surface measure re-
sults from the area of a deGua Simplex. Analogously, we want to construct
a surface measure for the above Cephoid in 3 dimensions via the volume
generated by a deGua simplex. However, as we have a new type of a Pareto
face – the rhombus Λab appears – there has to be a surface measure defined
on this rhombus as well. Moreover, we need to have a certain compatibility
of the definitions on the various Pareto faces.

First we focus on ∆a with a = (a1, a2, a3) > 0. The volume of the deGua
Simplex Πa as computed in

�3 is V (Πa) = a1a2a3
6

.



? Section 1: Preliminary Example: Three dimensions ? 235

We assign an area

(1) ι∆(∆
a) =

3

√
(a1a2a3)

2

to ∆a. ι∆ will eventually be called the surface measure.

The same area is associated to any translate of ∆a. Then for d ∈ �3
+ and

ε > 0

(2) ι∆(d+∆εa) = ε2ι∆(∆
a).

This indicates that ι∆ behaves indeed like an area although derived from a
volume.

A slight extension of this definition generates a σ–additive set function on
∆a. For, decompose ∆a canonically into 4 similar Simplices as indicated by
Figure 1.2. Define the central triangle – which is not the surface of a DeGua
Simplex – to be

a1

a2

a3

a2+a3

2

a1+a2

2

a1+a3

2

∆a

∆a?

a2+∆a

2

Figure 1.2: Canonical Decomposition of a Simplex ∆a

(3) ∆a∗ := convH

({
a1 + a2

2
,
a1 + a2

2
,
a2 + a3

2
,

})
.
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Then

(4) ∆a = ∆a∗ ∪
3⋃

i=1

(
ai +∆a

2

)
.

Each of the 4 triangles involved has measure ι∆(
1
2
d + 1

2
∆a) and because of

(2) we have

(5) ι∆(
1

2
d+

1

2
∆a) =

1

4
ι∆(∆

a).

Continue this kind of decomposition of a Simplex into 4 subsimplices to ob-
tain arbitrarily fine decompositions. This way we obtain an additive set
function on the field generated by these Simplices on ∆a. By the usual ex-
tension theorems we then we obtain the surface measure ι∆ on the Pareto
surface d + ∆a of every translate d + Πa of some deGua Simplex Πa (the
σ–algebra is generated by the relative topology). This rather clumsy con-

Figure 1.3: The Measure Preserving Image

struction will be omitted in what follows: assigning a measure to a Pareto
face of a Cephoid induces a measure on this surface in a natural way.

Next we consider the construction of a mapping κ̂ which throws ∆a (or a

translate) onto the multiple ∆̂a = ι∆(∆
a)∆e of the unit Simplex. κ̂ will be

called the “measure preserving mapping”. The definition is obvious –
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one has to identify the vertices and construct a linear mapping canonically.
The image is depicted in Figure 1.3 and the surface measure ι∆ is transferred
into the Lebesgue measure on ∆̂a.

Now proceed with an analogous procedure for Λab. We define a measure
on the surface Λab in a “compatible” way to the one on the surface of the
Simplices. That is, the relations in size and ordering have to be preserved
by the mapping κ̂.

There is a marked difference to the two dimensional case (Chapter 11)
in which a polyhedral Cephoid is just defined by line segments and hence
ex ante is a Cephoid. The rhombus is the first new type of a Pareto face
that appears in three dimensions. (The next new type is the block in four
dimensions).

We assign to Λab
23 13 a measure that depends on the volumes of the two deGua

Simplices involved and allows for a consistent bijection onto a suitable mul-
tiple of ∆e. To this end, consider Figure 1.4.

∆se

∆te

Λse,te

Figure 1.4: Decomposition of ∆(s+t)e

Denote the area (Lebesgue measure) of the unit Simplex by λ(∆e) =: λ (=
1
2

√
3). Then the area of a multiple ∆se is λ(∆se) = s2λ. Therefore the area
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of the rhombus is
(6)
λ(Λse,te) = λ(∆(s+t)e − λ(∆se)− λ(∆te) =

(
(s+ t)2 − s2 − t2

)
λ = 2stλ .

E.g., in Figure 1.4, we have s = 3, t = 6 and hence Dse contains 9 units, ∆te

contains 36 units, and Λse,te containes 18 units.

By (1) the surface measure is normalized to ι∆(∆
e) = 1. Then (6) translates

into

(7) ι∆(Λ
se,te) =

(
(s+ t)2 − s2 − t2

)
= 2st .

Figure 1.4 interpretes (7) as well – one just has to change the normalisation.
Generally, let s, t be determined by

ι∆(∆
a) = 3

√
(a1a2a3)2 =: s2 , ι∆(∆

b) = 3
√

(b1b2b3)2 =: t2

Then, by (7) we have for the area of the rhombus

2st = 2 3
√
a1a2a3

3
√

b1b2b3 = 2 3
√
(a1a2a3)(b1b2b3) .

Therefore we now define the measure of the rhombus to be

ι∆(Λ
ab) := 2 3

√
(a1a2a3)(b1b2b3)

For a general Cephoid in 3 dimensions this is formulated as follows.

Definition 1.1. Let n = 3 and let Π =
∑

k∈K Π(k) be a Cephoid. Write

P (k) := a
(k)
1 a

(k)
2 a

(k)
3

Then the surface measure ι∆(•) is defined by

(8) ι∆(∆
(k)) =

3

√(
P (k)

)2

for the translates of deGua Simplices and

(9) ι∆(Λ
(kk′)) := = 2 3

√(
P (k)

)(
P (k′)

)
.

for the translates of the rhombi.
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1

4

Π

∆c

∆a

∆b

Figure 1.5: The Surface Measure of deGua Simplices and Rhombi

An example showing a sum of 3 deGua Simplices is provided by Figure 1.5.
Let ∆a be red, ∆b green, and ∆c blue. Assume the surface measure to have
been arranged in a way that

ι∆(∆
b) = 4ι∆(∆

a) , ι∆(∆
c) = 9ι∆(∆

a) ,

which is suggested by the number of triangles contained in each of the image
Simplices. So we kind of compute in ι∆(∆

a)–units.

Generally, for some integer p and ι∆(∆
•) = p ι∆(∆

a) we obtain

P • = p
3
2P a

and hence

ι∆(Λ
a•) = 2

3

√
(P a)p

3
2P a) = 2

√
p 3
√
(P a)2 = 2

√
pι∆(Π

a) .

Therefore in Figure 1.5 the red–green rhombus receives

ι∆(Λ
ab) = 4ι∆(Π

a) ,

and the red–blue rhombus receives

ι∆(Λ
ac) = 6ι∆(Π

a) .

For the the green–blue rhombus we compute

ι∆(Λ
bc) = 2

3

√
(P b)2(P c)2 = 2

3

√
4

3
2 (P a)29

3
2 (P a)2 = 12ι∆(∆

a)
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which one can nicely reenact in Figure 1.5 by counting the number of triangles
within the various Simplices and rhombi.

Based on these preliminary results we describe the program of this chapter
to be presented in the following sections.

1. Assign a surface measure to the Pareto surface of a cephoid.

2. Construct a bijective mapping κ̂ (“the measure preserving map-

ping”) from the Pareto surface of a Cephoid Π onto a multiple Π̂ of
the unit Simplex (“the measure preserving representation”) such
that

(a)

� � � � � �
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����

����

µ̂

µ(Π)

∆a

∆b

∆c

Π

Figure 1.6: Constructing the Bargaining Solution

(b) the poset of Pareto faces is preserved,

(c) the surface measure is carried into Lebesgue measure,

3. Define and justify a bargaining solution as the inverse image κ̂−1(µ) of
the center point µ̂ of the measure preserving representation.
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2 The Surface Measure

For the general construction of the surface measure, we make use of the
volume in order to define a measure on the surface of a Cephoid. We start
with a deGua Simplex. Let a = (a1, . . . , an) > 0 be a positive vector and let
Πa be the deGua Simplex associated, the surface is the Simplex ∆a.

For a ∈ �n
+ and any J ⊆ I we write

(1) Pa
J :=

∏

i∈J
ai .

For the corresponding deGua Simplex Πa the adjustment factor is

(2) τΠa := τa := n

√
(Pa

I ).

In particular, the unit deGua Simplex Πe receives the adjustment factor

(3) τΠe := 1 .

This notion is extended to Cephoids by additivity, that is, for a Cephoid
Π = Πa•

we define the adjustment factor to be

(4) τΠ :=
∑

k∈K
τΠ(k) .

Now we turn to the surface measure of a Pareto face. We start with a
deGua Simplex.

Definition 2.1. 1. For positive a ∈ �n
+ the surface measure assigned

to ∆a is

(5) ι∆(∆
a) := n

√
(Pa

I )
n−1. = τ n−1

a .

The same measure is established for any translate of ∆a.

2. In particular, the Simplex ∆e (the surface of the unit deGua Simplex
Πe) receives surface measure 1 according to (3):

(6) ι∆(∆
e) = 1 .
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Now we have to establish ι∆ “compatibly” on faces of a Cephoid. To this
end, let Π =

∑
k∈K Πa(k)

be a Cephoid and let F be a Pareto face with

reference system J =
{
J (k)

}
k∈K

, such that

(7) F =
∑

k∈K
∆

(k)

J(k)

holds true. The numbers jk := |J (k)| (k ∈K) satisfy

(8) (j1 − 1) + . . .+ (jK − 1) = n− 1 , j1 + . . .+ jK = n +K − 1 ,

meaning that the dimensions of the sub-simplices involved in the construction
of F add up to the dimension of F . (see the Reference Theorem (1.2) in
Chapter 3).

Let cJ denote the quotient of the volume of ∆e

J(1)+. . .+∆e

J(K) and the volume
of ∆e, we write

(9) cJ = cj1,...,jK :=
λ(∆e

J(1) + . . .+∆e

J(K))

λ(∆e)
,

where λ denotes the Lebesgue measure.

Example 2.2. Generally, for arbitrary n, one has c1,...,n,...,1 = 1. For n = 3
obviously c13 = 1. Also, two triangles will fit into a rhombus, see e.g. Figures 1.3
or 1.4, hence c22 = 2.

For n = 4 one has c114 = c141 = c411 = 1. Observe that the numbers cJ can
at once be interpreted by inspecting the canonical representation. Compare e.g.
Figures 6.4 and 6.5 in Chapter 3. In four dimensions (three dimensions for the
canonical representation), three tetrahedra fill a cylinder (the third deGua adds a
translation), implying c123 = c213 = ... = 3. A block containes exactly 6 tetrahedra
(two cylinders fill a block) – hence c222 = 6, etc.

◦ ˜˜˜˜˜˜ ◦

Also, in passing we observe

Lemma 2.3. The coefficient cj1,...,jK is the volume of the convex body

CovH{0, e1, . . . , ej1−1} ×CovH{0, ej1, . . . , ej1+j2−1}
×CovH{0, ej1+j2, . . . , ej1+j2+j3−1} × . . .

. . .×CovH{0, ej1+j2+...+jK−1,, . . . , ej1+...+jK−1}.
(10)
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Proof:

This follows from the fact that the Subsimplices involved are located in or-
thogonal subspaces.

q.e.d.

Having obtained the above defined “normalizing coefficients” we can now
proceed by defining a surface measure on any face of a Cephoid.

Definition 2.4. Let Π =
∑

k∈K Πa(k)
be Cephoid and let

(11) F =
∑

k∈K
∆

(k)

J(k)

be a be a Pareto face with reference system J =
{
J (k)

}
k∈K

. Then the

surface measure of F is given by

(12) ι∆(F ) = cJ
n

√[
P

(1)
I

]j1−1

· . . . ·
[
P

(K)
I

]jK−1

with P
(k)
I := Pa(k)

I (k ∈K).

The surface measure of ∂Π is obtained as the collection of all copies on
the various Pareto faces.

We list some properties of the surface measure indicating that it exhibits the
“appropriate behavior”.

Lemma 2.5.

1. For t = (t1, . . . , tK) > 0 and ta(•) = (tka
(k))k∈K let tF denote the face

corresponding to a face F . Then

(13) ι∆(tF ) = tj1−1
1 · . . . · tjK−1

K ι∆(F ).

2. In particular, for t = (ε, . . . , ε), we obtain from (8)

(14) ι∆(εF ) = εn−1ι∆(F ).

Equations (13) and (14) show that ι∆(•) behaves like the Lebesgue mea-
sure of the surface up to normalization.
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3. If for some family
{
a(k)

}
k∈K all the volumes of the DeGua Simplices

involved are equal, i.e.,

Pa(1)

I = . . . = Pa(K)

I ,

then it follows that a face F represented by (2.4) satisfies

(15) ι∆(F ) = cJι∆(∆
a(1)

).

Proof: The first two items are obtained by obvious computations with vol-
umes and surface areas involving the definition (12). The last item is a
consequence of the convention established by (9).

q.e.d.

Next we establish a mapping κ̂ = κ̂Π which carries the surface ∂Π of a
Cephoid Π bijectively onto a suitable multiple ∆̂ of the unit Simplex en-
dowed with a Cephoidal structure. κ̂ preserves the poset and carries the
surface measure into the Lebesgue measure. The procedure is the same as
for the canonical representation in Chapter 2. However, the relative size,
i.e., the areas, volumes, measures of the various Pareto faces are normalized
differently. Within the canonical representation of Chapter 2 the image of
a deGua Simplex is normalized to the unit. Presently, the image of a deGua
Simplex is adjusted according to the surface measure.

The following data will be used.

Definition 2.6. Let
{
a(k)

}
k∈K be a family of of positive vectors and let

Π =
∑

k∈K Πa(k)
be the Cephoid generated. For k ∈K let

(16) â
(k) := τa(k)e , ∆̂(k) := ∆(â(k)) , Π̂(k) := Π(â(k))

such that

(17) ι∆(∆̂
(k)) = ι∆(∆

(k)) (k ∈K)

is satisfied. Define

(18) ∆̂ :=

K∑

k=1

∆̂(k) = τΠ∆
e , Π̂ :=

K∑

k=1

Π̂(k) = τΠΠ
e .

such that

(19) λ(∆̂(k)) = τ a(k)λ(∆e) (k ∈K) , λ(∆̂) = τΠλ(∆
e)

holds true.
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Next we embed the Simplices ∆̂(k) suitably into ∆̂ via a mapping κ̂ = κ̂Π :
∂Πa → ∆̂ in a way such that the complete poset V of ∂Πa is bijectively
mapped onto the corresponding poset V̂ of ∆̂. In particular, each ∆(k) is
mapped onto an image ∆̂(k) with a size given by the surface measure. The
normalization with the Lebesgue measure involves the unit Simplex – this is
the meaning of (19). Alternatively, one focuses on a normalization w.r.t. the
surface measure – which is the second part of Formula (19).

We arrange the mapping κ̂ on ∂Π by mapping the extremals of ∂Π bijectively
onto the corresponding vectors of ∆̂. This exactly done in analogy to the
procedure in Chapter 2, Section 1.

By nondegeneracy every vertex of ∂Π is a unique sum of vertices of the ∆a(k)

involved. More precisely, for every vertex u of ∂Π, there is a unique mapping
i• such that u can be written via

(20)

i• : K → I

u = ai• :=
∑

k∈K
a(k)ik .

Thus we obtain

Definition 2.7. 1. Let Π be a Cephoid and let

∆̂ , Π̂

be given by (18). Then ∆̂ is the measure preserving representa-
tion of ∆a.

2. Let u be a vertex of ∂Π and let i• be the corresponding mapping as
described by (20). Then

(21) κ̂(u) = κ̂Π(u) :=
∑

k∈K
â
(k)ik =: û ∈ ∆̂

is called the measure preserving representation of u on ∆̂ .

3. Let F be a Pareto face of Π and let u1, . . . ,uL be its extremal points.
Then the convex hull of the images, i.e.,

(22) κ̂(F ) = κ̂Π(F ) := CovH{κ̂(u1), . . . , κ̂(uL)}, =: F̂

is called the measure preserving representation of F on ∆̂.
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4. In particular, for κ ∈K, let

(23) ∆{κ} =
∑

k∈K\{κ}
a(k)ik +∆(κ) ⊆ ∂Π

be the translate of ∆(k) located on ∂P as in the Translation Theorem
4.9 of Chapter 3. Then the measure preserving representation of ∆{κ}

is

(24) κ̂(∆{κ}) = κ̂Π(∆
{κ}) = ∆̂{κ} :=

∑

k∈K\{κ}
â
(k)ik + ∆̂(κ) ⊆ ∆̂ .

5. Let V be the poset of faces of ∂Π and let

(25) κ̂(V) := {κ̂(F ) F ∈ V} =: V̂

denote the collection of images of faces under the mapping κ̂. Then V̂

is the measure preserving representation of V on ∆̂.

6. We use the term µπ to indicate “measure preserving” as a homage
to Maschler and Perles. Thus, κ̂ is the “µπ mapping” and the term
“µπ representation” is somewhat loosely applied to the triple (∆̂, V̂, κ̂)
as well as to one or two of the ingredients.

Theorem 2.8. V̂ is a poset isomorphic to V. Hence (∆,V) and (∆̂, V̂)
are combinatorial equivalent. The mapping κ̂ = κ̂Π constitutes a piecewise
linear isomorphism between∆ and ∆̂. This isomorphism transfers the surface
measure on ∂Π into the Lebesgue measure on ∆̂(up to normalization via the
unit Simplex).

The proof is the same as in Chapter 2, Section 1 The mapping κ̂ is
bijective between the vertices of ∂Π and the appropriate subset of grid vectors
as described in equations (20) and (21). The (lattice theoretical) minimum
of two faces (whenever it exists) is obtained by taking the intersection of the
corresponding two sets of extremal points. Similarly, if the maximum of two
faces exists, then it is obtained via the union of the sets of extremal points.

Compare the two approaches: the canonical representation (treated in Chap-
ter 3) is the isomorphism of the Pareto surface ∂Π onto the n−1–dimensional
Simplex K∆e. The figures in Section 2 provide examples.

On the other hand, the measure preserving representation is a structure on
the Simplex ∆̂ = τΠ∆

e. The isomorphism κ̂ = κ̂Π assigns a certain size
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(area, volume, ...) to each of the Simplices, rhombi, ... on the surface. This
is done consistently and arranges the images in the same way as the situation
on the Pareto surface ∂Π dictates.

For examples see the figures in Section 1 of the present chapter. Returning
to Figure 1.4 and the discussion in the context we observe the adjustment of
the size of the translates of the deGua Simplices either in terms of Lebesgue
measure or in terms of the surface measure.

The example of Figure 1.4 demonstrates the two essential features of the mea-
sure preserving representation: the relative location of a translate κ̂(∆{κ}) in

∆̂ is dictated by the poset – i.e., by the relative location in Figure 2.4. The
size of such a translate – expressed either in terms of Lebesgue measure or in
terms of the surface measure is given by Formula (19). Based on these data,
the size of other Pareto faces is determined – see the discussion to Figure
1.4. This is essentially the content of Formula (12).
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3 The µπ Bargaining Solution – Axioms and

Interpretations

Within this section we describe – and justify – a generalization of theMasch-
ler–Perles solution ([13]). A counterexample provided by Perles([21])
shows that we cannot expect a superadditive solution on the full class of
bargaining solutions. Yet, in a further section, we exhibit the possibility
to construct a subclass on which a superadditive solution exists. Later on,
(Chapter 13) we will point out that a modified version of superadditivity
successfully characterizes the solution concept: this modification is Condi-
tional Additivity.

We begin with the definition generalizing the two–dimensional version.

Definition 3.1. Let Π be a Cephoid and let (∆̂, V̂, κ̂) be the measure pre-

serving representation (with ∆̂ = ∆τΠ∆e

, κ̂ = κ̂Π ). Let

(1) µ̂ :=
τΠ

n
e =: µ(ΠτΠe)

denote the barycenter (i.e., the “midpoint” of the extremal elements) of ∆̂ =
∆τΠe. Then

(2) µ(Π) := κ̂
−1
Π (µ̂)

is the µπ solution of Π.

We discuss a first interpretation extensively. To this end we revisit the inter-
pretation of bargaining problems with a Cephoidal feasible set and interpret
it’s µπ representation. Based on these exhibitions we will motivate the µπ
solution.

Remark 3.2. Interpreting the Solution –
. Bargaining in a Cephoidal Setup

We will distinguish the three PO sets involved with a Cephoid: apart from
the PO set of the Pareto surface of the Cephoid we have also the Canonical
Representation and the Measure Preserving Representation. The Canonical
Representation will serve as the commodity space, the Cephoid is the utility
space and the Measure Preserving (or µπ) representation appears as an
adjusted utility space to allow universal comparison of utility.

Imagine a commodity being available for distribution among the players via
cooperation. Each player has a utility function that depends on one (“his”)
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commodity only (represented by his corresponding axis), this leads to the
Cephoid located within the utility space. The measure preserving image is
interpreted as to indicate an adjustment of utilities respecting transfer costs
within various countries.

Let us make this precise.

First of all, consider bargaining in a deGua Simplex as follows. Assume that
n players can allocate a unit of one commodity by agreement about the dis-
tribution. Each player has a linear utility function, say ui(t) = ait (t ∈ [0, 1])
for i ∈ I and some positive ai. The feasible allocations of the commodity
are represented by ∆e = {x̂ ∈ �n

+

∑
i∈I x̂i = 1}. The Pareto surface of the

resulting bargaining problem (“in utility space”) is

(3)

∆a =
{
(u1(x̂1), . . . , u

n(x̂n)) x̂ ∈ ∆e
}

= {(a1x̂1, . . . , anx̂n) x̂ ∈ ∆e}
= CovH({a1, . . . ,an})

Thus, technically, the bargaining problem is given by (the status quo point 0
and) the feasible set Πa. We regard this situation – where the deGua Simplex
represents just a set of linear utilities – as a “primitive” bargaining problem.

Now assume that our players are involved in several (“primitive”) bargaining
situations of this type in various countries, remote and with varying infras-
tructure. Similarly to the “primitive case”, we imagine that players bargain
about the distribution of one unit of a commodity in each country k ∈K.

While bargaining takes place via the internet and feasible solutions can be
agreed upon immediately, the actual transfer of the commodity may be dif-
ficult as the case may be. For example, the transfer of money to a cer-
tain player may be costly and involve red tape when different countries or
currency domains (the Dollar, the Euro) are involved. Thus, each player
(depending on his own location) has a different linear utility function, say

u(k)i(t) = a
(k)
i t (t ∈ [0, 1]) referring to his utility of obtaining a unit of money

in country k. Thus, a(k) = (a
(k)
1 , . . . , a

(k)
n ) represents the utility functions of

the players regarding assignments in country k.

Bargaining takes place simultaneously with respect to the commodities in
each country. Players may consider giving in by an ε with respect to the
bargaining problem in country k for obtaining a δ in country l. If players
agree on a final distribution x̂(k) in county k, then according to (3) the result
in utilities is

(4) (a
(k)
1 x̂

(k)
1 , . . . , a(k)n x̂(k)

n ) ∈ ∆a(k) .
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Players simply add their utility received in each country (“intrapersonal com-
parison of utility”). Hence, the resulting (“global”) bargaining problem is
represented exactly by the Cephoid

Π =
∑

k∈K
Πa(k)

.

We expect that players agree to bargain only about Pareto efficient distribu-
tion of the commodity. A Pareto efficient result of the bargaining process,
i.e.,

x̂ =
∑

k∈K
x̂
(k) , x̂

(k) ∈ ∆e (k ∈K)

reflects a set of distributions x̂(k) of the commodity in each country k ∈ K.
The utilities according to (4) are

(5) x̄(k) = (x
(k)
1 , . . . , x(k)

n ) = (a
(k)
1 x̂

(k)
1 , . . . , a(k)n x̂(k)

n ) ∈ ∆a(k) .

The sum

(6) x̄ =
∑

k∈K
x̄(k)

is supposed to be Pareto efficient, hence located in some Pareto face F of
Π. Hence, according to the Reference Theorem 1.2, we know that with a
suitable reference set J,

(7) F =
∑

k∈K
∆

(k)

J(k), and x̄(k) ∈ ∆
(k)

J(k)

holds true.

We impose the PO–set of Π on K∆e = ∆Ke according to the Canonical
Representation Theorem. Then, the feasible allocations are given by the
Simplex

K∆e = ∆Ke .

and a commodity distribution x̂(k) in country k leads to a utility distribution
x̄(k) via (3). Therefore, the commodity distribution available in country
k ∈ K is marked by the relative location of the corresponding utilities in
Π, that is, the location is supplied by the situation in Π via the isomorphic
PO–sets. For short, the location of commodities available for bargaining in
a country is reflected by the canonical representation.

For an example we consider the Cephoid Odot introduced in Chapter 2 Figure
2.8. This figure is repeated in Figure 3.1. There are three players bargaining
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Figure 3.1: The Cephoid Odot

in four countries. The possible allocations of (4 units of) commodity are
given by the Simplex 4∆e = ∆4e, this is represented in Figure 3.2.

In Figure 3.2 there are 4 units of the commodity to be allocated, the alloca-
tions are given by 4∆e.Depending on the particular Pareto face of Π, a unit
of commodity is transferred at different rates. This defines a decomposition
of the allocation space into various regions corresponding to the maximal
faces in the utility space.

Therefore, the relevance of a Pareto efficient distribution of commodity x̂ =∑
k∈K x̂

(k) is dictated by the location of the corresponding utiltiy vector in
the canonical representation!

Each player has a concave, piecewise linear utility function, the slopes vary
in each of the regions of the fourfold unit Simplex 4∆e as indicated in Figure
3.2.

Transferring the allocations from the commodity spaceK∆e into utility space
yields the Cephoid Odot in Figure 3.1. Triangles and rhombi reflect the
(locally constant) rates of utility transfer resulting from the shape of the
utility functions evaluated at Pareto efficient commodity allocations. The
precise slope of the utilities in each region is obtained from the normal of the
corresponding face (simplex, rhombus).

Thus, in a “primitive” bargaining problem Π(a(k)) the transfer of utils between
players takes place at fixed transfer rates on the Pareto surface (determined
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Figure 3.2: Canonical Representation of Odot
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Figure 3.3: Assigning Rhombi to pairs of Simplices
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by the normal of ∆(a(k))). For the “global” bargaining problem which involves
bargaining in different countries, this is no longer true. We observe new
effects as players can give and take in different countries k and l. These effects
correspond to the (maximal) faces of the sum of the primitive bargaining
problems, i.e., the Cephoid Π.

Next, we enhance our interpretation by a further step as follows. We in-
troduce a new utility – let us call it “adjusted utility”. It reflects a players
transfer rate for yielding an ε in country k vs. obtaining a δ in country l,
hence induces a consistent measurement of utility over the various countries.
The allocation of “ adjusted utility” simultaneously takes care of all transfer
effects in a new allocation space – this is going to be α̂∆e.

In utility space (i.e., in Π) consider a Pareto efficient vector of the form

x̄ = x̄(l) + x̄(k) ∈ Λkl = ∆
(l)

J(l) +∆
(k)

J(k)

which reflects utilities of commodities traded in countries l and k. That
is, the rhombus represents an area of {k, l}–exchange. Along the boundary
lines of said rhombus {k, l} and the translate of Simplices (copies of primitive
situations) the measurement of utility should be consistent – i.e., the length
of the boundary segments of the rhombus should be consistently determined
by the length measurement in the primitive situations. As a rhombus has
two linear boundary segments (determined by two Simplices), this implies
that the area should be consistently defined by the area in the generating
Simplices.

Can one arrange for an adjusted utility space consistently? Can this be done
via a consistent bijective mapping of the adjusted utility allocations?

To rephrase it slightly, there is intra–personal comparison of utility among
the players w.r.t. different countries – as they add their utilities. There is
also inter–personal transfer of utility at various rates in the various coun-
tries. The allocation space of the original commodity does not reflect this.
Yet exchanging a unit has different effects when restricted to the various
countries. Now, we can indeed define a new utility space in which the areas
of the various regions of utility transfer are arranged consistently with the
transfer rates of utility.

Indeed, Theorem 2.8 shows that the construction of such an adjusted utility
space is possible. We can arrange for the measure preserving representation,
which reflects a decomposition of the Simplex ∆α̂e = α̂∆e of the “adjusted
utility space” corresponding to the Pareto faces of ∂Π. Figure 3.4 illustrates
a possible shape of the Pareto surface and the adjusted utility space of the
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three player bargaining problem involving four countries (deGua Simplices)
as induced by the Cephoid Π of Figure 3.1.

Figure 3.4: Measure Preserving Representation of Odot

As the adjusted utility space reflects a universally transferable utility, the
midpoint of this new allocation Simplex is the solution suggested, gener-
alizing the Maschler–Perles solution. Hence, in terms of adjusted utiltiy,
players receive the same assignment: their utility is correctly and universally
adjusted, so each of them gets the same amount.

With the appropriate version of “adjusted commodity”, the new utility space
reflects all necessary information regarding the exchange effects as explained
above. Therefore, equal allocation of this commodity results in the solution
in utility space.

It remains to justify the size (measurement) of the polyhedra in the adjusted
utility space. The generating deGua Simplices determine a Cephoid (and
its PO set) completely. Analogously the size of the images αk∆

e in K∆e

determine the shape of the measure preserving representation completely, as
the relative locations are prescribed by the PO set which is dictated by the
one of Π.

Therefore, it suffices to justify the size of ∆̂(k) or, more precisely the term

(8) ι∆(∆̂
(k)) = αkι∆(∆

e) = αk ,

that is, it all boils down to interpreting the value chosen in Definition 2.1. We
argue, that this is dictated by the rationale of the Maschler–Perles solution.

According to Definition 4.2 of Chapter 11 we know that the length of a line
segment ∆a with a = (a1, a2) in the two dimensional Cephoid should be√
a1a2. That is, the measure preservng representation for n = 2 is dictated
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by the Maschler–Perles solution which is based and axiomaticly determined
by superadditivity.

Indeed, for 2 dimensions (i.e., bargaining problems with 2 players) the con-
cessions players are made when departing from their bliss points during the
bargaining process are measured in terms of the surface measure.

Consider a Cephoid (a sum of 5 prisms, hence representing 5 states) as indi-
cated by Figure 3.5; the right hand side shows the corresponding canonical
representation.

   

∆a(5)

∆a(1)

5∆e

Figure 3.5: A two dimensional Cephoidal bargaining problem

Due to the superadditivity axiom, the Maschler–Perles solution evaluates
concessions of the players along maximal faces (i.e., line segments) according
to the corresponding area of the triangles (deGua Simplices). We are led to
assign a new length measurement (the surface measure) to a maximal face.

E.g., if the feasible set in Figure 3.5 is the Cephoid Π =
∑5

k=1Π
a(k)

then the

surface measure of (translate of) the line segment (simplex) ∆a(k) is

τ k := ι∆(∆
a(k)

) :=

√
a
(k)
1 a

(k)
2

(see Figure 3.6).

The concession of player 1 when he moves from his bliss point x1 to x2 along
∆a(1)

is considered to be equal to the concession of player 2 to move from y1

to y2 along ∆a(5)
if and only if τ 1 = τ 5 holds true. Eventually, this procedure

results in a distribution of utility at the Maschler–Perles solution at which
both players have made equal overall concessions.

In order to construct the solution, the total sum τ :=
∑5

k=1 τ k determines

the size of a new Simplex τ∆e. Each line segment ∆a(k)
is bijectively mapped
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∆a(5)

τ 5∆
e

τ 1∆
e

∆a(1)

5∆e

µ̂µ κ̂
−1
Π

x1

y1

x2

y2

Figure 3.6: The M–P solution as the inverse image of the center point

onto a copy in τ∆e, the size of this copy is the surface measure τ k of the line
segment. This way a bijective mapping κ̂Π of the Pareto surface ∂Π onto
a multiple of the unit Simplex (the space of adjusted commodity) appears.
With respect to this representation, concessions of players along the Pareto
surface a measured by Lebesgue measure. Hence the midpoint µ̂ of τ∆e

generates the Maschler–Perles solution µ as the inverse image in ∂Π, i.e.,
µ = κ̂

−1
Π (µ̂).

The construction is completely determined by the axiomatic of the Maschler
Perles solution. Superadditivity of the solution dictates the evaluation of
concessions via the area (“volume”) of the prisms involved.

While we cannot create a superadditive solution for n = 3, we hold that the
area assigned to a deGua Simplex a = (a1, a2, a3) in

�3 as a first approach
should be of the order of the product of the line segments which constitute
the boundary, hence √

a1a2
√
a1a3

√
a2a3

However, this quantity has the dimension of a volume and not of a surface.
Hence this quantitiy should be adjusted to

{√a1a2
√
a1a3

√
a2a3}

2
3

which is
3
√
(a1a2a3)2 .

In addition, some normalization should be chosen which, naturally, is the
one of Definition 2.1, for this leads to a surface measure 1 for ∆e as stated
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in that Definition.

Finally, as the measurements in the measure preserving representation allow
for a universal comparison of utility, we hold that the barycenter or midpoint
of this new allocation, space corresponds to the solution in utility space.
In two dimensions, this results in the unique superadditive solution for all
polyhedral bargaining problems, that is the Maschler–Perles solution. In 3
dimensions, we would have to choose the barycenter/midpoint of e.g. Figure
3.4. In general, this leads to accepting Definition 3.1.

For an additional justification, we will demonstrate within the following sec-
tion that superadditivity can be observed in suitably restricted classes of
Cephoids, although of course not in general.

Perles [21] proved that a superadditive bargaining solution does not exist for
more than 2 players (i.e., bargaining problems in 3 and more dimensions).
This is the most hindering drawback to a generalization of the solution.
Calvo–Gutierrez (see [6]) presented an extension to n–person games. They
generalized a procedure to compute the solution. An axiomatic justification
is missing and they offer no examples. Of course, their approach as well
cannot yield a superadditive solution.

One has to ponder about our approach for a while. For various reasons
the Maschler–Perles solution has never been very popular compared with,
say, the Nash solution. This is not the place to speculate about the fact,
however, it is obvious that the axiomatic as well as the computational aspects
constitute a barrier for Economists. From the viewpoint of this author,
superadditvity is a much more convincing axiom than, say (with all due
respect) the axiom “Independence of Irrelevant alternatives” (Nash) or “One
Player Monotonicity” (Kalai–Smorodinsky).

Our results in Section 4 will establish superadditivity for certain “well be-
haved” bargaining problems. Yet the solution exists for all Cephoids, i.e., for
bargaining problems resulting from a sum of deGua Simplices.

In Chapter 13 we will come up with a modified version of Superadditivity
called “Conditional Additivity” – this version supplies a further axiomatic
justification of our solution concept.
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4 Symmetry Considerations

For the following development we introduce certain requirements of sym-
metry that allow to imitate the arguments used in the 2–dimensional case
regarding supperadditivity. Compare the discussion centering around Stan-
dard Dyadic Cephoids in

�2
+ in Section 2.

Analogously, we introduce a restricting requirement concerning a family of
positive vectors

{
a(k)

}
k∈K and the resulting Cephoid Π =

∑
k∈K Πa(k)

as
follows: we assume that all deGua Simplices involved have equal volume.

Similarly to Section 2 we argue that this assumption is not as severe as
it may seem on first sight. For, a deGua Simplex generated by a rational
vector can be replaced by a homothetic sum of small multiples of itself. This
way, any family a• with volumes being multiples of the same small number
qualifies. Of course, we loose nondegeneracy by this procedure – but weak
nondegeneracy (see Definition 1.1 of Chapter 2) is preserved.

In Section 2 we have used a version of this requirement and it was justified
by continuity with respect to the Hausdorff metric. Presently we do not
know anything about denseness of Cephoids within the set of convex bodies
for general n ∈ �. But for Cephoids resulting from families

{
a(k)

}
k∈K with

rational vectors, we argue that the restriction to equal volumes is feasible.

4 4

4

Π

∆c
∆a

∆b

Figure 4.1: Surface Measure with equal volumes of deGua Simplices

Additionally, we require that the total numberK of deGua Simplices involved
in a family of vectors is a multiple of the dimension n.
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This can be achieved in a similar way by replacing each deGua Simplex by
a sum of n homothetic 1

n
–copies of itself.

Figure 4.1 provides a simple example of a Cephoid with the properties dis-
cussed.

Combining we come up with the following definition.

Definition 4.1. A family a• of positive vectors as well as the Cephoid Π
generated are called standard if the following conditions are satisfied.

1. a• is weakly nondegenerate (see Definition 1.1).

2. The K deGua Simplices involved have equal volume.

3. n is a divisor of K.

We treat the extension of our theory to weakly n.d. Cephoids and in partic-
ular to Standard Cephoids rather sloppily. For example, we do not explicitly
construct a measure preserving representation for weakly nondegenerate fam-
ilies a•. Indeed, points on the surfaces ∆ and ∆̂ can be identified consistently
despite the fact that there are non–unique representations of some extremals
given by vectors of the type exhibited in (20) of Section 2. Actually, weak
degeneracy is essentially a vehicle for providing a simplified access to exam-
ples and lemmata – the concept is not really needed for the development of
the theory. One could always restrict the discussion to the n.d. situation –
in which case the set of examples as provided in the following would just be
a bit smaller but not essentially so.

Lemma 4.2. Let

Π =

K∑

k=1

Πa(k)

be a standard Cephoid. Then µ(Π) has in each coordinate K
n
summands, i.e.,

there is a partition K = K1 ∪ . . . ∪Kn with |K1| = . . . = |Kn| = K
n

such
that

(1) µ(Π) =

(
∑

k∈K1

a
(k)
1 , . . . ,

∑

k∈Kn

a(k)n

)
.

Proof: Consider the measure preserving representation on ∆̂ = ∆α̂e (see
Definition 2.7). As the volumes of all deGua Simplices involved are equal,
there is a positive number α0 satisfying n−1

√
αk = α0 (k ∈K).
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Thus

(2) â
(k) = α0e (k ∈K).

Therefore the barycenter of ∆̂ is given by

(3)

µ(Π̂) =
e

n
α̂ =

e

n

∑

k∈K

n−1
√
αk

=
e

n
Kα0 = (K0α0, . . . , K0α0),

where K0 := K
n
is an integer.

Now consider the pre–image µ(Π) = κ−1(µ(Π̂)). In view of Definition 2.7
(see also formula (20)), there is mapping i• :K → I such that

(4) µ(Π) =
∑

k∈K
a(k)ik , µ(Π̂) =

∑

k∈K
â
(k)ik = (K0, . . . , K0)α0.

In view of 2 the sets Ki := {k ik = i} necessarily satisfy

(5) |K1| = . . . = |Kn| = K0 .

q.e.d.

Definition 4.3. Let a• be a standard family of positive vectors an let

Π =
K∑

k=1

Πa(k)

be the Cephoid generated. We call a• as well as Π well behaved if there is
a partition of K, say

(6) K =
⋃

i∈I
K i

such that

1. Ki = Kj (i, j ∈ I)

2. a
(k)
i ≥ a

(l)
i (k ∈K i, l /∈K i).
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Remark 4.4. Recall the scenario of our interpretation in Section 3. A bargaining
problem is “well behaved” if, when each player specifies the countries in which he
receives maximal marginal utilities, this constitutes a (possible) partition. Thus,
players have disjoint “most preferred countries” (not quite stringent: equalities are
admitted in Definition 4.3 – explaining the above “possible”). In this situation,
the bargaining solution will turn out to behave superadditively. That is, whenever
one decomposes the bargaining problem into the sum of two smaller ones, then
there is no incentive for the players to insist on separate bargaining. Everybody
is better off when the “global” bargaining problem is taken into account.

◦ ˜˜˜˜˜˜ ◦

Lemma 4.5. If a• is well behaved, then

(7) µ(Π) =


∑

k∈K1

ak1 , . . . ,
∑

k∈Kn

akn


 ,

that is, µ(Π) collects the K
n
largest vectors with respect to each coordinate.

Proof: By Lemma 4.2 we know that the solution satisfies

(8) µ(Π) =

(
∑

k∈K1

a
(k)
1 , . . . ,

∑

k∈K3

a(k)n

)

with |K1| = . . . = |Kn| = K
n
. Now suppose that some k1 ∈ K̄1 is not

contained in K1, i.e., the summand a
(k1)
1 does not appear in the first sum

in (8). Then it is contained in some other set K i, assume for simplicity
that this is K2. Necessarily, there is k2 ∈ K̄2 that is not contained in K2.
Again assume for simplicity, that k2 ∈ K3 holds true and find k3 such that
k3 ∈ K̄3, k3 /∈ K3. Proceeding this way, we must close the circle after
finitely many steps, again let us assume that this is after n steps. Thus we
have found kn ∈ K̄n, kn /∈ Kn such that kn ∈ K1 is the case. Now we
exchange the indices cyclically, i.e., consider the vector

x :=


 ∑

k∈(K1\{kn})∪{k1}
a
(k)
1 ,

∑

k∈(K2\{k1})∪{k2}
a
(k)
2 , . . . ,

∑

k∈(Kn\{kn−1})∪{kn}
a(k)n


 .

Because of Definition 4.3, we have increased the coordinates in each position.
But the vector x is a sum of vertices of the Simplices involved, hence it cannot
Pareto dominate the vector µ(Π) which is located on ∂Π.
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q.e.d.

We are now in the position to prove a version of superadditivity.

Theorem 4.6. The mapping µ behaves superadditively along decompositions
of a well behaved Cephoid. That is, if Π is a well behaved Cephoid and
Π = Υ+Ψ, then (Υ,Ψ are Cephoids and)

(9) µ(Π) ≥ µ(Υ) + µ(Ψ).

Proof:

1stSTEP : First of all, consider the case that both Υ and Ψ are sums of
those deGua Simplices that generate Π. That is, assume

Υ =
∑

k∈I
Πa(k)

, Ψ =
∑

k∈J
Πa(k)

with suitable disjoint index sets I,J satisfying I ∪ J = K. In each family,
the deGua Simplices have equal volume. Possibly n is not a divisor of |I|
or |J |. If so, we replace each deGua Simplex by a sum of n homothetic 1

n
–

copies of itself. This does not change the order property of Π and preserves
weak nondegeneracy. Hence we can at once assume w.l.o.g that Υ and Ψ are
standard.

According to Lemma 4.2 we know that

(10)

µ(Υ) =

(
∑

k∈I1

a
(k)
1 , . . . ,

∑

k∈In

a(k)n

)
,

µ(Ψ) =

(
∑

k∈J1

a
(k)
1 , . . . ,

∑

k∈Jn

a(k)n

)
,

with
|I1| = . . . = |In|,
|J1| = . . . = |Jn|.

Obviously, we have
|I1 + J1| = . . . = |In + Jn|,

and as the sum of all n terms is K, each of them has to be K
n
. Now consider

the first coordinate of the solutions. We obtain

(11) µ1(Υ) + µ1(Ψ) =
∑

k∈I1∪J1

a
(k)
1 ≤

∑

k∈K1

a
(k)
1 = µ1(Π),
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as the 1st coordinate of the a(k) is maximal in K1.

2ndSTEP : Next, assume that there are n–adic numbers tk = rk
2Tn (k ∈K)

such that

(12) Υ =
∑

k∈K
Πtka

(k)

, Ψ =
∑

k∈K
Π(1−tk)a

(k)

.

It is no loss of generality to assume that all these numbers have a common
basis 2Tn. Therefore, as in our introductory remark, we can decompose every
deGua Simplex in each of the families into small homothetic multiples of each
other until all deGua Simplices involved have equal volume and each deGua
Simplex Πtka

(k)
is a sum of such deGua Simplices with equal volume. We

may then apply the result of the first step to prove superadditivity in the
above sense.

3rdSTEP : Now suppose that the decomposition is arbitrary.

By a well–known criterion (see Pallaschke–Urbanski ([20]), Theorem
8.3.3 or Schneider([30]), Theorem 3.2.8) the two polyhedra Υ and Ψ have
to satisfy equation (12) possibly with non n–adic real numbers tk, 0 ≤ tk ≤
1 (k ∈K). But the n–adic numbers are dense and it is not hard to see that,
whenever Υ and Ψ are approximated using decompositions of Π that are n–
adic in the sense of the 2ndSTEP , then the solution behaves continuously.
Superadditivity follows, therefore, from the result of the 2ndSTEP . q.e.d.
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5 Examples

Finally, we present an example that demonstrates the merits and demerits
of the µπ solution concept.

Example 5.1. The symmetric example “The Circle” represented already in Fig-
ure 2.1 in Chapter 2 is repeated in Figure 5.1. The canonical representation
given in Figure 5.2.

Figure 5.1: “ The Circle”

Figure 5.2: Canonical Representation of The Circle

The Circle, i.e., the Cephoid Πa,b,c is generated by the family of positive vectors
a = (1, 3, 2), b = (2, 1, 3), c = (3, 2, 1).

Without further investigation, we know by symmetry that any bargaining solution
ϕ yields the midpoint of the Pareto surface, i.e.,

(1) ϕ(Π) = a2 + b3 + c1.
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Formally, the canonical representation and the measure preserving representation
are equal, the center point of the latter is 1

3(3e) = e and the inverse under κ̂ is

(2) µ(Π) = κ̂−1(e) = a2 + b3 + c1 .

◦ ˜˜˜˜˜˜ ◦

Example 5.2. We consider some variants of this example given by

Π = Πlaa +Πlbb +Πlcc

with constants la, lb, lc that are nonnegative integers.

To begin with, let a• be given via

(3)

a(1) = . . . = a(4) = a = (1, 3, 2) ;

a(5) = a(6) = a ; a(7) = a(8) = b = (2, 1, 3) ;

a(9) = . . . = a(12) = c = (3, 2, 1) .

Now put

(4) K̄1 := {9, . . . , 12}, K̄2 := {1, . . . , 4}, K̄3 := {5, . . . , 8}.

Then a• is well behaved in the sense of Definition 4.3 as

c1 ≥ a1, b1

a2 ≥ b2, c2

b3 ≥ a3 ≥ c3.

Therefore we can apply Theorem 4.6 which shows that µ behaves superadditively
along any decomposition of

Π =

K∑

k=1

Πa(k) = Π6a +Π2b +Π4c .

Indeed, the proof of Theorem 4.6 can immediately be specified; we observe that
µ(Π) collects the largest quantities in each coordinate. As it turns out, we obtain

(5)

µ(Π) = 4c1 + 4a2 + 2b3 + 2a3

= (4× 3, 4 × 3, 2× 3 + 2× 2)

= (12, 12, 10) .
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Obviously, the procedure works for any triple (la, lb, lc) satisfying

(6) lb ≤ lc ≤ la , la + lb = 2lc.

Moreover, we may exchange the roles of a, b, c in a cyclic order. Then we obtain
similar statements whenever

(7)

la ≤ lb ≤ lc , la + lc = 2lb

or

lc ≤ la ≤ lb , lc + lb = 2la .

The smallest term is permitted to be 0, e.g., lc = 0, lb = 2la is feasible. This yields
the sum of two deGua Simplices similar to Figure 1.1, but the translate of Π2b has
twice the area of the one of Πa.
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Π Π̂

µ(Π)
µ(Π̂)

∆a

∆b

∆c

Figure 5.3: The µπ solution for (la, lb, lc) = (3, 1, 2)

To clarify the situation, Figure 5.3 depicts the case (la, lb, lc) = (3, 1, 2) which
is structurally the same as the one treated above with (la, lb, lc) = (6, 2, 4). We
observe that

ι∆(∆
a) = ι∆(∆

b) = ι∆(∆
c) =

3
√
62 := α

and it is convenient to compute quantities in terms of α. Hence, the Simplex of
adjusted commodity is 6α∆e which is the union of 36 Simplices of area α (the
right–hand side in Figure 5.3).

The translate of ∆b is represented by a Simplex with area of one unit α, ∆c is
reflected by a Simplex with 4 units, and ∆a receives 9 units. It is seen that the
barycenter µ(Π̂) = α(2, 2, 2) corresponds to
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(8)
µ(Π) = 2c1 + 2a2 + b3 + a3

= (6, 6, 5) .

The Nash solution for this example is ν(Π) = (6, 274 ,
9
2 ). This point (maximizing

the coordinate product) is located on the edge connecting µ(Π) = (6, 6, 5) and the
vertex κ = (6, 9, 3), more precisely,

ν =
κ

4
+

3µ

4
.

Thus, the superadditive solution gives slightly more to player 3 and slightly less
to player 2 compared to the Nash solution and, in addition, treats players 1 and 2
equally.

◦ ˜˜˜˜˜˜ ◦





Chapter 13

Conditional Additivity

We present a further axiomatic justification of the (generalized Maschler–
Perles) µπ solution for n dimensions. Again we focus on Cephoids as feasible
sets and refer to the surface measure.

The essential conceptual change is provided by the idea of Conditional Ad-
ditivity. This is a suitable modification of the Superadditivity concept delt
with so far.

The idea rests on Aumann’s exposition in [1]. Aumann provides an axioma-
tization of Shapley’s NTU–value (Shapley [32]) . See also Hart [10] and
de Clippel[3]).

In our present context, we apply it first to Bargaining Problems, thus obtain-
ing an axiomatic description of the µπ Solution. Later on ( Chapter 14) we
will also characterize a version of the Shapley Value for NTU–Games. How-
ever, other than the above mentioned authors who deal with correspondences
(set valued mappings), we always consider solutions/values to be (point val-
ued) functions.

269
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1 Revisiting the µπ Solution

Let us revisit the solution concept introduced in Chapter 12 and exhibit
a decisive property: it’s conditional additivity. The framework is provided
by a (non–degenerate) family

{
a(k)

}
k∈K and the generated Cephoid Π =∑

k∈K Πa(k)
. The mapping

(1) κ̂Π : ∂Π → τΠ∆
e = ∆̂,

constitutes a piecewise linear isomorphism which preserves the poset. The
(Simplex ∆̂ together with) the mapping κ̂Π is the measure preserving
representation of ∂Π. A Cephoid Π stands for the bargaining problem
(0,Π), hence the solution concept can be seen as a function on Cephoids. As
previously we write µ̂ := 1

n
(1, . . . , 1) = 1

n
e ∈ �n. Let us denote the set of

(nondegenerate) Cephoids in
�

n by Cn.

Then the µπ solution for Cephoidal bargaining problems is the mapping
µ : Cn → �

n given by

1. µt∆e := tµ̂ = t
n
(1, . . . , 1) (t > 0)

2. µΠ := κ̂
−1
Π (µτΠ∆e) = κ̂

−1
Π (τΠµ̂)

For n = 2, this is the Maschler–Perles superadditive solution. Hence µ is a
generalized Maschler–Perles solution. Now we provide a different approach
to the concept of superadditivity which we cannot expect to be valid for any
bargaining solution for more than two players. The appropriate change is
provided by the idea of conditional additivity which eventually will also
result in a further axiomatization of the concept.

Definition 1.1. [see Aumann [1]] A mapping ϕ : Cn → �
n is condition-

ally additive if, for any two Cephoids Π and Π′ such that ϕ(Π) +ϕ(Π′) is
Pareto efficient in Π+ Π′, it follows that

(2) ϕ(Π) +ϕ(Π′) = ϕ(Π + Π′)

holds true. Equivalently one requires that for any family of Cephoids Π• = {Πq}q∈Q
and any lottery p = {pq}q∈Q (see Section 1 of Chapter 11) it follows that

(3) ϕ(�pΠ
•) = �pϕ(Π

•) .

holds true whenever �pϕ(Π
•) is Pareto efficient in �pΠ

•.
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Analogous definitions will be used for related concepts like the measure pre-
serving mapping κ̂• etc. For two players conditional additivity is equivalent
to superadditivity in order to characterize the Maschler–Perles solution .
This follows easily from the construction presented in Chapter 12.

First of all, we deal with related properties of the basic ingredients.

Theorem 1.2. 1. The adjustment factor τ • is additive, i.e., for any two
Cephoids Π and Π′

(4) τΠ+Π′ = τΠ + τΠ′

holds true.

2. The measure preserving representation is conditionally additive. That
is, for any two Cephoids Π and Π′ and any x ∈ ∂Π, x′ ∈ ∂Π′ satisfying
x+ x′ ∈ ∂(Π + Π′), it follows that

(5) κ̂Π(x) + κ̂Π′(x′) = κ̂Π+Π′(x+ x′)

holds true.

Proof:

1stSTEP :

The first statement is obvious from the definition, i.e., by (4) in Section 2
of Chapter 12.

2ndSTEP :

Regarding the second statement, we start out with two extremal points u ∈
∂Π and u′ ∈ ∂Π′. Consider the corresponding mappings as given by (20), and
Definition 2.7 in Section 2 of Chapter 12, say i• :K → I and i′• :K

′ → I.
We assume that the sum u+u′ is Pareto efficient, hence extremal in ∂(Π+Π′).
We write

(6) u+ u′ =
∑

k∈K
a(k)ik +

∑

k′∈K′

a′(k′)i′k′ =
∑

l∈K∪K′

āl̄il

with canonically defined quantities

(7) āl = al (l ∈K), āl = a′l (l ∈K ′).

and

(8) īl = īl (l ∈K), īl = i′l (l ∈K ′).
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Consequently

(9) κ̂Π(u) + κ̂Π′(u′) =
∑

k∈K
â
(k)ik +

∑

k′∈K′

â
′(k′)i′k′ =

∑

l∈K∪K′

̂̄al̄il

and since the mapping ī• corresponding to u + u′ is uniquely defined, the
right hand side in (9) has to be κ̂Π+Π′(u+ u′).

3rdSTEP :

Suppose now that x and x′ sum up to a Pareto efficient point, hence admit of
a joint normal. Pick extremal points of ∂Π and ∂Π′ in the tangent hyperplane
generated by that normal for Π and Π′ respectively. Then we have convex
representations, say

(10) x =
∑

ρ

αρx̄
ρ , x′ =

∑

σ

α′
σx̄

′σ.

with positive coefficients adding up to 1. All extremal points admit of the
same normal, hence our result from the 2ndSTEP holds for the sum of any
two of them taken from the different Cephoids. Also, the subfaces generated
by the normal add up to a subface of the sum and all mappings behave
affinely linear on these subfaces. In view of

(11) κ̂Π(x) =
∑

ρ

αρκ̂Π(x̄
ρ) =

∑

ρ σ

αρα
′
σκ̂Π(x̄

ρ) ,

we obtain

(12)

κ̂Π(x) + κ̂Π′(x′) =
∑

ρ σ

αρα
′
σ (κ̂Π(x̄

ρ) + κ̂Π′(x̄′σ))

=
∑

ρ σ

αρα
′
σ (κ̂Π+Π′(x̄ρ + x̄′σ))

= κ̂Π+Π′

(
∑

ρ σ

αρα
′
σ(x̄

ρ + x̄′σ)

)

= κ̂Π+Π′

(
∑

ρ

αρx̄
ρ +

∑

σ

α′
σx̄

′σ

)

= κ̂Π+Π′ (x̄+ x̄′) ,

q.e.d.

As a consequence we can immediately conclude:
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Theorem 1.3. µ is conditionally additive.

Proof: This is an immediate consequence of Theorem 1.2 as the midpoints
of multiples of of the unit Simplices behave additively. Formally we have

(13)

µ(Π) + µ(Π′) = κ̂
−1
Π

(
µ̂(∆τ (Π))e

)
+ κ̂

−1
Π′

(
µ̂(∆τ (Π′))e

)

= κ̂
−1
Π

(
τ (Π)

e

n

)
+ κ̂

−1
Π′

(
τ (Π′)

e

n

)

= κ̂
−1
Π+Π′

(
(τ (Π) + τ (Π′))

e

n

)

= κ̂
−1
Π+Π′

(
(τ (Π + Π′))

e

n

)

= µ(Π + Π′)

q.e.d.

For completeness, we show that µ is a bargaining solution, performing the
necessary routine operations for anonymity and scale covariance.

Lemma 1.4. µ is anonymous.

Proof:

1stSTEP :

A permutation π : I → I constitutes a linear mapping on
�

n via (π(x))i :=
xπ−1(i)(x ∈ �

n, i ∈ I)). For Subsimplices this implies π(∆a
J) = ∆a

π−1(J)

whenever a is a positive vector and J ⊆ I. It follows at once that a Pareto
face

(14) F = ∆
(1)

J(1) + . . .+∆
(K)

J(K)

of a Cephoid Π induces a maximal face

(15) π(F ) := ∆
(1)

π−1(J(1))
+ . . .+∆

(K)

π−1(J(K))

of the permuted Cephoid π(Π). This defines the reference system πJ. Con-
sider the surface measure of the face F as presented in Definition 2.4 of
Chapter 12. We obtain for the permuted version

(16) ι∆(π(F )) = c(πJ)
n

√[
P

π(a(1))
I

]j1−1

· . . . ·
[
P

π(a(K))
I

]jK−1
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Here the exponents jk are written for the size |π−1(J (k))| of the permuted
index sets which, for each k, equals jk. The volume of a deGua Simplex
does not change under a permutation, so the term under the square root is
invariant. Finally, the coefficient c(πJ) attached to the permuted reference
system equals cJ as it depends on the size of the reference sets only. Hence
the surface measure is invariant under permutations, i.e.,

(17) ι∆(π(F )) = ι∆(F ).

Since the Pareto faces are being permuted, so are the extremal points of ∂Π
and as the surface measure is invariant, we conclude that the complete P.E.
structure as well as the mapping κ̂• complies with the permutation.

Formally, for any Cephoid Π and any x ∈ Π

(18) κ̂π(Π)(π(x)) = π(κ̂Π(x))

or

(19) κ̂π(Π) = π ◦ κ̂Π ◦ π−1.

Also,

(20) τ π(Π) = τΠ

is obvious, i.e., the adjustment factor is invariant under permutations.

2ndSTEP : Symmetry of the solution follows now at once; we have

(21)
µπ(Π) = κ̂

−1
π(Π)

(
τ π(Π)µ̂

)
= π ◦ κ̂−1

Π ◦ π−1 (τΠµ̂)

= π ◦ κ̂−1
Π (τΠµ̂) = π ◦ µΠ

3rdSTEP :

Now covariance with a.t.u. is verified similarly. Consider a linear mapping

L :
�n → �n , L(x) = (α1x1, . . . , αnxn) (x ∈ �n)

for positive α = (α1, . . . , αn).

First, observe that
(22)

τL(Π) =
∑

k∈K

n

√√√√
(
∏

i∈I
αia

(k)
i

)
= n

√∏

i∈I
αi

∑

k∈K

n

√√√√
(
∏

i∈I
a
(k)
i

)
= τατΠ .
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Next, define the translation T :
�

n → �
n via

(23) T (x) = ταx (x ∈ �n)

such that in particular

(24) T : ∆τΠe → ∆τL(Π)e

holds true. Now, for some Cephoid Π, let

(25) u :=
∑

k∈K
a(k)ik

be a vertex of ∂Π as previously. Then

(26) L(u) :=
∑

k∈K
L(a(k)ik) =

∑

k∈K
L(a(k))ik

is the corresponding vertex of L(Π). If û is the image of u under κ̂Π, then

(27)
κ̂L(Π)(L(u)) =

∑

k∈K
(T (â(k))ik) = T

(
∑

k∈K
(â(k))ik

)

= T (û) = T (κ̂Π(u)).

Because of the linearity of κ̂• on the faces, we have

(28) κ̂L(Π)(L(x)) = T (κ̂Π(x))

for all x in some face F and then for all x ∈ ∂Π. This is now reformulated
to

κ̂L(Π)(L(κ
−1
Π (•))) = T (•)

or

(29) L(κ̂−1
Π (•)) = κ̂−1

L(Π)(T (•)) .

4thSTEP :

Finally, the behavior of µ under a.t.u. is demonstrated by

(30)

µ(L(Π)) = κ̂
−1
L(Π)

(
τL(Π)µ̂

)

= κ̂
−1
L(Π) (τατΠµ̂)) (by (22))

= κ̂
−1
L(Π) (T (τΠµ̂)) (by definition of T )

= L
(
κ̂

−1
Π (τΠµ̂)

)
(by (29))

= L(µΠ),
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q.e.d.

Thus, the µπ solution is indeed a conditionally additive bargaining so-
lution.
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2 Axiomatic Characterization

of the µπ Solution

With due modifications conditional additivity uniquely defines the µπ Solu-
tion. Here we introduce the relevant concepts and axioms.

Definition 2.1. An adjustment is a pair of mappings (γ•,σ) with the
following properties:

1. σ : C → �
(the scaling factor) is a positively homogeneous mapping.

2. γ• (the transfer mapping) assigns to every Cephoid Π a bijective
mapping

γΠ : ∂Π → σΠ∆
e.

γ• is positively homogeneous ,i.e., satisfies

(1) γtΠ = tγΠ : ∂Π → σtΠ∆
e = tσΠ∆

e (t > 0).

3. For 0 < a ∈ �n, the mapping

(2) γa := γΠa : ∆a → σa∆e

is the canonical affine identification of Simplices, i.e., the mapping

∑

i∈I
βia

i → σa(β1, . . . , βn) (β > 0, eβ = 1).

For deGua Simplices we write γa,σa instead of γΠa, σΠa.

Remark 2.2. A transfer mapping γ• may be conditionally additive in the
sense of Definition 1.1 and as also used for κ̂• e.g. in Theorem 1.2. Note that
this implies that γ• is piecewise convex, i.e., for any set of extremal points
b1, . . . , bL of ∂Π and convex coefficients β = (β1, . . . , βL) (β > 0,eβ = 1) with∑L

l=1 βlb
l ∈ ∂Π, we have

(3) γΠ

(
L∑

l=1

βlb
l

)
=

L∑

l=1

βlγΠ

(
bl
)

◦ ˜˜˜˜˜˜ ◦
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Definition 2.3. A scaling factor σ is said to be consistent, if, there are
real valued functions g and f such that for any i, j ∈ I

(4) σa = g
(
σ(ai,aj)

)
f
(
σ(ak)k 6=i,j

)
.

This means that the assessment of concessions by n players is consistent with
the one by any two players. If (ak)k 6=i,j is fixed, then concessions between two
players are evaluated according to the scaling factor for two persons. The
next lemma says that n players should consistently evaluate a Simplex in
terms of the coordinate product. Together with positive homogeneity, this
amounts to choosing τ .

Lemma 2.4. Let σ be a consistent scaling factor. Assume that for n = 2
σ is a function of the product. Then, up to some postive constant, σ = τ

holds true.

Proof: Let 0 < a ∈ �n. Choose any i, j ∈ I. Then, for fixed values of
ak (k 6= i, j), σa is a function of the product aiaj. This is true for any
arbitrary choice of {i, j}. We show that the function σa is exponential in
the coordinate product, say

σa = (a1 · . . . · an)r

Indeed, for fixed a4, . . . , an write h3(a3) = f12(a3, a4, . . . , an) etc. such that

σa = g(a1a2)h
3(a3) = g(a1a3)h

2(a2) = g(a2a3)h
1(a1).

Then

σa

h3(a3)h2(a2)h1(a1)
=

g(a1a2)

h2(a2)h1(a1)
=

g(a1a3)

h3(a3)h1(a1)

=
g(a3a2)

h2(a2)h3(a3)
= const.

Hence
σa = const

∏

123

hi(ai)

and
g(a1a2) = h1(a1)h

2(a2)

Then
g(t) = h1(t)h2(1) = h2(t)h1(1)
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thus
h1(t)

h1(1)
=

h2(t)

h2(1)
:= h(t)

with h(1) = 1. Consequently

g(t) = h(t)α, h(a1a2)α = g(a1a2) = h(a1)h(a2)α

meaning
h(a1a2) = h(a1)h(a2).

Hence h is exponential and so is g. Now

σa = g(a1a2)f(a3, ...an) = (a1)
r(a2)

rf(a3, ...an)

= (a1)
r(a3)

rf(a2, a4...an) = (a2)
r(a3)

rf(a1, a4...an),

thus

σa

(a1)r(a2)r . . . (an)r
=

f(a3, ...an)

(a3)r . . . (an)r
=

f(a1, a4...an)

(a1)r(a4)r . . . (an)r
= . . . = const

and
σa = const (a1 . . . an)

r

Because of σte = tσe it follows that r = 1
n
. Ignoring a constant if necessary,

we come up with

(5) σa = n
√
a1 · . . . · an = n−1

√
ι∆(∆a) = τa.

q.e.d.

Definition 2.5. Let η be a bargaining solution on Cephoids, and let (γ•,σ)
be an adjustment. We say that (η,γ•,σ) satisfies the adjusted value ax-
ioms if the following holds true.

1. η is conditionally additive.

2. γ• is conditionally additive.

3. σ is additive and consistent.

4. The solution concept respects the adjustment. That is,

(6) γΠ(η(Π)) = η(γΠ(Π)) = η(σΠ∆
e).

Theorem 2.6. If (η,γ•,σ) satisfies the adjusted value axioms, then
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1. η is the µπ solution, i.e., generalized superadditive solution µ,

Up to some positive common constant,

2. γ• is the measure preserving mapping κ̂•, and

3. σ is the assessment function τ .

Proof:

For arbitrary n, every bargaining solution yields the center point whenever
the bargaining problem is a Simplex. Therefore, with respect to the last
axiom, equation (6) can be rewritten

(7) γΠ(η(Π)) = µ̂(γΠ(Π)) = µ̂(σΠ∆
e) = σΠ(

1

n
, . . . ,

1

n
) .

1stSTEP :

For n = 2 all polyhedral bargaining problems are Cephoids. There is one and
only one solution which is conditionally additive on polyhedral bargaining
problems, this is the Maschler–Perles solution µ, see Chapter 11. Hence
we have η = µ.

2ndSTEP :

We prove that, for n = 2, σ and τ coincide up to a constant. Let
�2 3 a, b >

0 be positive vectors and let ∆a and ∆b be the corresponding Simplices (line
segments) in

�2 (we assume non-degeneracy). Assume that a1a2 ≥ b1b2.
Also, choose α ≤ 1 such that αa1a2 = b1b2. Furthermore, let Π := Πa + Πb

and Πα = Παa + Πb. Then Πα is symmetric up to an affine transformation,
so η(Πα) = µ(Πα) is the unique vertex. Hence, γΠα maps the two line
segments of ∂Πα bijectively linear onto the two line segments of 2σΠa∆e that
are generated by the midpoint (σΠa,σΠa). We conclude that γΠa = κ̂Πa and
γ(1−α)Πa = κ̂(1−α)Πa holds true. Now any x on the “left side” of ∂Πα and
any x′ on (1−α)∆a add up to a Pareto efficient sum x+x′. By conditional
additivity we have

γΠ(x+ x′) = γΠα(x) + γ(1−α)Πa(x′)

= κ̂Πα(x) + κ̂(1−α)Πa(x′) = κ̂Π(x+ x′).
(8)

That is, γΠ and κ̂Π coincide on the “left side” of ∂Π. In particular µ behaves

additively, i.e., µΠ = µΠα + µ(1−α)Πa . Consequently, the midpoint of ∆̃ (cf.
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Π

∆̃
̂̃
∆

∂Π

σΠΠ
e

σΠ∆
e

Figure 2.1: A sum of two prisms and the γ–image

Figure 2.1) is mapped onto the midpoint of σΠ∆
e. Hence, all line segments

on ∂Π are mapped onto the corresponding line segments on σΠ∆
e in the

same ratio of length as is the case with the mapping κ̂Π. We conclude that

(9) γΠ =
σΠ

τΠ
κ̂Π =: rΠκ̂Π

holds indeed.

We claim that the ratio rΠ does not depend on Π. Indeed, change b to b′

in the above argument such that the product αa1a2 = b1b2 = b′1b
′
2 is the

same. Then the length of the line segments involving ∆a and α∆a does not
change. As the ratios are again the ones indicated above, the total length of
the image σΠ∆

e does not change.

The above procedure is naturally extended to a sum of K prisms in
�2 (see

Chapter 11). Hence, for some positive r, we have γ• = rκ• , σ• = rτ •.
We assume that the constant is 1, hence

(10) σΠa = τΠa = ι∆(∂Π
a) =

√
a1a2.

which exactly describes the Maschler–Perles Solution.

3rdSTEP : Now we turn to bargaining problems in
�

n. First of all, we deter-
mine the nature of σΠ. By the previous step, σ equals τ on two dimensional
Simplices. By Lemma 2.4 it follows that σ equals τ on all n–dimensional
deGua simplices. As both functions are additive, they coincide necessarily
on Cephoids.
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4thSTEP : Let Π be a Cephoid and let u be a vertex of ∂Π. By non-
degeneracy u is a unique sum of vertices of the Simplices ∆(k) say

(11) u = ai• =
∑

k∈K
a(k)ik .

with suitable i• : K → I (see (20) and Definition 2.7 in Section 2 of
Chapter 12). By item 3 we know that

γa(k)

(
a(k)ik

)
= σa(k)eik (k ∈K).

As σ and τ coincide on deGua Simplices, we use conditional additivity in
order to conclude that

(12)

γΠ(u) = γΠ

(
∑

k∈K
a(k)ik

)
=

∑

k∈K
γa(k)

(
a(k)ik

)

=
∑

k∈K
σa(k)eik =

∑

k∈K
τa(k)

eik

=
∑

k∈K
κ̂Π(a

(k))
(
a(k)ik

)
= κ̂Π

(
∑

k∈K
a(k)ik

)

= κ̂Π(u).

Thus, γΠ and κ̂Π coincide on the extremal points of ∂Π. By piecewise con-
vexity, they coincide necessarily on all of ∂Π. Consequently, η(Π) = µ(Π)
holds true by (7) and by the 3rdSTEP.

q.e.d.

The adjusted value axioms uniquely determine the generalized conditionally
additive µπ bargaining solution µ.



Chapter 14

NTU Games:
The Shapley Value

Non–Transferable–Utility Games constitute a generalization of bargaining
problems as well as of “TU Games”.

A TU Game as introduced by von Neumann–Morgenstern [33] assigns
a real value to any coalition of players taken from a (finite) player set, this
reflects a (monetary or utilitarian) worth to such a coalition. It is thought
that this worth can be secured by the coalition and serves as an argument
in the bargaining process leading to a final distribution of wealth resulting
from the “game”.

More generally then, an NTU game ensures a set of payoffs or monetary
wealth assignments to the members of each coalition. It imitates the structure
of a bargaining situation for each coalition and it imitates the situation of a
TU–Games inasmuch as it considers coalitions in all variety. Commonly the
function representing the assignment of wealth distributions to coalitions is
denoted as the “coalitional function”.

In analogy to the solution concepts for bargaining solutions as well as for TU
games, Cooperative Game Theory is concerned with exhibiting “solutions”
for NTU games, that is assignments of wealth that reflect bargaining power,
fairness considerations, efficiency, and invariance properties via some set of
axioms or at least via certain plausibility considerations. In the context of
Cooperative Game Theory (that is TU games and NTU games under some
unifying aspect) one calls such a solution concept a “value” – referring the
reader to the work of Shapley [31] in Cooperative Game Theory orDebreu
[5] in General Equilibrium Theory.

283
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Thus the present chapter will deal with a version of the “Shapley value”. We
will attempt to define and axiomatize a concept that is based on the appro-
priate axiomatic considerations; specifically on the concept of “conditional
superadditivity”.
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1 NTU Games

We recall some basic concepts of Cooperative NTU Game Theory.

Definition 1.1. A (cooperative) NTU game is a triple(I,P,V ). I =
{1, . . . , n} is the set of players, P = {S|S ⊆ I} = P(I) is the system
of coalitions, and V := P → P(

�
n) is the coalitional function. V

assigns to any coalition a nonempty, compact, convex set of “utility vectors”
V (S) ⊆ �n

S such that there exists x ∈ �n satisfying

1.

V ({i}) = {xi} i ∈ I ,

2.

V (S) =

{
x ∈ �n

S x ≥ x | S

}
∩CmpH V (S) 6= ∅ (S ∈ P) .

V (S) is thought to be “feasible for the members of S”, that is, a set of
utility vectors coalition S can ensure to its members (see e.g. the extensive
treatment in [26], Definition 1.3, Section 1, Chapter 4 and also Section
5). x reflects the status quo position, i.e., player i ∈ I obtains xi whenever
cooperation fails in every coalition S with at least 2 players containing him.
We write x(V ) if reference to a particular game should be necessary.

Sloppily, as I and P remain fixed, we frequently refer to V as to “the game”.
Also, via the linear transformation x→ x−x we can frequently assume that
x = 0 holds true.

A bargaining problem V = (x,U) (Chapter 12, Definition 1.1) can be seen
as an NTU game. Put

V (I) = U and V (S) =

{
x | S

}
(S ∈ P \ {I}) .

A value is a Pareto efficient, symmetric mapping ϕ from a class of games
into

�
n that respects affine transformations of utility (a.t.u.). ϕ(V ) reflects

the distribution of utility considered to “solve” the game. We write ϕU to
emphasize that we are dealing with bargaining problems. In this context we
use also the term solution .
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As in Section 1 of Chapter 11 a lottery is a probability distribution
with finite carrier defined over a family of games. Given such a family, say,
V • = {V q}q∈Q , a lottery can be represented by a nonnegative vector

(1) p = (pq)q∈Q,
∑

q∈Q
pq = 1 .

Accordingly, we apply the standard operations for subsets of
�

n in order to
define the action of a lottery on games. E.g. the expected game is

(2) �pV
•(S) :=

∑

q∈Q
pqV

q(S) (S ∈ P) .

Thus, the mapping �pV
• := P → P(

�
n) is a game in the sense of Definition

1.1. in particular, the status quo position will be affected by a lottery, we
find

(3) �px(V
•) =

∑

q∈Q
pqx(V

q) .

The interaction of lotteries and values is reflected by the axiomatic treatment
of solution concepts. Shapley [31] characterizes the value (for TU–games) –
among other axioms – by additivity, which (given the concept to be positively
homogeneous) is equivalent to “risk neutrality”, i.e., ϕ(�(V •)) = �ϕ(V •).
There is no discussion of this concept in Shapley’s generalization of the
value to NTU games [32].

TheMaschler–Perles solution ([22],[13]) as presented in Chapter 12 rests
on the concept of superadditivity. That is

ϕ(V + V ′) ≥ ϕ(V ) +ϕ(V ′)

for pairs of bargaining problems or, equivalently,

ϕ(�pV
•) ≥ �pϕ(V

•) .

for a family {V q}q∈Q of bargaining problems. Superadditivity is interpreted
to consistently favor contracting ex ante, thereby increasing expected utility
([13]), see also Chapter 12 Section 2.

The Maschler Perles solution works for two players only. Perles[21] showed
that for more than two players, a superadditive solution for bargaining prob-
lems does not exist. The µπ–Solution presented in Chapter 12 generalizes
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the Maschler–Perles procedure and exhibits a class of games for which super-
additivity prevails. (As for further approaches see also Calvo–Gutiérrez
[6]).

We will now discuss Aumann’s[1] concept of conditional superadditivity in
our context. Aumann provides an axiomatization of Shapley’s [32] NTU
value . In his version as well as in Shapley’s and others (see Hart [10], de
Clippel[3]), authors consider correspondences, that is a “value” is a set–
valued function. In our context, as a value is a (point valued) function, we
choose the following

Definition 1.2. A value ϕ is conditionally additive if, for any two games
V and W such that ϕ(V ) + ϕ(W ) is Pareto efficient in V (I) +W (I), it
follows that

(4) ϕ(V ) +ϕ(W ) = ϕ(V +W )

holds true. Equivalently, one requires that for any family of games V • = {V q}q∈Q
it follows that

(5) ϕ(�pV
•) = �pϕ(V

•) .

holds true whenever �pϕ(V
•) is Pareto efficient in �pV

•.

For two players conditional additivity is equivalent to superadditivity in order
to characterize the Maschler–Perles solution . This follows easily from the
construction presented in Chapter 12.

Aumann’s concept is based on games with smooth surfaces of each V (S)
while Maschler and Perles start out from a polyhedral setup. More
recently, de Clippel et al. elaborate on the problem imposed by choosing
the domain of definition for the axiomatic treatment of a value. It is obvious
that in 2 dimensions conditional additivity and the IIA axiom characterizing
the Nash solution are not compatible.

Within this chapter, we discuss a value concept χ for NTU games based on
the surface measure and respecting conditional superadditivity. We provide
an axiomatization of this value. Other than, say, in Shapley’s [32] NTU
version, the value we exhibit is characterized without any version of IIA, its
existence does not rely on a fixed point theorem, and it can be computed
straightforwardly – if one is willing to adopt the idea of the surface measure
as “computable”.

On the other hand, we will restrict ourselves to Cephoids as the basic in-
gredients for feasible sets. Accordingly, we will assume that the status quo
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position is normalized x = 0. This may be considered as a drawback one has
to weigh against the advantages.

For reference, we denote the set of (nondegenerate) Cephoids in
�

n by Cn.

Definition 1.3. An NTU game V is cephoidal if

1.

(6) x = x(V ) = 0 .

2. For any S ∈ P there exists a (n.d.) family of positive vectors

(7)
{
aS,(k)

}
k∈KS

⊆ �n
S+

such that

(8) V (S) =
∑

k∈KS

ΠaS,(k)

=:
∑

k∈KS

ΠS,(k) ⊆ C|S|

holds.

We denote the set of Cephoidal NTU games by Vn.

Thus, we restrict the discussion to Cephoids as feasible sets in
�

n
S+. Nat-

urally, the term affine transformation of utility (“a.t.u.”) is restricted to
positive dilatations of the axes.
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2 The TU game

Now we introduce the TU game derived from an NTU game. To this end, let
V be a Cephoidal NTU game. Our approach suggests that players evaluate
concessions and gains in accordance with the coordinate product. It seems
plausible that a “side payment game” derived from an NTU situation has to
be calibrated accordingly.

The foremost candidate is suggested by the surface measure and the adjust-
ment factor.

Recall the Definitions (1) and (2) in Chapter 12 Section 2 for the adjustment
factor of a deGua Simplex and of a Cephoid. Suitably adapted to a deGua
Simplex ΠaS ⊆ �n

S+ and a Cephoid in
�

n
S+, say

ΠS =
∑

k∈KS

ΠaS,(k) ∈ CS

these definitions amount to adjustment factors

(1) τΠaS := s

√∏

i∈S
aSi , τΠS =

∑

k∈KS

τ
Πa

S,(k) .

with s := |S|. Accordingly, we consider the “worth” of coalition S implied
by V to be given follows.

The standard definition of a TU game is repeated, see e.g. [27]. We will only
consider nonnegative TU games in our context. There is then a natural way
to embed such TU games into Cephoidal (!) NTU games.

Definition 2.1. 1. A (nonnegative) TU game is a mapping

(2) v : P → �
+ , v(∅) = 0 .

The set of TU games is denoted by �n
+.

2. Let V be a Cephoidal NTU game. The TU game induced by V is

(3) v̂ = v̂
V : P → �

(4) v̂(S) = v̂
V (S) = τV (S) (S ∈ P).

The following first example underlines that we have chosen the canonically
induced version.
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Example 2.2. A hyperplane NTU game illustrates the relevance of our ver-
sion. Let v : P → �

+ be a nonnegative TU game. Also, for S ∈ P, let aS ∈ �n
S+

be a positive vector. Define V = V v
a by

V (S) = V v
a(S) = v(S)Π

aS

(S ∈ P).

That is, V (S) is a deGua Simplex, essentially determined by a hyperplane (which
intuitively reflects the rate of exchanging utility in coalition S). Then we have
(using s := |S|)

τV (S) = s

√∏

i∈S

(
v(S)aSi

)
= v(S) s

√∏

i∈S
aSi

= v(S)τ
ΠaS = v(S)τaS

That is, for S ∈ P:

(5) v̂(S) = v(S)τaS .

The worth of coalition S ∈ P is adjusted or rescaled utilizing the adjustment
factor. Clearly, v̂ and v coincide whenever aS = eS is the restriction of the unit
vector e and hence V v

e is the standard embedding of the side payment game v
into the NTU framework.

◦ ˜˜˜˜˜˜ ◦

Next, we analyze the behavior of the TU game mapping under the transfor-
mations which underly the axiomatic treatment, i.e., we prepare the ground
for invariance properties. To this end, we refer to the presentation regarding
bargaining problems as initiated in Section 1 of Chapter 13.

Lemma 2.3. The TU game mapping V → v̂
V is additive. That is, for

V ,W ∈ Vn

(6) v̂
V + v̂W = v̂V +W .

Proof: The proof follows immediately from the additivity of the adjustment
factor, i.e., from Theorem 1.2 of Section 1 Chapter 13. q.e.d.

Next, we wish to assess the behavior of side payment games under affine
positive transformations. For positive α = (α1, . . . , αn) let

L :
�n → �n, L(x) := (α1x1, . . . , αnxn) (x ∈ �n)

denote such a transformation, then (22) of Section 1 Chapter 13 implies

(7) τL(V (S)) = ταS
τV (S) .
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Accordingly, we have to define the action of an affine transformation of utility
on Cephoidal NTU games. The appropriate version of the transformed game
is given as follows.

Definition 2.4. Let V ∈ Vn and let L be an a.t.u.. Define the transformed
game L̂V by

(8) (L̂V )(S) :=
τα

ταS

L(V (S)) (S ∈ P).

To justify this, observe that we eventually strive to explain values suggesting
a cooperative agreement within the grand coalition. In particular, the Shap-
ley Value is based on the assumption that agreement eventually takes place
within the grand coalition.

Now transformation of utility also refers to the grand coalition. When coali-
tions S take v̂ into account, they should respect the different measurements
when rescaling according to an affine transformation of utility is performed.
Thus we come up with

Lemma 2.5. Let L be an a.t.u.. Then the TU game mapping V → v̂
V

satisfies

(9) v̂
L̂V (S) = ταv̂

V (S)

for all V ∈ Vn and S ∈ P. Thus, an affine transformation is reflected in
the corresponding TU game by a rescaling via the factor

(10) τα := n

√∏

i∈I
αi .

The Proof is obvious.

Remark 2.6. Clearly, anonymity causes no problems within our development.
Naturally, one defines the action of a permutation π := I → I on NTU games
by

(11) πV (S) := V (π−1(S)) {S ∈ P} .

Analogously, for TU games. Then clearly

(12) vπV = πvV

describes the compatibility of the TU mapping with renaming the players.

◦ ˜˜˜˜˜˜ ◦
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3 Conditional Additivity: The MPS Value

Within this section, we describe a version of the NTU Shapley value. The
concept is based on Shapley’s seminal paper [31] (see also [32]) but also refers
to the Maschler–Perles solution ([13]). Thus, it is appropriate to say that we
define a Maschler–Perles–Shapley value. Of course, we deal with Cephoidal
NTU games and generalize the µπ solution developed in Chapters 12 and
13. Hence the term µπσ value would possibly be more characterizing ...

Recall the formula for the Shapley value, given some TU game v. The value
assigns to player i ∈ I a worth

Φi(v) :=
∑

S∈P

(n− s)!(s− 1)!

n!
(v(S)− v(S \ {i})

:=
1

n!

∑

π∈Π
(v(Sπ

π(i))− v(Sπ
π(i) \ {i})) (i ∈ I) .

(1)

The notation involves s = |S|, Π is the set of permutations π : I → I; also
Sπ
k := {j ∈ I|π(i) ≤ k} such that Sπ

π(i) denotes the predecessors of i with
respect to the ordering induced by π. The concept is characterized by an
axiomatic foundation relying on anonymity, Pareto efficiency, additivity, and
a dummy or null–player property. See Shapley [31], also [25] for a textbook
treatment.

Let V be a Cephoidal NTU game. The TU game derived is v̂ = v̂V (see (4)
of Section 2). In view of Pareto efficiency the Shapley value Φ(v̂) satisfies

(2) (Φ(v̂))(I) =
∑

i∈I
Φi(v̂) = v̂(I) = τV (I)

that is

(3) Φ(v̂) ∈ ∆τV (I)e = τV (I)∆
e .

Recalling Definition 2.7 of the measure preserving mappig κ̂ (Chapter 12
Section 2), we observe that Φ(v̂) is located in the range of κ̂(V (I)), i.e., we
have

(4) κ̂V (I)) : ∂V (I) → τV (I)∆
e = v̂

V (I)∆e .

This permits us to formulate the following definition.
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Definition 3.1. The MPS value ( conditionally additive value, c.a.
value, µπσ value) is the mapping χ : Vn → �

n defined on Cephoidal
games by

(5) χ(V ) := κ̂
−1
(V (I))(Φ(v̂

V n

)) (V ∈ V) .

We can then start with the introduction of the axioms which are implicitely
formulated by the following list of properties of the MPS value.

Theorem 3.2. The MPS value

1. is Pareto efficient,

2. is symmetric,

3. respects a.t.u.

4. is conditionally additive.

Proof: 1stSTEP :

As we are concerned with functions on (Cephoidal) NTU games, we introduce
a suitable notation for the measure preserving mapping κ̂, we write

(6) κ̂
V := κ̂V (I)) : ∂V (I) → τV (I)∆

e = v̂
V (I)∆e (V ∈ V) .

Then the defining equation (5) reads

χ(V ) := (κV )−1(Φ(v̂V n

)) (V ∈ V) .

2ndSTEP :

Pareto efficiency is obvious from the definition. As for anonymity the action
of a permutation π on a game must be well defined. For a TU game v we
have

πv(S) := v ◦ π−1(S) (S ∈ P) ,

while for NTU games, the appropriate definition is

πV (S) := π ◦ V ◦ π−1(S) (S ∈ P) .

Now, in view of (20) Section 1 Chapter 13
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we have for S ∈ P

(7)

v̂
πV (S) = τ (πV )(S) = τ π(V (π−1(S)))

= τV (π−1(S)) = τ π−1(π(V (π−1(S))))

= τ (π−1V )(S)

that is,

(8) v̂
πV = πv̂V

proving anonymity of the function v̂•. Analogously, we prove the anonymity
of κ̂•. By (19) Section 1 Chapter 13 we have

(9)
κ̂

πV = κ̂(πV )(I) = κ̂(π(V (π−1(I))))

= π ◦ κ̂V (I) ◦ π−1 = π ◦ κ̂V ◦ π−1.

That is, κ̂ behaves eaxtly as an NTU game V w.r.t. the application of
permutations. Combining we obtain

(10)

χ(πV ) =
(
κ̂

πV
)−1 (

Φ(v̂πV )
)

=
(
π ◦ κ̂V ◦ π

)−1 (
Φ(πv̂V )

)

= π ◦
(
κ̂

V
)−1

◦ π−1
(
Φ(πv̂V )

)

= π ◦
(
κ̂

V
)−1

◦ π−1π
(
Φ(v̂V )

)

= π ◦
(
κ̂

V
)−1

◦
(
Φ(v̂V )

)

= π(χ(V )).

3rdSTEP :

Next, invariance with a.t.u is verified. To this end, let α = (α1, . . . , αn) > 0
and let

L :
�n → �n

L(x) = (α1x1, . . . , αnxn) (x ∈ �n)

be the corresponding positive linear mapping. The action of affine transfor-
mation on an NTU game is given by the mapping L̂ (see (8) in Section 2 )
Also, recall the translation T defined in (23) that satisfies

(11) τL(Π) = τατΠ = T (τΠ)
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(see (22)). Also, Lemma 2.5 reads

(12) v̂
L̂V = ταv̂

V .

The relation of the mappings κΠ and κL(Π) is explained by (28) of Section
1 Chapter 13 which reads

κ̂L(Π)(L(x)) = T (κ̂Π(x)) .

Therefore the applications of χ and L commute as

(13)

χ(L̂V ) = κ̂
−1

(L̂V )(I)

(
Φ(v̂L̂V )

)
(by definition of χ)

= κ̂
−1

(L̂V )(I)

(
Φ(ταv̂

V )
)

(by (9) of Lemma 2.5)

= κ̂
−1
L(V (I))

(
Φ(ταv̂

V )
)

as L(V (I)) = (L̂V )(I)

= κ̂
−1
L(V (I))

(
ταΦ(v̂

V )
)

(as Φ is linear)

= κ̂
−1
L(V (I))

(
T (Φ(v̂V ))

)
(by definition of T)

= L
(
κ̂

−1
V (I)

(
Φ(v̂V )

))
(by (29))

= L(χ(V )) .

4thSTEP : Finally, the proof for conditional additivity runs quite analo-
gously to the one of Lemma 1.3. If, for two games V and W the values
χ(V ) and χ(W ) yield a Pareto efficient sum, then they are located within
faces that admit of a joint normal and κ̂ behaves additively. Consequently

(14)
χ(V ) + χ(W )

= κ̂
−1
(V (I))(Φ(v̂

V )) + κ̂−1
(W (I))(Φ(v̂

W )) by definition,

= κ̂
−1
(V (I))+(W (I))

(
Φ(v̂V ) + Φ(v̂W )

)
by (5 ) in Theorem 1.2 of Ch 13 , Sec 1 ,

= κ̂
−1
(V (I))+(W (I))

(
Φ(v̂V + v̂W )

)
, as the Shapley value is additive,

= κ̂
−1
(V (I))+(W (I))

(
Φ(v̂V +W )

)
by Lemma (2.3),

= χ(V +W ),

q.e.d.
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4 Axioms for the Conditionally Additive Value

Finally, it turns out that the axioms define the value uniquely, hence we have
a characterization of the MPS value. As we have to deal with the concept
of an abstract value, we start with formal definitions.

Recall Definition 2.1 of Section 2 Chapter 13. Accordingly, an adjustment
is a pair (γ•,σ) consisting of a scaling factor and a transfer mapping. An
adjustment reflects a generalization of the pair (κ̂, τ ) that is given by the
measure preserving mapping and the adjustment factor. Clearly adjustments
induce mappings on games, we introduce

(1) γV := γV (I) , σV := σV (I)

and

(2)
◦
v(S) =

◦
vV (S) =

◦
vσ,V (S) := σV (S) (S ∈ P) .

These defintions are quite in accordance with those given for (κ̂, τ ), that is,
with κ̂V , τV , and v̂; see Section 2.

Definition 4.1. 1. A value is a mapping ψ : Vn → �
n which is Pareto

efficient, symmetric, and a.t.u. covariant.

2. A value ψ obeys the null player axiom w.r.t an adjustment (γ•,σ)

if any null player of
◦
vσ,V receives ψi(V ) = 0.

Clearly χ is a value that obeys the null player axioms w.r.t. (κ̂, τ ). We then
formulate the Axiomatic of the MPS value.

Definition 4.2. We say that (ψ,γ•,σ) satisfies the adjusted value ax-
ioms if the following holds true.

1. ψ is conditionally additive.

2. ψ obeys the null player axiom w.r.t. (γ•,σ)

3. γ• is conditionally additive.

4. σ is additive and consistent (Definition 2.3 of Section 2 Chapter 13).

5. The solution concept respects the adjustment. That is,

(3) γV (ψ(V )) = ψ(
◦
vσ,V (•)∆e

•) (V ∈ Vn).
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In view of Section 3 and as the null player axiom is satisfied, it follows that
that the tripel (χ, κ̂, τ ) satisfies these axioms. The task is to show that it
does so uniquely.

Theorem 4.3. If (ψ,γ•,σ) satisfies the adjusted value axioms, then ψ is
the MPS value χ, and (up to some positive common constant)

1. γ• is the measure preserving mapping κ̂•, and

2. σ is the adjustment factor τ .

Proof:

1stSTEP :

For bargaining problems, we know that the MPS value χ equals the general-
ized Maschler–Perles solution µ. Now, the axiomatic of Definition 4.2 is the
one presented in Definition 2.5 when restricted to bargaining problems. It
follows from Theorem 2.6 Section 2 Chapter 13 that (γ,σ) = (κ̂, τ ) holds
true. Thus, statements 1 and 2 are immediately verified..

2ndSTEP :

It follows that the derived side payment game is

(4)
◦
vV =

◦
vσ,V = v̂τ ,V = v̂V (V ∈ V).

We claim that ψ has to coincide with the Shapley value (more precisely:
with χ) on hyperplane games.

Indeed, consider the function ϑ on TU–games defined by

ϑ(v) := ψ(v(•)∆e
•) = ψ(V v

e) .

As ψ is conditionally additive it follows that ϑ is additive. Also, by (4) and

Example 2.2 we have
◦
v = v̂ = v, hence null players of

◦
v and v coincide.

Consequently, ϑ satisfies the axioms of the Shapley value.

3rdSTEP :

In particular, the fifth axiom (formula (3) in Definition 4.2) can be replaced
by

(5) γV (ψ(V )) = Φ(
◦
vσ,V ) = Φ(v̂τ ,V ) (V ∈ Vn).
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As γV = κ̂V , this implies

(6) ψ(V ) = (κ̂V )−1
(
Φ(v̂τ ,V )

)
= χ(V ) (V ∈ Vn).

q.e.d.

Remark 4.4. Our solution or value respectively is point valued and does not re-
quire a fixed point theorem. With this respect it differs from other NTU–Shapley
values given previously. See e.g. Aumann [1], who axiomatizes the Shapley’s trans-
fer value and Hart [10], who axiomatizes Harsanyi’s [9] NTU–value. See also de
Clippel-Peters-Zank [3] who discuss the dependence on regularity conditions
and add axiomatizations for several values including the Consistent NTU–Shapley
value of Maschler–Owen [12].

The present value yields results differing from the above mentioned concepts. To
demonstrate this, we refer to Example 5.1 in [18]. The example shows a bargaining
problem for which the Nash solution and our solution differ. However, a bargaining
problem is a particular 3–person NTU–game, hence the value χ is different from
all values that (by definition or via the axiomatic) coincide with the Nash solution
for bargaining problems. This is so for the Shapley NTU value (although e.g.
Aumann’s axiomatization works for the smooth case only) and Harsanyi’s NTU
value.

As for the Maschler–Owen consistent value, we turn to the example provided by
these authors in Section 6, p 403 of [12]. Their 3–person NTU game is essentially
given by V ({1, 2}) = {x ∈ �2

+ 2x1 + 3x2 ≤ 180} and V ({1, 2, 3}) = {x ∈
�3

+ x1 + x2 + x3 ≤ 120}, all other coalitions receive 0 at most. Maschler–Owen
come up with the value (55, 50, 15).

In our present framework, the TU–game v̂ is given by v̂({1, 2}) =
√
60× 90 =

30
√
6 ∼ 73.485 and v̂({1, 2, 3}) = 120. The Shapley value of this sidepayment

game is ∼ (52.25, 52.25, 15.5) and this is the value χ(V ) as well. So our solution
treats the third player almost in the same way, but considers the first two players
to be symmetric. It can be seen that the Shapley NTU–value assigns more to the
third player but treats players 1 and 2 symmetrically as well.

Our solution concept is “constructive”. The maximal faces of a cephoid can be
determined by a recursive procedure (see [19]), thus the scaling factor and the
surface measure are attainable by computational methods. We do not know as yet
whether these problems are “NP–hard”.

◦ ˜˜˜˜˜˜ ◦

Remark 4.5. For n = 2 every convex polyhedral bargaining set is a cephoid.
For n ≥ 2 the variety of convex polyhedra is much greater; this topic is discussed
extensively within the framework of Convex Geometry. In particular, the decom-
position of polyhedra into (nonhomothetic) summands is an issue. This constitutes
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by no means a simple problem, see Schneider[30]. E.g., Corollary 3.2.13 on p.
152 of [30] implies that a convex polyhedron in

�3, all two–dimensional faces of
which are triangles, is “indecomposable”, i.e., does not allow for (nonhomothetic)
summands. In particular, it cannot be written as a sum of deGua Simplices, thus
it is not a Cephoid. The simplest example that comes to mind is the convex hull
of the vectors 0,e1,e2,e3, and (1, 1, 1) which reflects a small tetrahedron affixed
to the Pareto surface of the unit simplex. The “typical” cephoid in 3 dimensions
must have faces that are triangles and rhombi.

It is an open question whether with a suitable topology on Pareto surfaces, cephoids
are dense within a large class of convex, compact, and comprehensive (“bargain-
ing”) sets. In two dimensions this is well known assuming that no line segments
parallel to an axis appears in the Pareto surface. In n dimensions a more restrictive
condition may be necessary. Quite likely, the surface measure can be extended to
certain smooth Pareto surfaces, a plausible candidate would be obtained by inte-
grating the “volume element” over the Pareto surface, vaguely

ι∆(∂U) :=

∫

∂U

n
√

(dx1 · . . . · dxn)n−1 ,

However, a precise meaning has to be assigned to the “volume” element. Moreover,
the continuity properties of the MPS value are to be studied carefully. This task
exceeds the scope of our present framework.

◦ ˜˜˜˜˜˜ ◦
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dual linear system, 90
factor, 239
graph, 131
linear pre–adjustment system,

131
linear system, 41
mapping, 275, 294
of Simplices, 44
pre–adjustment system, 130, 131
set for subfaces, 48

adjustment set, 36
dual, 87

admissible system, 128

affine transformation of utility, 201
algebraic sum, 4
algorithm, 122
APL, 26
associated graph, 130

edges, 130
nodes, 130

Aumann, R.J., 267, 285

bargaining problem, 199, 200
Cephoidal, 199, 200, 205
polyhedral, 205
smooth, 205
standard dyadic, 206

bargaining solution, 199, 200, 202
µπ, 246, 274
µπ, 264
anonymous, 201
conditionally additive, 268, 274
Maschler–Perles, 199, 200, 205
Nash, 199
Pareto efficient, 201
scale invariant, 201
superadditive, 202

barycentric coordinates, 69
grid, 69

Bijection Theorem, 119
block, 76
BLUE, 164

canonical representation, 22
capacity vector, 186
Cephalopodic Structure, 142
Cepheid, IV
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Cephoid, III, 4
L–reduced, 41
as a matrix, 28
Cepern, 58
Cephalopodic Structure, 70
computing the dual, 113
degenerate, 16
dual, 86
general appearance, 18
in two dimensions, 10
inductive type, 29
k-missing, 6
nondegenerate, 17
standard, 257
sum of 7, 34
sum of four, 14, 76
sum of three, 14, 72
sum of two, 11, 43, 55, 59
Test, 108
well behaved, 258

characteristics, 40
for subfaces, 48
dual, 87

Circle, 24, 26, 27, 73, 77, 262
Marriage, 80

coalitional function, 281, 283
Coincidence Theorem, 41
commodities, 184
comparison of utility

interpersonal, 251
intrapersonal, 251

comprehensive, 3, 200
x, 200

conditional additiv, 267
conditionally additive

bargaining solution, 274
mapping, 268
transfer mapping, 275
value, 285, 294

convex hull, 2
critical indices, 129

critical system, 129
cut

minimal proper, 102
proper J–, 102

cylinder, 61, 64, 65
basis, 65
enumeration, 71
height, 65
translated, 63

Debreu, G., 281
DeGua, III
dual

adjustment set, 87
Cephoid, 86
characteristics, 87
family, 86
linear adjustment system, 90
Marriage, 98
Marriage of a Windmill and a

Circle, 95
reference system, 86
sum of two, 93

extremal point, 5, 9, 53

face
maximal, 4
outward, 4, 5
Pareto, 4, 5
sub–, 51

feasible set, 200
FourFour, 145

Graham, F.D., III, 197
graph

adjustment, 131
associated, 130
boundary node, 135
edge, 135
improper cycle , 130
node, 135
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p–k–node, 137
p–k–vector, 137
Pareto, 135
proper cycle , 130

i-face, 5
input coefficient, 184

Jones, W.R., III, 197

Kalai–Smorodinsky solution, 199,
255

KKK34, 164

LARBLUE, 169, 198
Linear Program, 180
lottery, 203, 284

market equilibrium, 192
Marriage, 81

of Windmill and Circle, 80
dual, 95, 98
POV Version, 98

Maschler–Perles, 199, 200, 202, 212,
285, 290

Maschler–Perles solution, 207, 217
McKenzie, L., III, 194
measure preserving

mapping, 228, 234, 238, 291
representation, 228, 238, 243,

244, 268
Minkowski sum, 4
moving index, 25

principle, 58, 82

Nash solution, 199, 200, 255
Nash, J.F., 199
Neighborhood Theorem, 48
nondegenerate

dual Cephoid, 86
weakly, 20

normal, 4
as price vector, 192

computing, 114, 116
cone, 4, 51
cone of a subface, 49

NTU game, 281, 283
cephoidal, 286
hyperplane, 288

null player axiom, 294

Odot, 32, 103, 249

Pallaschke, D., IV
Pallaschke–Urbanski, 261
parallelepiped, 76
parametrization, 212

standard, 220
Pareto

efficient, 5
face, 5
graph, 135
subface, 5, 51

Pareto face
L–reduced, 41
l–based, 102
translation, 115

Pareto faces
enumerating function, 103, 104,

110, 111
enumeration, 55, 56, 76, 82
listing function, 112, 119
ordering, 57, 82

Perles, 231
plan, 184

efficient, 185
feasible, 184
global, 186

poset, 22, 238, 244
price, 185
production

aggregate, 186
in autarky, 184
plan, 186
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plan schedule, 186
productivity of labor, 184

recursion, 123, 125
reference

code, 118
cross system, 87
matrix, 123
matrix computation, 125
pre–reference system, 131
set, 36
system, 36, 128
system dual, 86
system for subfaces, 48
vector, 118

Reference Theorem, 37
representation

µπ, 244
canonical, 22, 69
measure preserving, 228, 238,

243, 268
rhombus, 11
Ricardo, D., 184
Richter, W.F., 183, 197
rucksack problem, 180

Saw, 29, 31, 162
scaling factor, 275

consistent, 276
Shapley, H., IV
Shapley, L.S., 267, 281, 290
Simplex, 2

deGua, III, 3
K–fold unit, 69
Standard, 2
Sub-, 2
translated deGua, 63
unit, 69

specialization
complete, 185, 188
incomplete, 188

partial, 188
pattern, 190, 191

status quo point, 200
sum of two, 93, 232

dual, 93
surface integral, 212, 215, 216
surface measure, 225, 226, 233, 236,

239, 241

tentacle, 66, 67
in thre dimensions, 70
number of cylinders, 71
system, 66, 134

transfer mapping, 275
traveling time, 217

standard, 220
TU game, 287

unit Simplex, 69, 234

value, 281, 294
µπσ, 290
conditionally additive, 285, 294
Maschler–Perles–Shapley, 290
MPS, 290
Shapley, 290

vertex, 5, 9, 53
and normal cones, 54

von Neumann–Morgenstern utility,
204

wage rate, 190
Windmill, 28, 75, 163

Marriage, 80


