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Abstract

In this paper we introduce an additive two-factor model for electricity fu-
tures prices based on Normal Inverse Gaussian Lévy processes, that fulfills
a no-overlapping-arbitrage (NOA) condition. We compute European option
prices by Fourier transform methods, introduce a specific calibration procedure
that takes into account no-arbitrage constraints and fit the model to power op-
tion settlement prices of the European Energy Exchange (EEX). We show that
our model is able to reproduce the different levels and shapes of the implied
volatility (IV) profiles displayed by options with a variety of delivery periods.

Keywords: Volatility Smile, Overlapping Delivery Periods, Arbitrage, Additive
Models, Power Options, FFT
JEL Classification: C13, C14, C32, Q40, G13.

1 Introduction

One of the big challenges of this age is to develop efficient storage possibilities for
electricity. As the available storage possibilities are very limited in efficiency and
capacity, a major breakthrough of technology is necessary to make the storability
of electricity comparable to those of commodities as corn or oil. Thus, at this point
of time one can say (simplifying) that electricity is not storable, at least not in the
sense of classical commodities. This has important consequences. One of them is
that electricity futures contracts deliver the underlying not at a point of time, but
rather over a specified delivery period of different length: typically one can find
monthly, quarterly and yearly delivery periods. Obviously, one quarter consist of
three months and one year of four quarters, such that there might be futures with
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overlapping delivery periods offered in the market. Compared to other markets,
this gives rise to an additional dimension of arbitrage opportunities, which appears
when trading in futures with overlapping delivery periods. Recently, [10] provide
new theoretical results concerning the no-arbitrage theory of overlapping additive
futures models. In this framework, the present paper addresses the arbitrage free
pricing and calibration of options on overlapping electricity futures.

Trading in electricity derivatives is living a significant expansion in Europe. In
June 2018, the European Energy Exchange increased volumes on its power deriva-
tives markets by 28% from 181.2 TWh (June 2017) to 231.1 TWh [24]. In particular,
the trading volume in power options experienced a boost of 45%. Additionally, these
contracts are traded over the counter. Thus, it is not a surprise that also the lit-
erature considering electricity options as well as options on other commodities is
booming. One stream of literature considers e.g. seasonality, stochastic volatility
and Samuelson-like effects in pricing of power options (e.g. [11, 12, 26, 31, 32, 33, 37])
or commodity options (e.g. [3, 4, 34, 35]). However, the issue of overlapping delivery
periods is not addressed in the above mentioned articles.

When building no-arbitrage models with overlapping deliver periods (from now
on called “no-overlapping-arbitrage” or shorter NOA) the focus must be twofold.
First, one has to work in a risk neutral setting where traded contracts are mar-
tingales. When such a risk neutral measure exists, the first fundamental theorem
of asset pricing guarantees that there are no arbitrage possibilities. In fact, when
considering overlapping periods, one must additionally take into account possible
arbitrages arising from trading futures with different delivery periods (cf. [30]). The
first paper that takes into account this fact is [29], where the authors apply an ap-
proach inspired by LIBOR market models [19]. To the best of our knowledge, this
is also the first attempt to fit a consistent option pricing model for power markets.
However, the generic LIBOR approach used in [19] allows to model directly only
shortest delivery, i.e. monthly, contracts, while resorting to approximation to the
distribution of longest delivery futures. The two-factor model of [29] has been gen-
eralized by [17, Section 5] to Lévy models, allowing to describe the implied volatility
(IV) surface of option prices. Furthermore, a more general approximation procedure
is proposed there, but the results, though accurate for single deliveries, are partially
satisfactory for longest maturity contracts, probably due to the required approxi-
mations. Here, we see a strength of our additive approach, making the necessary
approximations of the geometric approach useless.

Among recent contributions in power options modeling, we mention [37], who
uses a structural model that explains the formation of IV skews, and [32], who de-
velop an extensive sensitivity analysis of IV patterns. However, differently from our
setting, both papers consider options written on electricity spot prices. Another
characteristic that we want to reproduce in our model is prices’ seasonality (see also
[18]). Here, we address seasonality in the sense of dependence on the delivery of the
underlying futures. This has been addressed by [26], though in a Gaussian setting,
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which does not allow to capture the different IV levels displayed by options with
different strikes.

In order to compute option prices, we introduce an arbitrage-free two-factor
additive model for futures prices. In contrast to spot-based models, where the
futures prices are computed by taking the discounted expectation of spot prices
under a pricing measure, we start by specifying the stochastic dynamics of futures
prices under a risk-neutral measure Q. This is known to literature as the Heath-
Jarrow-Morton approach applied to commodity markets (see e.g. [25] for a literature
review in the case of electricity). Since the parameters of our model will be estimated
from the option market, this approach has several advantages as already pointed
out e.g. by [29]. For instance, we do not need to choose a pricing measure, or,
equivalently, estimate the market price of risk that determines how the stochastic
model changes from the physical measure to the risk-neutral measure under which
the options are priced in the market. In fact, we can call our risk neutral measure Q,
the risk-neutral measure, since this is implicitly and univocally determined by the
option prices observed in the market. We refer to [12] for an empirical discussion
on pricing measures for electricity derivatives.

Since our futures price model is based on Lévy processes, it allows to capture
the implied volatility profile described by options with different strikes. The dy-
namics arises as the natural generalization of its Gaussian counterpart introduced
in [30]. It assumes that futures prices are stirred by two stochastic factors built
on Normal Inverse Gaussian (NIG) Lévy processes modulated by deterministic co-
efficients depending both on time and delivery period. The NIG distribution is a
flexible family of distributions that is very popular in financial modeling (see e.g.
[6] for general applications of NIG processes to finance, [7] for an electricity spot
price NIG model and [2] for modeling electricity forwards). The first factor has a
delivery-averaged exponential behavior, meant to reproduce the Samuelson effect
[27]. The second factor is independent of current time, but varies for contracts with
different delivery in a seasonal and no-arbitrage way (cf. [30]) and accounts for a
finer reproduction of the term structure of futures’ volatilities. We use an additive
model, meaning that we do not consider the log-prices, but we instead model di-
rectly the prices. This class of models, as opposed to geometric models, has recently
gained an increasing attention in literature due to many modeling advantages (see,
for example, [8, 9, 10, 23, 28]). In the context of option pricing, [9] exploit the
additive structure of their spot dynamics for pricing Asian and spread options by
fast Fourier techniques. In our case, the additivity property will allow us to fit our
model consistently to all the delivery periods traded in the market. Instead, the
calibration results of [17, Section 5], where the author studied a geometric version
of our model (still based on two NIG factors) were only partially satisfactory. As
already mentioned at the beginning, this is likely due to the necessity to introduce
an approximation procedure for the distribution of contracts covering periods of
more than one month. In our case instead, by considering an additive model, we do
not need to introduce such approximations, as we have an exact expression for the
contract’s distribution.
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For pricing options, we follow the classical method of [20], which consists, roughly
speaking, in computing the Fourier transform of (a suitable modification of) the call
payoff as a function of the strike price so to recover the option value by inverse
transform. We recall from [20] two different approaches, that we adapt to the case
of additive models. The first approach is based on the use of an exponential damping
factor in order to make the option value integrable on the whole real line. Instead,
the second approach consists in substracting the time value of the option from its
payoff. In this way we derive semi-analytical expressions (analytical up to numerical
integration) for the option prices, that depend on the characteristic function of the
underlying (see also [13]).

We discuss a calibration methodology that we will apply in our empirical study.
The calibration happens statically, in the sense that we fix a trading date and ob-
serve the market option prices for different strikes and deliveries. We then find the
parameters that minimize an objective function representing the distance from ob-
served prices to model prices. In the same way, one can alternatively use IVs instead
of option prices. The futures model under consideration is defined in such a way
that there is no possibility of arbitrages from trading in overlapping delivery periods.
Because no-arbitrage implies certain relations on the coefficients, this translates into
parameter constraints (cf. the calibration procedure presented in [30]).

Since there is not enough liquidity in the market in order to extract information
on the IV surface from traded market quotes, we consider the options settlement
prices, that are available for a sufficiently large range of strike prices. Though settle-
ment prices do not necessarily represent trades that take place in the market, they
contain information on market expectations. We perform the calibration procedure
described above, first, for a one-factor model derived by the two-factor one by set-
ting one coefficient to 0, and then for the general two-factor model. We compare
the IVs of both models to the empirical IVs and the one (constant across strikes)
generated by Black’s model [11, 16]. As a by-product from the estimation of the
one-factor model, we derive that, under the risk-neutral measure, futures prices are
leptokurtic and have significantly positive skewness. This is reflected also into the
shape of empirical IVs, which display a forward skew (i.e. higher IVs for out-of-the-
money calls). This can be interpreted as a “risk premium” paid by option buyers
for securing supply (cf. [15, 36]). Finally, we show that the two-factor model is
able to reproduce in a satisfactory way the different levels and shapes of the IV
profiles displayed by all the deliveries traded in the market, by outperforming both
the Black and the one-factor model.

This paper is organized as follows. In the forthcoming Section 2 we state our
modeling framework and discuss the no-overlapping-arbitrage conditions in this set-
ting. Building on this, we address options on futures as well as its pricing by fast
Fourier methods in the following section. Then, Section 4 is devoted to the calibra-
tion procedure when considering overlapping delivery periods and Section 5 to the
empirical study. Finally, Section 6 concludes.
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2 Additive multifactor models for futures contracts in
an overlapping arbitrage free framework

Let F (t, T1, Tn) denote the price at a given day t of a futures contract which delivers
a fixed intensity of electricity over the period [T1, Tn]. This period is divided into
subperiods [Ti, Ti+1], for i = 1, · · · , n − 1. Thus, the periods are overlapping. For
example, the delivery period [T1, Tn] can be one quarter long, and is divided into four
monthly periods, or one year and it is divided into four quarters. Since contracts
expire right before delivery starts, we have that t ≤ T1. We will state the multifactor
model in this framework. Nevertheless, when it is sufficient to consider one period
only, we will use the period [T1, T2] representative for a single arbitrary period.
We introduce a general framework for multifactor additive futures prices (as, for
example, in [13]) and, from this, we focus on a two-factor model inspired by [30],
that will be of interest for application. More in detail, we introduce a stochastic
evolution, parametrized by the delivery period (i.e. depending, in addition to the
trading day t, also on T1, T2), driven by independent Lévy factors. We also compute
the corresponding characteristic functions, that will constitute the main ingredients
in the computation of option prices (see Section 4.3). We will assume throughout
this work that the risk-free interest rate is zero (similar arguments apply in the case
of deterministic flat interest rate after discounting, see [30]).

2.1 Additive multifactor NOA models

In the rest of the paper, we will consider European options written on futures
contracts written on the delivery period [T1, T2] and we will denote by T < T1 the
exercise date of these options. Therefore, for convenience we express the futures
price at time T . We assume that, for any time t before the exercise of the option,
i.e. 0 ≤ t < T , the futures prices F (T, T1, T2) are given by the following stochastic
differential equation (here given in integral form)

F (T, T1, T2) = F (t, T1, T2) +

p∑
k=1

∫ T

t
Σk(u, T1, T2) dWk(u) +

m∑
j=1

∫ T

t
Γj(u, T1, T2) dJj(u)

(1)

whereWk are independent Brownian motions for k = 1, . . . , p and Jj(u) =
∫ u

0

∫
R y Ñj(dy, dv)

are independent, pure-jump, centered Lévy processes such that
∫
|y|>1 y

2 νj(dy) <∞
for each j = 1, . . . ,m. This integrability assumption on the Lévy measure implies
that Jj are square-integrable martingales with zero expectation (for background on
Lévy processes see e.g. [22]). We assume that all the stochastic factors are indepen-
dent, so that, in particular, the m Poisson random measures are independent of the
p Brownian components. The dynamics above are described under a risk-neutral
measure Q. The absence of the drift follows from the fact that, by no-arbitrage,
futures prices must be martingales under Q (see e.g. [14]).

It is often the case, in power markets, that futures written on overlapping periods
are traded simultaneously: this originates from the so-called cascade mechanism, by
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which calendar and quarterly futures are split in contracts spanning smaller periods,
see e.g. [10] or [30] for a graphical illustration. In particular, it may happen that, for
a period [T1, Tn], the futures F (t, T1, Tn) and (F (t, Ti, Ti+1))i=1,...,n−1 are all quoted
at the same time t < T1. In this case, a naturally arising condition on the value
V (t,K;T1, Tn) of a futures contract with price K over the period [T1, Tn] and the
value V (t,K;Ti, Ti+1) with the same price K is

V (t,K;T1, Tn) =
n−1∑
i=1

V (t,K;Ti, Ti+1) . (2)

That is, the value of receiving electricity for the fixed price K over the period
[T1, Tn] has to be the same as receiving the electricity for the same price over all
partial periods. Now, the forward price K = F (t, T1, Tn) is defined to be the price
that makes the value V (t,K;T1, Tn) of the contract being equal to zero. Thus, from
(2) it follows the following no-overlapping-arbitrage (NOA) condition on the forward
prices:

F (t, T1, Tn) =
1

Tn − T1

n−1∑
i=1

(Ti+1 − Ti)F (t, Ti, Ti+1). (3)

For more of this topic, see [30] or [17]. Considering the dynamics of (1) and (3), the
NOA condition on the futures price reads in our framework

Σk(t, T1, Tn) =
1

Tn − T1

n−1∑
i=1

(Ti+1 − Ti)Σk(t, Ti, Ti+1) (4)

Γj(t, T1, Tn) =
1

Tn − T1

n−1∑
i=1

(Ti+1 − Ti)Γj(t, Ti, Ti+1) (5)

for all t < T1, k = 1, . . . , p and j = 1, . . . ,m, see e.g. [10].
In order to apply the Fourier transform approach to option pricing, we need

the characteristic function of the underlying process. Consider now a generic pe-
riod [T1, T2]. By introducing Z(t, T, T1, T2) := F (T, T1, T2) − F (t, T1, T2) and its
characteristic function (as a function of v ∈ R)

Ψ(t, T, T1, T2, v) = E
[
eivZ(t,T,T1,T2) |Ft

]
,

we have that (see e.g. [13])

log Ψ(t, T, T1, T2, v) = −1

2
v2

p∑
k=1

∫ T

t
Σ2
k(u, T1, T2) du+

n∑
j=1

ψj(t, T ; vΓj(·, T1, T2)).

(6)

The function ψj(t, T ; θ(·)) denotes

ψj(t, T ; θ(·)) =

∫ T

t
ψ̃j(θ(u)) du =

∫ T

t

∫
R

(eiθ(u)z − 1− iθ(u)z) νj(dz) du,
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where ψ̃j(θ) is the cumulant of the Lévy process Jj computed in θ ∈ R, i.e.

ψ̃j(θ) = logE
[
eiθJj(1)

]
and νj is the Lévy measure of Jj .

2.2 A two-factor model based on Normal Inverse Gaussian pro-
cesses

In this section we consider a two-factor model of the type (1) based on the Normal
Inverse Gaussian (NIG) distribution. This is motivated by the framework [10] and
arises as a natural generalization of [30]. The model assumes that futures prices are
stirred by two stochastic factors built on Normal Inverse Gaussian Lévy processes
modulated by deterministic coefficients. The first factor has a delivery-averaged
exponential behavior, meant to reproduce the so-called Samuelson effect. This is
an observed feature of prices volatilities, common to many commodity markets,
consisting of increasing volatility of prices as time approaches maturity [27]. For an
analysis of the impact of the Samuelson effect on option pricing, see [33] and [11].
The second factor is independent of time, but varies for contracts with different
delivery in a seasonal and no-arbitrage way (see [10, 30]) and accounts for a finer
reproduction of the term structure of futures volatilities. We remark that, since our
model is additive, by “volatility” we mean the parameter (or function of parameters)
that determines the variability of prices and not of log-prices as in geometric models.

Building upon (1), we assume that the stochastic evolution of a generic future
price F (·, T1, T2), delivering in the period [T1, T2], from t to T is described by

F (T, T1, T2) = F (t, T1, T2) +

∫ T

t
Γ1(u, T1, T2) dJ1(u) + Γ2(T1, T2)(J2(T )− J2(t)),

(7)

where

Γ1(u, T1, T2) :=
1

T2 − T1

∫ T2

T1

γ1e
−µ(τ−u) dτ =

γ1(e−µ(T1−u) − e−µ(T2−u))

µ(T2 − T1)
, (8)

Γ2(T1, T2) :=
1

T2 − T1

∫ T2

T1

γ2(τ) dτ. (9)

This model is in the spirit of [10, 30]. Thus, the special form of the coefficients
arises from the implicitly underlying assumption that F can be written as the av-
erage over an underlying artificial futures price with instantaneous delivery. By
focusing our attention to the first component, the parameter γ1 ∈ R+ models the
base volatility, that is the volatility of contracts resulting from the first component
with distant delivery i.e. T1− t→∞. This coefficient has an exponential rate given
by µ ∈ R+, which determines an increase of volatility as time approaches delivery
i.e. T1−t→ 0. This effect is averaged over the delivery period for no-arbitrage argu-
ments (as explained in [30]) and mimics the Samuelson effect. Regarding the second
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component, the function γ2 : [0,∞) → R+ models the general seasonal behavior
of volatility (it takes high values in periods of high volatility and low values for
periods of low volatility). See [18] for a time change model of seasonal volatility in
electricity markets. The seasonal function γ2 can be specified either in a parametric
or nonparametric fashion. For instance, one can have

γ2(τ) := γ2 + bτ +
m∑
j=1

(
a2j cos(ωjτ) + a2j+1 sin(ωjτ)

)
,

with ω = 2π/365, m ∈ N, b ∈ R (for capturing possible deterministic linear trends),
(γ2, a2, . . . , a2m+1) ∈ R2m+1.
Note also that the driving Lévy processes are the same for all contracts. This is
also a result of the assumption of an underlying instantaneous futures dynamics
(see [10], [30]). Note that we have fully specified the form of Γ1(·, T·, T·), where the
coefficients γ1 and µ are independent of the delivery period. With this specification,
the NOA condition (5) for Γ1 is naturally fulfilled. On the other hand, if the NOA
condition has to be satisfied for the chosen form of Γ1(u, Ti, Ti+1) as in (8), it is
indeed not possible to choose γ1 and µ different for each delivery period. Though,
we leave unspecified the coefficient of the second factor, Γ2, so to have more modeling
flexibility that is able to account for a finer reproduction of the term structure. In
the empirical analysis to come, we will use a non-parametric approach and estimate
one value for each delivery period. Thus, the following condition has to be fulfilled

Γ2(T1, Tn) =
1

Tn − T1

n−1∑
i=1

(Ti+1 − Ti)Γ2(Ti, Ti+1) . (10)

The coefficients in (8) and (9) modulate the variability of the two stochastic pro-
cesses J1 and J2, which are both defined as centered versions of NIG Lévy processes.
Let us recall that a Lévy process is called Normal Inverse Gaussian with parameters
(α, β, δ, µ) if its characteristic triplet is (χ, 0, ν) with

χ = m+
2αδ

π

∫ 1

0
sinh(βx)K1(αx) dx, (11)

ν(dy) =
αδ

π|y|
K1(α|y|)eβy dy, (12)

where K1 is the modified Bessel function of the third kind with index 1 (in the ter-
minology of [1, Section 9.6]), 0 ≤ |β| < α and δ > 0, m ∈ R (see [5]). Given a NIG
process L, the random variable L(1) is NIG distributed with parameters (α, β, δ, µ).
The NIG distribution is a subclass of a very flexible family, the Generalized Hyper-
bolic distributions, and it can accomodate heavy-tails and skewness. The parameter
α rules the tail heaviness of the distribution, β determines the skewness, δ is a scale
parameter and µ indicates the location of the distribution.

In general, a NIG process is not centered. Therefore, in order to define J1 and J2

we subtract from two general NIG processes L1, L2 the corresponding expected value
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(multiplied by time). For j = 1, 2, let Lj be a NIG Lévy process with parameters
(αj , βj , δj ,mj) and characteristic triplet (χj , 0, νj) and set

Jj(t) = Lj(t)− E[Lj(t)] = Lj(t)− t

(
χj +

∫
|y|≥1

y νj(dy)

)
.

Then, Jj is a centered NIG process. In particular, it can be easily shown (cf. the
characteristic function of Jj in (32) to see this) that Jj is a NIG process with

parameters

(
αj , βj , δj ,− δjβj√

α2
j−β2

j

)
.

As already mentioned, in order to compute the option prices, we will need the
characteristic function of F (T, T1, T2). This in turn reduces to finding the charac-
teristic function of Z(t, T, T1, T2) := F (T, T1, T2) − F (t, T1, T2). We compute it in
the appendix in order not to make the presentation unnecessarily heavy.

3 Option pricing for additive models by Fourier trans-
form methods

We consider the pricing of European vanilla options written on futures contracts of
the type introduced in the previous section. We discuss the method for call options,
being the case of puts completely analogous. Let C(t;T,K, T1, T2) be the price at
time t (the observation date) of a call option, with strike price K and exercise time
T , that is written on a futures contract with delivery period [T1, T2]. By no-arbitrage
(see, for instance, [14]),

C(t;T,K) = E [(F (T )−K)+ |Ft ] , (13)

where F (T ) is the price of the underlying futures at the option exercise as in (1)
and Ft represents the filtration at time t, i.e. the information flow up to time
t. In order to ease the notation, sometimes we will not write the dependence on
the delivery period, which does not come into play in this discussion. We recall
that the expectation is taken under the risk-neutral measure Q, even though it is
not explicitly indicated, and throughout this work Q will be the only probability
measure we will deal with. By applying the definition of conditional expectation,
we can write

C(t;T,K) =

∫ +∞

K
(s−K) qt,T (s) ds, (14)

where qt,T is the (risk-neutral) density function of F (T ) conditioned up to time
t. This formula yields an expression for the option value, for instance, when the
distribution of the underlying F allows for an explicit formula for the density, that,
moreover, can be integrated against the payoff function in a tractable way (as it is
the case in the Black model [16], where the underlying follows a geometric Brownian
motion).

We follow the alternative approach of [20], which consists, roughly speaking, in
computing the Fourier transform of (13) as a function of K (after proper manipula-
tions) so to recover the option value by inverse transform. This has been studied by

9



several authors and it has been shown to be a very convenient way to compute option
prices in the case that the characteristic function of the underlying is known explic-
itly, while the density is not. The starting point of the above mentioned approach
is the observation that, as K goes to −∞, C(t;T,K) → ∞, so that in particular
C(t;T,K) is not integrable as a function of K for large negative values. This means
that the option value C(t;T,K) does not satisfy the assumptions required for com-
puting its Fourier transform. In order to overcome this, we follow [20], who suggest
two approaches that we here recall and apply to the case of additive models.

The first approach requires to modify the option value with a damping term
eaK , where a > 0 in our case should be such that E[eaZ(t,T,T1,T2)] < +∞. While
this does not pose problems in Gaussian models, where any a > 0 would satisfy
this condition, in our case this condition will depend on the NIG parameters, still
unknown. Moreover, even if theoretically any “good” a would deliver the same
result, it is a well-known result that “extreme” values for a (i.e., too close to 0 or to
the upper bound) give numerical instabilities: thus, one should also optimize with
respect to a in order to have good numerical results.

For the arguments above, we instead choose to use the second approach, which
consists in substracting the time value of the option1. Following [20] (see also [21]),
define the modified time value of the option (as a function of the strike K ∈ R) by

zMT
t,T (K) = C(t;T,K)− (F (t)−K)+, (15)

and, if it is square-integrable, compute its Fourier transform

ξMT
t,T (v) =

∫ +∞

−∞
eivK zMT

t,T (K) dK. (16)

The modified option price (15) is then recovered by Fourier inversion after integrat-
ing by parts: this is derived in detail in the appendix.

4 Calibration procedure

As we have derived in the previous section semi-analytical expressions (analytical
up to integration) for the option prices, we now move to discussing a calibration
methodology that we are going to apply in our empirical study. First, we discretize
the option value that is given in integral form in (30) (see the appendix) in the
domain of integration. Then, we select a finite grid of strike prices, that consists
in practice of the listed options available in the market for a given underlying.
This procedure reduces the valuation problem to the computation of a finite sum
of vectors, where each component is the option price for a given strike. Then we
introduce a least squares problem designed to find the parameters that minimize an
error function (for a discussion about the choice of the error function, we refer to
[17, Section 5.4]). We can compute it for two possible quantities, the model error on

1For the sake of completeness, we performed the calibration of Section 5 also with the first
approach, which led to results analogous to those that we present here, but with the additional
complications mentioned above.
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option prices and on the IVs given by Black’s formula. By minimizing on IVs rather
than option prices, we weight at the same way contracts with different maturity.
However, minimizing on prices is preferable in terms of speed of computation, as
it does not require the inversion of Black’s formula at each step. We separate the
calibration routine in three cases, of increasing generality, in order to discuss the
presence of different constraints case-by-case.

4.1 Discretization of model option prices

The quantity that we have to discretize in (30) takes the following form:

zt,T (K) =
1

π

∫ +∞

0
Re
(
e−iKv ξt,T (v)

)
dv. (17)

First, we choose an upper limit A ∈ R+ in the above integration (see [20, Section
3.1] for a discussion on how to do this optimally). Then, if we apply a simple Euler
rule to the truncated integral, we find an expression of the form

zt,T (K) ≈ 1

π

N∑
j=1

Re
(
e−ivjK ξt,T (vj)

)
η, (18)

where N ∈ N, η := A/N and vj := η(j − 1) is the integration step. Given M ∈ N
different strikes with granularity κ > 0, we compute the function in (18) for the
following values of K:

Ku := K + κ(u− 1), for u = 1, . . . ,M,

being K the lowest strike price traded. By plugging this in (18), we get for u =
1, . . . ,M

zt,T (Ku) ≈ wt,T (Ku) :=
1

π

N∑
j=1

Re
(
e−iκη(j−1)(u−1)e−iKη(j−1) ξt,T (η(j − 1))

)
η. (19)

As pointed out in [20], this formula is suitable for the application of the fast
Fourier transform (FFT) algorithm. In order to do this, one must impose that the
number of strike prices considered is equal to the number of integration nodes, i.e.
M = N (which is typically chosen as a power of 2). Moreover, it must hold that

κη =
2π

N
,

which consists of a trade-off between the grid for the integration and the granularity
of strike prices. In particular, since in practice the granularity κ is given, this
equality univocally defines the integration grid as a function of N . However, in our
application we will not make use of the FFT algorithm and so, in particular, we
will not impose the above restrictions on N,M, κ, η. This is motivated by the fact
that we do not have a significant advantage in the computational complexity of the
problem, being the number of strikes consistently lower than N . Furthermore, the
focus of our work is not on the speed-up of the calibration procedure, but rather
on empirical results, so that we do not exclude the possibility to apply the FFT
algorithm, being still possible from a theoretical point of view.
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4.2 Parameters estimation

Since we have at disposal formulas in discrete form that can be readily implemented,
we can now discuss how to fit the two-factor model to market data. The calibration
happens statically, taking a snapshot of the market, in the sense that we fix a trading
date and observe the market option prices for that date. We then find the parameters
that fit a certain distance from theoretical to model prices best. As mentioned at
the beginning of this section, one can alternatively use IVs instead of option prices.
The futures model under consideration is defined in a such a way that there is
no possibility of arbitrages, also in the case of overlapping delivery periods. No-
arbitrage implies certain relations on the coefficients, that translate into parameter
constraints. In order to highlight this, we present the objective function and the
parameters set for the following three cases: single underlying, many underlyings
but non-overlapping delivery periods, and the general case of possibly overlapping
delivery periods.

4.2.1 Black’s formula

The first and most used in practice model for option prices written on futures is
the Black model [16]. It assumes that the underlying follows a geometric Brownian
motion as in the Black-Scholes formula. Also, the expression for the call price is very
similar to the Black-Scholes one, with the futures price replacing the stock price,
but with different discounting. Since we are assuming that the risk-free rate is zero,
the Black-Scholes and the option price given by the Black model are actually the
same in our case. We recall the Black formula here because, in addition to use it
as a benchmark in the upcoming empirical application, we use it to compute the
implied volatility of both market and model prices:

CBS(t;T,K) = F (t, T )N(d1)−KN(d2), (20)

where N denotes the cumulative distribution function of a standard Normal random
variable and

d1 =
log F (t)

K + 1
2σ

2(T − t)
σ
√
T − t

, d2 = d1 − σ
√
T − t.

The implied volatility of a given option with price P and strike K is defined as the
only (positive) number σ such that the Black formula for a strike K and volatility
σ (all other quantities being equal) gives the price P . The two-factor model aims to
reproduce the IV profile of market option prices, that is the plot of σ with respect
to K. Black’s formula yields constant implied volatility with respect to K, while
real option prices usually display smiles or smirks (i.e. the IV is not constant and
shows a certain convexity).

4.2.2 Single underlying contract

Assume that we observe at a certain date t < T the prices c∗(t, T, T1, T2,Ku) of a
call option for M different strike prices Ku, with exercise at time T written on a
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futures with delivery over [T1, T2]. To fit the model to the observed prices we search
for the parameters that minimize a certain error function. Specifically, we introduce
the following least-squares problem:

θ̂ := arg min
θ∈Θ

M∑
u=1

|c(t, T, T1, T2,Ku)− c∗(t, T, T1, T2,Ku)|2, (21)

where the set Θ contains all the parameters appearing in the approximation formula
of the model option price C(t, T, T1, T2,Ku) ≈ c(t, T, T1, T2,Ku) where

c(t, T, T1, T2,Ku) := wt,T (Ku) + (F (t, T1, T2)−Ku)+ (22)

where wt,T (Ku) for u = 1, . . . ,M is the discrete function in (19).
If we assume that F (T, T1, T2) is given by a two-factor pure-jump model of

the form (7) where Γi are defined in (8) and (9) and Ji is a centered NIG Lévy
process with parameters (αi, βi, 1), then Θ = {θ = (α1, α2, β1, β2, µ, γ1,Γ2(T1, T2)) ∈
(R+)2 × (R+

0 )4 ×R+ : 0 ≤ |βj | < αj}. We do not need to indicate the parameter m
of the original NIG Lévy process Li (see Section 3.2) since it does not appear in the
centered version. Also, the parameter δ is assumed to be 1 without here because of
the presence of the multiplying factors Γ1(u, T1, T2) and Γ2(T1, T2), thanks to the
property that, given a NIG(α, β, δ) distributed random variable X, for a constant
γ > 0, γX is distributed as a NIG(α/γ, β/γ, δγ). This means that letting δ vary
in the parameters set would result in an overparametrization of the minimization
problem.

4.2.3 Non-overlapping futures

Let us assume that we are at time t and observe I call options written on futures
contracts with non-overlapping delivery periods [Ti,1, Ti,2] (for example Jan/YY,
Feb/YY, Mar/YY), exercise at Ti and Mi strike prices

Ki
u := Ki + κi(u− 1),

for u = 1, . . . ,Mi and i = 1, . . . , I. In the case of more than one contract, we
introduce the following least-squares problem:

θ̂ := arg min
θ∈Θ

I∑
i=1

Mi∑
u=1

|c(t, Ti, Ti,1, Ti,2,Ki
u)− c∗(t, Ti, Ti,1, Ti,2,Ki

u)|2. (23)

where Θ is now the set of parameters {θ = (α1, α2, β1, β2, µ, γ1, {Γi}Ii=1) ∈ (R+)2 ×
(R+

0 )4 × (R+)I : 0 ≤ |βj | < αj}. For I = 1 we recover exactly the previous case.

4.2.4 Whole market

In general options traded in power markets are written on I futures contracts with
different delivery length and possibly overlapping. For example, one can have
Apr/YY, May/YY, Jun/YY, Jul/YY, Q2/YY, Q3/YY, Cal-YY simultaneously
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traded. As explained in [30], in order to estimate the parameters in a consistent,
i.e. arbitrage-free, way, we have to take into account additional constraints on the
parameters. From Equation (9), it can be shown that the parameters Γi satisfy the
following constraints

Γi = Γ2(Ti,1, Ti,2) =

n∑
j=1

Tj,2 − Tj,1
Ti,2 − Ti,1

Γ2(Tj,1, Tj,2) =

n∑
j=1

Tj,2 − Tj,1
Ti,2 − Ti,1

Γj (24)

whenever [Ti,1, Ti,2] is the union of disjoint intervals [Tj,1, Tj,2] for j = 1, . . . , n, i.e.
for all the forwards with overlapping delivery, see Section 2 for details. Let us call
atomic, the contracts whose delivery period can not be partitioned by the delivery
periods of other futures. In other words, we suppose that m forwards F1, . . . , Fm
have non-overlapping delivery periods [T1,1, T1,2], . . . , [Tm,1, Tm,2] and such that the
delivery periods of the other contracts traded in the market can be expressed as union
of the former. For example, assume that we observe in the chosen calibration window
the option prices for futures contracts delivering over Apr/YY, May/YY, Jun/YY,
Jul/YY, Q2/YY, Q3/YY, Cal-YY. On one hand, Q2/YY is not atomic, since it
can be “splitted” into Apr/YY, May/YY and Jun/YY. On the other hand, Q3/YY
turns out to be atomic, even if Jul/YY is already traded, as Aug/YY and Sep/YY
are not observed. For the same reason, Cal-YY is considered atomic as well. Then,
in this example, if Γ1, . . . ,Γ7 denote the corresponding parameters, we have that
Γ1,Γ2,Γ3,Γ4,Γ5,Γ7 are free parameters, as they refer to atomic contracts, whereas
to determine Γ5 we use Equation (24). Consequently, we define the same statistics
as in (23) but where now the vector of parameters is subject to the additional
constraints given by Equation (24). For example, with the convention that ΓQ2/YY

denotes the parameter Γi corresponding to the contract Q2/YY, then

ΓQ2/YY = uApr/YYΓApr/YY + uMay/YYΓMay/YY + uJun/YYΓJun/YY, (25)

where the weights ui are defined according to the number of days in the month/quarter
(e.g. for Apr/YY we have uApr/YY = 30/91).

Thus, we summarize the optimization problem with NOA-conditions:

θ̂ := arg min
θ∈Θ

I∑
i=1

Mi∑
u=1

|c(t, Ti, Ti,1, Ti,2,Ki
u)− c∗(t, Ti, Ti,1, Ti,2,Ki

u)|2. (26)

where Θ is now the set of parameters θ = (α1, α2, β1, β2, µ, γ1, {Γi}Ii=1) ∈ (R+)2 ×
(R+

0 )4 × (R+)I such that

0 ≤ |βj | < αj ,

Γi =

n∑
j=1

Tj,2 − Tj,1
Ti,2 − Ti,1

Γj .
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5 Empirical study

In this section we describe our dataset, compute and discuss the empirically observed
volatility implied by settlement prices. We compare the performance of three models:
a purely Gaussian model, a one-factor model (being a special case of the two-factor
one) and the general two-factor model.

5.1 Data description

The contracts that we consider in our application are European-styled call options
traded at the EEX Power Derivatives market. The underlying assets are futures con-
tracts that prescribe the delivery of 1 MWh for each hour of each day of a month,
a quarter or a year. More specifically, we will consider call options written on the
Phelix Base index of the German/Austrian area. These options are called Phelix
Base Month/Quarter/Year Options and the EEX official product codes are O1BM,
O1BQ, O1BY. The term Base refers to Base Load, because the delivery of electricity
takes place for each hour of the day, in contrast to Peak Load contracts, that instead
prescribe the delivery only for the hours from 8 to 20. Usually, the exercise of the
options under consideration is few trading days before the start of delivery. Since
recently, yearly options are available for four different exercise dates. We consider in
our dataset only the ones expiring few days before delivery, in analogy to quarterly
and monthly contracts. Since there is not enough liquidity in the market in order to
extract information on the IV surface from traded market quotes, we consider the
settlement prices, that are available for a sufficiently large range of maturities and
strikes: though settlement prices do not represent trades that really take place in the
market, they contain information on market expectations. We observe the market
for a representative day: Monday, March 5, 2018. For each option, we consider the
strike prices in the range 90%–110% of the underlying current price (as, for exam-
ple, in [3, 4]). At this date the listed options with available settlement prices are
the ones written on five monthly (Apr/18, May/18, Jun/18, Jul/18, Aug/18), six
quarterly (Q2/18, Q3/18, Q4/18, Q1/19, Q2/19, Q3/19) and three yearly (Cal-19,
Cal-20, Cal-21) futures.

Before moving on with the calibration procedure, let us comment on the empir-
ical market-implied volatilities first, which we have calculated by inverting Black’s
formula. They are displayed in Figure 4. We observe a very pronounced smile for
the contracts with forthcoming delivery, i.e. the contracts with delivery in April 18
and in the second quarter. Furthermore we observe that the farther the beginning
of the delivery period is in the future, the less pronounced is the smile: for the
next beginning periods in May, June and July the smile is present but less and less
pronounced, and already in August and the Q3 contract there is still a tendency
to smile, but not pronounced at all. Generally we observe a forward skew (i.e.
higher IVs for out-of-the-money calls). This can be interpreted as a “risk premium”
paid by option buyers for securing supply. Remember however, that we consider
only strikes in a range of about 90%− 110% of at-the-moneyness due to illiquidity
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considerations.
Remember that, in our model, the smile is produced by the presence of jumps.

More precisely, we consider two independent NIG processes as the stochastic drivers
of the two factors: the first factor captures the short time behavior modeled by
Γ1(u, T1, T2) defined in Equation (8), also referred to as the Samuelson effect; the
second factor, modeled by Γ2(u, T1, T2) as in (9), captures seasonal behavior depend-
ing on both the delivery period and the no-overlapping-arbitrage condition (25).

From the observation of the market implied volatilities, we have some expecta-
tions on what the estimated parameters of our futures model should be. First of all,
we should get better estimates incorporating the Samuelson-factor, as we do observe
a different smile behavior close to delivery and far away from delivery. We observe a
very pronounced smile shortly before delivery, and a less pronounced smile far away
from delivery. Consequently, the estimated NIG parameters of the Samuelson factor
should be such that the resulting distribution is far away from a Normal distribu-
tion. Furthermore, the estimated NIG parameters of the seasonal factor should be
such that they are closer to a normal distribution.

5.2 Calibration

We perform the calibration procedure described in Section 3.4.3, first for the one-
factor model derived by (7) by setting the first coefficient to 0, i.e. Γ1(u, T1, T2) ≡ 0,
and then for our general two-factor model. We compare both models to the empir-
ical IVs and the one (constant across strikes) generated by Black’s model, that we
estimate with the same procedure of the other models (except for the computation
of the price, which can be computed analytically for the Black model). We show the
results for the minimization on market prices (see Section 4.4), since the calibration
is faster and, even though the case of IVs yields by definition a lower residual, it
gives very similar results.

After numerical experiments with test parameters, the integral in (17) has been
truncated at A = 10 and computed by an adaptive Simpson quadrature rule already
implemented in MATLAB (as in [32]), which takes into account the oscillatory
behavior of the integrand (cf. [20]).

We find that, in general, the optimization routine falls into local minima. How-
ever, by selecting a starting condition that is “sufficiently close” to the observed IVs,
the minimization converges (cf. [22] for well-posedness of this kind of problems). As
a by-product from the estimation of the one-factor model, we derive that, under the
risk-neutral measure, futures prices are leptokurtic and have significantly positive
skewness. This is reflected also into the shape of empirical IVs, which, as we already
mentioned, display a forward skew (i.e. higher IVs for out-of-the-money calls). The
IVs of market and model prices are plotted in Figures 5–9.

5.3 Results

We first address the estimated parameters for the futures model, before we comment
on the resulting fit of market implied volatilities. We have estimated the distribution
of the driving NIG process. Remember though that we consider centered Lévy
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Figure 1: Selection of monthly delivery periods. Implied volatility for the Black, one-
factor and two-factor model compared to the empirical implied volatilities of options
listed at March 5, 2018 (the corresponding underlying current price is indicated
above each plot).

processes, thus µ = 0 and δ = 1 due to the scaling property of the NIG distribution
(see Section 4.2.2). The estimated parameters are reported in Table 1 and 2 for the
one factor and two factor model respectively.

α β Γ2(1) Γ2(2) Γ2(3) Γ2(4) Γ2(5) Γ2(6)
0.0059 0.0019 0.0464 0.0327 0.0315 0.0311 0.0293 0.0368
Γ2(7) Γ2(8) Γ2(9) Γ2(10) Γ2(11) Γ2(12) Γ2(13) Γ2(14)

0.0284 0.0310 0.0304 0.0211 0.0209 0.0271 0.0255 0.0244

Table 1: Calibrated parameters for the one factor model at 2018, March 5th.

α1 β1 α2 β2 γ1 µ Γ2(1) Γ2(2) Γ2(3) Γ2(4)
0.1890 0.0586 0.0005 0.0002 0.1656 0.0044 0.0129 0.0054 0.0060 0.0068
Γ2(5) Γ2(6) Γ2(7) Γ2(8) Γ2(9) Γ2(10) Γ2(11) Γ2(12) Γ2(13) Γ2(14)

0.0064 0.0081 0.0066 0.0091 0.0093 0.0055 0.0057 0.0093 0.0084 0.0078

Table 2: Calibrated parameters for the two factor model at 2018, March 5th.

In Figure 2 we have plotted the theoretical NIG density together with the corre-
sponding normal density. We see that the Samuelson factor is far away from being
Gaussian, exhibiting rather fat tails. Also the estimated density of the seasonal com-
ponent clearly deviates from the Gaussian shape, but in a less pronounced way. This
confirms our expectations and justifies our choice of pure jump Lévy processes. The
seasonal component has a tendency to model more “normal” movements, while the
Samuelson component is able to account for rare, bigger movements. This analysis is
complemented by Table 3, where we have presented the estimation of the moments
of the NIG driving factors. Note that these are the (risk-neutral) moments of the
jump drivers J1(1) and J2(1) only, i.e. without considering the coefficients and for
fixed time equal to 1. By accounting for the coefficients and integrating in time, one
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would get the (risk-neutral) moments of the futures prices.
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Figure 2: Densities of the NIG factors J1 (left), J2 (right) compared to the corre-
sponding Gaussian densities (i.e. Gaussian density with same mean and variance).

component mean variance skewness excess kurtosis
J1 0 6.1603 2.1964 23.1341
J2 0 2508.1 53.197 10192

Table 3: Moments of the NIG driving factors J1 (top) and J2 (bottom).

We now start to discuss the remaining estimates, that are reported in Table
1 and 2 for the one factor and two factor model respectively. We would like to
draw the attention to the estimates Γi of the overlapping delivery periods that are
restricted through the NOA-condition in (24). For our dataset, this is Apr/18,
May/18, Jun/18, as well as Q2/18. The corresponding estimates are illustrated in
Figure 3.

After addressing the properties of our estimated futures model, we move on to
discussing the fit of volatility smiles. We divide the discussion depending on the
time to maturity – forthcoming delivery periods (Apr/18, Q2/18), delivery periods
that are not immediately forthcoming (May/18, Jun/18, Jul/18, Q3/18, Q4/18)
and delivery periods that are far away (in terms of the number of forthcoming
periods). The implied volatility smile of a selection of the delivery periods is plotted
in Figure 1, both for the 1-factor and 2-factor model. For comparison, we have added
the calibrated volatility resulting from Black’s model, whose values are reported in
Table 4. While the selection in Figure 1 includes the two forthcoming months, the
plots of all smiles that we consider can be found in the Appendix B together with
the corresponding option prices, see Figures 5 - 9. Here, we have also displayed
the smiling volatility surface of monthly, quarterly and yearly delivery periods (see
Figure 4).

For the forthcoming contracts, both the 1-factor and 2-factor model underes-
timate the implied volatility at the money, and overestimate it in and out of the
money. Nevertheless, the two factor model does well, and captures especially the
shape out of the money. It is our winner here. On the contrary, the one factor
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σ(1) σ(2) σ(3) σ(4) σ(5) σ(6) σ(7)
0.0156 0.0132 0.0123 0.0121 0.0120 0.0137 0.0109
σ(8) σ(9) σ(10) σ(11) σ(12) σ(13) σ(14)

0.0106 0.0106 0.0094 0.0094 0.0106 0.0104 0.0100

Table 4: Calibrated parameters for the purely Gaussian model on 2018, March 5th.

model mismatches so much that it is hard to call it satisfactory. Consider now the
contracts that are not immediately forthcoming. Here we find an almost perfect fit
of the two factor model, which is very satisfactory; however, the one factor model
seems to perform better than before, too. Finally, for the contracts with delivery
period in the far future, both factor models give good results. Nevertheless, as the
smile is quite flat, also the purely Gaussian model seems to be a reasonable choice.

As we want to have one model with one single set of parameters, that captures
the implied volatility features of all contracts, forthcoming and not, we can conclude
that the two factor model performs overall very well and is a dignified winner of this
empirical study.

6 Conclusion

In this paper, we present the theory of arbitrage possibilities when trading in futures
and option contracts with overlapping delivery periods (see also [10, 17, 30]). In
this setting, we discuss the necessary no-overlapping-arbitrage (NOA) conditions
of a NIG-driven two factor model with Samuelson and seasonal factor. Our main
purpose is the calibration of this model to power option prices via Fourier transform
methods in an overlapping-arbitrage free way. This leads to an additional NOA
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restriction in our optimization problem, see Section 4.2.4. Looking at the market
implied volatilities at our chosen trading day, we observe a pronounced forward-
skewed volatility smile for the forthcoming delivery periods. The smile flattens out
when time to maturity increases. Thus, it is not surprising that our two factor
model — that accounts exactly for these short-term, long-term variations — is able
to fit the smile very well.
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A Appendix

A.1 Inversion of the Fourier transform: Carr-Madan approach

We here recall the Carr-Madan approach for recovering the option value from its
Fourier transform (see Section 3). If ξMT

t,T , defined in (16), is integrable, by the
Fourier inversion theorem, the modified time value of the option can be recovered
by inverting again the last equation:

zMT
t,T (K) =

1

2π

∫ +∞

−∞
e−iKv ξMT

t,T (v) dv. (27)

Now, observe that, by the martingale property of F (·),

(F (t)−K)1F (t)>K = E [(F (T )−K) |Ft ] 1F (t)>K .

Then, we can write from (14)

zMT
t,T (K) =

∫ +∞

−∞
(s−K) qt,T (s) (1s>K − 1s(t)>K) ds

where, for any t ∈ [0, T ], s(t) := F (t) and qt,T is the density function of F (T )
conditioned up to time t. As a consequence, if the interchange of integrals holds
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(see Proposition A.1), (16) can be written as

ξMT
t,T (v) =

∫ +∞

−∞
eivK

∫ +∞

−∞
(s−K) qt,T (s) (1s>K − 1s(t)>K) ds dK

=

∫ +∞

−∞
qt,T (s)

∫ s

s(t)
eivK (s−K) dK ds (28)

=

∫ +∞

−∞
qt,T (s)

{
eivKs

iv

∣∣∣∣s
K=s(t)

−
∫ s

s(t)
K eivK dK

}
ds

=

∫ +∞

−∞
qt,T (s)

{
−e

ivs(t)s

iv
+
eivs(t)s(t)

iv
− eivs

v2
+
eivs(t)

v2

}
ds

= − 1

v2

∫ +∞

−∞
qt,T (s) eivs ds+

eivs(t)

v2
− eivs(t)

iv

∫ +∞

−∞
qt,T (s)(s− s(t)) ds.

Since F is a martingale,∫ +∞

−∞
qt,T (s)(s− s(t)) ds = E [(F (T )− F (t)) |Ft ] = 0

and, by definition of characteristic function (see also (6)),∫ +∞

−∞
qt,T (s) eivs ds = E

[
eivF (T ) |Ft

]
= eivs(t)Ψ(t, T, v),

where Ψ(t, T, v) is the characteristic function of Z(t, T ). Then, we finally arrive to

ξMT
t,T (v) = eivF (t) 1−Ψ(t, T, v)

v2
. (29)

In analogy to the modified option approach, we have that ξMT
t,T has even real part

and odd imaginary part and so

zMT
t,T (K) =

1

π

∫ +∞

0
Re
(
e−iKv ξMT

t,T (v)
)
dv. (30)

Finally, by recalling (15), the option value is computed from (30) by

C(t;T,K) = zMT
t,T (K) + (F (t)−K)+.

In order to apply this formula, we need to justify the interchange of integrals
operated in (28) under the following integrability assumptions on the futures price
process.

Proposition A.1 If Z(T, T1, T2) is square-integrable, then

ξt,T (v) =

∫ +∞

−∞
eivK

∫ +∞

−∞
(s−K) qt,T (s) (1s>K − 1s(t)>K) ds dK

=

∫ +∞

−∞
qt,T (s)

∫ s

s(t)
eivK (s−K) dK ds.
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Proof. It is enough to show that the integral of the absolute value of the integrand
with respect to K, i.e. ∫ +∞

−∞
|s−K| |1s>K − 1s(t)>K | dK

can be integrated in s against the density qt,T (s). Since this is equal to∫ s

s(t)
(s−K) dK =

1

2
(s− s(t))2,

the integrability with respect to the density is equivalent to the existence of the
second moment of Z(t, T, T1, T2). �

A.2 Characteristic function of the two-factor NIG model

As already stated in Section 4.2 for general multifactor additive models, the char-
acteristic function of two-factor NIG model is defined as a function of v ∈ R by

Ψ(t, T, T1, T2, v) = E
[
eivZ(t,T,T1,T2) |Ft

]
,

where Z(t, T, T1, T2) := F (T, T1, T2)− F (t, T1, T2), and it can be shown to be equal
to

log Ψ(t, T, T1, T2, v) = ψ1(t, T ; yΓ1(·, T1, T2)) + ψ2(t, T ; yΓ2(T1, T2)). (31)

First, we need to compute the cumulant function ψ̃j(θ) of Jj (j = 1, 2), that can

be computed from the corresponding cumulant ψ̃Lj (θ) of Lj as follows. From the
definition of Jj we know that

ψ̃j(θ) = ψ̃Lj (θ)− iθ

(
χj +

∫
|y|≥1

y νj(dy)

)
,

where
ψ̃Lj (θ) = δ

(√
α2
j − β2

j −
√
α2
j − (βj + iθ)2

)
+ iθmj .

Moreover, since Lj(1) is a NIG distributed random variable, its expected value is

E[Lj(1)] =

(
χj +

∫
|y|≥1

y νj(dy)

)
= mj +

δjβj√
α2
j − β2

j

,

so that, by replacing it in the expression above, we find that

ψ̃j(θ) = δj

√α2
j − β2

j −
√
α2
j − (βj + iθ)2 − iθ βj√

α2
j − β2

j

 . (32)
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In particular, we observe that Jj(1) is a NIG distributed random variable with

parameters (αj , βj , δj ,− δjβj√
α2
j−β2

j

). Now, we can compute the two jump components

of the cumulant function in (31), by inserting the corresponding expressions of ψ̃j(θ)
from (32) and Γj as in (8)–(9) for j = 1, 2. The second coefficient can be directly
computed as

ψ2(t, T ; yΓ2(T1, T2)) = (T − t) δ2

(√
α2

2 − β2
2 −

√
α2

2 − (β2 + iyΓ2(T1, T2))2

− iyΓ2(T1, T2)
β2√

α2
2 − β2

2

)
, (33)

while the first requires an integration in time:

ψ1(t, T ; yΓ1(·, T1, T2)) = (T − t) δ1

√
α2

1 − β2
1

− δ1

∫ T

t

√
α2

1 − (β1 + iyΓ1(u, T1, T2))2 du

− iy δ1β1√
α2

1 − β2
1

∫ T

t
Γ1(u, T1, T2) du. (34)

Let us recall that, if ζ := Γ2(T1, T2) is positive, by the properties of the NIG distri-
bution (see e.g. [5]), ζ ·J2(1) is a NIG distributed random variable with parameters
(α2/ζ, β2/ζ, δ2ζ,− δ2ζβ2√

α2
2−β2

2

). Consequently, it is easy to see that we can assume

without loss of generality that δ2 = 1, so that

ψ2(t, T ; yΓ2(T1, T2)) = (T − t)
(√

α2
2 − β2

2 −
√
α2

2 − (β2 + iyΓ2(T1, T2))2

− iyΓ2(T1, T2)
β2√

α2
2 − β2

2

)
, (35)

For the same reason we can assume that δ1 = 1. By replacing Γ1(u, T1, T2) =

eµu γ1(e−µT1−e−µT2 )
µ(T2−T1) := eµu Γ̃1(T1, T2) in (34) and integrating, we get

ψ1(t, T ; yΓ1(·, T1, T2)) = (T − t)
√
α2

1 − β2
1 − η(c(y, T )) + η(c(y, t))

− iy Γ̃1(T1, T2)β1(eµT − eµt)
µ
√
α2

1 − β2
1

, (36)

where

η(w) :=
1

µ

(√
α2

1 + w2 − iβ1 arcsinh
w

α1

−
√
α2

1 − β2
1 log

2α2
1

(
α2

1 − iβ1w +
√
α2

1 − β2
1

√
α2

1 + w2
)

(w + iβ1)(α2
1 − β2

1)
3
2

 , (37)

c(v, u) := v Γ̃1(T1, T2) eµu − iβ1. (38)
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Finally, the cumulant function of Z is explicitly given by

log Ψ(t, T, T1, T2, y) = ψ1(t, T ; yΓ1(·, T1, T2)) + ψ2(t, T ; yΓ2(T1, T2))

= (T − t)

{√
α2

1 − β2
1 +

√
α2

2 − β2
2

− iy

(
Γ̃1(T1, T2)β1

µ
√
α2

1 − β2
1

(eµT − eµt)
T − t

+
Γ2(T1, T2)β2√

α2
2 − β2

2

)

− η(c(y, T ))− η(c(y, t))

T − t
−
√
α2

2 − (β2 + iyΓ2(T1, T2))2

}
.

with η(·) and c(·, ·) as in (37)–(38).

B Figures
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periods. Empirical values (dotted, blue) and two factor model (red).
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Figure 5: Implied volatility for the Black, one-factor and two-factor model compared
to the empirical implied volatilities of all the options listed at March 5, 2018 (left).
The corresponding underlying current price is indicated above each plot. On the
right hand side the corresponding prices are shown. Monthly delivery periods from
April 18 - June 18.
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Figure 6: Implied volatility for the Black, one-factor and two-factor model compared
to the empirical implied volatilities of all the options listed at March 5, 2018 (left).
The corresponding underlying current price is indicated above each plot. On the
right hand side the corresponding prices are shown. Monthly delivery periods, July
and August 2018.
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Figure 7: Implied volatility for the Black, one-factor and two-factor model compared
to the empirical implied volatilities of all the options listed at March 5, 2018 (left).
The corresponding underlying current price is indicated above each plot. On the
right hand side the corresponding prices are shown. Quarterly delivery periods in
2018.
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Figure 8: Implied volatility for the Black, one-factor and two-factor model compared
to the empirical implied volatilities of all the options listed at March 5, 2018 (left).
The corresponding underlying current price is indicated above each plot. On the
right hand side the corresponding prices are shown. Quarterly delivery periods in
2019.
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Figure 9: Implied volatility for the Black, one-factor and two-factor model compared
to the empirical implied volatilities of all the options listed at March 5, 2018 (left).
The corresponding underlying current price is indicated above each plot. On the
right hand side the corresponding prices are shown. Yearly delivery periods.
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