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This paper applies a microeconomic-based stylized model to identify
the optimal modal split of water supply infrastructure in regions of the
Global South against the background of the Sustainable Development
Goal (SDG) No. 6. We assume a linear city, with some plausible as-
sumptions on income and willingness-to-pay, and then calculate the op-
timal tap density, leading in turn to an optimal modal split between
piped and unconnected water consumption. From an economic perspec-
tive, not all water users need to be connected to a centralized, pipeline
infrastructure, and the non-connected households should be served by
non-mobile or mobile vendors. The analysis is firstly made for the case
of totally inelastic demand functions for simplification reasons and after-
wards the analysis becomes more complicated and realistic by addressing
elastic demand functions which are based on a simplified version of the
Stone-Geary utility function. In terms of policy implications, the paper
suggests a role for decentral, offgrid solutions to generalized water sup-
ply, with a certain role for water vendors.
JEL: C31 (Multiple or Simultaneous Equation Models - Multiple Vari-
ables - Spatial Models); R12 (Size and Spatial Distributions of Regional
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1 Introduction
In 2010, the human rights to water were established, which ensure the universal
access to safe, clean and affordable drinking water (UN, 2010). Despite the progress
that has been made on the Sustainable Development Goals in recent years, 785 mil-
lion people remained without even basic drinking water services in 2017. Nearly half
of these people live in Sub-Saharan Africa, while about one-fifth live in South Asia
(UN, 2019). The Millenium Development Goals were followed by the Sustainable
Development Goals (SDGs) which were adopted by the UN General Assembly on
September 25th 2015 (UNDP, 2015). The target No. 6.1 of the SDGs postulates
the “universal and equitable access to safe and affordable drinking water” for all
humans by 2030 (UN, 2015). For reaching this universal and challenging goal, the
informal economy may play an important role.

In squatter settlements, shanytowns, slums and many rural areas, the informal
economy provides the poor, which are not served by the respective municipality,
with an alternative for urban services, such as water, sanitation, transportation and
trash-collection (Soto (1989); Whittington et al. (1991); Njiru (2004); Roy (2005);
Opryszko et al. (2009); Ishaku et al. (2010); Olajuyigbe et al. (2012); Onyenechere
et al. (2012); Ayalew et al. (2014); Fox (2014); Mehta et al. (2014); Wutich et al.
(2016)). Therefore, the informal economy, e.g. informal water supply, bridges the
gap between the sparse urban services delivered by municipalities and the real needs
(Portes and Haller (2010); Wutich et al. (2016)).

Specifically, water vendors play an important role in the informal water supply,
because they serve those people with water that are not connected to the public
water supply. Zaroff and Okun (1984), Lovei and Whittington (1993), Snell and
Mundial (1998), Njiru (2004), Kjellén and McGranahan (2006), Sansom and Bos
(2008), Opryszko et al. (2009), Wutich et al. (2014) and Wutich et al. (2016) focus
on the description of the various operation modes of water vendors from different
perspectives. Water vendors usually deliver water to the home of the poor by us-
ing hand-carried donkey carts or trucks (mobile vendors) or they operate reselling
stations from where consumers can collect the water (water kiosks).

Despite the essential importance of the informal water supply, there are also some
disadvantages related with water vending compared to the public water supply. For
instance, water from vending may be the reason for water-related diseases, because
of the low quality of vended water compared to municipal water (Whittington et al.
(1989); Zaroff and Okun (1984); Kjellén and McGranahan (2006); Olajuyigbe et al.
(2012); Hutin et al. (2003)).1 Furthermore, vended water is often more expensive
than municipal water from the public water supply (Crane (1994); Snell and Mundial
(1998); Collignon (1999); Kjellén (2000); Solo (2003); Kariuki and Schwartz (2005);
Opryszko et al. (2009); Ishaku et al. (2010); Bayliss and Tukai (2011); Olajuyigbe

1However, a few studies, such as Collignon and Vézina (2000) or Solo (1999), state that vended
water is comparable or better than water from other local sources.
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et al. (2012); Dauda et al. (2015); Rahaman and Ahmed (2016)).2 According to
Kjellén and McGranahan (2006), these high prices may result from the abuse of
market power by the water vendors. However, other studies, like Whittington et al.
(1991), Solo (1999), Collignon and Vézina (2000), Kariuki and Schwartz (2005) and
Opryszko et al. (2009), justify a higher price level for vended water than for municipal
water due to higher specific investment and operation costs. The investment, oper-
ation and unit costs for selected water vendors in selected regions are presented for
instance by Lovei and Whittington (1993), Collignon and Vézina (2000), Al-Hamdi
and Alaerts (2000), Kayaga and Franceys (2007) and Keener et al. (2009). Studies
such as Al-Hamdi and Alaerts (2000) compare the unit costs of vended water with
those of municipal water, which illustrates the cost advantage of the public water
supply. Of course, the unit cost level depends not only on the technology used and
the operation mode, but also on the amount of supply. Nauges and Van den Berg
(2008) analyze the size of economies of scale and scope for the public water supply
in selected regions. Beside the accounting costs, there are opportunity costs, which
result from, for instance, hauling activities. Whittington et al. (1990) estimate such
hauling costs for various scenarios.

This paper contributes to the discussion by identifying the main drivers of what
we call the “optimal modal split” between water supply through larger networks, and
the self-provisioning of water through vendors or – most often for poverty reasons –
an undersupply of clean water after all. The general opinion is that connected water
supply should be the ultimate objective of a developed system, whereas there may
be good economic reasons to rely on a certain degree of unconnected water supply
for spatially scattered users, in particular the sub-urban poor. Therefore, similar to
argumentation put forward by McGranahan et al. (2006), Chaudhury (2013) as well
as Wutich et al. (2016), water vending is a necessary path to achieve the ambitious
political goals formulated by the human rights for water and the SDG No. 6.

The paper applies a microeconomic-based stylized model to derive the potential
impact of external and internal factors, such as cost structures, on the development
of the system. We assume a linear city, with some plausible assumptions on income
and willingness-to-pay, and then calculate the optimal tap density, leading in turn
to an optimal modal split between piped and unconnected water consumption.

The paper is structured in the following way: The next section sets the scene, by
discussing the main levers of water supply in a developing context, and by deriving
a model setting that represents a broad range of water supply issues identified by
the literature. Section 3 then provides the basic model of the “linear city” of water
supply, and the main assumptions on costs, willingness-to-pay, and other variables.
In section 3.2 we present the derivation of the optimal modal split, by maximizing
the social benefit of connected and unconnected water supply. Therefore, the service
parameters such as the connected households, the distance between the taps, and the
action of the vendors are calculated. We also discuss potential deviations from this

2According to Wutich et al. (2016), the costs for vended water range from 4 to 30 times the
cost of municipal water.
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optimum, when taking into account “non-economic” aspects such as the human right
to water. Whereas in Section 3 we assume inelastic demand, we introduce elastic
demand in Section 4, based on a simplified version of a Stone-Geary utility function.
In Section 5, we perform some numerical analysis based on plausible assumptions.
This analysis also identifies key parameters that determine the tap density. Section
6 concludes and derives some policy implications.

2 Institutional and Technical Setting
In addition to the municipal water supply, water vendors play an important role in
the water supply system especially for those households which are not connected
to the municipal water supply. In this section, we set the scene for the analy-
sis of water supply by discussing the basic elements of a model of optimal modal
split between centralized, municipal, grid-based supply by a water utility, the sup-
ply by mobile water vendors and the self-provisioning, e.g. through boreholes or
water kiosks (see Figure (2.1)). Assume a water utility in some urban center in an
emerging or developing country, which provides municipal water to its fairly wealthy
constituency in the core of the city (left hand side). This water utility can operate
as a non-profit, welfare-oriented actor pursuing goals of integrated water resource
management (IWRM), or it can be considered as a profit-maximizing agent. Dif-
ferent forms of organization are possible for the municipal water supply. It can be
structured by different organizational models with respect to ownership (private,
community-based, etc.) and financing (Kariuki and Schwartz, 2005). Depending on
the goal of the municipal water supplier, the utility will strive to provide access to
the periurban region as long as it serves its goals.3

Located at the right side of the figure, residual households which are not con-
nected to the municipal water supply grid have two options: Either to supply them-
selves with water from wells, boreholes, surface water bodies etc. where access is
free, or to purchase water from water vendors. In areas with inadequate sanita-
tion, this may run the risk of diseases from unpure water. However, if water from
the freely accessible boreholes, wells, and surface water bodies is clean and safe,
self-supply can be seen as an adequate option.

With respect to vendors, it is possible to distinct between the non-mobile and mo-
bile vendors (Kariuki and Schwartz, 2005). The non-mobile vendors can be public-
owned standpipes or taps, privately-owned water kiosks or households with an access
to the public water supply which resell the municipal water to the consumers with
no access to public water supply (informal standpipe). Mobile vendors procure wa-
ter at a connected tap, and transport it to more remote areas, most often by hand-
or motorcycle-drawn carts, tankers etc. These water vendors can be modeled in

3If the municipal water supplier is welfare-oriented, the utility will provide access to the peri-
urban region as long as it makes sense from a social welfare perspective. However if the municipal
supplier is profit-oriented, it will provide access in the periurban region as long as it can increase
its profits.
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different ways: they may be in competition with each other, thus providing water
at incremental costs, or they are cartelized or monopolistic; in that case, they may
exploit the consumers’ willingness-to-pay, and perhaps exclude some people from
satisfying their basic water needs.4

vv

Urban area Peri-urban area

Municipal water supply 

Public tap Private tap 

Tap manager 

Middle- and high-
income households 

Low-income 
households 

Middle- and high-
income households 

Low-income 
households 

Wells, 
boreholes 

Figure 2.1: Decentralized water sector in urban and peri-urban areas

3 The Model
Our model is based on an analytical framework often found in spatial economics,
i.e. the linear city. This approach dates back to the work by Hotelling (1929) who
dealt with spatial competition. It has been been further developed by Salop (1979)
who analyzed incomplete competition in the space with the help of a circular city.
Meanwhile it is an integral part of industrial economics, see e.g. Tirole (1988) as
well as Fujita et al. (1999).

It is assumed that all water customers are arranged along a line, the linear city
(see Figure Figure (2.1)). The customer density is constant along the line (identical
distribution). All customers demand just one unit of water, say 1 m3 per month.
The willingness to pay V (s) = a− bs is decreasing everywhere along the linear city
from left to right, i.e. from the urban to the peri-urban areas: The urban population
(left side) is relatively rich, followed by the middle class and finally the poor, which
settle on the right side. This spatial model structure is useful to combine economic
and spatial analysis, and to determine the geography of water supply. Figure (3.1)
shows the spatial structure, i.e. the structure of the various modes of water supply,

4The issue of market structure and price formation is dealt with in a companion paper.
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which is what we call the modal split. In this respect we follow a discrete choice
approach as applied by Whittington et al. (1990) where only the household decision
for the supply mode is modeled. The price elasticity of demand function of water is
not taken into account until Section 4.

water
utility

water pipe vendorswater
collecting

connected households

ŝ s s~ s

unconnected households

Figure 3.1: Linear city

The water utility is located to the left.5 It conveys water to the connected house-
holds up to ŝ. As mentioned above, we assume that household’s income decreases
from left to right, only high and middle income households are connected to a water
pipe. The poor are located on the right side of the figure. Between ŝ and s̃ the
water supply is based on accessible taps and the service of water vendors. Both,
customers in the vicinity of the taps and water vendors can receive water from the
water kiosks placed in this interval. In the immediate vicinity of the kiosk, the
household members fetch their own water (interval ŝ and ṡ). If they live further
away, they are supplied by vendors (interval ṡ and s̃). Subsequently, we will derive
the exact length of the unconnected water supply, i.e. we will derive where the
segments for water collecting by customers and the segments of water supply by
vendors are located. The stretch between s̃ and ¯̄s represents the very outskirt of
the linear city that may not be supplied at all. In this segment we have a supply
situation that contradicts the UN directives and we have to ask ourselves how to
close this gap.

The simple model does not include other sources, e.g. water wells, boreholes or
the collection of surface water. Also, we do not consider illegal tapping. However,
despite the simplicity we can derive some insightful results. Let us proceed by
defining the costs of the various actors of the linear city.

5The model of the linear city can be extended arbitrarily. The waterworks can also be located
in the centre of the city with a right and left water pipe. Star-shaped distribution branches can
also be arranged in all directions.
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3.1 Cost structures
Roughly, the water utility has two cost components. The water supply costs depend
on the total amount of water provided and the capacity of the transportation and
distribution system. From empirical studies we know that the cost structure of
water utilities varies considerably, as indicated by different estimated measures of
density, scale and scope economies 6. We assume that the water utility displays
(weak) diseconomies of scale. Increasing the volume of water produced, the number
of connections to be served, and the network length by a factor λ > 1 leads to
an increase in costs greater than λ. This can be attributed to the assumption that
further down along the city’s geographical line the expansion of household connection
gets more expensive due to deficiencies of the complementary infrastructure of city
areas where people with lower income live (streets, house foundations, etc.).

Hence, total costs of total water supply and household connections are specified
as

CWU = ms̃+ kŝ+ κ

2 ŝ
2 (3.1)

where ms̃ are the costs of water treatment. The parameters k and κ determine the
costs of household connections along the city line displaying increasing incremental
costs. These costs include the costs of the water mains and the branch line connec-
tions. Note that the sole dependence of the cost function on the area served, i.e. the
stretch s, is the result of the assumption that all customers along the line consume
the same amount of water, say, 1 m3. Collecting water is rather cumbersome. Often
it is the women who bring water with the help of canisters. The costs relate not
only to the purchase price, but also to the lost time7, which is missing for other
productive activities. These opportunity costs have to be taken into account in the
supply cost function.

Figure (3.2) shows the cost structure of the line segment between ŝ and s̃. In
this area, customers collect water from kiosks or are supplied by vendors. Take, for
example, the location of tap 2. A customer8 located at point A’ incurs costs A to
collect 1 m3 of water from tap 2. Mathematically, these costs are

D = δ2 + δ1s, where s = A′ (3.2)

δ2 are the time costs of filling water into a canister of a capacity of, say, 1 m3. These
costs do not depend on the distance between the tap and the household. δ1 are
monetarized time costs to haul 1m3, say, s = 100 meters. If the household is located
at A′ hauling costs are δ1A

′. Hence, total collecting costs of all customers in the
vicinity of taps up to A’ are:

DF = δ2

∫ A′

0
ds+ δ1

∫ A′

0
sds = δ2A

′ + δ1

2 (A′)2 (3.3)

6See Nauges and Van den Berg (2008).
7For estimations see Whittington et al. (1990).
8In Figure (3.2) we assume without loss of generality that δ2 = 0
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Figure 3.2: Tap density

Customers at point B’ incur collecting costs9 of B = δB′. Furthermore, cus-
tomers at B’ are indifferent whether to collect water from tap 2 or tap 3 provided
the water prices charged at tap 2 and tap 3 are equal. Thus, point B is the gravita-
tional threshold which divides the catchment areas of tap 2 and tap 3 if only water
collecting is possible. However, in our model customers can choose between water
collecting and water provision by vendors and the task remains to find the optimal
split between both modes. Optimality refers to a supply structure that minimizes
the costs. To do so, we have to derive the cost structure of vendors. Thereby, we
have to distinguish between a supply structure with many vendors and few large
ones (or one large one). We begin with the case of many small vendors.

Vendors’ costs are twofold:10 There is the time loss that occurs when filling cans
at the kiosk. The same applies to the selling costs, which come from the lost time of
selling the water to customers, i.e. decanting water into the jerrycans of customers.
If we weight this amount of time with the income per hours attainable in other
occupations (opportunity costs) we can derive the first cost component c2. This
component contains both cantation and decantation. We can also include capacity
costs of the small cart the vendor is pulling. Therefore, we assume c2 > δ2. In
addition to these opportunity costs, vendors also face hauling costs. These hauling
costs are lower per 1m3 than hauling costs of collectors, because vendors use a
technology which allows a faster distribution. Hence, hauling costs of vendors are
less per m3, i.e. c1 < δ1.

9We have dropped the subscript, i.e. δ = δ2
10We follow the analysis of Lovei and Whittington (1993) to develop the cost function of small

vendors.
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Total supply costs of a vendor supplying a customer at A’ with 1 m3 are then

c2 + c1A
′ (3.4)

with δ1 > c1 and c2 > δ2. Both marginal cost functions intersect at ṡ implying that
customers to the right of ṡ incur less costs if served by a vendor instead of collecting
the water from the tap. Total costs to supply all customers from ṡ to B’ are

CV = c1

∫ B′

ṡ
sds+ c2

∫ B′

ṡ
ds = c1

2
[
(B′)2 − (ṡ)2

]
+ c2(B′ − ṡ) (3.5)

If customers are supplied by one large vendor the cost structure is different due to
economies of scale. Large vendors operate with big trailers pulled by , e.g., donkeys
or with trucks. Due to the high capacity they do not have to return to the tap to
refill. Hence the costs structure is linear:

Cs
V = cs1

∫ B′

ṡ
ds+ cs2

∫ B′

ṡ
ds = cs1(B′ − ṡ) + cs2(B′ − ṡ) (3.6)

where cs2 > c2 are filling and capacity costs per 1m3 and cs1 < c1 are hauling costs
per 1m3. In the following we only consider the case of many vendors. All our results
also apply to the case of few or one large supplier.

After all cost functions of the various supply modes have been defined and spec-
ified, the optimal supply structure of the water supply can be derived.

3.2 The Optimal Modal Split
The optimal modal split can be derived with the help of a top-down integrated
water resource management (IWRM) approach. How far should the pipe-born water
supply be extended, how many customers should ideally fetch water from the tap
and what distance should water vendors cover? Finally, how many kiosks should
optimally be installed along the line of the linear city?

Dividing this task into two steps, we begin with determining the optimal number
of kiosks in a given uni-dimensional area T (see again Figure (3.2)) where customers
are evenly distributed. To the left of the interval there are other customers that are
connected to the water distribution system and beyond the right border there are
either customers not integrated in water supply system or the border represents the
city boundary. Since taps can be accessed from two sides it is optimal not to position
the kiosks at the borders, but rather inwards. It remains to determine the optimal
number of kiosks, the optimal distance and the areas in which the vendors operate.
This task can be accomplished by solving the following minimization program:

min
ṡ,s̄,n

[
n

{
2[δ2 ṡ

2 + c1

2 [( s̄2)2 − ṡ2] + c2(( s̄2)− ṡ)]
}

+ rns̄+ ρn
]

(3.7)

s.t.
ns̄ = T

ṡ ≤ (s̄/2)
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where n is the number of taps and s̄ is the distance between two taps. ṡ indicates
the width of the collecting segment and 2(s̄ − ṡ) is the area vendors supply. r
denotes the utilities water distribution costs per m3 delivered11 and ρ are the set-up
and maintenance costs per kiosks which are independent of the amount of water
supplied. From the Kuhn-Tucker-conditions we can derive the optimal collecting
range and the optimal vendor service area, the optimal distance between two taps
and the optimal number of taps12.

ṡ = c2

δ − c1

s̄

2 =
√

1
c1

(ρ− c2ṡ) =

√√√√ρ(δ − c1)− c2
2

(δ − c1)c1
(3.8)

The optimal collecting range can be explained with the help of Figure (3.2). The
collecting costs for customers in the stretch [0, ṡ] are lower than the costs of being
supplied by vendors. This turns around at ṡ where vending costs are lower than
water fetching costs. The optimal distance between two taps depends positively on
the set-up costs ρ and negatively on δ, the slope of marginal collecting costs. The
more expensive collecting is the higher the density of taps and vice versa13.

Having optimized the structure of the tap density and vending areas we are now
able to derive the cost function of this mixed supply line with respect to its length.
Inserting the optimal values of ṡ and s̄ into Equation (3.7) yields14

Ctv =
[
c1
s̄

2 + c2 + r
]
T = ctvT (3.9)

where T indicates the length of that line.
It remains to determine the optimal modal split between the range of the area

of connected households and the area of customers supplied by the mixed structure
of taps and vendors. This can be achieved by the following program:

max
{s̃,ŝ}

[
∫ s̃

0
V (s)ds−ms̃+ kŝ+ κ

2 ŝ
2 −

[
c1
s̄

2 + c2 + r
]

(s̃− ŝ)] (3.10)

The optimality conditions are

V (s̃)−
[
c1
s̄

2 + c2 + r
]
−m = 0 (3.11)

−k − κŝ+
[
c1
s̄

2 + c2 + r
]

= 0 (3.12)

11The term rns̄ is an abbreviation for rns̄w̄, where w̄ = 1m3 and s̄w̄ is total water supplied at
each kiosk. With this specification we ignore a slight asymmetry that occurs at the last tap to the
far right. There is no need for a pipe between the tap and s̃. We still include this branch to keep
the model symmetric and, hence, simple. The asymmetry would disapear in a model that is based
on a circular city.

12The derivation presupposes that the relevant parameters are such that an inner solution exists,
i.e. n > 0, 0 < ṡ < s̄. See Appendix 1.

13Recall that n = T/s̄.
14See Appendix 1.
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Figure (3.3) depicts the optimality conditions15.

ŝ s~

ctv

V(s)

sk 

connected households tap-vendor-area

m

Figure 3.3: Optimal modal split

From left to ŝ households are connected to the water utility. At this point
marginal costs of water supplied in households are equal to water supply without
household connections. To the right of this point the area of water supply by taps
and vendors begins. This area ends where total marginal costs ctv + m equals the
marginal willingness to pay. This is the optimal modal split of water supply.

The IWRM approach usually applies a planning approach where economic rents
are maximized while taking into account technical constraints, e.g. hydrological
laws. However, one must be careful when implementing this concept in practice.
Two points are of particular importance:

• The pure maximization of the economic rent does not take into account the
indispensable human right to water access. The result of Equation (3.10)
may lead to s̃ < ¯̄s. If customers are excluded from the water supply system,
we have to correct the optimization procedure by including the constraint
s̃ ≥ ¯̄s. Then we end up with a slightly different optimal modal split that
covers all customers in the linear city. A brief inspection of Equation (3.12)
shows that ŝ does not change. Instead, by Equation (3.11), the stretch of the
tap-vendor area increases such that at ¯̄s the marginal willingness to pay is less
than marginal costs.

15Notice once more, that we have simplified the model in that the number of taps are treated
as real number, not as integer. Thus, the model is an approximation of an operation research
approach that would apply integer programming methods.

11



• The planning approach sets water quantities and the line length of the vari-
ous service modes in the linear city. In reality, however, consumers and also
vendors are not quantity regulated. The regulatory problem is therefore to
induce the optimal split by means of appropriate distance-related price regu-
lation. The price determination in turn depends on whether the vendors are
employees of the regulated water company or whether they operate indepen-
dently in a free market. In a further paper we address these issues and also
take a competition policy approach. Open competitive water markets result
in distance-related water prices that induce the optimal split.

4 Extension: Elastic water demand

4.1 Stone-Geary utility function
So far we have assumed that the water demand is completely inelastic. In this
section we allow for elastic demand by introducing a utility based approach. Assume
that the demand function of households in the linear city can be derived from a
quasilinear utility function. All households are identical with respect to preferences.
Furthermore, we take into account an existential minimum of water consumption,
so that the right to access to water is incorporated into the model. For that we
introduce a simplified version of the Stone-Geary-utility function16.

B(w − ws) = A(w − ws)α α < 1 (4.1)

ws constitutes the subsistence level of water needed (life line) and w is the water
consumption of consumers. Total utility of consumers fetching water by themselves
in the interval [0, ṡ] is

B(w1 − ws) + y − δsw1 − T1, α < 1 (4.2)

Income of households is y and T1 is the charge for water consumption.
Similarily, total utility of customers served by vendors and located in the interval

(ṡ, s̄/2] is
B(w2 − ws) + y − (c2 + c1s)w2 − T2, α < 1 (4.3)

Notice that we follow a normative approach17. This implies, that the allocation of
water wi and the charge Ti is assumed to be fixed by a regulatory authority. Thereby,
we follow two extreme normative lines. First, we apply the prevalent welfaristic
approach and maximize total utility subject to various constraints. Subsequently, we
turn to a strictly egalitarian approach and construct a water allocation system that
guarantees strict equality of utility among all customers regardless of their location

16The use of a Stone-Geary utility function assures that the price elasticity of water is less that
1, see Olmstead et al. (2007)

17A companion paper will deal with pricing issues in unconnected water markets under various
forms of competition.
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along the line of the linear city. This is the Rawlsian approach. In the following
we restrict our analysis to the mixed area, thus excluding the determination of the
geographical stretch of connected households18.

The maximization program for the utilitarian approach is:

max
q

2n
{∫ ṡ

0
[B(w1 − ws) + y − δsw1 − T1]ds+ (4.4)∫ s̄/2

ṡ
[B(w2 − ws) + y − (c2 + c1s)w2 − T2]ds

}

where q = {w1(s), w2(s), T1(s), T2(s), ṡ, s̄, n}. The constraints are:

2n
{∫ ṡ

0
[T1 − (m+ r)w1(s)]ds+

∫ s̄/2

ṡ
[T2 − (m+ r)w2(s)]ds

}
− ρn ≥ 0 (4.5)

ṡ ≤ s̄/2 (4.6)
ns̄ = ¯̄s (4.7)

From the optimality conditions19 we can derive the following optimality conditions
with respect to wi(s), i = {1, 2} :

B′(w1 − ws)− (m+ r)− δs = 0 (4.8)
B′(w2 − ws)− (m+ r)− (c2 + c1s) = 0 (4.9)

With respect to ṡ and s̄ we obtain:

ṡ = c2

δ − c1
(4.10)

2
{∫ ṡ

0
[B(w1(s)− ws) + y − ((m+ r) + δs)w1(s) + y]ds+ (4.11)∫ s̄/2

ṡ
[B(w2(s)− ws) + y − ((m+ r) + (c2 + c1s))w2(s) + y]ds

}
=

[B(w2(s̄/2)− ws) + y − ((m+ r) + (c2 + c1(s̄/2)))w2(s̄/2) + y]s̄+ ρ

The interpretation of 4.8 and 4.9 is straight forward. They simply require that
the water consumption should be set such that the marginal benefit is equal to its
marginal costs that depend on the location of the customers. It is obvious that
consumption decreases the further away the consumer is from the kiosk20.

18It is straightforward to include these households into the analysis.
19See Appendix 2.
20Utilizing the Stone-Geary specification we get w1(s) = ws + (Aα/((m+ r) + δs))(1/(1−α)) and

w2(s) = ws + (Aα/((m + r) + c2 + c1s))(1/(1−α)) which shows that consumption decreases with
respect to the distance from the kiosk.
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4.2 Optimal tap structure
4.10 determines the optimal length of the collecting area ṡ. Of course, the length
of intervals should be chosen such that the geographical costs are minimized. This
is the case where marginal costs of self-collection are equal to the marginal delivery
costs of vendors. We have obtained the same result for the simple case of inelastic
demand (see 3.8). 4.11 determines the optimal number of taps. The right hand
side shows the marginal costs of adding an additional tap21. These costs consist
of the standup costs ρ and the opportunity costs of decreasing the length of the
service line s̄, i.e. the distance between two taps. If we increase n the length has to
be decreased22. Increasing n requires to shorten s̄ such that an additional area of
length s̄ fits into the space of length ¯̄s. Hence, the opportunity costs consist of lost
net utility of the customers at the very end of the serving area multiplied by s̄. In
the following figure 4.1 is depicted.

s s2/s
tap

tap
s

)()(1 swsrmB 

)()( 122 swsccrmB 

)()(1 swsrmB 

Figure 4.1: The optimal length between two taps

The green rectangle corresponds to the opportunity costs. This rectangle plus
the set-up costs of a kiosk ρ must be equal to the aggregated net consumer surplus
of an additional kiosk which is the area under the four marginal consumer surplus
functions.

21Recall that we treat the tap number as a real number. Therefore, we can conduct a marginal
analysis.

22Notice, that the total length of the stretch to be supplied by water is ¯̄s = ns̄.
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4.3 Water charges
It remains to specify the water charges Ti. Since we have assumed a quasi-linear
utility function, the marginal utility of income is constant. Hence, with respect to
the charges, the maximization program yields no unique solution. However, we can
find a tariff function that satisfies the optimality conditions23. This is, for example,
the case for the well known two-part tariff proposed by Coase (1946). One simply
has to set

T1(s) =(m+ r)w1(s) + ρ/s̄ (4.12)
T2(s) =(m+ r)w2(s) + ρ/s̄ (4.13)

This tariff system satisfies the budget constraint from Equation (4.5). The volumet-
ric parts of both tariffs are total marginal costs and the fixed part ρ/s̄ covers the
set-up costs of kiosks. Of course, this tariff system leads to an unequal distribution
of consumers’ utility. Those in the vicinity of a tap are better off than those in far
distance of a kiosk (see Figure (4.1) ).

If this distribution is considered unfair, the tariff system must be altered. In the
following we assume that complete equality should be reached. This can be achieved
with the help of the Rawlsian Maxmin approach implying that all customers along
the linear city should achieve the same utility level. This is an extreme provision
which only serves as a counterpoint to the utilitarian approach of equation (4.4).
In reality, the water supply and water tariff system cannot solely serve as a fully
fledged distribution instrument. Since the model is designed for a continuum of
customers24, we apply the maximization program as follows.

All customers should receive the same level of utility regardless of the geograph-
ical position. This implies for customers in the interval [0, ṡ] and [ṡ, s̄], respectively:

B(w1 − ws) + y − δsw1 − T1 =k (4.14)
B(w2 − ws) + y − (c2 + c1s)w2 − T2 =k (4.15)

Rearranging yields the water charges Ti

T1 = B(w1 − ws) + y − δsw1−k (4.16)
T2 = B(w2 − ws) + y − (c2 + c1s)w2−k (4.17)

The maximization program for the Rawlsian case is:

max
q

2n
{∫ ṡ

0
kds+

∫ s̄/2

ṡ
kds

}
(4.18)

23See Appendix 2.
24The usual Rawlsian social welfare function is defined as

∑
Min[B1, B2, .....Bn].
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subject to the budget constraint

2n
{∫ ṡ

0
[B(w1 − ws) + y − δsw1 − (m+ r)w1(s) + y − k]ds (4.19)

+
∫ s̄/2

ṡ
[B(w2 − ws) + y − (m+ r)w2(s)− k]ds

}
− ρn ≥ 0

and

ṡ ≤ s̄/2 (4.20)
ns̄ = ¯̄s (4.21)

where q = {w1(s), w2(s), k, ṡ, s̄, n}. Notice that the budget constraint is derived by
inserting Equation (4.16) and Equation (4.17) into Equation (4.5). In Section (7.3)
we show that the optimality conditions with respect to q = {w1(s), w2(s), ṡ, s̄, n}
are the same as for the utilitarian program, i.e. Equation (4.8) - Equation (4.11).
This is due to the separability of the utility function. Since water demand has no
income effects, the distribution task can be carried out by the tariff functions. In
contrast to the utilitarian approach, the water charge functions must be precisely
determined so that the benefit levels are the same for all water customers. The tariff
system must take the costs of water collection into account. This can be inferred
from Equation (4.16) and Equation (4.17). Differentiating with respect to s yields

T ′
1 = (B′(w1 − ws)− (m+ r)− δs)w′

1 − δw1(s)0 = −δw1(s) < 0
(4.22)

T ′
2(s) = (B′(w2 − ws)− (m+ r)− (c2 + c1s))w′

2(s)− c′
1w2(s) = −c′

1w2(s) < 0
(4.23)

Water expenses decrease with respect to the distance between kiosks. On the
other hand, water consumption also falls in line with s. From Equation (4.8) and
Equation (4.9) we have

w′
1(s) = δ/B′′

1 < 0 and w′
2 = c1/B

′′
2 < 0 (4.24)

In the following section we will analyze the relation between water consumption
and water expenses with the help of a numerical example. However, it should be
made clear that the exact shape of the tariff function T(w) cannot be used to draw
any conclusions about the distributional effect. Whether we receive a progressive or
digressive function is actually irrelevant, because Ti is designed in such a way that all
customers achieve the same degree of benefit. One should also keep in mind, that the
derivation is a first best exercise under full information and no transaction costs. The
tariff system and the optimal water distribution infrastructure are determined by a
hypothetical institution that adheres to the principles of integrated water resource
management.
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5 Numerical Example

5.1 Parameter estimates
In this section we apply the model with elastic demand for a fictive linear city, based
on cost rates and information in the scientific literature.
Cook et al. (2016) state an average velocity of a water fetcher of 2.75 kilometers per
hour to transport a 20L container. By combining this information with time costs
of 0.6 USD per hour (Whittington et al. (1990)), we set the cost rate δ for a person
who fetches the water from a kiosk to the value25 δ = 21.6.
For the water vendor a velocity of 500 meters per hour for transferring 1 cubic meter
of water can be assumed, based on Lovei and Whittington (1993). For the water
fetcher we assume time costs of 0.6 USD per hour (Whittington et al. (1990)). Based
on these values26 we assume c1 = 2.4 for the water vendor parameter.
The mobile water vendors also have costs such as decanting costs and rental costs
which are independent of the water transfer distance. These costs are addressed
by the cost rate c2 in the model. Based on Whittington et al. (1989), the rental
of equipment for transferring 600 Liters a day costs about 10 Ks a week, which is
equivalent to 0.6 USD. Therefore27, it is possible to put the rental costs to 0.14286
which is one element of the cost rate c2. Furthermore, the decanting of 1 cubic meter
of water needs about 2 hours (Whittington et al. (1989)). If the time costs are 0.6
USD per hour (Whittington et al. (1990)), the decanting costs can be assumed with
the value of 1.2, which is the second element of the cost rate c2. Adding both
components, we obtain the value c2 = 1.34.
The cost rate ρ for the water kiosk can be assumed ρ = 2, because of monthly
cost of 60 USD for rental equipment and other regular expenses (Whittington et al.
(1989)).
Based on OECD (2005) the total cost for the municipal water supply can be assumed
with 0.85 USD per cubic meter, which incorporates the cost for water treatment of
about 0.34 USD per cubic meter. Hence, the parameter m which represents the
cost rate for treating the water is set to m = 0.34, while the parameter r which
represents a transfer cost rate can be assumed with the value r = 0.51.

Finally, the value of the utility function parameter α is set to 0.3 (Dalhuisen
et al. (2003)). Table 5.1 illustrates the assumptions of the exogenous parameters for
the numerical application of the presented model.

25Total time to haul 20 litres for one km is 1/2.75=0.36 hours. To haul one m3 = 1000 litres
18 hours are required. One hour costs 0.6 US-$. Since the distance has to be taken twice we have
2 · 0.36 · 18 = 20.6. Notice, that we have not taken into account that hauling the empty canister
from home to the kiosk requires less time.

26Given the velocity of 500 meters per hour the vendor needs 2 hours to serve a distance of 1000
meters to the tap (round trip).

27Linear expansion implies that the costs of a capacity of 1 m3 are 1 US-$ per week which is 1/7
US-$ per day.
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Table 5.1: Assumed parameter values for the numerical example

δ c1 c2 ρ m r α
21.6 2.4 1.34 2 0.34 0.51 0.3

5.2 Some stylized results
For the given scenario, the optimal distance between the taps is about 6 kilometers.
The fetching zone stretches over 1.2 km, which means that consumers who live not
more than 1.2 km far away from the next tap should collect the water from the
water kiosk, while consumers who are further than 1.2 km from the next tap will be
served by the mobile water vendors.

We can also perform some senstivity analyses on the estimated parameters, such
as the optimal tap density or the fetching zone. Figure 5.1 shows the impact of the
level of the cost rate for operating the water kiosk ρ on the tap density. It becomes
obvious that the lower the cost rate the more kiosks can be operated efficiently, and
hence the tap density would decrease; the effect seems to be quite strong.

0.5 1.0 1.5 2.0
rho

1

2

3

4

5

6

sbar

Figure 5.1: Tap density and kiosk operating costs ρ

Figure 5.2 shows the impact of water demand characteristics on the optimal tap
density. The parameter α in the Stone Geary utility function represents the strength
of water availability for poor individuals on utility.

With increasing α the utility of water rises and therefore demand increases.
Aggregated net consumer surplus rises for a given tap distance quicker than its
opportunity costs which consists of the net benefit of the customer furthest away
from a tap (see Figure (4.1)). Thus, the optimal distance decreases with α.
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Figure 5.2: Tap density and α

6 Conclusion
This paper provides support to the idea that offgrid water vendors have an impor-
tant role to play in the delivery of poor households, and, thus, in the fulfilment
of ambitious political goals such as the human right to water and the Sustainable
Development Goal No. 6. To analyze the question we have established a spatial
economic model of water provision in periurban areas: A water utility located in
the (wealthy) city center develpos a water supply network, but for economic reasons
this network can not cover the peri-urban and the rural area. From an economic
perspective, water vendors thus have a central role.

Our model looks for the "optimal" modal split between infrastructure-based water
supply by a public utility, and the decentralized, off-grid water vendors. This optimal
modal split can be found with the help of a micro-economic model. We assume a
linear city and develop a stylized cost structure for the public utility, the vendors and
the water consumers. The analysis was carried out for a totally inelastic demand
function in section 3.2 and for an elastic water demand in section 4 based on a
simplified form of the Stone-Geary utility function. In the development context of
our paper, elastic demand is certainly a plausible assumtion, and the Stone-Geary
utility function allows to take this into account.

Even though the model is relatively simple, it provides interesting results. We
obtain terms for the "optimal" modal split, situated between the dense city center
and the periurban area. The model also allows us to identify the optimal length
between taps, the tap density, and the corresponding water charges. In our economic
approach, we have to take into account the opportunity costs for transporting water
and handling the infrastructure, which is a particularity in the off-grid water supply.

With a grain of salt, the model also allows some numerical applications to estab-
lish the links between supply (mainly cost functions) and demand characteristics.
Therefore, a numerical application of the model with elastic demand is presented
for a fictive linear city with model parameter assumptions based on the empirical
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literature. We found an optimal distance between the tap of about 6 kilometers
and a fetching zone of about 1.2 kilometers. The numerical exercise also allows
some sensitivity analysis on key parameters. Thus, increasing the operatoin costs
for water kiosks raises the optimal distance between these kiosks significantly. On
the contrary, even a strong, utility-driven relative increase in water demand does
not seem to affect the tap density significantly.

We also need to be aware of the limitations of the model. Thus, the linear city
is a simplification, compared to real, existing cities due to the assumed homogenous
spatial structure of costs and demand. A multitude of forms of the water vendors
market structure is conceivable. Opportunistic behavior (e.g. water-theft due to
hidden information) as well as different forms of cooperation and collusion between
the actors in the informal water market, which occur quite often in reality, are not
implemented and analyzed in this framework. Hence, further research is needed to
extend the model and include additional features.

In terms of policy implications, the paper suggests a role for decentral, offgrid
solutions to generalized water supply, with a likewise strong role for water vendors.
This is a controversial topic, as the considertation of economic factors in critical
water supply issues is subject to different, often contradictory value judgements. We
consider the introduction of explicit cost and demand parameters a useful extension
of the ongoing debate. Of course, the translation of the model findings to concrete
challenges on-site requires to take into account the local contexts, for which this
paper provides theoretical foundations.

7 Appendix

7.1 Appendix 1
The Karush-Kuhn-Tucker conditions to the minimization program of equation (3.7)
are:

2nδṡ− 2nc1ṡ− 2nc2 − µ ≥ 0 (7.1)
n(c1/2)s̄+ nc2 + rn− λn+ (µ/2) = 0 (7.2)

2
[
δ

2 ṡ
2 + c1

2 [( s̄2)2 − ṡ2] + c2[( s̄
s

)− ṡ]
]

+ rs̄+ ρ− λs̄ = 0 (7.3)

where the Lagrangean λ (µ ≤ 0 ) refers to the first (second) constraint.
Two cases can be distinguished: either it is not optimal to have vendors at all

or there exists an optimal mix of collecting and vending. The occurrence of the two
cases depends on certain parameter constellations. Let us begin by assuming that
ṡ < (s̄)/2, i.e. a mixed supply area is optimal. We know from the KKT-conditions
that in this case µ = 0. The optimal collecting area ṡ follows from Equation (7.1)
immediately. To derive the optimal distance between two taps s̄, solve Equation (7.2)
for λ, multiply it by s̄ and insert it for s̄λ in Equation (7.3). The equation reduces
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to
− c2ṡ−

c1

4 s̄
2 + ρ = 0 (7.4)

which can be solved for s̄ yielding Equation (3.8).
We have assumed that ṡ < (s̄)/2. Inserting the solutions from Equation (3.8)

leads to
c2

δ − c1
=

√√√√ρ(δ − c1)− c2
2

(δ − c1)c1
(7.5)

Rearranging and reducing yields the parameter constellation

c2 <
√

(ρ/δ)(δ − c1) (7.6)

as a necessary and sufficient condition for ṡ < (s̄)/2.

7.2 Appendix 2
Program Equation (4.4) can be solved in a two step procedure. First, we derive
the optimal functions {w1(s), w2(s)} for given {ṡ, s̄, n} with the help of the Euler
equations. This is straightforward and leads to Equation (4.8) and Equation (4.9).
For Ti we get

λ = 1 (7.7)
where λ is the Lagrangean with respect to the budget constraint.

Reinserting the optimal consumption functions wi into the welfare function and
deriving the program with respect to ṡ yields:

2n
[
((B(w1(ṡ)− ws) + y − ((m+ r) + δṡ)w1(ṡ) + y)− (7.8)

(B(w2(ṡ)− ws) + y − ((m+ r) + (c2 + c1ṡ))w2(ṡ) + y))
]
−

2n
[
(T1(ṡ)− ((m+ r) + δṡ)w1(ṡ))−

(T2(ṡ)− ((m+ r) + (c2 + c1ṡ))w2(ṡ))
]

= 0

This equation is satisfied if ṡ = c2/(δ − c1). Utilizing λ = 1 and deriving Equa-
tion (4.4) s. t. to Equation (4.5) with respect to s̄ yields

(B(w2(s̄)− ws) + y − ((m+ r) + (c2 + c1s̄))w2(s̄)− µ+ σ/2 = 0 (7.9)

where µ (σ) is the Lagrangean for Equation (4.6) and Equation (4.7), respectively.
In the following, we assume that ṡ < s̄/2, i.e. there exists a vending area. Thus,

µ = 0.

21



7.3 Appendix 3
Similar to the welfare maximization program Equation (4.18) can be solved in a
two step procedure. First, we derive the optimal functions {w1(s), w2(s)} for given
{k, ṡ, s̄, n} with the help of the Euler equations. This is straightforward and leads
to the optimality conditions Equation (4.8) and Equation (4.9).

In the following we assume that Equation (4.20) is not binding, i.e. there is
a stretch where vendors sell water. The first order conditions with respect to
{k, ṡ, s̄, n} are where λ (µ) is the Lagrangean attached to the constraint Equa-
tion (4.19) and Equation (4.21), respectively:

k : 2n[s̄/2− λs̄/2] = 0 (7.10)
ṡ : λ {[B(w1(ṡ)− ws) + y − δṡw1(ṡ)− (m+ r)w1(ṡ)− k] (7.11)

− [B(w2(ṡ)− ws) + y − (m+ r)w2(ṡ)− k]ds} = 0
s̄ : k + λ[B(w2(s̄/2)− ws) + y − k − (m+ r)w2(s̄/2)]− µ = 0 (7.12)

n : ks̄− ρ− µs̄ = 0 (7.13)

From Equation (7.10) it follows that λ = 1. Equation (7.11) is satisfied for δṡ =
(c2+c1ṡ). Inserting Equation (7.13) into Equation (7.12) and taking Equation (4.14)
and Equation (4.15) into account yields Equation (4.11).
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