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Charges and Bets: A General
Characterisation of Common Priors

Ziv Hellman∗ and Miklós Pintér†

Abstract

The seminal no betting theorem on the equivalence of common

priors and absence of agreeable bets obtains only over compact state

spaces. We show here that this equivalence can be generalised to

any infinite space if we expand the set of priors to include proba-

bility charges as priors. Going beyond the strict prior/no common

prior dichotomy, we further uncover a fine-grained decomposition

of the space of type spaces into continuum many subclasses in each

of which an epistemic condition approximating common priors is

equivalent to a behavioural condition limiting acceptable bets. Sev-

eral additional concepts relating to approximations of common pri-

ors and type spaces admitting common priors are studied, elucidat-

ing more aspects of the structure of the class of type spaces.

Keywords: Common prior, no betting, probability charge

1 Introduction

The elucidation of the interplay and interaction between interpersonal be-
liefs and economic behaviours and choices has been a hallmark of game
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theory research, and more broadly economic research, for decades. One
of the clearest articulations of this is expressed in the Aumann No Dis-
agreement, or No Betting Theorem, which has justifiably been impactful
in many fields of inquiry. In its brief and concise statement, the theorem
establishes a sharp and dichotomous connection between interpersonal
epistemology and behaviour: players can find a bet that is agreeable be-
tween them if and only if their beliefs cannot possibly be derived from
a common prior. This means that a modeller studying speculative trade
can assume common priors and conclude that such trade is not possible
or conversely suppose that the beliefs of the players cannot have been de-
rived from a common prior for a different conclusion.

This seminal result of ‘common priors if and only if there is no bet’,
however, was shown to hold only when the space of states is compact
(Feinberg (2000)): otherwise, while a common prior still implies no bet-
ting, the converse may not obtain, with all the attendant modelling impli-
cations. Apart from the fact that assuming compactness involves inject-
ing an extraneous topological condition to the subject, this left open the
question of whether it is possible to express an analogous characterisation
relating epistemic and behavioural properties in general over all infinite
state spaces.

We show here that when we expand the focus more broadly to include
probability charges as priors, we attain such a generalisation and more.
The clear and direct equivalence of ‘common priors if and only if there is
no bet’ is restored. Beyond the stark common priors/no common prior
dichotomy, we uncover a fine-grained decomposition of the class of types
spaces over a state space Ω into a continuum of subclasses, each of which
in itself expresses an equivalence between beliefs and economic behaviour.
We further use the tools developed to elucidate aspects of the structure
of the space of type spaces using approximations to common priors and
consistent type spaces.

1.1 Sigma Additive Priors and No Betting

Relative to a state space Ω and set of players N , the literature considers
type spaces, using concepts pioneered by Harsányi (1967-68) and Aumann
(1976). Intuitively, the interpretation is that there is a true state ω ∈ Ω. A
player i receives an informative signal at ω from which he or she deduces
a probability distribution ti(ω) – his or her ‘belief’ – over the states of Ω.
Furthermore, in a common interpretation, player i is supposed to have a
prior distribution (a σ-additive probability measure) p ∈ ∆(Ω) at an ex ante
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stage from which the beliefs expressed by ti, upon receipt of a signal, are
derived by updating. Then if two (or more) players start from the same
prior p and update to respective type functions they have a common prior.

Formally, however, there is no need for the interpretive baggage of pre-
suming an ex ante stage or even a single shared prior. For one thing, a
modeller or analyst may not have access to the history of updating from a
prior, even if we assume such history exists; we may have only the current
beliefs of the players with which to work.

More deeply, for the purposes of studying disagreements the actual
history may be misleading, in the sense that two players can begin with
two distinct priors from which they respectively update to a type space,
yet for our purposes here we would still say that they have common pri-
ors. In fact, for a given type function ti there may be a set of elements
πi ⊂ ∆(Ω) all of which can serve as priors for player I , with no reason to
prioritise one prior above the others. A type space admits a common prior
if
⋂
i πi 6= ∅; all the information needed for ascertaining whether there is

a common prior is in principle available from the data of the type space
without presuming updating from an ex ante stage.

Denote the collection of type spaces over Ω by T. Following Harsányi,
a type space that admits a common prior is called a consistent type space.
Consistency partitions the class of type spaces in two: denote the collection
of consistent spaces by C and its complement by I.

Up to here, only epistemic elements of interactive belief have been con-
sidered. For behavioural aspects, one adds a new element exogenous to
the type spaces: bets. A bet is a collection of bounded state-dependent
payoff functions, one for each player, which together are zero sum; that
is, after the true state is ascertained the wager is cleared, with the losers
paying the payoff of the winners. A bet is agreeable to the players if at
each state each player believes he or she has expectation of positive gain
bounded away from zero (despite the fact that the bet is by definition zero
sum). The concept naturally extends to broader concepts in the study of
speculative trade in Arrow–Debreu securities, contract theory, interactions
between Bayesian agents, Bayesian persuasion, and many other fields.

Denote the collection of type spaces admitting an agreeable bet by B
and its complement by D. The No Disagreements Theorem states that
when Ω is a compact topological space this does not actually define an-
other partition of T: namely, C = D and equivalently I = B (Figure 1(a)),
i.e., the players can find an agreeable bet if and only if there is no common
prior (Feinberg (2000)).

The power of the No Disagreements Theorem lies in the sharp dichotomy
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Figure 1: A schematic representation of the relations between the collections of

type spaces admitting σ-common priors (C) and those not admitting agreeable

bets (D) in (a) the case of compact state spaces and (b) non-compact state spaces.

it establishes and its exact coupling of epistemic and behavioural proper-
ties that a priori are not related. Unfortunately, the statement of the theo-
rem does not extend as-is to non-compact spaces: Feinberg (2000) includes
an example of a countable space that does not admit a σ-additive common
prior yet also has no agreeable bet. In such cases the most that can be said
is that C ( D (Figure 1(b)).

Lehrer and Samet (2014), in the context of countable state spaces, later
provided a more complex three-levelled classification of belief consistency
consisting of strong consistency, consistency, and weak consistency, with
a parallel and equivalent classification of behaviour related to bets. This
still, however, left open the question of finding a simple characterisation of
common priors in more general non-compact spaces in behavioural terms.

1.2 Finitely Additive Priors and No Betting

To begin considering how to contend with the general infinite and non-
compact case, consider first a quick sketch of the two-player proof in the
case of a compact state space Ω, as in Heifetz (2006). In this context, the
sets of priors (π1, π2) are a pair of closed and compact subsets of the set
of regular Borel probability measures over Ω. If there is no common prior
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this pair can be strongly separated by a continuous linear functional F .
By an appeal to the Riesz–Markov–Kakutani theorem, F is associated to
a continuous function f ∈ C(Ω), which with some minor manipulation
becomes the agreeable bet that is sought.

Dually, instead of starting from probability distributions one can start
instead with the set of payoff functions over Ω. Stating that there are no
agreeable bets becomes equivalent to the separation of a certain subset
of payoff functions from the negative orthant. The resulting separating
functional is equivalent to a common prior

When Ω is not compact, the duality inherent in the subject matter at
hand may not be available. This is underscored in Lehrer and Samet
(2014): in the context of a countable state space, beliefs are elements of
the normed space `1(Ω) of σ-summable functions over Ω, and bets are ele-
ments of `∞(Ω), the normed space of bounded functions. The space `∞(Ω)
is the dual of `1(Ω), but reflexivity does not hold here: taking the dual
of `∞(Ω) does not return one to `1(Ω), because there are continuous func-
tionals on `∞(Ω) that are finitely additive probability charges that are not
σ-additive.

That last sentence contains the grain of inspiration for the approach of
this paper. Extend the set of priors associated with the type function ti
of a player i to include now probability charges; denote this by Πi. What
heretofore was termed the set of priors, πi, which contains only σ-additive
probability measures, now becomes a subset of Πi, and we now call the
elements of πi ⊆ Πi the set of σ-priors of player i.

We can similarly extend the space of type spaces over Ω to contain type
functions whose range is the collection of probability charges over Ω; de-
note this extended space of type spaces T . Further generalising, let the set
of players N possibly be infinite; we then define a bet to be a state depen-
dent transfer of money amongst a finite subset of players inN . In this new
context, denote the set of common priors C, the complement of C by I, the
set of agreeable bets by B and its complement D.

Putting it all together, Theorem 15 here restores the ‘common priors
iff no agreeable bets’ characterisation in the broadest generality: C = D
(Figure 2(a)). As Πi is entirely determined by the type function ti (as is πi),
we again have epistemics determining behaviour, and the converse.

This result is expressed in terms of probability charges, not probabil-
ity measures, and indeed it may be necessary to work with priors that are
probability charges. However, we stress that this need not require suppos-
ing that the player are actually updating in the ex ante stage from a prior
that is a probability charge but not a probability measure (which may not
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Figure 2: Schematic representations of (a) the relations between the collections of

type spaces admitting common priors (C) and those not admitting agreeable bets

(D) when probability charges are taken into account; (b) a fine grained decom-

positoin of the space of types spaces in terms of ε-common priors and ε-agreeable

bets.

be possible in a practical way). Indeed, as pointed out above, we do not
actually need an ex ante stage; it suffices to have an epistemic condition
dependent solely on the beliefs as expressed in the type functions to deter-
mine whether or not behavioural consequences such as agreeable betting
obtain. This is attained in Theorem 15.

1.3 Fine Grained Decomposition of the Class of Type Spaces

With the tools developed here, we can also go beyond the binary dichotomy
of consistent/inconsistent type spaces to study a more fine grained decom-
position of the class of type spaces over state space Ω. Agreeable bets are
defined above as bets in which each player believes at each state that there
is positive expectation of payoff gain bounded away from zero. One can
imagine the players demanding more stringent conditions for accepting
a bet, such as an expectation of gaining at least ε > 0 at each state. In
the other direction, we needn’t require only positive gains: a player could
conceivably agree to a bet with losses as long as losses are limited to being
no greater than ε.
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Since bets can be scaled up or down, it makes more sense in this con-
text for the expectations to be proportional to the stake a player has in the
bet. For ε ∈ [−1, 1] define an ε-agreeable bet to be a bet such that the ex-
pectation of player i for all i at each state is greater than ε‖fi‖sup, using the
sup-norm. Denote the collection of type spaces admitting an ε-agreeable
bet by Bε, and its complement by Dε.

In parallel, on the epistemic side, for ε > 0 define Πε
i intuitively as Πi

‘thickened’ by expanding Πi by adding to it probability charges outside of
Πi that are ε distant from the boundary of Πi by the total variation norm
(see Section 3.2 for the formal definition). For ε < 0 define Πε

i intuitively by
removing from Πi probability charges that are ε distant from the boundary
of Πi; hence in this case Πε

i is ‘thinner’ than Πi.
For −1 ≤ ε ≤ 1, an element of Πε

i is an ε-prior of player i. If ∩iΠε
i 6= ∅

the type space has an ε-common prior. Denote the collection of spaces
attaining an ε-common prior by Cε; what was previously written as C is C0

in this notation. This defines a nested collection of subsets that covers all
of T .

The epistemic and behavioural concepts developed here for ε are re-
lated: we show that Cε = Dε for all ε ∈ [−1, 1]. In words, a type space
attains an ε-common prior if and only if the players have no ε-agreeable
bet between them, with the No Disagreements Theorem a special case of
this broader theorem (Figure 2(b)).

We see that the space of types spaces can be decomposed into continuum-
many subsets, each of which relates epistemic inter-relations between the
players to behavioural constraints.

We also study here further concepts of approximation within the class
of type spaces. Common priors in general, which are probability charges
and may have infinite support, can be complicated objects with which to
work. σ-priors with finite support are simpler. In Section 5 we show that
any common prior of a type space can be approximated, in an appropri-
ately defined way, by σ-priors with finite support. In Section 6, we ap-
proximate the type spaces themselves, showing that if a type space T is
finitely approximable (as defined in that section) by approximating finite
type spaces that all attain approximating common priors, then T itself at-
tains a common prior. The converse, however, does not hold: a type space
approximated by finite type spaces with common priors may not itself
attain a common prior, indicating a ‘discontinuity’ in the space of type
spaces with regards to the attainment of common priors.
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2 Preliminaries

2.1 Mathematical Preliminaries

Given a set X , a field1 A is a collection of subsets of X that is closed un-
der complements and under finite intersections (hence also under finite
unions) of sets, and contains X itself.

If A is a field on X then the pair (X,A) is called a chargeable space. A
set function µ : A → R on a chargeable space is a charge on (X,A) if µ
is additive; it is a probability charge if in addition it is non-negative and
µ(X) = 1. If A is a σ-field the pair (X,A) is called a measurable space. A
charge µ over A that is σ-additive is a measure; it is a probability measure if
it is non-negative and µ(X) = 1.

The distinction between charges and (σ-additive) measures will be cru-
cial throughout this paper. Note in particular that each measure is a charge,
but not the converse.

Let pba(X,A), ∆(X,A), and D(X,A) denote, respectively the set of
probability charges, the set of probability measures, and the set of prob-
ability measures with finite support on (X,A). Moreover, let ba(X,A),
ca(X,A) and da(X,A) denote, respectively, the set of bounded finitely ad-
ditive set functions, the set of bounded measures, and the set of measures
with finite support on (X,A).

Let B(X,A) denote the collection of all uniform limits of finite linear
combinations of characteristic functions of sets in A. We will call the ele-
ments of B(X,A)A-integrable functions. This is a very non-standard desig-
nation: functions are usually termed µ-integrable for µ a measure; here we
are speaking of A-integrable functions where A is a field. We justify this
by the fact that the class of A-integrable functions satisfies the property
that it is the class of functions that are integrable over A with respect to
any bounded charge (Aliprantis and Border (2006), Chapter 11).

We will make use of the sup-norm on B(X,A), defined by ‖f‖sup =
supx∈X |f(x)|, f ∈ B(X,A). Denote by B∗(X,A) the dual of (the set of
linear functionals on) B(X,A), noting that ba(X,A) = B∗(X,A). Let
ba(X,A) be equipped with the weak* topology by B(X,A). For any µ ∈
ba(X,A), ε > 0, and F ⊆ B(X,A) such that |F | <∞, denote by

(1) O∗(µ, F, ε) =

{
ν ∈ ba(X,A) :

∣∣∣∣∫ f d ν −
∫
f dµ

∣∣∣∣ < ε, ∀f ∈ F
}
,

1 The mathematical literature uses two synonyms for the same concept: field and
algebra. We elected in this paper to use the term field for this concept.
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a neighbourhood of µ. The collection of such neighbourhoods forms a
subbase for the weak* topology of ba(X,A). A

∗
will denote the weak*

closure of a set A ⊆ ba(X,A).
It is well-known that da(X,A), the set of measures with finite support

on (X,A), is weak* dense in ba(X,A). As a consequence, since da(X,A) ⊆
ca(X,A), the set of bounded measures, ca(X,A), is also weak* dense in
ba(X,A).

In addition to the weak* topology, we will also make use of a different
topology on ba(X,A), the one generated by the total variation norm. The
total variation norm is defined as follows. For any µ ∈ ba(X,A) let

‖µ‖TV = sup
P∈Π(X,A)

∑
A∈P

|µ(A)|,

where Π(X,A) denotes the class of A-measurable finite partitions of X .
Then the collection of sets

OTV (µ, ε) = {ν ∈ ba(X,A) : ||µ− ν||TV < ε} ,

µ ∈ ba(X,A), ε > 0, forms a subbase of the topology by the total variation
norm.

For pairs of sets A,B ⊂ ba(X,A), we will make use of the concept of
the Minkowski sum of A and B: A+B = {a+ b : a ∈ A, b ∈ B}.

2.2 Review of Previous Results in the Literature

Mainly following Heifetz (2006), let I be a finite set of players and let Ω be
a Hausdorff topological space. Denote by Σ the Borel σ-field generated by
the topology of Ω and by ∆(Ω) the associated space of regular Borel proba-
bility measures, endowed with the weak* topology. A σ-type function for
player i is a continuous mapping ti : Ω→ ∆(Ω). A σ-type space is a tuple
consisting of a σ-type function for each player i; denote by T the collection
of all σ-type spaces over Ω.

Let T ∈ T be a σ-type space. A probability measure Pi ∈ ∆(Ω) is a
σ-prior for i if for every event E ∈ Σ,

Pi(E) =

∫
Ω

ti(·)(E) dPi.

A probability measure P ∈ ∆(Ω) is a common σ-prior (for T ) if it is a
prior for each i ∈ I . Call a σ-type space that admits a common σ-prior
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σ-consistent. Denote the collection of all σ-consistent type spaces over Ω
by C ⊂ T, and the inconsistent type spaces by I := CC = T \ C.

An agreeable bet, with respect to a σ-type space T , is a set of continuous
random variables fi : Ω → R, one for each i ∈ I , satisfying

∑
i fi = 0 and∫

Ω
fi(·) dti(ω) > 0, for all ω ∈ Ω. Denote the collection of all σ-type spaces

admitting an agreeable bet by B ⊂ T, and denote D = BC .
In these terms, the no betting theorem can be stated succinctly as: C =

D, (equivalently B = I) when Ω is compact (Feinberg (2000); Heifetz
(2006)).

When Ω is not compact, the above does not necessarily hold. Feinberg
(2000) provides an example of a type space over N for which C ( D.

In the case of a non-compact countable state space, Lehrer and Samet
(2014) introduced a concept that they term strong trade consistency, re-
lated to bets, and used that to characterise the existence of common priors
in type spaces over countable state spaces, i.e., such a type space admits
a common prior if and only if it is strong trade consistent. More broadly,
Lehrer and Samet (2014) present a three-levelled epistemic classification
– weakly belief consistent, belief consistent, strongly belief consistent –
which are respectively shown to be equivalent to three behavioural prop-
erties that they label weak trade consistency, trade consistency, and strong
trade consistency.

3 Type Spaces and Priors

3.1 Type space

We suppose throughout the existence of a a chargeable space (Ω,M). The
elements of the field M, the general epistemic field, serve as the events of
interest in our model.

The model also includes a set of players N (which is not necessarily
assumed to be a finite set). Each player i ∈ N is associated with a field
Mi ⊂M (i’s private epistemic field), which together with Ω forms a charge-
able space (Ω,Mi).

Definition 1. A type function is a mapping ti : Ω×M→ [0, 1] satisfying

1. ti(ω, ·) is a probability charge onM for all ω ∈ Ω,

2. ti(·, E) isMi-integrable for each event E in the fieldM.
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A type function ti for a player i is very similar to what is called a kernel
in the probability theory literature; the difference is that where a standard
kernel Property 2 above would state that ti(·, E) isMi-measurable for each
event E, we require it to beMi-integrable. We may regard type functions
defined here as ‘generalised kernals’, because in the context of a σ-field if
ti(·, E) isMi-integrable then it isMi-measurable.

By Property 1 of Definition 1, at any fixed state ω a type function yields
a probability charge by ti(ω, ·); this captures the intuitive idea that when
ω is the ‘true’ state, player i, who has incomplete information, holds a
particular belief, expressed by ti(ω, ·), regarding which states are possibly
true. The real value ti(ω,E) represents the probability that player i assigns
to event E when the true state is ω.

Property 2 of Definition 1 requires that player i know his or her own
belief, meaning if player i has two different beliefs in two states then he or
she can distinguish between these states This property will also be impor-
tant for the definition of a prior distribution (Definition 4), which requires
integrability with respect to a range of probability charges.

Definition 2. A tuple ((Ω,M), {(Ω,Mi)}i∈N , {ti}i∈N) is called a type space
if for each player i ∈ N , player i’s type function ti satisfies the property that for
each E ∈Mi, for each ω ∈ E, ti(ω,E) = 1.

Note that Definition 2 excludes models in which a player ‘does not
know what he believes’.

For a fixed state space Ω, denote the collection of all type spaces by T .

Definition 3. A σ-type space ((Ω,M), {(Ω,Mi)}i∈N , {ti}i∈N) is a special case
of a type space as defined in Definition 2 in the obvious manner: M and Mi,
for i ∈ N , are σ-fields, and for each player i the type function ti satisfies the
conditions that ti(ω, ·) is a probability measure on M for each ω and ti(·, E) is
Mi-measurable for each event E.

Every σ-type space is a type space, but not vice versa.

3.2 Priors

Definition 4. Let T = ((Ω,M), {(Ω,Mi)}i∈N , {ti}i∈N) be a type space, and let
i ∈ N be a player. Then a probability charge Pi ∈ pba(Ω,M) is a prior of player
i (relative to T ) if for each A ∈M and B ∈Mi

11



(2) Pi(A ∩B) =

∫
B

ti(·, A) dPi.

Πi will be used to denote the set of player i’s priors (with T understood from
context).

Remark 5. Note that ‘prior’, as defined here in Definition 4 and used through-
out this paper, is a probability charge. The word prior is usually used to
mean a probability measure; we reserve the term σ-prior for that. Since
probability measures are special cases of probability charges, a σ-prior is a
(charge) prior.

Similarly, type spaces as defined in Definition 2 involve charges, whereas
the term type spaces in the literature usually refers to what we term here
σ-type spaces, which are restricted to using only probability measures. T ,
the collection of type spaces over a state space Ω in this paper is broader
than T, the collection of σ-type spaces, i.e. T ⊂ T . �

Definition 6. Using the notation of the Minkowski sum, and with OTV (0, ε)

denoting the ε-neighbourhood of the origin in ba(Ω,M) by the total variation
norm, define for each player i and each ε ∈ [−1, 1] the set

Πε
i =


(Πi +OTV (0, ε))

∗
∩ pba(Ω,M) if ε > 0,

Πi if ε = 0,

{µ ∈ pba(Ω,M) : OTV (µ, ε) ∩ pba(Ω,M)) ⊆ Πi}
∗

if ε < 0,

A charge P ∈ pba(Ω,M) is an ε-common prior, for ε ∈ [−1, 1], if

P ∈
⋂
i∈N

Πε
i .

A 0-common prior will be termed simply a common prior.

Denote the subcollection of T of type spaces admitting an ε-common prior by
Cε. The special case of C0 will be denoted simply as C. In this notation, Cε ⊂ Cδ if
ε < δ, i.e., these are nested collections.
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Figure 3: A schematic illustration of deriving Πε
i from Πi when (a) ε > 0, in which

case adding to Πi probability charges that are ‘ε distant’ from the boundary of Πi

yields Πε
i and (b) ε < 0, in which case removing from Πi probability charges that

are ‘|ε| distant’ from the boundary of Πi yields Πε
i .

Note that ε in Definition 6 may be positive or negative. When ε < 0,
the set of ε-common priors is contained in the set of common priors; this is
a ‘strong’ notion of common prior, robust against ε-variations of the types.
When ε > 0, the set of ε-common priors is a super-set of the set of common
priors, and hence may contain charges that are not common priors but are
‘almost common priors’ in being ‘near’ the set of common priors in a sense
(this is an infinite version of a similar concept in Hellman (2013)).

An intuitive explanation of the construction of Πε
i , for ε > 0, is illus-

trated in Figure 3(a). Letting Π1 denote the set of priors of player 1, imag-
ine ‘thickening’ Π1 into Πε

1 by adding to Π1 probability charges that are
‘ε distant’ (by the total variation norm) from the boundary of Π1. Π2 is
‘thickened’ to Πε

2 with a similar construction. Even if Π1 and Π2 are dis-
joint, hence the type space is inconsistent, it is possible that Πε

1 ∩ Πε
2 6= ∅

for sufficiently large ε, in which case there is an ε-common prior.
An illustration for ε < 0 is in Figure 3(b). In this case, imagine ‘thin-

ning’ Π1 into Πε
1 by removing from Π1 probability charges that are ‘|ε| dis-

tant’ from the boundary of Π1, and similarly obtaining Πε
2 from Π2. Here,

even if Π1 and Π2 share a common prior, it is possible for Πε
1 and Πε

1 to be
disjoint for sufficiently large |ε|.

Remark 7. In the literature (in the context of compact spaces and countable
spaces, cf. Samet (1998); Heifetz (2006); Lehrer and Samet (2014)) the set of
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σ-priors Πi of a player i is obtained as the closed convex hull of the σ-types
of i, and a common prior exists if and only if ∩i∈NΠi 6= ∅. More specifically,
in Heifetz (2006) the set of priors is the weak∗ closure of the convex hull
of the types, and in Lehrer and Samet (2014) it is the the total variation
closure (strong closure) of the convex hull of the types.

Although it may not be immediately clear from Definition 6, when
ε = 0 our definition of common prior recapitulates these approaches. This
is because our sets of priors are weak* closed, as given by the result of
Lemma 8 below. �

Lemma 8. Let ((Ω,M), {(Ω,Mi)}i∈N , {ti}i∈N) be a type space and let i ∈ N

be a player. Then Πε
i , ε ∈ [−1, 1], is a weak* compact, convex set; in particular,

Πi, the set of player i’s priors, is the weak* closure of the convex hull of i’s types,
that is,

Πi = conv({ti(ω, ·) : ω ∈ Ω})
∗
.

Lemma 9. T ∈ Cε ⇐⇒ T ∈ Cδ, for all δ > ε.

In particular, a type space T attains a common prior if and only if it attains
an ε-common prior for every ε > 0.

Remark 10. Call a pairing (Pi, ti), where ti is type function and Pi ∈ Πi

is a prior for player i, a prior-posterior pair. The definition of prior in
Definition 4 can be termed as representing a ‘posterior first’ approach, in
the sense that the type function ti is given first and a prior is then defined
by Equation (2) with respect to ti.

In much of the literature, a ‘prior first’ approach is taken, with a prior
probability considered the given and the posteriors of the type function
subsequently defined from the prior by application of Bayes’s rule. This
accords with a picture of epistemic fields arising from signals inducing
partitions of the state space: in the ex ante stage before a signal arrives a
player has a prior distribution over the entire state space. In the interim
stage after a signal has been received, the player ‘learns’ his or her true
type (i.e., a partition element) and updates the probability of an event E
accordingly.
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Defining a prior with respect to a given type function reverses this pic-
ture. Definition 4 is also a more stringent definition of a prior, in the sense
that fewer prior-posterior pairs are admissible in a posterior first approach
than in a prior first approach. A more detailed discussion of this point ap-
pears in Section 8 below. �

3.3 Bets

Definition 11. Let T = ((Ω,M), {Ω,Mi}i∈N , (ti)i∈N) be a type space. A set of
functions f = {fi1 , . . . , fin} ∈ B(Ω,M), for a finite index set i1, . . . , in ∈ N , is
a bet if

∑n
m=1 fim = 0.

A bet is an ε-agreeable bet (relative to T ) for ε ∈ [−1, 1] if there exists α ∈ R
such that

(3)
∫
fim d tim(ω, ·) ≥ α > ε‖fim‖sup,

for every state ω ∈ Ω and every player im with m ∈ {1, . . . , n}.
Denote the collection of type spaces admitting an ε-agreeable bet by Bε (for

’bet’), and let Dε (for ’do not bet’) denote T \ Bε .

Note that in Definition 11 the set of functions fi1 , . . . , fin comprising a
bet is finite, even though the player set N is not restricted to being finite.

If ε > 0, then f is an ε-agreeable bet if each player i not only believes
that at each state fi grants him positive expectation, he believes more
strongly that in expectation he can gain more than an amount bounded
away from ε‖fim‖sup (this is an infinite version of a similar concept in Hell-
man (2013)).

If ε < 0, then in particular every T ∈ Cε admits a common prior, hence
there can be no agreeable bet as it is commonly understood in the litera-
ture. But it still might be possible for the players to agree to bet under such
circumstance: under an ε-agreeable bet each participant in the bet might
have no choice but to accept a loss at some types (i.e., it may be possible
that

∫
fim d tim(ω, ·) < 0) but that loss is bounded away from ε‖f‖sup (a

similar idea appears in Lehrer and Samet (2014)).
When ε = 0 we get back the ordinary notion of agreeable bet in the

literature, i.e., f = {fi1 , . . . , fin} ∈ B(Ω,M) is a 0-agreeable bet if each
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player i believes that at each state fi grants him positive payoff expecta-
tion. Note, however, that in this case the payoff expectation of each player
must be bounded away from zero, that is, α > 0 in Equation (3. We show
by example in Appendix B why this must hold.

4 Main result

We begin with preliminary results, towards the main theorem.

Theorem 12. Let K1, . . . , Kn be non-empty, weak* compact, convex sets in a
locally convex topological vector space X such that 0 /∈ Km, m = 1, . . . , n. Then
∩nm=1 cone(Km) = {0}, where cone(B) = {αx : α ≥ 0, and x ∈ B}, if and
only if there exist continuous linear functionals f1, . . . , fn over X , and α > 0,
such that fm(x) ≥ α for each m = 1, . . . , n and for all x ∈ Km, and in addition∑
fm = 0.

Lemma 13. Let A ⊆ ba(Ω,M), ε, α ∈ R, and f ∈ B(Ω,M). Then

f(x) ≥ α + ε||f ||sup ∀x ∈ A ⇐⇒ f(x) ≥ α ∀x ∈ A+OTV (0, ε)
∗
,

and equivalently

f(x) ≥ α ∀x ∈ A ⇐⇒ f(x) ≥ α− ε||f ||sup ∀x ∈ A+OTV (0, ε)
∗
.

Lemma 14. For any ε > 0

⋂
i∈N

Πε
i = ∅ ⇐⇒

⋂
i∈N

Πi +OTV (0, ε)
∗

= ∅.

Our main result is as follows:

Theorem 15. Let T = ((Ω,M), {Ω,Mi)}i∈N , {ti}i∈N) be a type space and ε ∈
[−1, 1]. Then only one of the following two cases is possible:

• T admits an ε-common prior.

• There exists an ε-agreeable bet.
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That is, Cε = Dε.

Proof. By Lemma 8, for each i ∈ N and ε ∈ R the set Πε
i is a weak* closed

subset of pba(Ω,M), which is itself weak* compact, hence ∩i∈NΠε
i = ∅, i.e.,

there is no ε-common prior, if and only if there exists a finite set of indices
i1, . . . , in ∈ N such that ∩nm=1Πε

im = ∅.
If ε = 0 then let Km = Πim ; if 1 > ε > 0 then let Km = Πim +OTV (0, ε)

∗

(it is clear that there always exists 1-common prior but there cannot exist
1-agreeable bet); and if ε < 0 then let Km = Πε

im , m = 1, . . . , n, as in the
statement of Theorem 12. By Lemma 8 the sets Km, m = 1, . . . , n, are
convex, weak* compact subsets of ba(Ω,M), 0 /∈ Km, m = 1, . . . , n, and
∩nm=1 cone(Km) = {0}. This last property holds if and only if ∩nm=1Km = ∅.
We can therefore apply Theorem 12 to deduce ∩nm=1Km = ∅ if and only if
there exist continuous linear functionals f1, . . . , fn satisfying

∑
fm = 0 as

in the statement of that theorem.

Appeals to Lemmata 13 and 14 then complete the argument leading
to our desired result: if there is no ε-common prior, then there exists an
ε-agreeable bet, and if there exists an ε-agreeable bet, then there is no ε-
common prior. �

Corollary 16. A type space admits a common prior if and only if it admits no
agreeable bet.

The characterisation in Corollary 16 fills a lacuna in the literature. The
parallel characterisation for σ-additive common priors, which famously
holds for finite state spaces, fails in certain cases (such as non-compact
spaces). In contrast, as Corollary 16 shows that when one permits com-
mon priors to be probability charges, rather than restricted to probability
measures then the full characterisation is restored and holds for all type
spaces. A more detailed discussion of this point appears in Section 7 be-
low.

Corollary 16 generalizes the Corollary on p. 174 in Samet (1998) to the
infinite state space case. Notice that every tight probability charge is a tight
probability measure (and vice versa), moreover, in Feinberg (2000) and
in Heifetz (2006) the beliefs of the players are tight probability measures,
hence Corollary 16 also generalises Theorem 5 on p. 150 in Feinberg (2000)
and Proposition 1 on p. 109 in Heifetz (2006). A more detailed discussion
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of this point appears in Section 7 below. Furthermore, in the case ε > 0,
Theorem 15 generalises Theorem 1 on p. 406 in Hellman (2013) to the
infinite state space case.

As a corollary of Lemma 9 and Theorem 15 we obtain the following
result:

Theorem 17. Let T = ((Ω,M), {(Ω,Mi)}i∈N , {ti}i∈N) be a type space. Then
only one of the following two cases is possible:

• T admits an ε-common prior for every ε > 0.

• There exists an agreeable bet.

We can also derive a corollary relating to σ-type spaces and σ-priors,
showing that the fine-grained decomposition of the space of type spaces
of Theorem 15 is equally applicable to the standard σ-additive setting of
most of the literature, if compactness is assumed.

Theorem 18. Let T = ((Ω,M), {Ω,Mi)}i∈N , {ti}i∈N) be a σ-type space sastis-
fying the property that Ω is a compact Hausdorff topological space and that ti(ω, ·)
is a tight probability measure for all ω ∈ Ω and i ∈ N . Let ε ∈ [−1, 1]. Then only
one of the following two cases is possible:

• T admits an ε-common σ-prior.

• There exists an ε-agreeable bet that is continuous with respect to the topol-
ogy on Ω.

It might seem at first glance as if Theorem 18 follows almost trivially
from Theorem 15, since a σ-type space is a special case of a type space
under Definitions 1 and 2. But Theorem 18 is saying more than just a direct
application of Theorem 15 to a special case, which would be a statement
of a dichotomy in the case of σ-type spaces between ε-agreeable bets and
ε-common priors; Theorem 18 instead refers specifically to ε-common σ-
priors. For proving Theorem 18, one shows that Theorem 12 and Lemmata
13 and 14 apply as-is to type spaces satisfying the statement of Theorem
18, and then completes the proof of the theorem in a manner similar to the
proof of Theorem 15, adapted to this setting. We omit the full details.
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5 Finite Support Common Prior Measures

The results in Section 4 relate to priors over infinite state spaces that, like
the beliefs by the type functions, may be of infinite support. Here we ask
whether the existence of a common prior, and by extension no betting, can
be ascertained solely by looking at probability measures with finite sup-
port, which in a sense are easier to work with. The answer is affirmative,
if we consider finite support measures that are ‘nearby’ to the full priors.
We call these ‘approximate common σ-priors with finite support’.

Intuitively, a type space admits approximate common σ-priors with fi-
nite support if for any finite set of players, any finite collection of functions,
and any ε > 0 there exists a probability measure P in D(Ω,M) (recall that
this is the set of probability measures with finite support) such that the
weak* ε-neighbourhood around P intersects the sets of priors of all the
players.

Definition 19. A type space ((Ω,M), {(Ω,Mi)}i∈N , {ti}i∈N) admits approx-
imate common σ-priors with finite support if for any ε > 0, and any F ⊂
B(Ω,M) such that |F | <∞, there exists P ∈ D(Ω,M) such that for all players
i ∈ N

O∗(P, F, ε) ∩ Πi 6= ∅.

Lemma 20. A type space ((Ω,M), {(Ω,Mi)}i∈N , {ti}i∈N) admits approximate
common σ-priors with finite support if and only if it admits a common prior.

Lemma 20 relates common priors – which are probability charges – to
finitely supported probability measures. It essentially states that

⋂
i Πi 6=

∅ if and only if for each ε > 0 there is a finitely supported probability
measure P that is weak* ε-close to each Πi. Moreover, by Lemmata 9 and
20 we obtain the following corollary:

Corollary 21. A type space ((Ω,M), {(Ω,Mi)}i∈N , {ti}i∈N) admits approxi-
mate common σ-priors with finite support if and only if it admits an ε-common
prior for every ε > 0.

As a direct corollary of Theorem 15 and Lemma 20 we obtain:

Theorem 22. Let T = ((Ω,M), {(Ω,Mi)}i∈N , {ti}i∈N) be a type space. Then
only one of the following two cases is possible:
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• T admits approximate common σ-priors with finite support.

• There exists an agreeable bet.

Theorem 22 is a generalisation of Theorem 2 p. 170 in Lehrer and Samet
(2014) (further details on this appear in Section 7.1).

6 Approximation by Finite Type Spaces

In Section 5 we considered infinite type spaces and approximate common
σ-priors with finite support. In this section we continue with the project
of considering only finite constructions by approximating the type spaces
themselves by finite type spaces (comprised of finite state spaces and a
finite number of players). More specifically, we wish to study whether it
is possible to approximate, in an appropriately defined sense, infinite type
spaces with common priors by ‘entirely finite constructions’, namely finite
type spaces with approximate common priors.

Definition 23. Let T = ((Ω,M), {(Ω,Mi)}i∈N , {ti}i∈N) be a type space. An-
other type space T ′ = ((Ω′,M′), {(Ω′,M′

i)}i∈N ′ , {t′i}i∈N ′) is a finite (N ′, F, ε)-
approximation of T if

• 0 < |Ω′| <∞,

• N ′ ⊆ N , |N ′| <∞,

• F ⊆ B(Ω,M), |F | <∞,

• ε > 0,

• there exists ψ : Ω′ → Ω such that

– ψ−1(A) ∈M′ for each A ∈M,

– ψ−1(A) ∈M′
i, for each A ∈Mi and each i ∈ N ′,

• for all ω ∈ Ω′, i ∈ N ′, and f ∈ F ,

∣∣∣∣∫ f dti(ψ(ω), ·)−
∫
f ◦ ψ d t′i(ω, ·)

∣∣∣∣ < ε.
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The definition above says that given the means of approximation (F
and ε) a finite type space approximates a type space if the beliefs of the
related (by ψ) type pairs are close to each other.

In the finite setting both of our approximation concepts, ε-common pri-
ors and approximate σ-common priors (Definitions 6 and 19) lead to the
following notion:

Definition 24. A finite type space ((Ω,M), {(Ω,Mi)}i∈N , {ti}i∈N) achieves an
ε-common prior, for ε > 0, if there exist priors Pi ∈ Πi, i ∈ N , such that for
each pair of players i, j ∈ N∣∣∣∣∫ f dPi −

∫
f dPj

∣∣∣∣ < ε, f ∈ B(Ω,M), −1 ≤ f ≤ 1.

Incorporating together concepts from Definitions 23 and 24 gives us
our next definition:

Definition 25. A type space T = ((Ω,M), {(Ω,Mi)}i∈N , {ti}i∈N) is finitely
approximable if there exists a finite (N ′, F, ε)-approximation of T admitting a
δ-common prior for any N ′ ⊆ N , |N ′| < ∞, ε, δ > 0 and F ∈ B(Ω,M) such
that |F | <∞.

Theorem 26 is our main approximation result in this section. It may
be regarded as a form of ‘continuity’ statement, in the sense that if a type
space has approximations with a δ-common prior, for any δ > 0, then in
the limit the existence of these approximations guarantees the existence of
a common prior for the type space itself.

Theorem 26. If a type space T is finitely approximable then it admits a common
prior.

Note that the converse of Theorem 26 does not hold. This may happen
for two reasons: 1) Definition 23 may fail in the sense that for some ε there
may not exist a desired finite (N ′, F, ε)-approximation of T or 2) Definition
24 may fail in the sense that T may have many perfectly good approxima-
tions but they do not admit ε-common priors for some ε. The next two
examples exhibit, respectively, these possible ways of failure.

Example 27. Consider the following type space taken from Section 7 of
Feinberg (2000):
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• Anne and Bob are the two players,

• Ω = {1, 2, . . .} = N,

• M = P(Ω),

• MAnne is the field generated by the sets {1}, {n, n+ 1}, n ∈ N, n ≥ 2,
andMBob is the field generated by the sets {n, n+ 1}, n ∈ N, n ≥ 1.

tAnne(n, {m}) =



1 if n = m = 1,

2/3 if n = m = 2(1 + k + k2), k = 0, 1, 2, . . . ,

2/3 if n = 2(1 + k + k2) and m = 2(1 + k + k2), k = 0, 1, 2, . . . ,

1/3 if n = m = 2(1 + k + k2) + 1, k = 0, 1, 2, . . . ,

1/3 if n = 2(1 + k + k2) and m = 2(1 + k + k2), k = 0, 1, 2, . . . ,

0 otherwise,

and tBob(n, {m}) =



1/2 if n = m = 2k + 1, k = 0, 1, 2, . . . ,

1/2 if n = m = 2(k + 1), k = 0, 1, 2, . . . ,

1/2 if n = 2k + 1 and m = 2(k + 1), k = 0, 1, 2, . . . ,

1/2 if n = 2(k + 1) and m = 2k + 1, k = 0, 1, 2, . . . ,

0 otherwise,

1. As Feinberg (2000) demonstrated there does not exist an agreeable
for this type space, hence by Theorem 15 it admits a common prior.

2. Let

f(ω) =

{
1 if ω is odd,
0 if ω is even,

and ε ∈ (0, 1/3).

Then there does not exist a finite (N, {f}, ε)-approximation of this
type space. Take an arbitrary finite type space ((Ω′,M′), {(Ω′,M′

i)}i∈N , {t′i}i∈N)

and ψ : Ω′ → Ω that is (M′,M), (M′
Anne,MAnne), and (M′

Bob,MBob)

measurable. Since Ω′ is finite, there exists n∗ ∈ N such thatψ−1({n∗}) =

∅ and either ψ−1({n∗ − 1}) 6= ∅ or ψ−1({n∗ + 1}) 6= ∅. Without loss of
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generality, suppose that ψ−1({n∗ + 1}) 6= ∅. Let ω′ ∈ Ω′ be such that
ψ(ω′) = n∗ + 1.

If {n∗, n∗ + 1} ∈ MAnne, then

∣∣∣∣∫ f d tAnne(ψ(ω′), ·)−
∫
f ◦ ψ d t′Anne(ω

′, ·)
∣∣∣∣ ≥ 1

3
.

If {n∗, n∗ + 1} ∈ MBob, then

∣∣∣∣∫ f d tBob(ψ(ω′), ·)−
∫
f ◦ ψ d t′Bob(ω′, ·)

∣∣∣∣ =
1

2
.

In both cases, the condition for a sufficiently close approximation
fails. �

The next example (inspired by Hellman and Levy (2019)) shows that
even if there are sufficiently many finite approximations to a type space
with a common prior, those finite approximations themselves may fail to
admit an ε-common prior for sufficiently small ε.

Example 28. Let Ω = {ω1, ω2}, N = {1, 2}, t1 = δ{ω1}, t2 = δ{ω2},M = P(Ω),
andMi = {∅,Ω} for each player i ∈ N . Then only the pair of functions

(4) f1(ω) =

{
α if x = ω1,

−β if x = ω2,

and f2 = −f1 form an agreeable bet for the type space ((Ω,M), {Ω,Mi)}i∈N , {ti}i∈N),
for all α, β > 0.

Let Ωi = Ω× {i} for each i ∈ R, yielding continuum-many copies of Ω.
Let Ω∗ = ∪i∈IΩi, letM∗ be the field generated by the sets {ω}, for ω ∈ Ω∗

(i.e., the coarsest field containing the singletons of Ω∗), and let

t∗j(ω, {x}) =

{
tj((ω|Ω), {x|Ω}) if ∃i ∈ I such that ω, x ∈ Ωi,

0 otherwise,

j = 1, 2.

DefineM∗
j to be the field generated by Ωi, i ∈ I , j ∈ N = {1, 2}. Then

T ∗ := ((Ω∗,M∗), {(Ω∗,M∗
j)}j∈N , {t∗j}j∈N) forms a type space.
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Suppose by contradiction that there exists an agreeable bet (f1, f2) on
T ∗. Then for each i ∈ I , the functions f1 and f2 restricted to Ωi must
be defined on Ωi as in Equation (4) (the specific values of α and β might
depend on i).

If f1 is not bounded, then (f1, f2) cannot be an agreeable bet. Hence
there must exist ε > 0 such that f−1

1 ([ε,∞)) and f−1
1 ((−∞,−ε)) are both

unions of infinitely many singletons. But then either f−1
1 ([ε,∞)) /∈ M∗ or

f−1
1 ((−∞,−ε)) /∈ M∗, meaning that f1 is notM∗-integrable, hence (f1, f2)

cannot be an agreeable bet.

As there is no agreeable bet on T ∗, by Theorem 15 T ∗ admits a common
prior. Indeed, it is easy to check that the probability charge onM∗ which
assigns 0 to each finite set is a common prior.

Moreover, for any f ∈ B(Ω∗,M∗), for any finite copy of (Ω,M), for
each ω′ ∈ Ω′, n ∈ N∣∣∣∣∫ f dtn(ψ(ω′), ·)−

∫
f ◦ ψ d t′n(ω′)

∣∣∣∣ = 0,

where Ω′ = ∪i∈JΩi, J ⊆ I is an arbitrary nonempty, finite set,M′ = M|Ω′

and t′n = tn ◦ ψ, i ∈ N , ψ : Ω′ → Ω is such that ψ(ω) = ω, ω ∈ Ω′.

In words, T ∗ has many finite, even ‘perfect’, approximations. Despite
this, none of these finite approximations admits a common prior. �

7 Comparisons

Most of the literature on common priors deals with σ-type spaces. As
noted above, in the σ-additive case the result of our main theorem, The-
orem 15, may not hold when the state space is not compact: in that case,
a common prior implies no betting but not necessarily the converse. In
this section we briefly compare our results with known results in the σ-
additive case.
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7.1 σ-type spaces: the non-compact case

In σ-type spaces (Definition 3) the general epistemic fieldM is a σ-field,
therefore, the bets, which areM-integrable functions, areM-measurable
functions. On this fact the results of this subsection are based on.

Definition 29. Let T = ((Ω,M), {(Ω,Mi)}i∈N , {ti}i∈N) be a σ-type space, and
let ε > 0. A prior p ∈ ∆(Ω,M) is a strong common ε-prior of T if for each i ∈ N
there exists pi ∈ Πi ∩∆(Ω,M) such that

||pi − p||TV < ε.

What we term here a strong common ε-prior is called common ε-prior
in Lehrer and Samet (2014).

Lemma 30. Let (X,A) be a measurable space and convex sets P1, P2 ⊆ ca(X,A).
Then P1

TV and P2
TV are strongly separable by a linear functional if and only if

P1
∗ and P2

∗ are strongly separable by a linear functional, where the closures are
meant in ba(X,A).

By the following theorem we can relate Theorem 2 on p. 170 of Lehrer
and Samet (2014) to our results.

Theorem 31. A σ-type space ((Ω,M), {(Ω,Mi)}i∈N , {ti}i∈N) admits a com-
mon prior if and only if it admits a strong common ε-prior for all ε > 0.

Proof. If: If the σ-type space admits a strong common ε-prior pε for all
ε > 0, then by that pba(Ω,M) is weak* compact (p1/n)n∈N has a cluster
point. Any cluster point of (p1/n)n∈N is a common prior for the σ-type
space.

Only if: Suppose that there exists ε > 0 such that the σ-type space does
not admit a strong common ε-prior. Then by Lemma 30 it holds that the
σ-type space does not admit a common prior either. �

In the light of Theorem 31 the following corollary of Theorem 15 is a
generalisation of Theorem 2 on p. 170 of Lehrer and Samet (2014).
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Proposition 32. Let T = ((Ω,M), {(Ω,Mi)}i∈N , {ti}i∈N) be a σ-type space.
Then only one of the following two cases is possible:

• T admits a strong common ε-prior for all ε > 0.

• There exists an agreeable bet.

Theorem 22 is a generalisation of the above-mentioned result by Lehrer
and Samet (2014) in the way that Lehrer and Samet (2014) restrict attention
to countable state spaces with finitely many players, while here both the
state space and the player set may be arbitrarily large. By defining the
notion of strong common ε-prior for negative ε (similarly to that is done
in Definition 6) a further generalisation of he above-mentioned result by
Lehrer and Samet (2014) is possible: Take a σ-type space, then for each ε ∈
[−1, 1] only one of the following two cases is possible: either the σ-type space
admits a strong common δ-prior for all δ > ε, or there exists an ε-agreeable bet.

7.2 σ-type spaces: the compact case

As noted above in Section 4, when the sets of priors are charges, consistent
type spaces admit no agreeable bets; in the notation of that section, C =
D. When priors are restricted to σ-priors, this may not hold in general:
C ⊂ D is the most that can be said. In contrast, as Feinberg (2000) and
Heifetz (2006) show, when Ω is a compact state space C = D holds when
the only priors under consideration are σ-priors. It is of some interest
to consider how this result of Feinberg (2000) and Heifetz (2006), which
involves probability measures, relates to charges.

With respect to a topological space, an additive set function µ is defined
to be tight if µ(A) = sup{µ(K) : K ⊆ A, K is compact} for each event A.
Every tight probability charge is a probability measure (see e.g. Theorem
10.13 on p. 378 in Aliprantis and Border (2006)). The probability measures
used in both Feinberg (2000) (Theorem 5 on page 15) and Heifetz (2006)
(Proposition 3 on page 112) are regular Borel probability measures, which
are tight by definition.

Hence we have the following interpretation. Let T be a type space
over a compact state space Ω that admits an agreeable bet. By Theorem 15
here, one deduces that ∩i∈NΠi 6= ∅, in other words there exists at least one
probability charge that is a prior for all players i. The results of Feinberg
and Heifetz specify further that in the compact case one of the charges in
∩i∈NΠi is a tight probability charge, i.e., a probability measure.
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Many foundational papers in the game theory literature (see e.g. Mertens
and Zamir (1985); Brandenburger and Dekel (1993); Heifetz (1993); Mertens
et al (1994) among others) restrict attention to beliefs that are tight proba-
bility measures. There may be scope to study the results of these and other
similar studies from the perspective of charges.

8 Priors First or Posteriors First?

Definition 4 is reminiscent of a standard property of Bayesian updating,
variously termed Bayesian consistency or the martingale property, often
stated as ‘the average posterior belief is equal to the prior’. More formally,
for any event E, Pi(E) =

∫
Ω
ti(·, E) dPi, that is, from knowing the pos-

terior belief that player i has about event E at each state it is possible to
reconstruct the prior measure of E.

In this paper we use the property specified in Definition 4 to define
prior charges and measures; that is, the primitives in our model are the
type functions and epistemic fields of each player, following which we
can define which probability charges are priors. As the type functions are
here playing the role of posteriors, we first identify the posteriors, and
from there we define the priors (‘posteriors first, then define the priors’).

This approach to defining priors has ample precedent. However, there
is a parallel (and older) ‘prior first’ approach that is more frequently seen
in the literature and runs in the other direction: the primitives in this ap-
proach are prior probability measures, defined over all of Ω, and a par-
tition Πi of Ω associated with each player i. The epistemic field of each
player is then defined to be the field generated by the partition elements,
and ti(ω,E) is defined to be the probability of event E at state ω given by
using Bayesian updating to calculate the posterior probability of E condi-
tional on Πi(ω) and the prior.

When state spaces are finite, these two approaches are equivalent: the
martingale property can easily be shown to obtain under the ‘prior first’
approach by the law of iterated expectations. In infinite state spaces this
may no longer be true, which is why in this paper the types are the prim-
itives and we define prior charges to be charges satisfying the martingale
property with respect to the posteriors. Indeed, Equation 2 essentially
states that a prior Pi is defined to be a charge such that the given type
function ti forms a conditional probability function of Pi with respect to
the fieldMi.
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We illustrate this first with an example2 that indicates why charges in
countable state spaces may fail to comply with the martingale property of
Bayesian updating.

Example 33. Consider the following situation:

• The player set is N = {Anne,Bob}.

• The state space is Ω = ({A} × N) ∪ ({B} × N). In other words, every
element ω ∈ Ω is either of the form (A, n) or (B, n) for some n ∈ N.

• The field of events is M = P({A} × N) ∪ {E ⊆ ({B} × N) : |E| <
∞ or |E{| <∞}, where P({A} ×N) is the power set of {A} ×N, and
E{ denotes the complement of E.

• With respect to (Ω,M) define a probability charge P as follows: for
each E ∈M,

(5) P (E) =

{ ∑
n∈E∩({A}×N)

1
2n+2 if |E ∩ ({B} × N)| <∞,∑

n∈E∩({A}×N)
1

2n+2 + 1
2

if |E ∩ ({B} × N)| =∞.

To gain some intuition, note that P ({A} × N) = 1
2
. This is because

any event E ∈ M such that E ⊆ ({A} × N) satisfies |E ∩ ({B} ×
N)| = 0, hence P (E) is the weight E receives under the upper line in
Equation (5) alone. In fact, P restricted to {A}×N is isomorphic to an
honest-to-goodness σ-additive measure over N, and P ({A} × N) =∑

n∈N
1

2n+2 = 1
2
.

In contrast, P restricted to {B} × N is an additive but not σ-additive
measure. For any n ∈ N, the singleton event E = {(B, n)} has
P (E) = 0, since |E ∩ ({B} × N)| = 1 < ∞, but |E ∩ ({A} × N)| = 0.
With similar reasoning, for any event E satisfying E ⊆ ({B} × N)

and |E| <∞, one has P (E) = 0.

The over-all measure of {B}×N, however, satisfies P ({B}×N) = 1
2
.

This is because, writing E = {B} × N, one has |E ∩ ({B} × N)| =∞
and |E ∩ ({A} × N)| = ∅, yielding P (E) = 0 + 1

2
= 1

2
.

2 Example 33 is inspired by elucidations of the notion of non-conglomerability of prob-
ability charges in Kadane et al (1996) and Dubey (1975).
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• Anne’s knowledge structure is the countably infinite partition: {({A}×
{n}) ∪ ({B} × {n}) : n ∈ N}. In words, every element of the parti-
tion of Anne is of the form {(A, n), (B, n)} for some n ∈ N. Bob’s
knowledge structure is the trivial partition consisting solely of one
element: all of Ω.

Adopting a ‘prior first’ approach, let the charge P serve as a common
prior, from which the posteriors are derived at each state.

Since for each n, the singleton (B, n) is associated with P ((B, n)) = 0

and the singleton (A, n) with P ((A, n)) > 0, it follows that in the posterior
Anne’s belief is P ({B}×N | (A, n)∪ (B, n)) = 0 and P ({A}×N | {(A, n)}∪
{(B, n)}) = 1. Bob’s posterior is equal to the prior, since his partition is
trivial.

Define a bet between the two as follows, where fA(ω) indicates the
payoff to Anne at state ω:

fA(ω) =

{
1 if ω ∈ ({A} × N),

−2 if ω ∈ ({B} × N).

Bob’s payoff is fB = −fA.

The above bet is an agreeable bet, since EtA(ω)fA = 1, and EtB(ω)fB = 1,
for all ω ∈ Ω. This holds despite P being a ‘common prior’. However,
this does not contradict the theorems of the previous sections: given the
construction, the martingale property does not hold here, since

P ({B} × N) =
1

2
6= 0 =

∫
Ω

0 dP =

∫
Ω

tA(·)({B} × N) dP.

Hence P is not a prior by Definition 4, and is certainly not a common prior.
�

Lest the reader get the impression that the failure of the martingale
property in Example 33 is due solely to the use of additive but not σ-
additive probability measures, the next example shows how a similar anomaly
can occur even in the σ-additive setting.

Example 34. Consider the following situation:
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• The player set is N = {Anne,Bob}.

• The state space is Ω = ({A} × [0, 1]) ∪ ({B} × [0, 1]). In other words,
every element ω ∈ Ω is either of the form (A, x) or (B, x) for some
x ∈ [0, 1].

• Denote by L([0, 1]) the standard Lebesgue σ-field over [0, 1] and by
C([0, 1]) the co-countable σ-field over [0, 1]. Then let the σ-field of
events in this example beM = σ({A} × L[0, 1]) ∪ ({B} × C[0, 1]).

• For each set S ∈ L[0, 1], let the value `(S) be the standard Lebesgue
measure of S. By tolerable abuse of notation, we will also write
`({A} × S) = `(S), for S ∈ L[0, 1].

• With respect to (Ω,M) define a σ-additive probability measure P as
follows:

For each E ∈M,
(6)

P (E) =

{
1
2
`(E ∩ ({A} × [0, 1])) if |E ∩ ({B} × [0, 1])| ≤ ℵ0,

1
2
`(E ∩ ({A} × [0, 1])) + 1

2
if |E{ ∩ ({B} × [0, 1])| ≤ ℵ0.

Note that for E ⊆ ({A} × [0, 1]), the value of P (E) is essentially
(one half of) the standard Lebesgue measure of an event of L[0, 1],
while for E ⊆ ({B}× [0, 1]), the value of P (E) is essentially (one half
of) the standard co-countable measure of an of C[0, 1]. In particular,
P ({A} × [0, 1]) = 1

2
and P ({B} × [0, 1]) = 1

2
.

• Anne’s knowledge structure is {({A} × {x}) ∪ ({B} × {x}) : x ∈
R}. In words, every element of the partition of Anne is of the form
{(A, x), (B, x)} for some x ∈ [0, 1]. Bob’s knowledge structure is the
trivial partition consisting solely of one element: all of Ω.

Adopting a ‘prior first’ approach, let the charge P serve as a common
prior, from which the posteriors are derived at each state.

To calculate Anne’s posterior P (({B} × [0, 1]) | ({(A, x)}, {(B, x)}) for
any particular x ∈ [0, 1], we first calculate P ((B × [0, 1]) | (({A} × (x −
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1
n
, x + 1

n
)) ∪ (B, x)) for n ∈ N, and then calculate this value as n goes to

infinity. However, this value is zero for each n, hence the limit is also
zero. It follows that in the posterior Anne’s belief is P (({B}) × [0, 1]) |
({(A, x)}, {(B, x)}) = 0 and P (({A}× [0, 1]) | ({(A, x)}, {(B, x)}) = 1 Bob’s
posterior is equal to the prior, since his partition is trivial.

Define a bet between the two as follows, where fA(ω) indicates the
payoff to Anne at state ω:

fA(ω) =

{
1 if ω ∈ ({A} × [0, 1]),

−2 if ω ∈ ({B} × [0, 1]),
.

Bob’s payoff is fB = −fA.

The above bet is an agreeable bet, since EtA(ω)fA = 1, and EtB(ω)fB = 1,
for all ω ∈ Ω. This holds despite P being a ‘common prior’. The martingale
property does not hold here, since

P ({B} × [0, 1]) =
1

2
6= 0 =

∫
Ω

0 dP =

∫
Ω

tA(·)({B} × [0, 1]) dP.

�

Example 34 follows a similar pattern to Example 33, suitably reformu-
lated to the continuum. We provide one more example, showing a fail-
ure of the martingale property even when the standard uniform Lebesgue
measure is used throughout.

Example 35. Consider the following situation:

• The player set is N = {Anne,Bob}.

• The state space is Ω = [0, 1).

• The σ-field of events M in this example is the standard Lebesgue
σ-algebra over [0, 1).

• The σ-additive probability measure P is, similarly, the standard uni-
form Lebesgue measure.

• According to the Lebesgue measure P ({ω}) = 0 for any ω ∈ Ω, and
indeed P ({ω1, . . . , ωn}) = 0 for any finite subset of Ω. This means that
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we may define the conditional probability P (· | E) arbitrarily for any
finite event E. Based on the principle of extending the uniformity of
the over-all measure to the posteriors in the measure zero sets, define
P ({ωi} | {ω1, . . . , ωn}) = 1/n if ωi ∈ {ω1, . . . , ωn}, and zero otherwise.

• Let H := {x : 0 ≤ x < 0.9}, hence H{ = {x : 0.9 ≤ x < 1}. Let
g : H → H{ be defined by g(x) = 0.9 + x

9
.

• Anne’s knowledge structure is the infinite partition: {{ω, g(ω)} : ω ∈
H}. Bob’s knowledge structure is the trivial partition consisting of
all of Ω.

Define a bet between the two as follows, where fA(ω) indicates the
payoff to Anne at state ω:

fA(ω) =

{
−1 if ω ∈ H,
2 if ω ∈ H{.

Bob’s payoff is fB = −fA.

At each state ω ∈ H , Anne’s posterior belief is as follows:

P (E | ω) =


1 if {ω, g(ω)} ⊆ E,
1
2

if ω ∈ E, and g(ω) /∈ E,
1
2

if g(ω) ∈ E, and ω /∈ E,
0 otherwise.

At each state ω ∈ H{, Anne’s posterior belief is as follows:

P (E | ω) =


1 if {ω, g(ω)} ⊆ E,
1
2

if ω ∈ E, and g−1(ω) /∈ E,
1
2

if g−1(ω) ∈ E, and ω /∈ E,
0 otherwise.

At each state ω ∈ Ω, Bob’s posterior belief is, of course, tB = P .

The bet f is an agreeable bet, as at each state ω ∈ Ω, one calculates
EtA(ω)fA = 0.5, and EtB(ω)fB = 0.7.
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However, note that at each ω ∈ Ω, it is the case that P (H | ω) = 0.5,
hence

P (H) = 0.9 6= 0.5 =

∫
Ω

0.5 dP =

∫
Ω

tA(·)(H) dP.

�

All the above examples share the essential element that the anomalies
stem from partition elements of measure zero (or with significant inter-
section with zero measure sets). Probability charges over the integers are
sometimes regarded as ‘unintuitive’ because, as in Example 33, they can
assign probability zero to any point (and any finite set of points) yet mea-
sure one to the entire space, and indeed this property is key to the anomaly
in that example.

However, as Examples 34 and 35 indicate, adopting σ-additive mea-
sures only pushes the anomalies to another level when considering atom-
less measures over the continuum. Indeed, in that setting it is also true
that single points have zero measure, yet the measure of the entire space
is non-zero. When models involve structures that exist within sets of mea-
sure zero, σ-additive measure theory can also fail to contend with critical
aspects of the models. Several counter-examples in the recent literature,
involving subjects such as common priors, betting, and Bayesian equilib-
ria existence, depend in their constructions on considerations of measure
zero subsets of spaces with continuum many elements.

In Bayesian updating models, measure zero sets are often problem-
atic; naı̈ve application of Bayes’ rule can in certain situations break down
to meaninglessness when measure zero sets are used. Indeed, as a close
reading of Examples 34 and 35 shows, there is no canonical way to de-
fine posteriors at states within measure zero sets. Using Definition 4 for
defining the relationship between priors and posteriors, instead of defin-
ing posteriors by Bayesian updating from priors, avoids many anomalies,
as the examples in this section illustrate.

9 Conclusion

We have shown that expanding the concept of priors to include proba-
bility charges as priors is an endeavour yielding strong results: the No
Betting Theorem is restored to its full power as a characterisation of com-
mon priors in any state space Ω of any cardinality, and a fine-grained de-
composition of the space of type spaces is uncovered, revealing a contin-
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uum of classes in each of which an equivalence between epistemic and
behavioural properties obtains. Further insight into the structure of the
space of type spaces, via approximation theorems, appears in the sections
above.

The role of priors in the Bayesian context, beyond the specific topic
of the characterisation of common priors by way of agreeable bets, is of
course extremely broad in many sub-fields of economic theory and far
beyond. Few research studies on the potential of the use of probability
charges as priors in a variety of settings have been conducted. The results
here indicate there may be scope to consider further such studies.

A Proofs

Proof of Lemma 8. It comes directly from Definition 6 that Πε
i is convex for

ε ∈ [−1, 1].

Next we show that Πi = conv({ti(ω, ·) : ω ∈ Ω})
∗
. It is easy to see that

conv({ti(ω, ·) : ω ∈ Ω})
∗
⊆ Πi. Here we show that Πi ⊆ conv({ti(ω, ·) : ω ∈ Ω})

∗
.

Suppose by contradiction that there exists µ ∈ Πi such that µ /∈ conv({ti(ω, ·) : ω ∈ Ω})
∗
.

Then µ is separated from conv({ti(ω, ·) : ω ∈ Ω})
∗

in the weak* topology,
meaning that there exists f ∈ B(Ω,M), f 6= 0, and ε > 0 such that

(7) 〈f, µ〉 :=

∫
f dµ ≥ α + ε and 〈f, ν〉 :=

∫
f d ν ≤ α− ε

for all ν ∈ conv({ti(ω, ·) : ω ∈ Ω})
∗
. Let K be a bound of f , that is, |f | ≤ K.

There exist a partition B1, . . . , Bn ∈ M of Ω and a simple function sf

on it such that for all ω ∈ Ω

(8) |f(ω)− sf (ω)| < ε

2
.

Since µ ∈ Πi, for each Bm, m = 1, . . . , n

(9) µ(Bm) = µ(Bm ∩ Ω) =

∫
Ω

ti(·, Bm) dµ .
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Since ti(·, Bm) is bounded and Mi-integrable for each Bm, there exist a
partition Cm

1 , . . . , C
m
nm
∈ Mi of Ω and a simple function sti(·,Bm)such that

for each ω ∈ Ω

(10)
∣∣ti(ω,Bm)− sti(·,Bm)(ω)

∣∣ < ε

2Kn
.

Let C1, . . . , Cl be the common refinement of the partitions B1, . . . , Bn,
Cm

1 , . . . , C
m
nm

, m = 1, . . . , n. It is easy to see that C1, . . . , Cl ∈ M and that
{C1, . . . , Cl} forms a partition of Ω. Let ωk ∈ Ck, k = 1, . . . , l be arbitrarily
fixed. Then by Equations (9) and (10) for all m = 1, . . . , n∣∣∣∣∣µ(Bm)−

l∑
k=1

ti(ωk, Bm)µ(Ck)

∣∣∣∣∣ < ε

2Kn
,

that is, ∣∣∣∣∣
n∑

m=1

sf (Bm)µ(Bm)−
n∑

m=1

sf (Bm)
l∑

k=1

ti(ωk, Bm)µ(Ck)

∣∣∣∣∣ < ε

2
.

Note that since µ(Ck) ≥ 0, k = 1, . . . , l and
∑l

k=1 µ(Ck) = 1 the term
l∑

k=1

ti(ωk, Bm)µ(Ck) is a convex combination of ti(ωk, Bm), k = 1, . . . , l, m =

1, . . . , n. Recall that for each ω, ti(ω, ·) ∈ pba(Ω,M) satisfies the conditions

for being a prior of player i. Hence, writing ν :=
l∑

k=1

µ(Ck)ti(ωk, ·), we have

ν ∈ Πi. Finally, by Equation (8)∣∣∣∣∫ f dµ−
∫
f d ν

∣∣∣∣ < ε ,

which contradicts Equation (7). �

Proof of Theorem 12. If: Suppose by contradiction that ∩nm=1 cone(Km) 6=
{0} and that at the same time there exist linear functionals f1, . . . , fn such
that fm(x) ≥ α > 0, for each m = 1 . . . , n and for each x ∈ Km, with∑n

m=1 fm = 0. Since ∩nm=1 cone(Km) 6= {0}, there is an x 6= 0 such that
x ∈ ∩nm=1 cone(Km); such an x then satisfies the property that there ex-
ist β1, . . . , βn > 0 such that βmx ∈ Km for m = 1, . . . , n, and

∑
fm(x) ≥

α
∑n

m=1
1
βm

. This contradicts
∑
fm(x) = 0.
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Only if: Let K = K2 × . . .×Kn and K̂ = {x ∈ ba(X,A)n−1 : x1 = . . . =

xn−1, x1 ∈ K1) (so that K̂ is an n − 1 copy of K1). Let K̃ = cone(K2) ×
. . . ,× cone(Kn). It is clear that K̃ is weakly* closed and convex and that K̂
is weakly* compact and convex.

Suppose that ∩nm=1 cone(Km) = {0}. Then it follows from the defini-
tions that K̃ ∩ K̂ = ∅, which implies that there exists a linear functional
g, a real number β, and ε > 0 such that g(x) ≥ β + ε for all x ∈ K̃ and
g(x) ≤ β − ε for all x ∈ K̂. Since K̃ contains the origin, it must be the case
that β + ε ≤ 0, which implies that β < 0. Moreover, by definition of K̃,
g = g2 + . . .+ gn, and gm(x) ≥ 0 for each x ∈ Km and each m = 2, . . . , n.

Let δ = −β
2(n−1)

. Then (gm + δ)(x) ≥ δ > 0 for each m = 2, . . . , n and for
each x ∈ Km. Furthermore,

∑n
m=2(gm + δ)(x) ≤ β

2
for all x ∈ K̂. Note that

K1 and K̂ are isomorphic, hence
∑n

m=2(gm + δ)(x) ≤ β
2

for all x ∈ K1.

Finally, let α := min{δ, −β
2
} > 0. For each m = 2, . . . , n let fm = gm + δ.

We now have all the ingredients for defining a zero-sum agreeable bet: let
f1 = −

∑n
m=2 fm. Then fm(x) ≥ α > 0 for each m = 1, . . . , n and each

x ∈ Km, and
∑
fm = 0. �

Proof of Lemma 13. In this proof, for f ∈ B(Ω,M) and x ∈ ba(Ω,M) we
will write 〈f, x〉 to denote f(x); this underscores the duality betweenB(Ω,M)

and ba(Ω,M) = B∗(Ω,M).

Let (xn) ⊆ Ω satisfy |f(xn)| ↗ ||f ||sup.

For each x ∈ A ⊂ ba(Ω,M), it is the case that x + εδ{xn}, x − εδ{xn} ∈
A+OTV (0, ε)

∗
for all n.

Suppose that lim f(xn) ≥ 0. Note that x−εδ{xn} ∈ A+OTV (0, ε)
∗

for all
n and for all x ∈ A, and that in addition 〈f, x−εδ{xn}〉 = 〈f, x〉−ε〈f, δ{xn}〉 =

〈f, x〉 − εf(xn) for all x ∈ A. It follows that 〈f, x〉 − ε lim f(xn) = 〈f, x〉 −
ε||f ||sup for all x ∈ A. From this we can deduce that 〈f, x〉 ≥ α for all
x ∈ A+OTV (0, ε)

∗
if and only if 〈f, x〉 ≥ α + ε||f ||sup for all x ∈ A.

Suppose that lim f(xn) ≤ 0. We have that x + εδ{xn} ∈ A+OTV (0, ε)
∗

for all n and for all x ∈ A and that 〈f, x + εδ{xn}〉 = 〈f, x〉 + εf(xn) for
all n and for all x ∈ A, hence 〈f, x〉 + ε lim f(xn) = 〈f, x〉 − ε||f ||sup for all

36



x ∈ A. We can deduce that 〈f, x〉 ≥ α for all x ∈ A+OTV (0, ε)
∗

if and only
if 〈f, x〉 ≥ α + ε||f ||sup for all x ∈ A. �

Proof of Lemma 14. Since Πε
i = Πi +OTV (0, ε)

∗
∩pba(Ω,M), i ∈ N , if∩i∈NΠi +OTV (0, ε)

∗
=

∅, we deduce ∩i∈NΠε
i = ∅.

Since Πε
i ⊆ pba(Ω,M) if x ∈ ∩i∈NΠi +OTV (0, ε)

∗
we deduce ∩i∈NΠε

i 6=
∅, i.e., if ∩i∈NΠε

i = ∅ then ∩i∈NΠi +OTV (0, ε)
∗

= ∅. �

Proof of Lemma 20. Only if: First we construct finite index sets. Let I =

{N0 ⊆ N : |N0| <∞}×{F ⊆ B(Ω,M) : |F | <∞}× (0, 1). Intuitively, from
the set {N0 ⊆ N : |N0| < ∞} we can select an arbitrary finite collection of
players, from {F ⊆ B(Ω,M) : |F | <∞} an arbitrary finite set of functions
in B(Ω,M), and from (0, 1) an arbitrary ε > 0.

For a pair (N0, F, ε), (N
′
0, F

′, ε′) ∈ I , define (N0, F, ε) ≤ (N ′0, F
′, ε′) if

N0 ⊆ N ′0, F ⊆ F ′ and ε′ ≤ ε. Then (I,≤) so defined is a directed set, which
can serve as the index set of a generalised sequence (i.e., a net).

Now, suppose that there exist approximate common σ-priors with fi-
nite support. By definition,this means that for any finite set N0 ⊆ N , any
finite set of functions F ⊆ B(Ω,M), |F | <∞, and any ε > 0, there exists a
measure P (N0,F,ε) ∈ D(Ω,M) such that for each i ∈ N

O∗(P, F, ε) ∩ Πi 6= ∅.

Since pba(Ω,M), the set of probability charges (which includes the
probability measures as a subset), is a weak* compact set, the set of mea-
sures {P (N0,F,ε)}(N0,F,ε)∈I has a cluster point P ∗ ∈ pba(Ω,M). As Πi is a
weak* closed set for each i ∈ N (by Lemma 8), P ∗, as a cluster point, satis-
fies P ∗ ∈ ∩i∈NΠi. Hence we have identified a common prior, P ∗, of T .

If: Suppose that T admits a common prior P . Since da(X,A) is weak*
dense in ba(X,A), for any F ⊆ B(Ω,M), |F | < ∞, and any ε > 0, the
corresponding ε weak* neighbourhood of P intersects the set D(Ω,M) of
probability measures of finite support, i.e., there exists P ′ ∈ O∗(P, F, ε) ∩
D(Ω,M). Then for all i ∈ N
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O∗(P ′, F, ε) ∩ Πi 6= ∅,

which is what is required by Definition 19. �

Proof of Theorem 26. Suppose by contradiction that the type space T does
not have a common prior. Then by Theorem 15 there exists an agreeable
bet, that is, there exists a set of functions fi1 , . . . , fin ∈ B(Ω,M), for a finite
index set i1, . . . , in ∈ N , and a number α ∈ R such that

∑n
m=1 fim = 0 and∫

fim d tim(ω, ·) ≥ α > 0, for every every state ω ∈ Ω and every player
im with m = 1, . . . , n. Without loss of generality we may assume that
||fim||sup ≤ 1, for all m = 1, . . . , n.

Let N ′ = {i1, . . . , in}, F = {fi1 , . . . , fin}, ε = δ = α/3. Let T ′ =

((Ω′,M′), {(Ω′,M′
i)}i∈N ′ , {t′i}i∈N ′) be an (N ′, F, ε, δ) finite approximation of

T . Then

•
∑n

m=1 fim ◦ ψ = 0,

•
∫
fim ◦ ψ d t′im ≥

2
3
α > δ.

Since T ′ achieves a δ-common prior, by Theorem 15 there does not exist
a δ-agreeable bet. This is a contradiction. �

The proof of Lemma 30. If: Since Pi
TV ⊆ P1

∗
, i = 1, 2, if P1

∗
and P2

∗
are

strongly separable by a linear functional, then the very same linear func-
tional strongly separates P1

TV
and P2

TV
.

Only if: Suppose that P1
TV

and P2
TV

are strongly separable, and let
f be the non-trivial strongly separating linear functional, i.e, there exist
c ∈ R and ε > 0 such that

f(x) ≥ c+ ε and c− ε ≥ f(y),

for all x ∈ P1
TV

and for all y ∈ P2
TV

.

Since A is a σ-field f ∈ B(X,A) (f is A-integrable) and it holds that
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f(x) ≥ c+ ε and c− ε ≥ f(y),

for all x ∈ P1
∗

and for all y ∈ P2
∗
. �

B Why Bets Must Be Bounded Away From Zero

Our main theorem (Theorem 15) characterises the existence of common
priors using agreeable bets (Definition 11) which are not only give rise to
positive expectations at each state but have expectations bounded away
from zero. We show here by an example why this presumption is neces-
sary.

There are two players, Anne and Ben. The state space and partition is
the basic partition space, that is, Ω = {1, 2, . . .}, Anne’s knowledge parti-
tion, ΠA, is given by

{{1}, {2, 3}, {4, 5}, {6, 7}, . . .}

and Ben’s knowledge partition, ΠB, is given by

{{1, 2}, {3, 4}, {5, 6}, . . .}.

The epistemic events: M is the field generated by the singleton sets,
Mi is the field generated by the partition Πi, i = A,B.

Anne’s type function, tA, is given by

tA(n, {n}) =


1 if n = 1
1
2

if n is even
1
2

if n is odd, n > 1.

Ben’s type function, tB, is given by

tB(n, {n}) =

{
1
2

if n is odd
1
2

if n is even.

Anne 1 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

. . .

Ben 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

. . .

Figure 4: The type space of the example in this section.
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Notice that the probability charge which assigns zero to each finite set
is a common prior for this type space.

Suppose that fA, with fB = −fA, is an agreeable bet, with |fA| a bounded
and strictly increasing function and fA(n) = (−1)n+1|fA(n)|, n ∈ Ω. For
i = A,B, for each n ∈ Ω, ∫

fi dti(n, ·) > 0,

but there does not exist α ∈ R such that for each n ∈ Ω∫
fi dti(n, ·) ≥ α > 0.

In words, this type space has an agreeable bet in sense of Lehrer and Samet
(2014) but it does not have an agreeable bet in sense of Definition 11.
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