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Abstract

In this paper, we apply Ridge Regression, the Lasso and the Elas-

tic Net to a rich and reliable data set of condominiums sold in Berlin,
Germany, between 1996 and 2013. We their predictive performance in

a rolling window design to a simple linear OLS procedure. Our results
suggest that Ridge Regression, the Lasso and the Elastic Net show po-
tential as AVM procedures but need to be handled with care because of

their uneven prediction performance. At least in our application, these
procedures are not the ‘automated’ solution to Automated Valuation

Modeling that they may seem to be.

Keywords: Automated valuation, Machine learning, Elastic Net, Fore-
cast performance

JEL Classification: R31, C14
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1 Introduction

Automated Valuation Models (AVMs) use recorded transaction or listing in-

formation to fit a statistical model of the relationship between prices and

characteristics of properties. Once the model is fitted, the market value of

any property with given characteristics can easily be predicted. The challenge

lies in the modeling stage. It is exacerbated by the ‘nature’ of properties and

property data. Properties are very heterogeneous and their value depends on a

multitude of factors. Thus, to be reasonably accurate, AVMs need to be based

on data with detailed information on property characteristics. At the same

time, turnover in property markets is typically rather low. Statistically speak-

ing, this translates into a regression problem with relatively few observations

but a relatively law large set of predictors. Very flexible and very data hun-

gry models such as nonparametric regression or neural networks thus quickly

run into the ‘curse of dimensionality’ in this situation: their estimates of the

price–characteristics relationship become very imprecise and their predictions

therefore can become quite inaccurate. Thus, simply ‘letting the data speak’

is not a real option in AVM regression modeling.

In this paper, we thus follow a different modeling approach. We focus on

flexible parametric regression models and estimate them by constrained least

squares from a rich and reliable data set of condominium transactions. By

working with a basis expansion of the set of original property characteristics,

these models have the ability to adapt quite flexibly to the relationship of

theses characteristics and the transaction price contained in the data. The

two constrained least squares estimators, –ridge regression and the LASSO– ,

make sure that this flexibility does not get out of control. They both ‘regu-

larize’ the problem by constraining the total size of the regression coefficients.

By shrinking some regression coefficients (ridge regression) or setting some

to zero (LASSO) the procedures make sure that the coefficients of the im-

portant relationships can be estimated precisely and that precious degrees of

freedom are not wasted on coefficients of unimportant predictors. Which co-

efficients are constrained, and thus which predictors are deemed unimportant,
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is determined in a data-driven, automated way – thus entirely in the spirit of

automated valuation.

We apply ridge regression and the LASSO to a data set containing detailed

information on all condominiums sold between 1996 and 2013 in Germany’s

capitol Berlin. All information is retrieved from the actual sales contracts and

can be regarded as reliable. We thus imagine the situation of an AVM service

that delivers property valuations not to the general public but to professional

customers such as mortgage lenders who demand and reward accuracy. Such

an AVM service needs rich data and may even merge information on a given

property from various databases – for instance, by enhancing records on a

specific property with indicators on upkeep derived from images of the prop-

erty or indicators on neighborhood amenities from a web mapping service. In

short, while our data is quite detailed, the challenge that is at the heart of

our approach (the number of observed properties being small relative to the

dimension of the set of observed determinants) is likely to be even more intense

in other current and future AVM applications.

The remainder of this paper is organized as follows. Section 2 discusses our

methodology for developing our AVM regressions and how we will be assess-

ing and comparing their performance. Section 3 presents the data. Section 4

explains the model specification results and the performance assessment ob-

tained from the validation step. Section 5 concludes. Details of the analysis

are relegated to the Appendix.

2 Methodology

2.1 Theoretical Framework

The aim of AVM is providing model-based predictions of the market value of

a residential property. The market value is the price one should expect in

an arm’s-length transaction between informed and willing buyers and sellers.

We denote this price as Pjt for property j at time t. This value depends on
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the property’s structural and location characteristics. Those that are observed

in the AVM’s data base are summarized in the vector xjt. In our data set,

xjt includes –among other things– a condominium’s living space, number of

bedrooms or location within the building.

A reasonable criterion for assessing predictive quality is the mean squared

prediction error. It is well-known that in this case the optimal predictor of

Pjt, given xjt, is the conditional expectation E[Yjt|xjt]. The goal of an AVM

is thus to provide a good estimate of this conditional expectation. Denote

such an estimate of a candidate model k as Ê[Yjt|xjt] = m̂k(xjt). For any

estimated candidate model, the mean squared prediction error for a property

with characteristics xjt can be decomposed as (Hastie et al. (2009), p. 223)

E[(Pjt − m̂k(xjt))
2|xjt] = Var(Pjt|xjt) + E {m̂k(xjt)− E[Pjt|xjt]}2 + V ar[m̂k(xjt)] (1)

The first part on the right hand side of equation (1) is the variance of prices of

properties with the given the bundle of characteristics xjt. It does not depend

on m̂k(xjt) and is thus not affected by the quality of any candidate AVM. It

is therefore often referred to as the ‘irreducible error’. However, enlarging the

set of features included in xjt will in general decrease this conditional variance

and the mean squared prediction error. It explains why there is a strong

incentive for AVM providers to collect detailed information on properties. It

can be expected that in the future the dimension of the feature vector xjt will

continue to grow. The second part of the decomposition is the squared bias of

the estimated candidate model m̂k(xjt). This term can itself be decomposed

into two parts, the estimation bias and the model bias, highlighting the fact

that the quality of any AVM model has two key aspects: the quality of the

functional form assumptions of the model and the quality of the estimation

procedure used to fit the model. The latter, the estimation quality, takes center

stage in the third and final component of (1), the variance of the candidate

model estimator.

In the remainder of the paper, we assume that the set of available covari-

ates xjt may be large but that it is fixed at the moment. Hence, the first

term of the decomposition (1) then is indeed ‘irreducible’ and AVM prediction
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quality entirely hinges on keeping the second and third terms as low as pos-

sible. Therein, however, lies a well-known trade-off: candidate models with

flexible functional forms keep the model bias low but often suffer from large

estimation error because of their complexity. The relatively few parameters of

parsimonious candidate models, on the other hand, can typically be estimated

precisely but their restrictive functional forms may result in a large model bias.

The key to AVM is thus to find a model that delivers the best compromise

between bias and variance.

We illustrate this trade-off and our candidate solutions in a highly simplified

situation. Suppose that living space were the only continuous characteristics,

that there were only two locations A and B and only two time periods, 1 and 2.

Then an extremely simple candidate model is the following linear, additively

separable model (LASM)

mLASM(xjt) = β0 + β1 spacejt + β2 loc.Bjt + β3period2jt (2)

where loc.B and period2 are accordingly defined dummy variables. The

model presupposes, for instance, that the effect of space is the same at both

locations and in both time periods and is linear (i.e., independent of its own

level). This functional form strongly restricts the ability of the model to adapt

to the data. It is thus likely to suffer from a substantial model bias. The

four parameters of the model, however, are easily estimated by least squares.

Indeed, least squares will provide unbiased estimates of the model parameters

in (2).1 Estimation bias will thus be zero in this case and the squared bias

term in (1) is entirely due to the model bias for this candidate model. Because

of its simplicity and parsimony, estimation variance, the third term in (1), will

be very small. A particularly clear expression of this can be obtained if the

variance of m̂LASM(x) = xT β̂LS is not considered at a particular property with

characteristics xjt (as in (1)) but instead averaged over the properties in the

1More precisely, least squares will provide unbiased estimates of the parameters of the
Best Linear Predictor, as which we implicitly define 2. See Hastie et al. (2009), p. 19.
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training data:

1

nT

n∑
i=1

T∑
t=1

Var(m̂LASM(xit)) =
1

nT

n∑
i=1

T∑
t=1

Var(xTitβ̂
LS) =

σ2

nT
p (3)

This expression, which holds under the assumption of a constant conditional

variance Var(Pjt|xjt) = σ2, shows that the estimation variance is linearly in-

creasing in the number of regression parameters p + 1. The latter is also the

degrees of freedom of this procedure.

At the other end of the model complexity spectrum is the nonparametric

regression model. In our simplified illustration, it is given as

mNPM(xjt) = m(spacejt, loc.Bjt, period2jt) (4)

This model imposes no parametric functional form on the data and allows for

arbitrary nonlinear effects of continuous regressors like space and for arbi-

trary interactions among the effects of all explanatory variables. This highly

flexible model thus has very little if any model bias. It can be estimated by lo-

cal smoothing procedures like kernel regression, k-nearest neighbor regression

or smoothing splines. However, regardless of which estimator is applied, its

variance increases dramatically with p for a given sample size, the well-known

‘curse of dimensionality’.

An alternative model, that allows for a nonlinear effect of floor space (via

a cubic polynomial) and an interaction between floor space and location in a

parametric way is given by:

m̂FLM(xjt) = β0 + β1 spacejt + β2 space
2
jt + β3 space

3
jt

+ β4 loc.Bjt + β5period2jt

+ β6 loc.Bjt × spacejt

+ β7 loc.Bjt × space2jt + β8 loc.Bjt × space3jt

This ‘compromise’ model is similar in spirit to the very flexible parametric

model we actually apply below and which we describe in the following sub-
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section. It is substantially more flexible than the simple additively separable

linear model, reducing the risk of a large model bias. On the other hand, it

is linear in the parameters (thus the subscript FLM for flexible linear model)

and is thus easily estimated by least squares. Because it has eight param-

eters (rather than just four), its variance will be slightly larger that that of

m̂LASM(xjt and may thus offer a better bias-variance balance. In our empirical

work, we take model (2.1) to its limits with regard to flexibility by considering

nonlinear basis functions of the original continuous regressors and by including

almost all possible interactions. We then use three constrained least squares

procedures, ridge regression, the Lasso and the Elastic Net, to automatically

shrink estimated parameters in order to keep the variance in check. The main

advantage of this approach is that it offers an automatic, data-driven and com-

putationally tractable solution to the key question in AVM specification search:

arriving at an estimated model that presents a good compromise between bias

and variance and is thus a sound basis for fast and accurate valuations.

2.2 A very flexible parametric model

We will now describe the details of our approach. Suppose first that there

were only continuous property features, such as floor space, and that for each

transacted property we would observe p such characteristics: X1, X2, . . . , Xp.

In order to allow for enough flexibility of the functional forms of the relation-

ships between price and these continuous characteristics, we employ a basis

expansion in these variables. The model for the conditional mean of prices

becomes:

mFLP (xjt) = β0 +
M∑
m=1

βm hm(X1t, . . . , Xpt) (5)

This model is linear in the parameters β1, . . . , βM but via the basis functions

hm(X1, . . . , Xp) we allow for non-linearity. We use the following basis func-

tions:

h(X1t, . . . , Xp) =

tθ(Xj) for each j and each θ

tθ1(Xj) · tθ2(Xk) for each j and k if θ1 6= θ2
(6)
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where tθ(X) denotes a Box-Cox-transformation of the following form2

t
(θ)
j =

xθj for θ ∈ {±2,±1,±0.5}

log(xj) for θ = 0
. (7)

That is, the first type of basis function considers one explanatory variable

at a time, transformed in one of the seven possibilities offered by the class of

Box-Cox-transformations. Since we have p = 18 continuous characteristics3,

this results in 18 × 7 = 126 basis functions of the form h(X1, . . . , Xp) =

tθ(Xj). It is easiest to think about them as a set of transformed versions of

the original explanatory variables. Using space to illustrate, the model will

include space−2, space−1, space−0.5, log(space), space0.5, space and space2,

each with its own β coefficient.

The second type of basis functions h(X1, . . . , Xp) = tθ1(Xj)·tθ2(Xk) consid-

ers interactions between any of the 126 Box-Cox transformed original explana-

tory variables. As an example, tθ1=0.5(space) ·tθ2=0(age) = space0.5× log(age)

is a standard interaction terms of two transformed versions of floor space and

age of the property. Products of transformed versions of the same explanatory

variable are also considered, provided the transformation parameters differ be-

tween the two factors. Using Xj = space to illustrate, tθ1=0.5(Xj) · tθ−2(Xj) =

space0.5×space−2 = space−1.5 is such an example.4 Because we start with 126

transformed variables, this gives us a total of
(
126
2

)
= 7875 such product vari-

ables.5 54 of these are constant (for example the interaction X2
j ·X−2j = 1) and

72 duplicate an already existing transformed variable (e.g. X1
j ·X−0.5j = X0.5

j ).

These need to be removed, leaving us with 7,749 additional variables in the

model from the interaction terms. Hence, the basis expansion from the con-

tinuous regressors gives a total of 126 + 7749 = 7875 terms in (5).

2Box and Cox, 1964
3A detailed description of the continuous and discrete characteristics in our data is given

in section 3. We refer to them synonymously as ‘characteristics’, ‘covariates’, ‘features’,
‘explanatory variables’ and ‘predictors’.

4To the contrary, tθ1=0.5
(Xj) · tθ0.5(Xj) = space0.5 × space0.5 = space1 is not a proper

product as both factors use the same transformation parameter, i.e. θ1 = θ2 = 0.5.
5The interactions also widen the spectrum of polynomials included for each continuous

covariate, which now also include xθ for θ ∈ {±3,±2.5,±1.5}.
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Next, we consider the 81 discrete, binary features in our data which we

generically denote as Dj. They include dummy variables for time periods

(years) and regions (districts of Berlin). They are all entered with their own

coefficient. Moreover, all pairwise interactions are also created for them, lead-

ing to
(
81
2

)
= 3, 240 additional binary variables of the form Djk = Dj · Dk

for all j 6= k.6 While these interactions also serve the purpose of enhanced

model flexibility, they are easily interpretable and allow for different valua-

tions regarding certain characteristics across time, space and in combination

with other characteristics.7 Our flexible parametric model now reads:

mFLP (xjt) = β0 +
7875∑
m=1

βm hm(X1t, . . . , Xpt))

+
18∑
j=1

βdjDjt +
∑∑
allj,k:j 6=k

βdj,kDjt ·Dkt

Moreover, we include pairwise interactions between the 81 uninteracted bi-

nary variables and the 18 untransformed continuous variables, creating 1,458

additional covariates. The interactions, again, further enhance model flexibil-

ity by allowing for different effects of continuous regressors for instance across

time and space. Our count of predictors and parameters on the right hand

6Because certain characteristics never occur simultaneously in the data, some of these
binary interactions are zero for all observations and consequently dropped in the estimation
stage.

7For example, the value of basement storage space may be different across Berlin’s dis-
tricts or may have changed over time. Also, certain characteristics may lose or gain value
in combination with others. Paying a premium for basement storage space may be less
attractive if the apartment itself contains a storage rooms.
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side of our model now is 7875 + 81 + 1458 = 9414 and the model becomes:

mFLP (xjt) = β0 +
7875∑
m=1

βm hm(X1t, . . . , Xpt))

+
81∑
j=1

βdj Dj +
∑∑
allj,k:j 6=k

βdj,kDjt ·Dkt

+
81∑
j=1

18∑
k=1

βdxj Djt ·Xkt (8)

At last, we include a set of detailed binary indicators for a property’s loca-

tion and time of sale that we do not interact with other discrete or continuous

regressors. Specifically, these are dummy variables indicating the borough

(German: Ortsteil) of a property and its quarter of sale.8 We do this because

location is typically seen as one of the most important determinants of a prop-

erty’s value and because we use data from several years of a dynamic property

market. On the other hand, it is neither plausible nor feasible to let the effect

of, say, floor size on property prices change every quarter or every borough.

This is why we include the more crudely coded year dummies and district

dummies as part of the fully interacted binary indicators described in the pre-

vious paragraph and the more finely graded borough and quarter dummies as

a separate group of un-interacted indicators that close out the specification.

Thus, the final model is

8There are 96 boroughs in Berlin and 40 quarters in each estimation sample.
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mFLP (xjt) = β0 +
7875∑
m=1

βm hm(X1t, . . . , Xpt))

+
81∑
j=1

βdj Dj +
∑∑
allj,k:j 6=k

βdj,kDjt ·Dkt

+
81∑
j=1

18∑
k=1

βdxj Djt ·Xkt

+
95∑
j=1

βbj Bjt +
39∑
j=1

βqj Qjt (9)

At this point, 9,549 covariates are available for predicting the price. Clearly,

this is a very flexible model but, in terms of (3), a specification that is likely

to suffer from very imprecise estimates, if it can be fit at all. A may thus be

gained in estimation precision and therefor prediction accuracy if the model

complexity can be reduced in the right way. This is what Ridge regression and

the Lasso try to achieve. To simplify the notation for our discussion of these

two procedures, we rewrite the model simply as

mFLP (xjt) =
M∑
m=1

βm zm,jt (10)

where all predictors on the right hand side of (9) have been consecutively num-

bered and are denoted as zm with the corresponding consecutively numbered

coefficients simply denoted as βj, j = 1, . . . ,M = 9549

2.3 Regularization

The model described in the previous section can, in principle, adapt very flex-

ibly to the patterns in the data. This flexibly comes at the price of a huge

number of parameters. Fitting this linear model via Least Squares results

in an estimation bias of zero. However, this may neither be computationally

12



possible not statistically desirable.9 Indeed, there may be a sizeable gains in

terms of variance reduction by using a biased estimator that ‘regularizes’ the

complexity of the model by minimizing the sum of squared residuals subject

to a constraint on flexibility. This is achieved by shrinking the coefficients of

‘unimportant’ regressors. From (1) above it is clear that such a biased but less

variable estimator may result in an overall reduction of the expected squared

prediction error. Indeed, the question of how many and which regression co-

efficients should be shrunk can be seen as synonymous with variable or model

selection. Ridge regression, the Lasso and the Elastic Net offer an objective

answer to this question, basically by shrinking coefficients of regressors that

provide little information either because they hardly vary across properties

or are highly correlated with other regressors and thus provide no additional

information. It is reasonable to assume that both phenomena occur in the

problem at hand. The correlation between several characteristics in the orig-

inal dataset is considerable, for example between the size of all residential

and shared units and the size of all residential units. The transformations

and interactions described above only aggravate the problem. If, for instance,

a continuous variable is multiplied by a dummy variable that predominantly

contains the value 1, this new variable is a nearly perfect copy of the orig-

inal continuous feature. Although only nonlinear transformations are used,

correlations between covariates and their transformations can still be high.

Since the only variables excluded from the analysis are those unusable due to

missing values or purely administrative, redundant information is potentially

contained in the data which motivates the need for regularization.

2.4 Ridge regression

Ridge regression, introduced by Hoerl and Kennard (1970), regularizes the

problem by imposing penalties on the size of the estimated parameters, result-

ing in a unique solution even if the regressor matrix is not of full rank. The

ridge estimate for the parameter vector β is found by minimizing the residual

9Computationally, if the number of parameters exceeds the sample size, there is no unique
least squares solution. See Fahrmeir et al. (2009), p. 61.
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sum of squares, subject to the sum of the squared parameters not exceed-

ing a specified threshold t. To make the parameters independent of scale, all

covariates are standardized.

β̂R = arg min
β

{
n∑
i=1

T∑
t=1

(Pit − β0 −
∑M

m=1 βm zm,it)
2

}
s.t.

M∑
m=1

β2
m ≤ t (11)

Equivalently, this may be written as (citehastie2009, p. 63),

β̂R = arg min
β

{
n∑
i=1

T∑
t=1

(Pit − β0 −
∑M

m=1 βm zm,it)
2 + λ

∑M
m=1 β

2
m

}
, (12)

since for any threshold t ≥ 0, a tuning parameter λ ≥ 0 exists, which

results in exactly the same estimator. The choice of the tuning parameter

controls the amount of parameter shrinkage. Choosing a very large threshold

t results in equivalence between Ridge regression and OLS. The smaller t (or,

equivalently, the larger λ), the more shrinkage is performed.10

In matrix notation, the Ridge solution is given by

β̂R = (ZTZ + λI)−1ZTp . (13)

where p is the (centered) vector of prices and the regressor matrix Z does

not include a column of ones for the intercept and standardized versions of

the zm,m = 1, . . . ,M. Ridge estimation is biased towards zero. The size of

the bias depends on the choice of the tuning parameter λ. We choose λ by

cross validation. The negative effect of introducing a bias may be outweighed

by the fact that Ridge regression, in general, has a lower estimation variance

than unconstrained least squares, see Zou and Hastie (2005).

10No restriction is imposed on the parameter β0 to make the procedure independent of
the particular level of the average price, see Hastie et al. (2009), p. 64. In fact, centering
the vector of prices allows estimation of the model without an intercept and recovering it
afterwards.
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Graphically, the ridge constraint forms a circle in a two-parameter problem

(see the red circle in Figure 1). The Ridge solution is the smallest value of the

residual sum of squares function within that circle. The picture illustrates why

the Ridge estimator has, in general, a smaller variance than unconstrained least

squares (OLS). The OLS solution can, depending on the data, lie anywhere

in the plane spanned by β1 and β2, while the Ridge solution is guaranteed to

lie within the depicted circle.11 While Ridge regression may thereby achieve a

better bias-variance compromise and thus a superior predictive performance,

it does not perform variable selection as it generally does not shrink coeffcients

all the way to zero. This is done by the Least Absolute Shrinkage and Selection

Operator (Lasso).

2.5 Lasso regression

Lasso employs a slightly altered constraint which limits the sum of the absolute

values of the coefficients. This ensures that not only are coefficients shrunk but

some are set to exactly zero, turning the procedure into a ‘Selection Operator’.

The Lasso was first introduced in Tibshirani (1996) to combine the favorable

properties of Ridge regression with the desire to find an interpretable model.

The Lasso estimator is defined by

β̂L = arg min
β

{
n∑
i=1

T∑
t=1

(Pit −
∑M

m=1 βm zm,it)
2

}
s.t.

M∑
m=1

|βm| ≤ t

= arg min
β

{
n∑
i=1

T∑
t=1

(Pit −
∑M

m=1 βm zm,itβm)2 + λ
∑M

m=1 |βm|

}
. (14)

No closed form solution exists for the estimator in case of more than one

predictor, but the problem is convex and a solution can be found iteratively.

Figure 1 shows that the constraint of the Lasso has the form of a diamond

with edges even for a two parameter problem. If the solution occurs at such an

edge, a parameter is set to zero, resulting in variable selection. The number of

11Ridge regression is able to find a solution for M > N problems and handles highly
correlated variables more effectively than unconstrained least squares.
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edges rises exponentially. For two parameters, the depicted diamond has four

edges. For three parameters, the constraint region is a cube with eight edges.

Each additional parameter doubles the number of edges, creating numerous

opportunities for parameters to be set to zero12. The amount of parameter

shrinkage and variable selection depends on the choice of the tuning parameter.

If a large enough threshold t (or, equivalently, a small enough tuning parameter

λ) is chosen, the OLS solution falls within the depicted diamond and neither

shrinkage nor selection are performed. A large value of λ or a small threshold

t lead to substantial shrinkage with many parameters being set to zero. We

select λ by cross validation.

The Lasso exhibits several shortcomings, though. Its nonzero parameter

estimates tend to be biased towards zero. Also, when dealing with highly

correlated variables the Lasso performs poorly. Slight changes of the tuning

parameter λ can have wild effects on estimated parameters, and from a group

of highly correlated variables, the Lasso tends to select some and discard others

in a rather random fashion. The Elastic Net, a Generalization of the Lasso tries

to overcome these shortcomings at the cost of an additional tuning parameter.

2.6 Elastic Net regression

The Elastic Net (introduced by Zou and Hastie (2005)) is a compromise be-

tween Ridge and Lasso. Its constraint on the parameters is a mixture between

the L1 penalty of Lasso and the L2 penalty of Ridge regression. For any

12See Hastie et al. (2015), p. 12.
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α ∈ [0, 1] the Elastic Net estimator is defined as

β̂E = arg min
β

{
n∑
i=1

T∑
t=1

(Pit −
∑M

m=1 βm zm,it)
2

}
(15)

s.t.
M∑
m=1

(α|βm|+ (1− α)β2
m) ≤ t

= arg min
β

{
n∑
i=1

T∑
t=1

(Pit −
∑M

m=1 βm zm,it)
2

+ λ
∑M

m=1(α|βm|+ (1− α)β2
m)

}
. (16)

Lasso (α = 1) and Ridge (α = 0) are special cases of the Elastic Net. We

choose its two tuning parameters α and λ by cross validation.

The contours of the Elastic Net constraint are depicted and compared to

those of Ridge and Lasso in Figure 1. With the Lasso’s constraint the Elastic

Figure 1: Comparison between the constraint regions of the Lasso
(green), Ridge (red) and Elastic Net (black). The ellipses are the contours
of the RSS-function. β̂ is the OLS solution. (Own representation based on Zou and
Hastie, 2005)

Net constraint shares the edges, which are indispensable for variable selection.

Otherwise, the constraint region has a rounded form like the Ridge constraint.
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The Elastic Net is thus able to perform variable selection and parameter shrink-

age simultaneously, like the Lasso, and is an improvement in two key aspects:

the number of variables selected by the Elastic Net is not limited by the sam-

ple size, and, when dealing with groups of highly correlated covariates, the

Elastic Net tends to include or discard the entire group together. Therefore,

the Elastic Net has become especially popular for problems with very wide

data (M >> N) where the true model is sparse, like in genomics13 However,

the Elastic Net does not solve the issue that nonzero coefficients are biased

towards zero.

2.7 Prediction Performance

We apply Ridge Regression, the Lasso and the Elastic Net to estimate model

(10) and compare the predictive performance of the estimated models with a

rolling window design. For each window, we split the data into and estima-

tion and validation sample. Each estimation sample contains 10 years (or 40

quarters) of transactions data. The first estimation window contains all con-

dominiums sold between the 1st quarter of 1996 (1996Q1) and the last quarter

of 2005 (2005Q4). The model fitted to this data by either Ridge Regression,

the Lasso or the Elastic Net is then used to predict the prices of properties

sold in the following quarter, 20006Q1, our first validation sample.14 We then

shift the time window by one quarter to the right, resulting in an estimation

window from 1996Q2 until 2006Q1 and a validation or test sample of 2006Q2.

We proceed this way time until we reach our 32nd and final estimation win-

dow. It extends from 2003Q3 to 2013Q3 and is used to fit models that predict

the properties in our last validation sample, condominiums sold in the fourth

quarter of 2013. This way, we obtain 32 validation samples that can be used to

assess and compare the predictive performance of the three procedures, as well

13See Hastie et al. (2009), p. 662.
14We thereby assume that typically no data is available on transactions in the current

quarter in which valuations are formed because of the rather protracted process of finalizing
a property transaction. The assumed one quarter delay in data processing is too optimistic
for the administrative data collection procedure behind our data wherte contracts are entered
into the transaction data base with an average delay of two quarters.
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as a very simple linear model as in equation (2). This model, which we simply

refer to as the OLS procedure, uses floor space and its square, the number of

rooms and district and year dummies as regressors.

The starting point of our assesment of predictive performance of our candi-

date procedures in the individual prediction error that can be computed for any

observation in a validation sample for each of our four candidate procedures:

êkjt = Pjt − P̂ k(xjt) for k ∈ {Ridge,Lasso,Elastic Net, OLS} (17)

where Pjt is the actual transaction price of property j and xjt is its vector of

(untransformed) characteristics. Negative errors imply that the AVM predic-

tion is larger than the actual transaction price, while positive errors imply the

AVM prediction is smaller than the actual price.

From these prediction errors, we compute several summary measures of

performance. The root mean squared prediction error (RMSPE)

RMSPEk =
1

N

N∑
j=1

(
êkjt
)2

is the empirical analogue of the expected squared prediction error in equation

(1) above, apart from using the square root to transform the criterion to con-

ventional EUROs. Here and in all other performance measures, the sum is

understood to run over all properties in all validation samples even though we

computed the criteria also for individual validation quarters. We furthermore

complement this L2 measure with the following L1 measures that are built

on absolute rather than squared errors: the mean absolute prediction error

(MAPE) and the median absolute prediction error (MDAPE)

MAPEr =
1

N

N∑
i=1

|êkjt| MDAPEr = Med|êkjt|Ni=1.
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We also consider the relative errors

êk∗jt =
Pjt − P̂ k(xjt)

Pjt

and compute their average, the mean absolute relative prediction error

(MARPE), and their median, the median absolute relative prediction error

(MDARPE). Because all these four mean and median performance measures

are based on absolute prediction errors, they can be used to checks for system-

atical over- or underprediction. A different perspective on prediction perfor-

mance is offered by the fraction of predictions which don’t over- or underesti-

mate the actual sales price by more than 10 or 20 percent, respectively,

Q10 =
1

N

N∑
i=1

1(|êkjt| ≤ 0.1) , (18)

Q20 =
1

N

N∑
i=1

1(|êkjt| ≤ 0.2) . (19)

which we also report below. Depending on the AVM application, some of these

criteria will have more relevance than others when discriminating between dif-

ferent candidate models. They are all neutral in the sense that over- and

underprediction is treated symmetrically. In some AVM applications, other

criteria have to be considered. If the AVM is used for instance for risk man-

agement purposes, such as the evaluation of loss severity for a portfolio of

mortgages, banks are likely to be concerned about large overvaluations and

may even favour an AVM method that has the tendency to err on the cautious

side.

Finally, in all prediction performance comparisons, the issue arises whether

the dominant performance of a method only holds in the particular test- or

validation sample or whether the conslucion can be extended to the under-

lying population from which more observations could be obtained in the fu-

ture. In order to extend the scope of our comparison beyond the properties

in the validation samples, we use the test proposed by Diebold and Mari-

ano (1995) and improved by by Harvey et al. (1997) to examine the signif-
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icance of differences in predictive accuracy. This test considers the sample

mean loss differential which is computed in the following way. First, we take

the individual prediction errors êkjt as described in equation (16), for models

k ∈ {Ridge, Lasso, ElasticNet, OLS}. In order to examine the significance

of predictive accuracy, the test is based on functions d
(
êk1jt , ê

k2
jt

)
of matched

prediction errors. In our application, we use squared pwer loss function. If

methods 1 and 2 were of equal predictive quality (the null hypothesis), the

sample mean loss differential

d̄ =
1

T

T∑
t=1

d
(
êk1jt , e

k2
jt

)
(20)

should be approximately normally distributed with mean µ and 2πfd (0) /T as

variance where fd (0) is the spectral density of the loss differential at frequency

0. A one sided test can be used to test whether model (1) performs better than

model (2) and vice versa. The Diebold-Mariano test statistic

S1 =
d̄

σd
(21)

under the null hypothesis is standard normally distributed. The modification

by Harvey et al. (1997) uses an unbiased estimator for the variance of d̄ and

takes the critical values from Student’s t-distribution with (n− 1) degrees of

freedom. For details see Diebold and Mariano (1995) and Harvey et al. (1997).
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3 Data

3.1 The original dataset

The data used for this analysis is provided by Berlin’s Committee of Valu-

ation Experts (Gutachterausschuss für Grundstückswerte, GAA). The GAA

registers each transaction of real estate by reporting all major details of the

sales contracts into a transaction database (Automatisierte Kaufpreissamm-

lung, AKS). Here, only an excerpt of the entire database is used, limiting the

dataset to roughly 190,000 condominia sold between 1996 and 2013. Each

transaction is described by its price, time, location and detailed information

on the characteristics of the condominium and the building, as well as the

contracting parties.

Tables 3 through 7 show the summary statistics for all relevant variables.

On average, a condominium was worth 131,729.80 e or 1,658.48 e per m2

taking all transactions in the sample into account. Not surprisingly, most

appartments had some cooking spaces, a toilet and a heating system. About

half of all transactions have a balcony and a storage room. About 72% have

access to a basement (either as owner or separate use privilege). On the

contrary, garages and parking lots are very seldom part of a transaction (0.03%

and 0.06% respectively).

Table 5 reports summary statistics for characteristics of the builing complex

the condominium is part of. We have information on the number of commer-

cial units within the building and can distinguish between high rise apartment

complexes and rather small units. On average, buildings (and hence the con-

dominiums) are over 74 years old when they get sold. This corresponds to

the construction phase after World War II. The number of sales appears to be

relative constant over the years ranging from y.

In total, 106 variables characterize a transaction in the original dataset. Of

which, 19 variables are continuous variables. The remaining ones are discrete

variables treated as common factor variables in the model. As carried out above

in section 2, there are two possible ways of how factor variables can become part
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of a model. On the one hand factor variables can enter the regression equation

only once (represented by their corresponding dummy variables) or on the

other hand, several times as part of interactions with for instance continuous

variables like the floor size. In most cases, we generated a lot of new interacted

variables for each factor. But for some variables, namely subdistricts and

quarter dummies, this would have lead a computationally unfeasible size of

the design matrix. r

The location is determined by the condonomium’s address and a set of

variables indicating to which block, subdistrict and district it belongs. It is

also reported whether the condominium lies in the former West Berlin or East

Berlin. The address of each observation is used to obtain lateral and longi-

tudinal coordinates in the Soldner system15. The GAA regularly evaluates

the quality of each residential location with regard to the attractiveness for

owners and residents (stadträumliche Wohnlage), ranging from simple to ex-

cellent. This information is also provided for each observation. We included all

locational information in the final regression models16. The only exception, as

stated above, are the subdistrict dummies which enter the regression equation

only once.

The condominia themselves are described by their living area, number of bed-

rooms, location within the building and equipment. Also, the data contains

information on additional space belonging to the condominium, like a balcony,

hobby room, car park or storage space. It is also documented if the condo-

minium is in poor state of repair.

The buildings containing the condominia are characterized by the location

within their blocks, their year of construction, number of storeys and the

number and total space of all residential and nonresidential units. As with the

condominia themselves, poor state of repair is also documented.

Further, the data contains information on the legal status of the contracting

parties, the type of contract, subsidies and the occupational status of the con-

dominium. Some additional variables of purely administrative purpose are also

15See also für Stadtentwicklung (2015).
16This holds, of course, only for the more elaborate regression model (Ridge, Lass and

Elastic Net). We specified a very parsimonious baseline OLS model.
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contained in the original dataset, but are of no relevance to the transaction

and are therefore ignored.

The date of transaction was used to generate year and quarter dummies yield-

ing a total of 90 factors (18 years and 72 quarters). For computational reasons,

quarter dummies enter the regression only once (not interacted with other vari-

ables).

3.2 Data cleansing

The goal in preparing the dataset for the forthcoming analysis is to lose as little

information as possible, while at the same time retaining a computationally

feasible level of complexity.

Unlike in other works on similar datasets, no adjustment is made for in-

flation or changes in the real estate market17. Such effects are handled by

including detailed information on the time of transaction in the model.

Variables are deleted if they are either of purely administrative nature, if their

values were not continuously reported throughout the observed time period, or

if they contain excessive amounts of missing values for other unknown reasons.

For computational reasons, dummy variables indicating to which block and

subdistrict an observation belongs are discarded, leaving the lateral and longi-

tudinal coordinates and dummy variables indicating the district and affiliation

to East or West Berlin as variables describing an observation’s location. In

addition, the distance to the city center is calculated, with the Pariser Platz

serving as Berlin’s center.

To allow log-transformation, several continuous variables need to be slightly

adapted: the minimal value for the condominium’s storey, distance to the

city center, the bought share of the complex, the number of commercial units

within the complex and their total size, and the number of independent aux-

iliary units are all set from zero to 0.1.

Regarding spaces detached from a condominium, German law (specifically

the Wohnungseigentumsgesetz) differentiates between ownership (Sondereigen-

17See Kolbe et al. (2012), for example, who use house price indixes to convert prices.
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tum) and the right of separate use (Sondernutzungsrecht). The original dataset

distinguishes between these two legal terms for basements, attics, garages,

parking spots and hobby rooms. For this analysis, this distinction is not

adopted, but rather it is only stated whether the occupant has exclusive access

to such a detached space, regardless of ownership.

Observations are only deleted from the dataset if they are atypical with

regard to the contract, clearly misspecified or lack critical information. Thus,

forced auctions and transactions where a condominium is only partially sold are

removed. So, too, are condominia where the reported average size of bedrooms

is less than 8 m2, and two cases where the size is unknown, but the reported

number of bedrooms are 43 and 67. Transactions for less than 20 e per m2

are also deleted, since such a low price can only result from misspecification or

substantial irregularities not displayed by the available information. If neither

the size, nor the number of bedrooms is known, the observation is deleted.

The same goes for observations where the apartment complex’s area, number

of storeys and total living space of the complex are jointly unknown. Most

likely due to spelling errors or changes in the street name since the time of

transaction, 19 observations are deleted because they cannot be located. Thus,

1672 observations are deleted, resulting in a loss of less than one percent and

leaving 186,923 observations.

3.3 Imputation of missing values

Eight variables contain a manageable amount of missing values or values clearly

indicating that the information is unknown or misspecified. Deleting all obser-

vations with any missing values would contradict the goal of retaining as much

information as possible. The easiest approach would consist of filling in the

median value of the non-missing values, but in the case of variables describing

real estate, it is reasonable to assume that one can do better by exploiting

dependencies between the characteristics for filling in the missing values18. In

order to recover the missing information, linear regression imputation is used,

18Hastie et al. (2009) p. 332
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with the exception of the building’s age, where missing values are recovered by

a sort of nearest neighbour algorithm. The danger with regression imputation

lies in artificially driving up the correlation between covariates and underes-

timating the variability of the variable containing missing values19. However,

the correlation between the characteristics in question is already very high,

and no variable shows more than six percent missing values. Thus, the danger

of distortion is acceptable for such a procedure. More elaborate approaches

as stochastic regression imputation or multiple imputation20 would have in-

creased the already high computational burden of the given research question.

Imputation is rather seen as a necessity, having to be dealt with in a quick

and efficient fashion in order to secure the goal of minimal information loss.

Thus, the used regression models are chosen by picking the variables deemed

most likely to have high correlation with the dependent variable in question,

and no transformations or interactions are included.

On 10,728 occasions the size of all residential units of the building in ques-

tion is either missing or reported as smaller than the sold condominium. The

area of the apartment complex, the number of residential units and the num-

ber of independent auxiliary units serve as predictors to recover the missing

values. Where the area is also unknown, a prediction is made by using only

the remaining two covariates.

623 occasions of an unknown area of the apartment complex are imputed via

the building’s number of storeys, the number of residential units and of inde-

pendent auxiliary units.

The number of the building’s storeys is unknown 942 times and is predicted

via the area of the complex, the number of residential units and whether or

not the building is equipped with an elevator.

The condominium’s living space (250 missing values) and the number of bed-

rooms (2,582 missing values) serve as predictors for each other (observations

where this information is jointly missing have already been excluded).

The total space of all residential and shared units is reported as smaller than

the sold condominium on 10,669 occasions. These missing values are predicted

19van Buuren (2012), p. 12
20See van Buuren (2012), chapters 1.3.5 and 1.4
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via the total space of all residential units and the number of residential and

shared units.

50 occasions of the number of residential units being reported as zero are im-

puted using the total size of all residential units.

The building’s age is unknown for 365 observations. For this particular vari-

able, regression imputation is unsuitable, and a neighborhood search is used

to impute the missing values. Starting with a radius of 25 meters, all obser-

vations within a circle around the observations of interest are identified. The

most frequent value of the surrounding buildings’ age is taken as prediction

for the missing value. If no observations are within the circle, the radius is

widened by an additional 25 meters, until all missing values have been filled

in. Although this method can (and on multiple occasions surely does) lead

to poor predictions due to the heterogeneity of the Berlin map with regard to

the era in which buildings were erect, it is considered more valuable to keep

the observation and risk a misspecified building’s age, rather than lose all the

observation’s information on the numerous other characteristics.

Different approaches exist to check the validity of the imputation results.

All methods have in common that they compare whether the distribution of

the variables before and after recovering the missing values remain compara-

ble. Popular methods are graphical checks, numerical summaries or statistical

tests21. Again, pointing to the fact that this is by no means the focus of this

work, the easiest of these methods is used here and numerical summaries are

employed for checking the imputation results. As reported in table 8, the

range, quartiles and means are hardly affected for all eight variables subject

to imputation, suggesting a successful imputation process.

A complete overview of all variables used for further analysis is given in

tables 3 through 7. After the mentioned additions and transferring categorical

variables into dummies, each transaction is now described by 19 metric vari-

ables (including the price) and 81 dummy variables (not including reference

categories).

21See Nguyen et al. (2017)
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4 Results

As described in subsection (2.7), we performed our prediction comparison in a

rolling window design. Table 9 in the Appendix gives details about the size of

the estimation and validation samples in each of our 32 prediction windows.

On average, there are about 104,000 observations in an estimation sample and

about 2,900 observations in a validation sample. In total, over all windows and

validation sample, we have obtained 93,436 prediction errors for each of our

four candidate procedures. We first present results from analyzing all these

prediction errors together. Subsequently, we also look at results broken down

by prediction windows.

We begin with a graphical analysis of the predictions underlying the predic-

tion errors. The scatterplots in Figure 2 show how closely the predicted values

of each procedure mimic their targets, the actual sales prices of the properties

that were predicted by the AVM methods. Observations where either the ac-

tual price or the prediction exceeded 1,000,000e are excluded from the plot to

increase readability in the range of prices that include the bulk of the data. In

each scatterplot, we have included a 45◦ line to help in identifying properties

that are under- or overvalued by a candidate AVM. We have also included

a univariate nonparametric estimate of the relationship between transaction

prices and AVM predictions (blue line). Indeed, the comparison of the 45◦

line and the nonparametric smooth reveals the main finding of this part of the

analysis. All models tend to overestimate low priced condominiums while we

see a strong tendency to underestimate observations from the right tail of the

price distribution. OLS appears to have the strongest tendency underestimate

the values of more expensive properties. This is to be expected as it is the

least flexible procedure with the greatest risk of a model bias. Ridge regression

shows a particularly close agreement (i.e., small bias) between the nonpara-

metric smooth and the 45◦ line for properties up to 500,000 e, whereas the

Elastic Net seems to have the overall tightest agreement between nonparamet-

ric smooth and 45◦ line. On the other hand, Ridge regression displays a strong

variation about the 45◦ line, especially for lower priced condominiums.
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Figure 2: Scatterplots of true transaction prices vs. model estimates. Note: The
blue line is a nonparametric fit, the red line is the 45◦ line .

(1) OLS (2) Ridge

(3) LASSO (4) Elastic Net
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The findings from the inspection of the scatterplots in Figure 2 are largely

underscored by the summary measures of the prediction errors reported in

Table 1. We have highlighted the result of the best performing procedure in

Table 1: Error metrics for all models aggregated over all forecast quarters.

RMSPE MAPE MDAPE MARPE MDARPE Q10 Q20

OLS 80169 47085.1 31996.4 0.4544 0.3029 0.1689 0.3378
Ridge 181934 46816.3 25947.7 0.4444 0.2463 0.2330 0.4265
Lasso 88755 41841.9 27943.0 0.3997 0.2646 0.1959 0.3859
ElasticNet 85746 39176.4 25667.6 0.3619 0.2474 0.2085 0.4121

bold face for each criterion. Strikingly, OLS, the simplest AVM procedure has

the lowest root mean squared prediction error. Apparently, it can compensate

for its visible bias in Figure 2 by its very small estimation variance indicated by

formula (3) above. Its model bias also shows up in all the mean and median

absolute prediction error criteria where it always performs worst. Also as

expected from Figure 2, the Elastic Net performs best with regard to all bias

criteria and outperforms Lasso, the procedure it generalizes, with regard to all

criteria. A particularly uneven performance is offered by Ridge regression. It

displays the best performance with regard to the Q10 and Q20 criteria. That

is, Ridge regression achieves the largest fraction of predictions within 10 or 20

percent of the actual sales price. However, it is by far the worst procedure in

terms of the root mean squared prediction error. Apparently, it performs really

well for ‘standard’ properties in the center of the distribution but extremely

poorly for some properties at the fringe.

Indeed, this becomes even more evident in figure 3 which plots the RMSPE

for each procedure over the course of the rolling window design. The RMSPE

values for Ridge regression (connected by a line to enhance readability) show

very large bumps for some evaluation periods22. In these periods, there were

some properties for which Ridge regression delivered extremely false predic-

tions. These errors are highlighted by RMSPE because of the built-in squaring

22We see a similar bump in one quarter also for the Elastic Net.
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Figure 3: Root mean squared error for every validation quarter of the rolling
window design

of prediction errors. Ridge regression shrinks coefficients but does not set them

to zero. Its prediction formula thus carries a large number of nonzero param-

eters, thereby increasing the risk for such a bad outcome if properties display

extreme values in the transformed feature space.

The uneven prediction performance of the Ridge regression AVM is also

visible in Figure 4. It shows kernel densities of the prediction errors of all four

models.23 We have restricted the range of the prediction errors to the interval

−300, 000 to 300, 000. The extreme errors of Ridge regression are deliberately

not shown as they would dwarf any differences that may exist within the bulk

of the errors. The low median absolute errors of Ridge are reflected by its

density being almost centered at zero (stemming from its high flexibility). Its

large fractions of Q10 or Q20 are visible in its density being relatively tightly

and symmetrically centered around the median. Indeed, from the perspective

of Figure 4, which omits its extremely poor performance at the fringes, Ridge

regression looks like a winner. All procedures, except for OLS, start with a

23We used the Epanechnikov kernel and calculated the bandwidth according to the pro-
posal by Venables and Ripley (2002).
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Figure 4: Density plots of prediction errors of all models across all prediction
quarters.

large number of parameters and then either shrink some of them or even set

some of them to zero. Indeed, with their ability to do the latter, the Lasso and

the Elastic Net offer the promise of ‘automatic’ variable selection. We explore

the patterns of shrinkage and variable exclusion achieved by these procedures in

Figures 5, 6 and 7. These plots are based on summing the estimated coefficients

of each transformed feature zm for the respective model across all prediction

periods. In the plots, we ordered them by size. Hence, features are visible that

often (i.e. in several prediction windows) ‘survive’ the shrinkage or selection

algorithms of the procedures. We normalized the vertical axes of the figures by

substracting the minimum and divididing by the difference between maximum
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and minimum over all coefficient sums. Our feature importance measure is

thus exactly one at the maximum. As all variables were normalized prior to

estimation, the size of their coefficients are comparable. The figures show that

across all procedures, the squared floor size is the strongest predictor in this

sense. Indeed, floor size appears ‘successful’ in various (interacted) forms and

emerges as the most robust determinant in these AVMs.

Lastly, we performed an adjusted Diebold-Mariano-Test as described at the

end of subsection 2.7. In a first run, we tested whether there is a significant

difference between the prediction performance of any two models. In a second

step, we performed a one-sided test which evaluated if one model has a signif-

icantly better performance than the other. After comparing each model with

every other model, it turns out that except for Ridge every other model has no

significant better forecast performance than OLS. Elastic Net performs better

than the Lasso estimator. Table 2 reports the test results a “+” indicates that

the null hypothesis can not be rejected and “-” if the hypothesis was rejected.

If the two sided test found no significant difference between two models (“+”),

the second test is discarded. These findings are in line with the error metrics.

We use a squared loss function for testing the hypotheses and as OLS produces

the smallest squared prediction errors the results are not surprising.

Table 2: Results of the Diebold-Mariano Tests. A ‘-’ indicates that the Null
hypotheses was rejected on a 5% significance level.

OLS Lasso
indifferent better than indifferent better than

OLS +
Lasso +
Ridge - + - +
Elnet + - -

Ridge Elastic Net
indifferent better than indifferent better than

OLS - - +
Lasso - - - +
Ridge - +
Elnet - -
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5 Conclusion

To be successful, AVMs need to combine rich data on past transactions with

statistical procedures that can exploit the information in this data about the

relationship of property prices and its determinants. The number of possible

determinants can already be large at present and is likely to considerably grow

in the future in the wake of digitization. At the same, the nature of property

markets will keep the number of transactions per quarter at a relatively low

level. This poses an interesting challenge for AVM modeling as statistical

candidate procedures need to be able to cope with this situation of high-

dimensional X and relatively small n. At the heart of this challenge is the well

known trade off between bias and variance of the procedures. In this paper,

we considered three procedures that are designed to ‘automatically’ solve this

challenge and arrive at an estimated AVM that is a good compromise between

bias and variance: Ridge Regression, the Lasso and the Elastic Net. All three

start from a very flexible parametric model with a large number of transformed

and interacted features. They then ‘tame’ this model by regularization, i.e. by

shrinking regression coefficients or even setting some to zero. They achieve this

via constrained least squares estimation of the coefficients, where the severity

of the constraint on model flexibility can be chosen in a automatic, data-driven

way via cross-validation.

We applied these procedures to a rich and reliable data set of condominium

sales in Berlin, Germany, between 1996 and 2013 and compared their predictive

performance in a rolling window design with each other and a simple linear

OLS procedure. Stunningly, the very parsimonious OLS procedure make up

for its apparent model bias with its very low estimation variance, resulting

in the lowest overall root mean squared error. The more flexible procedures

outperform OLS in terms of their smaller bias and do well in the center of

the data but may do very poorly at the fringes. This result is showcased most

vividly by the performance of Ridge regression which is a ‘winner’ in the center

but delivers some extremely false predictions for other properties which ruins

its performance in the mean squared prediction error sense. Hence, our results
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suggest that Ridge Regression, the Lasso and the Elastic Net show potential as

AVM procedures but need to be handled with care and are not the ‘automated’

solution to Automated Valuation Modeling that they may seem to be.
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Table 3: Summary statistics for transacted condominia. Condominia’s
prices, space and equipment. Prices are in e, living spaces in m2. If only the
mean is reported, the corresponding variable is a dummy, indicating whether the
stated characteristic is available.

Mean Std. Dev. Min. Median Max.

Price 131,729.80 120,912.50 2,000 98,134 7,000,000
Living space 73.93 32.75 12.00 66.44 564.27
Bedrooms 2.55 1.04 1 2 16
Poor state of repair 0.01

Equipment
Collective heating (Reference) 0.99
Furnace 0.01
No heating 0.0002
Kitchen 0.87
Cooking cell 0.10
Pantry kitchen 0.01
Bathroom 0.92
Shower 0.08
Separate toilet 0.14
Hall 0.16
Corridor 0.86
Storage room 0.55
Balcony 0.47
Loggia 0.20
Studio 0.001
Basement 0.72
Attic storage room 0.01
Hobby room 0.01
Garden 0.03
Garage 0.03
Parking spot 0.06
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Table 4: Summary statistics for transacted condominia. Type of condo-
minium and location within the building. If only the mean is reported, the corre-
sponding variable is a dummy, indicating whether the stated characteristic is avail-
able.

Mean Std. Dev. Min. Median Max.

Location within the building
Storey 2.24 2.07 0 2 25
Upper floor (Ref.) 0.82
Ground floor 0.17
Elevated ground floor 0.008
Lowered ground floor 0.002
Basement floor 0.001
Souterrain 0.0002

Type of condominium
Regular apartment (Ref.) 0.90
Penthouse 0.001
Duplex apartment 0.03
Attic apartment 0.07
Terrace apartment 0.002
Shop apartment 0.001
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Table 5: Summary statistics for transacted condominia. Characteristics
of the building. Areas and sizes are in m2. If only the mean is reported, the
corresponding variable is a dummy, indicating whether the stated characteristic is
available.

Mean Std. Dev. Min. Median Max.

Area of the complex 4,628.12 7,483.26 91.00 1,433.00 78,170.00
Bought share of the complex 0.04 0.05 0.00 0.02 0.94
Number of storeys 5.42 2.66 1 5 55
Number of allunits 77.93 98.75 1 38 786
Number of residential units 70.87 91.98 1 34 721
Number of commercial units 1.27 2.55 0 0 53
Size of all units 4,778.61 5,813.78 22 2,530 48,266
Size of all residential units 4,611.92 5,643.04 18 2,386 47,224
Size of all commercial units 167.70 634.19 0 0 18,251
Number of independent units 5.79 19.67 0 0 221
Building’s age 74.76 37.30 1 80 240
Poor state of repair 0.003
Leasehold 0.01
Elevator 0.33

Type of building
Detached house (Ref.) 0.16
House at block’s edge 0.57
Row house 0.12
Semi detached house 0.001
Townhouse 0.002
Courtyard building 0.14
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Table 6: Summary statistics for transacted condominia. Characteristics of
the contract. The transaction day is measured in days before the last transaction,
plus one. If only the mean is reported, the corresponding variable is a dummy,
indicating whether the stated characteristic is available.

Mean Std. Dev. Min. Median Max.

Private buyer 0.95
Bought by legal entity (Ref.) 0.05
Private seller 0.39
Sold by legal entity (Ref.) 0.61
Social housing 0.16
Tax benefits 0.02
Guaranteed rent 0.04
Conversion to condominium (Ref.) 0.62
No conversion 0.17
Partial conversion 0.21
Bought by tenant 0.05
Rented out 0.29
Unoccupied (Ref.) 0.66

Time of transaction
Transaction day 2,941.1 1,894.27 1 2,866.5 6,475
1996 (Ref.) 0.03
1997 0.06
1998 0.07
1999 0.05
2000 0.04
2001 0.05
2002 0.04
2003 0.06
2004 0.04
2005 0.07
2006 0.06
2007 0.04
2008 0.05
2009 0.05
2010 0.08
2011 0.07
2012 0.08
2013 0.06
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Table 7: Summary statistics for transacted condominia. Condominia’s loca-
tion. If only the mean is reported, the corresponding variable is a dummy, indicating
whether the stated characteristic is available.

Mean Std. Dev. Min. Median Max.

Longitude 23,046.23 5,843.43 5,173.70 23,019.00 47,324.40
Latitude 19,755.76 5,011.72 1,856.40 19,958.40 36,076.30
Distance to city center 6,831.52 3,736.20 0.00 5,853.98 25,975.53
East Berlin 0.35
West Berlin (Ref.) 0.65

District
Mitte (Ref.) 0.13
Friedrichshain-Kreuzberg 0.10
Pankow 0.13
Charlottenburg-Wilmersdorf 0.18
Spandau 0.05
Steglitz-Zehlendorf 0.08
Tempelhof-Schöneberg 0.13
Neuköln 0.06
Treptow-Köpenick 0.05
Marzahn-Hellersdorf 0.02
Lichtenberg-Hohenschönhausen 0.03
Reinickendorf 0.05
Experts’ location rating
Simple 0.45
Average 0.29
Good 0.23
Excellent (Ref.) 0.03

41



Table 8: Descriptive statistics of variables containing missing data, before
and after imputation.

Min. 1st Quart. Median Mean 3rd Quart. Max.

Space of all residential units
Before imputation 18 1484 2433 4723 5743 47224
After imputation 18 1467 2386 4611 5474 47224

Space of all units
Before imputation 22 1564 2578 4900 5937 48266
After imputation 22 1536 2530 4777 5708 48266

Number of residential units
Before imputation 1 20 34 70.89 83 721
After imputation 1 20 34 70.87 83 721

Area of the apartment complex
Before imputation 91 848 1433 4633 5288 78170
After imputation 91 848 1433 4628 5282 78170

Number of storeys
Before imputation 1 4 5 5.425 6 55
After imputation 1 4 5 5.421 6 55

Condominium’s living space
Before imputation 15.40 53.10 66.45 73.93 87.10 564.27
After imputation 15.40 53.10 66.44 73.93 87.10 564.27

Number of bedrooms
Before imputation 1 2 2 2.548 3 16
After imputation 1 2 2 2.551 3 16

Year of contruction
Before imputation 1775 1905 1935 1940 1968 2014
After imputation 1775 1905 1935 1940 1968 2014

42



Table 9: Summary statistics for forecast windows.

Observations Hyperparameter λ

Year Quarter Training Validation Ridge Lasso Elnet

20
0
6 2 93,880 2,416 7.47 0.75 1.49

3 95,870 2,421 7.22 0.72 1.44
4 97,337 3,561 7.04 0.70 1.41

20
0
7

1 99834 2,085 6.89 0.69 1.38
2 98,979 2,751 7.36 0.74 1.47
3 100,658 2,804 7.07 0.71 1.41
4 101,710 3,105 7.12 0.71 1.42

2
00

8

1 102,599 2,296 6.82 0.68 1.36
2 100,497 2,682 7.82 0.73 1.46
3 101,192 2,481 6.89 0.70 1.39
4 101,299 2,714 7.21 0.72 1.44

20
09

1 101,320 2,047 6.85 0.69 1.37
2 96,567 2,775 7.28 0.73 1.46
3 97,709 2,540 7.06 0.71 1.41
4 98,112 2,952 7.26 0.73 1.45

20
10

1 98,817 2,570 6.93 0.69 1.39
2 98235 3,315 7.28 0.73 1.46
3 99769 3,448 7.11 0.71 1.42
4 101,342 3,801 7.43 0.74 1.49

20
11

1 103,226 3,184 6.95 0.70 1.39
2 103,660 3,723 7.27 0.73 1.45
3 105,518 3,892 7.13 0.71 1.43
4 107,371 4,560 7.31 0.73 1.46

20
12

1 109,927 4,470 6.97 0.70 1.39
2 111,320 3,188 7.24 0.72 1.45
3 112,899 3,628 7.12 0.71 1.42
4 114,657 3,943 7.24 0.72 1.45

20
13

1 116,906 3,138 6.96 0.70 1.39
2 116,970 3,244 7.19 0.72 1.44
3 118,758 2,820 7.18 0.72 1.44
4 119,843 882 7.21 0.72 1.44

Mean 104,030.1 2,919.9
Sum 93,436
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Figure 5: Scaled feature importance of LASSO across all forecast periods.
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Figure 6: Scaled feature importance of Ridge across all forecast periods.
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Figure 7: Scaled feature importance of Elastic Net across all forecast periods.
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