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Testing for Multiple Structural Breaks in Multivariate Long

Memory Time Series

Philipp Sibbertsena∗ Kai Wengera Simon Wingerta

aLeibniz University Hannover

September 28, 2020

Abstract

This paper considers estimation and testing of multiple breaks that occur at unknown dates

in multivariate long-memory time series. We propose a likelihood ratio based approach

for estimating breaks in the mean and the covariance of a system of long-memory time

series. The limiting distribution of these estimates as well as consistency of the estimators

is derived. A testing procedure to determine the unknown number of break points is given

based on iterative testing on the regression residuals. A Monte Carlo exercise shows the finite

sample performance of our method. An empirical application to inflation series illustrates

the usefulness of our procedures.

Key words: Multivariate Long Memory · Multiple Structural Breaks · Hypothesis Testing.

JEL classification: C12, C22, C58, G15

1 Introduction

The problem of testing for structural changes and estimating break points that occur at un-

known dates has long been discussed in the econometric literature. Most of the literature has

focused on issues about estimating and testing of single structural breaks in a univariate time

series regression framework with weak correlations. A review of this literature can be found for
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instance in Perron (2006).

Bai and Perron (1998) extended this literature by suggesting estimators and tests for multiple

break points that occur at unknown dates in a univariate time series regression. Bai (1997b)

considered estimation of a single break in a multivariate regression set-up and Bai et al. (1998)

provide tests and estimators for common breaks in a multivariate system of short-memory time

series. Qu and Perron (2007) provide a versatile framework for estimating and testing multiple

and not necessarily common breaks that occur at unknown dates in a multivariate short-memory

time series regression framework. They allow for breaks in the mean as well as in the covariance

of the system. The estimators and tests of Qu and Perron (2007) are based on a likelihood ratio

approach.

Testing and estimating structural breaks in long-memory time series is problematic as both

phenomena are observationally equivalent in finite samples and long memory can cause false re-

jections of tests for structural changes. An overview about the literature regarding this problem

gives for instance Sibbertsen (2004). Nevertheless, recently some approaches are published to

test for a single structural break in a univariate long-memory time series model. Among those

are Wang (2008), Shao (2011), Dehling et al. (2013), Iacone et al. (2014), Betken (2016), and

Wenger and Leschinski (2019). A recent overview is provided in Wenger et al. (2019). Estima-

tion of multiple breaks in a univariate set-up allowing also for long-range dependence has been

considered in Lavielle and Moulines (2000) by applying information criteria.

This paper contributes to the literature by considering estimators and tests for multiple struc-

tural breaks that occur at unknown dates in a multivariate long-memory time series regression

framework. To the best of our knowledge this is the first paper providing tests for multiple

breaks under long memory and the first paper considering breaks in a multivariate system of

long-memory time series. We extend the general framework of Qu and Perron (2007) in two

directions. First, we use a likelihood ratio based approach for estimating breaks in the mean and

the covariance of the system. We obtain consistency and the limiting distribution of these esti-

mates under long memory. Second, we provide tests on multiple structural changes generalizing

the testing ideas of Bai and Perron (1998). The tests of Bai and Perron (1998) are based on seg-

mentation of the time series and repeated testing for breaks within these segments. The limiting

distribution strongly depends on the assumption of at most weak correlations as it is derived

as the product of the limiting distributions for each segment. This does not hold true under

long-range dependence as the segments are strongly correlated and the limiting distribution of
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the test proves wrong in this situation. We circumvent this problem by suggesting to repeatedly

test for breaks on the residuals after applying our consistent break point estimator and eliminate

the largest break in each step. It turns out that all of our procedures only depend on the maxi-

mal memory parameter of the multivariate system of long-memory time series. Interestingly, the

limiting distribution of our test is different for the case where all memory parameter are equal

compared to the case where at least two of them are not equal. In order to prove our results we

derive a multivariate generalized Hájek-Rényi-type inequality under long-range dependence.

The validity of this approach in finite samples is shown in a Monte Carlo study, while the ap-

plicability in practice is demonstrated in an empirical example where we examine a system of

inflation series.

The rest of the paper is organized as follows. In Section 2 we provide the model and our assump-

tions. Section 3 contains the estimators for the break points and Section 4 provides the testing

procedure. Section 5 contains of the Monte Carlo study and Section 6 illustrates the empirical

example before Section 7 concludes. All proofs are gathered in the appendix.

2 The Model and Assumptions

In this paper we consider issues regarding the detection of structural changes in a multivariate

regression model allowing for long-memory errors. An n dimensional system of time series ut is

said to exhibit multivariate long-range dependence or long memory with D = (d1, . . . , dn)
′ and

−1/2 < di < 1/2 for i = 1, . . . , n if its spectral density behaves local to the origin as

f(λ) ∼ Λ(D)GΛ(D)∗, (1)

where Λ(D) = diag(Λ1(d1), . . . ,Λn(dn)) and Λk(dk) = λ−dkei(π−λ)dk/2 for k = 1, . . . , n. G is

a real, positive definite, finite and symmetric matrix and the asterix A∗ denotes the complex

conjugate of the matrix A. Further, the imaginary number is denoted by i and dk is the memory

parameter of series k. Furthermore, define d = max{d1, . . . , dn}. The assumption on G is

standard in defining multivariate long memory and excludes fractional cointegration as it stands.

However, for our estimators and tests proposed later it is of no relevance whether or not the

series are fractionally cointegrated. We therefore stick to the standard assumption keeping in

mind that relaxing the assumptions on G would not effect our procedures.

For the regression model consider a system of n time series each of length T . We denote by m the

total number of structural changes in the system. The break dates in the system are denoted by
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the m vector T = (T1, . . . , Tm) and for the ease of calculation we use T0 = 1 and Tm+1 = T . We

use the convention that a subscript j indexes a regime (j = 1, . . . ,m+ 1), a subscript t indexes

a temporal observation (t = 1, . . . , T ) and a subscript i indexes the equation (i = 1, . . . , n). The

number of regressors is named q and zt is the set which includes the regressors at a point in time

t from all equations zt = (z1t, . . . , zqt)
′. Consider the model

yt = (I ⊗ z′t)Sβj + ut, (2)

where ut is the error process to be specified more precisely below with mean 0 and covariance

matrix Σj for Tj−1 + 1 ≤ t ≤ Tj (j = 1, . . . ,m + 1). The matrix S is a selection matrix with

entries 0 and 1. It is of dimension nq × p with full column rank. In regime j the parameters to

be estimated are given by the p vector βj and the matrix Σj . Restrictions on the parameters

should be allowed by our model so we introduce r restrictions given by

g(β, vec(Σ)) = 0,

where β = (β′1, . . . , β
′
m+1), Σ = (Σ1, . . . ,Σm+1) and g(·) is an r-dimensional vector. This setting

is even capable of expressing cross-equations restrictions across regimes.

We rewrite Equation (2) in order to lighten the notation by introducing the p×n matrix xt that

is defined by x′t = (I ⊗ z′t)S. This gives

yt = x′tβj + ut (3)

for Tj−1 + 1 ≤ t ≤ Tj (j = 1, . . . ,m + 1). Furthermore, we rewrite Equation (3) using matrix

notation. To this end let Y = (y′1, . . . , y
′
T )′ be the nT vector of dependent variables, U =

(u′1, . . . , u
′
T )′ the error vector and let the nT × p matrix of regressors be X = (x1, . . . , xT )′.

Now form the block partition X̄ of the matrix X: For a given partition of the sample using the

breaks (T1, . . . , Tm) we define X̄ as the nT × p(m+ 1) matrix X̄ = diag(X1, . . . , Xm+1), where

Xj(j = 1, . . . ,m + 1) is the n(Tj − Tj−1) × p subset of X that corresponds to observations in

regime j. Similarly we define the subvector Uj of U . Using these symbols we can express the

regression system (3) as Y = X̄β + U . In the following the true values of the parameters are

denoted with a 0 superscript, e.g. the data generating process is given by Y = X̄0β0 +U . Here,

the term X̄0 is the diagonal partition of X using the partition of true break dates (T 0
1 , . . . , T

0
m).

We impose the following set of assumptions. Note that the assumptions are similar to those of

Qu and Perron (2007) with the difference that we allow the errors ut to be long-range dependent.

However, we assume that the memory is only introduced through the errors ut and thus that the

regressors xt are mostly short-range dependent such that the process xtut is of the same order of
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integration as ut. This is a simplyfying assumption which is not necessary. Technically it would

be possible to allow also for long-memory regressors with an order of integration smaller or equal

than one as long as they are independent of the errors. However, this would complicate the proof

of our property five below and furthermore lead to identification problems in practice as the

order of integration of the observation would be determined by the maximum of the integration

order of the regressors and errors. As the proof of our property five in the case of integrated

regressors rely on a correct differencing of the regressors our procedure may become infeasible in

practice.

Assumption 1. For each j = 1, . . . ,m+ 1 and lj ≤ T 0
j − T 0

j−1, l
−1
j

∑T 0
j−1+lj

t=T 0
j−1+1

xtx
′
t

a.s.−−→ Q0
j as

lj →∞, with Q0
j being a nonrandom positive definite matrix not necessarily the same for all j.

Assumption 2. There exists an l0 > 0 such that for all l > l0, the minimum eigenvalues of

l−1
∑T 0

j +l

j=T 0
j +1

xtx
′
t and of l−1

∑T 0
j

t=T 0
j −l

xtx
′
t are bounded away from zero (j = 1, . . . ,m).

Assumption 3. The matrix
∑l

t=k xtx
′
t is invertible for l − k ≥ k0 for some 0 < k0 <∞.

Assumption 4. It holds that

ut = A(L)εt =
∞∑
j=0

Ajεt−j ,

where the innovations εt = (εt,1, . . . , εt,n) are n-dimensional martingale differences with respect to

the σ-field Ft generated by εs, s ≤ t. Hence E(εt|Ft−1) = 0 and it is assumed that E(εtε
′
t|Ft−1) =

In a.s. Additionally for some δ > 0 we assume the moment condition suptE|εt,k|2+δ < ∞ for

k = 1, . . . , n. For the coefficients Aj we assume that asymptotically

Aj ∼ diag

(
jd1−1

Γ(d1)
, . . . ,

jdn−1

Γ(dn)

)
Π, as j →∞,

where Π is an n× n matrix independent of D = (d1, . . . , dn).

Assumption 5. Assumption 4 holds with ut replaced by xtut or utu′t − Σ0
j for T 0

j−1 < t ≤ T 0
j

(j = 1, . . . ,m+ 1).

Assumption 6. The magnitudes of the shifts satisfy β0
T,j+1−β0

T,j = νT δj and Σ0
j+1,T −Σ0

j,T =

νTΦj , where (δj ,Φj) 6= 0 and independent of T . Moreover, νT is either a positive number

independent of T or a sequence of positive numbers that satisfy νT → 0 and T 1/2−dνT /(log T )2 →

∞.

Assumption 7. We have (β0,Σ0) ∈ Θ̄ with Θ̄ = {(β,Σ) : ‖β‖ ≤ c1, λmin(Σ) ≥ c2, λmax(Σ) ≤

c3} for some c1 < ∞, 0 < c2 ≤ c3 < ∞ and λmin and λmax denote the smallest resp. largest

eigenvalue.
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Assumption 8. We have 0 < λ0
1 < · · · < λ0

m < 1 with T 0
i = [Tλ0

i ].

Our assumptions include the standard FIVARMA model as well as long-memory panel models

and regression models with exogenous regressors and long-memory errors. However, unit root

regressors are ruled out by Assumption 1 although in general regressors may be trending. More-

over, the regressors can have different distributions in different regimes. This is necessary because

a change in a dynamic model leads to changes in the moments of the regressors. Assumption

2 rules out the case of local collinearity which makes the breaks identifiable. Assumption 3 is

a standard invertibility assumption. Assumption 4 to 5 state that we consider a long-memory

regression framework and that the order of integration is solely determined by the errors ut.

We additionally assume bounded moments of order 2 + δ for some δ > 0 for ut, xtut and utu
′
t

to obtain strongly consistent estimates of the parameters and a well-behaved likelihood. As-

sumption 6 ensures that the breaks are asymptotically non-negligible. Using a fixed νT captures

large breaks whereas a shrinking νT gives small and intermediate breaks in finite samples. The

latter ensures an asymptotic theory for the break dates estimators which does not depend on

the actual distribution of the regressors and errors. It should be noted that we assume the break

size to depend on the memory of the errors. The higher the persistence of the errors is the larger

the break need to be in order to be detected. Assumption 7 makes sure that the errors have

a non-degenerate covariance matrix and a finite conditional mean and Assumption 8 ensures

distinct breaks. It should be mentioned that no other assumptions on the breaks are needed.

This includes that the breaks do not need to be contemporaneously in each series. So we allow

each series to have breaks at different times or not to break at all.

Later when we introduce our testing procedure in order to derive the limiting distribution of

the test under the null hypothesis of no structural change, we impose the following additional

assumptions.

Assumption 9. We have T−1
∑[Ts]

t=1 xtx
′
t

p−→ sQ, uniformly in s ∈ [0, 1], for Q being some

positive definite matrix.

Assumption 10. The errors {ut} form an array of long-range dependent processes as defined

in Assumption 4 and, additionally, E(utu
′
t) = Σ0 for all t and T−1/2−D∑[Ts]

t=1 xtut ⇒ Φ1/2WD(s),

where Φ = plimT→∞ T
−1X ′(In⊗Σ0)X andWD(s) is a vector of independent fractional Brownian

motions of type I. Also, with ηt ≡ (ηt1, . . . , ηtn)′ = (Σ0)−1/2ut, we have T−1/2−D∑[Ts]
t=1 (ηtη

′
t −

In) ⇒ ξD(s), where ξD(s) is an n × n matrix of fractional Brownian motion processes with
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Ω = Var(vec(ξD(1))). Also assume that E[ηtkηtlηth] = 0 for all k, l, h and for every t.

Assumption 9 rules out trending regressors and requires that the second moment matrix of the

regressors converges in probability to the same limiting matrix throughout the sample. This

entails we do not allow for a change in the distribution of the regressors without a change in

the coefficients of the regressors. In addition, Assumption 10 requires the error process to be

stable throughout the sample so that a functional central limit theorem applies to the product

of regressors and errors. For a detailed discussion of fractional Brownian motions of type I and

type II cf. Marinucci and Robinson (1999)

3 Estimation of the Break Dates and Model Parameters

We estimate the break dates and the number of breaks by restricted Quasi-Maximum Likelihood

conditional on a given partition of the sample T = (T1, . . . , Tm). Our tests for the number of

breaks is then based on the likelihood ratio statistic. Assuming Gaussian serially uncorrelated

errors the quasi-likelihood function is given by

LT (T , β,Σ) =
m+1∏
j=1

Tj∏
t=Tj−1+1

f(yt|xt;βj ,Σj),

where

f(yt|xt;βj ,Σj) =
1

(2π)n/2|Σj |1/2
exp

(
−1

2
[yt − x

′
tβj ]

′
Σ−1
j [yt − x

′
tβj ]

)
.

The quasi-likelihood ratio statistic is given by

LRT (T , β,Σ) =

∏m+1
j=1

∏Tj
t=Tj−1+1 f(yt|xt;βj ,Σj)∏m+1

j=1

∏T 0
j

t=T 0
j−1+1

f(yt|xt;β0
j ,Σ

0
j )
.

We aim now to estimate the values of (T1, . . . , Tm, β,Σ) under the restriction g(β, vec(Σ)) = 0.

This is done by maximizing the objective function

RLRT (T , β,Σ) = LRT (T , β,Σ) + λ
′
g(β, vec(Σ)). (4)

We need one further assumption about the minimal regime length.

Assumption 11. The maximization of the objective function (4) is taken over all partitions

T = (T1, . . . , Tm) = (Tλ1, . . . , Tλm) for some ε > 0 in the set

Λε = {(λ1, . . . , λm) : |λj+1 − λj | ≥ ε, λ1 ≥ ε, λm ≤ 1− ε}. (5)

This assumption is standard in the structural breaks literature and says that some percentage

of the data needs to be skipped at the beginning and the end of the observation period before
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the maximization of the likelihood and thus that potential breaks can not happen in a possible

small environment of the first and the last observation. Other than in Qu and Perron (2007) this

assumption is essential for our procedure to work as property 2 in the appendix and therefore

the consistency of the breakpoint estimators proves wrong otherwise. Qu and Perron (2007)

prove these property and consistency of the estimator when maximizing over the whole sample

by means of the standard law of iterated logarithm. As this does no longer hold under long

memory and needs to be replaced by a law of iterated logarithm for fractional Brownian motions

the arguments used to prove property 2 do no longer hold and the property does not apply.

However, these arguments are needed for the endpoints only and therefore assuming assumption

11 circumvents this problem.

We can now establish the rate of convergence of these estimators under long-range dependencies.

Lemma 1. Under Assumptions 1 to 8 and 11 we have for j = 1, . . . ,m, T 1−2dν2
T (T̂j − T 0

j ) =

OP (1) and for j = 1, . . . ,m+ 1, T 1/2−d(β̂j − β0
j ) = OP (1) and T 1/2−d(Σ̂j − Σ0

j ) = OP (1).

The proof of this and all following results can be found in the appendix. These results are

similar as those in Bai (1997b), Bai and Perron (1998), Bai (2000), and Qu and Perron (2007),

but account for the long-range dependencies in the error terms. Also in our case the rate for the

break dates is fast enough not to effect the estimation of the model parameter asymptotically.

Therefore, we have the following result that we state without proof.

Lemma 2. Under the Assumptions of Lemma 1, the limiting distribution of T 1/2−d(β̂ − β0) is

the same as that for known break dates.

These results are necessary to our tests on the number of potential break points later. However,

it allows us also to derive results regarding the limiting distribution of the restricted likelihood

under long memory. We can now split the restricted likelihood in one part only containing

the break dates and the true parameter values so that restrictions to these values do not affect

the estimation of the break dates. The other part involves the true values of the break dates

and model parameters and the restrictions such that the limiting distribution of the model

parameters is affected by these restrictions but not by the estimation of the break dates. With

these comments in mind it is obvious that Theorem 1 of Qu and Perron (2007) still holds under

our set of assumptions, where the aforementioned split of the maximization problem in a term

concerning the estimate of the break dates and a term that does not involve the break date

estimates is made mathematically precise.
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Moreover we would be able to show that Theorem 2 of Qu and Perron (2007) still holds under

long-range dependence. This result concerns the limiting distribution of the break dates. The

drawback of this result is that the the limiting distribution of the break dates depends on the

true error distribution. This is a standard problem in the structural breaks literature and is

usually accounted for by assuming shrinking breaks with an increasing sample size. However, to

do so trending regressors need to be ruled out.

Assumption 12. Let ∆T 0
j = T 0

j − T 0
j−1. For j = 1, . . . ,m, as ∆T 0

j → ∞, uniformly in

s ∈ [0, 1], (∆T 0
j )−1

∑T 0
j−1+[s∆T 0

j ]

t=T 0
j−1+1

xtx
′
t

P−→ sQ0
j with Q0

j being a nonrandom positive definite

matrix not necessarily the same for all j.

With this assumption we obtain the following limiting distribution for the break dates.

Theorem 1. Let ηt = (ηt1, . . . , ηtn) = (Σ0
j )
−1/2ut for t ∈ [T 0

j−1 + 1, T 0
j ] and assume that

E[ηtkηtlηth] = 0 for all k, l, h and for every t. Under Assumptions 1 to 8 and 11 and 12 with

νt → 0 such that T 1/2−dνT /(log T )2 → ∞ as T → ∞ and with ⇒ denoting weak convergence

under the Skorohod topology, we have, for j = 1, . . . ,m

∆2
1,j

Γ2
1,j

T 1−2dν2
T (T̂j − T 0

j )⇒


− |u|2 +Wj,d(u), for u ≤ 0

− |u|2
∆2,j

∆1,j
+

Γ2,j

Γ1,j
Wj,d(u), for u > 0,

(6)

where

∆1,j =
1

2
tr(A2

1,j + δ
′
Q1,jδj),

∆2,j =
1

2
tr(A2

2,j + δ
′
Q2,jδj),

A1,j =(Σ0
j )

1/2(Σ0
j+1)−1Φj(Σ

0
j )
−1/2

A2,j =(Σ0
j+1)1/2(Σ0

j )
−1Φj(Σ

0
j+1)−1/2

Γ1,j =

(
1

4
vec(A1,j)

′
Ω0

1,j vec(A1,j + δ
′
jΠ1,jδj

)1/2

Γ2,j =

(
1

4
vec(A2,j)

′
Ω0

2,j vec(A2,j + δ
′
jΠ2,jδj

)1/2

Q1,j = plimT→∞(T 0
j − T 0

j−1)−1

T 0
j∑

t=T 0
j−1+1

xt(Σ
0
j+1)−1x

′
t

Q2,j = plimT→∞(T 0
j+1 − T 0

j )−1

T 0
j+1∑

t=T 0
j +1

xt(Σ
0
j )
−1x

′
t,
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and

Π1,j = lim
T→∞

Var

(T 0
j − T 0

j−1)−1/2

 T 0
j∑

t=T 0
j−1+1

xt(Σ
0
j+1)−1(Σ0

j )
1/2ηt


 ,

Π2,j = lim
T→∞

Var

(T 0
j+1 − T 0

j )−1/2

 T 0
j+1∑

t=T 0
j +1

xt(Σ
0
j )
−1(Σ0

j+1)1/2ηt


 ,

with Wj,d(s) a fractional Wiener process defined on the real line and

Ω0
1,j = lim

T→∞
Var

vec

(T 0
j − T 0

j−1)−1/2

T 0
j∑

t=T 0
j−1+1

(ηtη
′
t − In)


 ,

Ω0
2,j = lim

T→∞
Var

vec

(T 0
j+1 − T 0

j )−1/2

T 0
j+1∑

t=T 0
j +1

(ηtη
′
t − In)


 .

4 Testing for Multiple Breaks in Multivariate Time Series

In this section we first introduce two likelihood ratio based tests for multiple breaks in a multi-

variate system of long-memory time series. The first procedure tests the null of no break against

the alternative of a prespecified number of breaks whereas the second tests against the alterna-

tive of an unknown number of breaks given an upper bound. Iterative application of the second

procedure is one of the main ingredients of our proposed procedure to identify multiple breaks

in a long-memory framework.

Our tests allow only a subset of the coefficients of the regressors β or of the covariance matrix

of the errors Σj to change per regime j, where 1 ≤ j ≤ m. We acknowledge this dependence on

the specification in our test statistic by introducing the numbers pb, nbd and nbo. Considering

the system specification

yt = x′atβa + x′btβbj + ut for Tj−1 + 1 ≤ t < Tj (j = 1, . . . ,m+ 1),

pb describes the total number of coefficients allowed to change across regimes, i.e. βbj is a pb

dimensional vector. Moreover for the covariance matrix of the errors

Σj = E(utu
′
t) Tj−1 + 1 ≤ t < Tj (j = 1, . . . ,m+ 1),

we allow nbd diagonal entries of Σj and nbo entries in the upper triangle of Σj to change across

regimes. To simplify notation we also need the full row rank matrix H of dimension (nbd +

2nbo)× n2. This is chosen such that H vec(Σ) is the nbd + 2nbo dimensional vector of the entries

allowed to change. Thus, it contains both upper and lower triangle covariance entries.

First, we introduce a likelihood ratio test of no break versus the alternative hypothesis of precisely
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m breaks under long memory, i.e.

H0 : K = 0 vs H1 : K = m.

We denote the log-likelihood value by log L̂T (T1, . . . , Tm). Then the test is the maximal value of

the likelihood ratio over all admissible partitions in the set Λε defined by Assumption 11, that

is,

1

T 2d
sup LRT (m, pb, nbd, nbo, ε) =

1

T 2d
sup

(λ1,...,λm)∈Λε

2
[
log L̂T (T1, . . . , Tm)− log L̃T

]
=

2

T 2d
[log L̂T (T̂1, . . . , T̂m)− log L̃T ], (7)

where the log-likelihood log L̃T is obtained by estimating β and Σ under the null hypothesis

of no break. The list of estimated break points (T̂1, . . . , T̂m) contains the QMLE obtained by

considering only those partitions in Λε. As we assume a minimal length ε for each segment this

parameter will affect the limiting distribution of the test.

Theorem 2. Under Assumptions 1-11 with the supLRT (m, pb, nbd, nbo, ε) test constructed for

an alternative hypothesis H1 in the class of models described in this Section,

1

T 2d
supLRT (m, pb, nbd, nbo, ε)⇒ sup

(λ1,...,λm)∈Λε

m∑
j=1

LRj(λ, d, pb, n
∗
b)

with

LRj(λ, d, pb, n
∗
b) =
‖λjW ∗d,pb(λj+1)− λj+1W

∗
d,pb

(λj)‖2

(λj+1 − λj)λjλj+1

+
1

2

(
λjW

∗
d,n∗b

(λj+1)− λj+1W
∗
d,n∗b

(λj)
)′
HΩH ′

×
(
λjW

∗
d,n∗b

(λj+1)− λj+1W
∗
d,n∗b

(λj)
)/

((λj+1 − λj)λjλj+1),

where λ = (λ1, ..., λm) and λm+1 = 1. The vectors W ∗d,pb(·) and W ∗d,n∗b (·) are of dimension pb

resp. n∗b = (nbd + 2nbo) writing d = (d1, ..., dq) with q ∈ {pb, n∗b} and n∗b = rank(H). They are

defined as

W ∗D,n(·) =
(
W ∗dj (·)

)
j=1,...,n

, W ∗dj (·) =


Wdj (·) if dj = max1≤i≤n di,

0 else,

where Wd is univariate fractional Brownian motion of type I with memory parameter d.

Note that the limiting distribution depends on the number of series having the maximal memory

parameter. Only the series in the test statistic with the maximal memory parameter in the vector

of memory parameters D = (d1, . . . , dn) contribute asymptotically to the limiting distribution.

The second test statistic tests the null hypothesis of no break against the alternative of m breaks,
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1 ≤ m ≤M for some upper bound M , i.e.

H′0 : K = 0 vs H′1 : 1 ≤ K ≤M.

Bai and Perron (1998) suggest to use a so-called double maximum test. The test statistic is

given by

UDmaxLRT (m, pb, nbd, nbo, ε) = max
1≤m≤M

sup LRT (m, pb, nbd, nbo, ε). (8)

The asymptotic distribution for this test statistic can be obtained in the setting of Theorem 2.

We have

UDmaxLRT (m, pb, nbd, nbo, ε) ⇒ max
1≤m≤M

sup
(λ1,...,λm)∈Λε

m∑
j=1

LRj(λ, d, pb, n
∗
b).

Critical values for different values of d and m are given in Tables 4 to 6 in the appendix.

For our iterative procedure below it is also essential to mention that the UDmax test enjoys

pitman efficiency. This follows directly by noting that the tests are likelihood ratio type tests

and applying the usual Taylor expansion argument to derive consistency of likelihood ratio tests

also delivers the result in our set-up.

Now we are in the position to introduce an iterative method that can be used to determine the

unknown number of breaks in a multivariate system of long-memory time series. It is inspired

by applying the UDmaxLRT test in (8) repeatedly. Therefore, the method requires fixing an

upper bound on the number of breaks M in advance. It is a residual based iterative procedure,

so that we shorten it as REBIT. It proceeds as follows:

(1) Set m = 0.

(2) Estimate m breaks in the original system of time series yt and save the residuals.

(3) Conduct the UDmaxLRT test with H0 : l = 0 vs. H1 : 1 ≤ l ≤M −m on the residuals.

(4a) If the test rejects and m < (M − 1): set m = m+ 1 and reiterate from (2).

(4b) If the test cannot reject: the detected number of breaks is m. Furthermore, if m = M − 1:

the number of breaks is greater or equal than the previously chosen upper bound M .

The method ends if the applied test cannot reject (or the user chosen upper bound is reached).

Therefore, in a situation with an unknown number of breaks the iterative method suggests m

breaks where m is the number returned by the method.

It should be mentioned that the supLRT is not applicable in the suggested procedure since a

true break number k such that k 6= 0 and k 6= m is neither covered by the null nor by the

alternative hypothesis.
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Note that the estimation of the break dates in step (2) is always performed on the original

time series. That is the residuals are always estimated from a global optimization. Hence,

the estimated break dates from different iterations do not depend on each other. Therefore,

our procedure avoids the usually problematic situation of using residuals of residuals. From

Lemma 1 we thus obtain consistency of our break point estimates in each step. The break point

estimates in underspecified models are consistent as has been shown by Bai (1997a) and Bai and

Perron (1998) for breaks in the mean. By similar methods one could therefore show that our

procedure estimates some true break points if the number of true break points is underspecified.

Note that we do not estimate any break in step (2) if m = 0 (first iteration), so "saving the

residuals" refers to using the original time series in the following steps.

Whereas the estimation in step (2) is done on the original system of time series, the testing in

step (3) is conducted on the residuals.

This iterative procedure avoids splitting up the sample as suggested in for example Bai (1997b)

which is not possible under long memory and allows us to use the limiting results in Theorem 1

and 2 which are derived under long-range dependencies. The following Theorem states that our

procedure has a hit rate of (1− α)% where α is the level of the break point test in Theorem 2.

Theorem 3. Let α be the significance level of the break point test in Theorem 2. Under As-

sumptions 1-11 the REBIT procedure has a hit rate of (1− α)%.

The hit rate can be made converging to one by choosing the critical value of the break point test

to be sample size dependent α/T . However, this is not further considered here as the sample

size is given fixed in practice.
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5 Simulation results

We conduct two Monte Carlo simulation studies to examine the finite sample properties of the

break point estimator and our proposed REBIT procedure. We consider a bivariate model of

fractionally integrated white noise processes

X1t = ∆d1u1t

X2t = ∆d2u2t

with long-memory parameters chosen asD = (d1, d2) = {(0, 0), (0.2, 0), (0.2, 0.2), (0.4, 0), (0.2, 0.4),

(0.39, 0.4), (0.4, 0.4)}. To estimate D, we apply the multivariate local Whittle estimator by Shi-

motsu (2007) using a bandwidth of bT 2/3c. To test the procedure the nominal significance level

is α = 5%, we choose ε = 0.05, and M = 1, 000 replications.

We choose m = 0, 1, 2, 3 breaks which are uniformly allocated to the two series such that the

distance between the breaks across both series is the same. Whether the breaks are positive or

negative is randomly chosen. We make the break size dependent on the memory parameter as

follows

β = κT d−1/2, (9)

where β is the break size, d = max(d1, d2), and κ is a finite constant.

In Tables 1 and 2 we report the bias resp. the MSE of the estimator if the number of breaks

m is known. We observe that increasing κ, i.e. the break size, or σ, i.e. the correlation in the

bivariate system, decreases bias and MSE.
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Breaks 1 2 3

d1 d2 σ / κ 3 6 3 6 3 6

0 0 0 0.000 696 10 0.000 741 50 0.106 608 00 0.063 163 25 0.085 305 86 0.054 599 75

.5 0.000 175 70 0.002 811 20 0.099 840 33 0.050 717 58 0.081 558 18 0.048 461 56

.2 0 0 0.001 078 60 0.000 040 50 0.001 394 58 0.000 123 47 0.011 312 72 0.000 257 08

.5 0.000 791 60 0.000 038 20 0.001 114 13 0.000 229 42 0.003 724 34 0.000 082 71

.4 0 0 0.000 019 30 0.000 011 60 0.000 049 40 0.000 005 47 0.000 042 55 0.000 010 97

.5 0.000 007 30 0.000 003 80 0.000 024 57 0.000 009 88 0.000 007 14 0.000 008 01

.2 .2 0 0.000 551 00 0.000 004 80 0.002 377 49 0.000 344 37 0.011 612 07 0.000 376 60

.5 0.000 586 10 0.000 026 60 0.001 655 75 0.000 115 98 0.003 805 34 0.000 133 23

.4 .2 0 0.000 013 40 0.000 000 90 0.000 034 23 0.000 006 97 0.000 019 87 0.000 009 67

.5 0.000 017 40 0.000 003 10 0.000 011 36 0.000 003 32 0.000 029 16 0.000 008 34

Table 1: Bias of the suggested estimator.

Breaks 1 2 3

d1 d2 σ / κ 3 6 3 6 3 6

0 0 0 0.086 847 57 0.044 528 43 0.123 645 93 0.082 614 74 0.130 690 19 0.087 243 98

.5 0.080 877 34 0.031 975 87 0.115 343 19 0.069 150 92 0.122 001 24 0.079 260 33

.2 0 0 0.002 929 25 0.000 091 31 0.013 965 03 0.000 204 09 0.032 434 71 0.000 346 61

.5 0.001 287 93 0.000 049 59 0.005 817 66 0.000 108 77 0.017 118 46 0.000 174 99

.4 0 0 0.000 005 02 0.000 000 26 0.000 010 77 0.000 000 51 0.000 016 25 0.000 000 77

.5 0.000 002 91 0.000 000 12 0.000 005 51 0.000 000 25 0.000 008 58 0.000 000 37

.2 .2 0 0.003 393 87 0.000 094 32 0.013 845 58 0.000 206 51 0.031 960 04 0.000 373 27

.5 0.001 331 91 0.000 049 85 0.005 360 97 0.000 108 77 0.016 500 71 0.000 181 54

.4 .2 0 0.000 004 87 0.000 000 24 0.000 011 32 0.000 000 51 0.000 016 52 0.000 000 79

.5 0.000 002 91 0.000 000 12 0.000 005 77 0.000 000 26 0.000 009 38 0.000 000 37

Table 2: MSE of the suggested estimator.

The asymptotic critical values we use are simulated for different combinations of D = (d1,d2)

by approximating the stochastic integrals by partial sums and can be found in Table 4 to 6 in

our online appendix. They are based on 10,000 Monte Carlo replications with 1, 000 increments

per path of the fractional Brownian motion. We obtain the corresponding critical value for an

estimated value that is between two simulated d-values by linear interpolation between these two

values.

In Figure 1 we report the hit ratio, i.e. how often our procedure detects the true number of

breaks, dependent on κ with T = 1, 000. The case of m = 0 is implicitly given for κ = 0.

First, we observe that in all cases we obtain a hit ratio smaller than 5% (our nominal significance
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level) when κ = 0, i.e. we have no breaks in the series. For all combinations of D = (d1, d2)

we observe that the hit ration increases as the break size increases. Additionally, we see in all

graphs that the more breaks we have the larger their size needs to be to obtain a higher hit ratio.
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(c) d1 = 0.2, d2 = 0, Correlation ρ = 0
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(f) d1 = 0.2, d2 = 0.2, Correlation ρ = 0.5
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(h) d1 = 0.4, d2 = 0, Correlation ρ = 0.5
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0 2 4 6
0

0.2

0.4

0.6

0.8

1

κ

m = 1
m = 2
m = 3
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(m) d1 = 0.39, d2 = 0.4, Correlation ρ = 0

0 2 4 6
0

0.2

0.4

0.6

0.8

1

κ

m = 1
m = 2
m = 3
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Figure 1: Hit ratio of our REBIT procedure for different values of d1 and d2 where the true
number of breaks is m. The parameter κ on the x-axis is related to the break size, which
increases as κ increases. The value on the y-axis provides the hit ratio of our test, i.e. whether
the true number of breaks is detected. T = 1, 000, the memory parameter is estimated by
multivariate local Whittle estimation, the series have correlation parameter ρ.
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6 Empirical Application

Inflation is one of the key variables in macroeconomics since it is assumed to determine un-

employment and national output. Over the past years numerous empirical studies found that

inflation rates possess significant autocorrelations at large lags and a pole at the periodogram

at Fourier frequencies local to zero (Hassler and Wolters (1995) or Kumar and Okimoto (2007)

among others). This can be seen as an indication that inflation rates follow a pure long-memory

−
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0
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1
.0
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1970 1980 1990 2000 2010 2019

Figure 2: Monthly inflation rates of France and Germany from 1970 to 2019. The dotted red
vertical lines refer to the mean shifts our procedure detected. The bold red horizontal lines refer
to the estimated means in each partition.

process, but similar time series features can also be generated by short-memory processes that

are contaminated with breaks, which is referred to as spurious long memory (see for example

Diebold and Inoue (2001), Granger and Hyung (2004), Mikosch and Stărică (2004)).

Standard estimation procedures of the long-memory parameter are biased upwards in the pres-

ence of breaks. The other way around standard testing procedures for shifts detect too many

breaks in a long-memory time series. The literature is therefore unclear about the nature of

the underlying process of inflation time series. On the one hand Hassler and Wolters (1995)

and Baum et al. (1999) argue, for example, that an ARFIMA model can describe inflation rates

well. Bos et al. (1999) and Morana (2002) on the other hand find evidence of structural breaks
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in international inflation rates and Gadea et al. (2004) shows that the memory of the series

is reduced when structural changes are allowed. Many recent contributions favor a mixture of

long-memory models and structural breaks (Kumar and Okimoto (2007), among others).

However, whether the series follow a pure long-memory process, a short-memory process with

breaks or a mixture of long memory and breaks is of major importance for policy makers: if in-

flation rates are persistent, monetary policy actions need more time to unfold their effect, which

is more expensive.

Our testing procedure allows to detect the true number of breaks for multivariate time series

that are allowed to possess long memory. Therefore, it can be used to examine the properties of

the underlying process of inflation rates. We use monthly CPI data (Pt) from January 1970 until

May 2019 of Germany and France available from the OECD1 to calculate inflation rates (πt) as

πt = 100(logPt − logPt−1).

As a result we have 592 observations that are further seasonally adjusted. Figure 2 illustrates

the bivariate time series along with the detected break points and partitions. Table 3 provides

further results of our testing procedure and regarding the persistence of the raw and the demeaned

inflation series.

The left hand side of Panel A of Table 3 shows results regarding the persistence of the inflation

series. In line with earlier empirical results (see, for example, Hassler and Wolters (1995) or Bos

et al. (1999)) the multivariate local Whittle estimator (GSE) by Shimotsu (2007) estimates high

values of d for the raw data such that both series seem to be highly persistent. However, there is

evidence that the long-memory time series are contaminated by breaks, which lead to an upward

bias of the memory parameter estimates of the GSE (Mikosch and Stărică (2004)). First, the

multivariate test against spurious long memory (MLWS) by Sibbertsen et al. (2018) rejects the

null hypothesis of pure long-memory processes at a 1% significance level. Second, applying the

(univariate) trimmed log-periodogram estimator (tGPH) by McCloskey and Perron (2013) on

both inflation series, we observe that the memory decreases. Therefore, we apply our procedure

that can consistently detect and estimate multiple shifts in the bivariate system of inflation series.

The results can be seen in Panel B of Table 3. We observe that the first structural break our

procedure detects was in May 1973, which is a few month before the first oil crisis. We further see

that the mean in the second partition of the inflation series of France increases heavily while the

mean in the series of Germany decreases. The second structural break is detected in November

1http://data.oecd.org/price/inflation-cpi.htm
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Panel A: persistence

raw series demeaned series
dGSE MLWS dtGPH dGSE MLWS

France 0.567 2.518*** 0.231 0.234 1.227*
Germany 0.375 0.230 0.250

Panel B: breaks

# breaks breakdates
REBIT 2 05/73, 11/84

Table 3: Panel A presents results regarding the persistence of the system. On the left hand
side of the table the memory of the raw inflation series is estimated applying on the one hand
the multivariate local Whittle estimator (GSE) by Shimotsu (2007) with a bandwidth of m =
bT 2/3c and on the other hand the trimmed log-periodogram estimator (tGPH) by McCloskey and
Perron (2013), which is robust against shifts, with m = bT 0.8c and the constant that determines
the trimming of ε = 0.05. Furthermore, the test statistic of the multivariate test against spurious
long memory (MLWS) by Sibbertsen et al. (2018) is given with m = bT 2/3c and trimming
parameter ε = 0.02. Here, *** denotes significance at 1%, ** significance at 5% and * significance
at 10%.
On the right hand side of the table the GSE estimates of the memory as well as the result of the
MLWS test are given for the demeaned time series. The demeaning was executed with regard to
the break dates detected by our REBIT procedure.
Panel B presents the number of breaks and corresponding break dates detected by our REBIT
procedure.

1984 which could be connected to the 1980s oil glut. We observe that the mean of both inflation

series strongly decrease in the third partition of the series.

The other two procedures we consider are the SEQ(l+ 1|l) test of Qu and Perron (2007) and the

F(l + 1|l) test of Bai and Perron (1998). The F(l + 1|l) test detects 12 breaks in the inflation

series, the SEQ(l + 1|l) test more than 19. Some of the detected break dates are similar to the

ones found by the REBIT test, but the other two tests find more breaks especially at the end

of the sample. This can be reasoned by the fact that both procedures are not robust under

long memory. The robust tGPH estimator by McCloskey and Perron (2013) indicates that there

is still memory left apart from the upward bias in standard long-memory estimation methods

induced by breaks.

To further investigate whether the REBIT procedure detects the relevant breaks, we examine the

demeaned inflation series (demeaning is executed with the two breaks our procedure detected).

The results of the GSE estimator and MLWS test can be seen on the right hand side of Panel A

of Table 3. The estimated memory by the GSE strongly decreases to a value around 0.24 which is

similar to the tGPH estimate of the raw series. Furthermore, evidence of spurious long memory
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also lessens since the MLWS test is just significant at the 10% significance level. Therefore, we

conclude that our procedure detects all relevant breaks of the bivariate inflation system.

7 Conclusions

This paper contains to the best of our knowledge the first procedure for testing for multiple

breaks in a long-memory time series framework. We embed our procedure into a multivariate

system of long-memory time series allowing for breaks in the mean as well as in the covariance

matrix. The breaks are allowed to appear contemporaneously or at different times. Our assump-

tions on the breaks are fairly general basically just assuming that the size of the breaks depends

of the memory of the underlying time series.

The procedure consists of iterative testing testing for m structural breaks with m increasing

in each step. It therefore avoids splitting the sample in segments as in Bai (1998) and others

which is not possible under long memory. Our test and break point estimator in each step is

Likelihood-ratio based. The consistency and limiting distribution of both procedures are derived.

Interestingly, the limiting distribution of the test depends on the one hand only on the maximum

of all memory parameters but on the other hand on the number of series having this maximum

memory.

A Monte Carlo study demonstrates the finite sample properties of our procedure and an appli-

cation to inflation rates is usefulness in practice.
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Appendix

A Proofs

This section contains the proofs of Lemma 1 and Theorem 1 and 2. In order to prove these

results we need a generalized Hájek-Rényi inequality, a strong law of large numbers (SLLN)

and a functional central limit theorem (FCLT) that hold under our stated assumptions and in

particular under long memory. We collect them in separate Lemmas in Section A.1. Afterwards

we show in Section A.2 that under our set of Assumptions 10 properties of the quasi-likelihood are

satisfied that have been considered in Bai et al. (1998), Bai (2000) and Qu and Perron (2007). The

proofs can be found in an online appendix. We prove consistency of the break point estimators,

i.e. Lemma 1. In Section A.4 we proof the limiting distribution of our test statistic, i.e. Theorem

2.

A.1 Proof Generalised Hájek-Rényi Inequality, SLLN, FCLT

Lemma A.1 (Generalised Hájek-Rényi Inequality). Let (ξi)i≥1 be a sequence of mean zero Rd-

valued random vectors. Define Fk as an increasing σ-field generated by (ξi)i≥k. Suppose (ξi)i≥1

satisfies Assumption 4 with xiui replaced by ξi. Then there exists an L <∞ such that, for every

δ > 0 and m > 0, P (supk≥m k
−1‖
∑k

t=1 ξt‖ > δ) ≤ (L/δ2m2d−1), where d = dmax is the largest

memory parameter of the elements of the vector ξ.

Proof. In the following we write for the partial sums Mi:j =
∑j

t=i ξt. We start by noting

P

(
max
k≥m

1

k
‖M1:k‖ > δ

)
≤

∞∑
p=0

P

(
max

2p≤k≤2p+1m

1

k
‖M1:k‖ > δ

)
. (A.1)

To simplify notation we write Si:j = maxk=i,...,j 1/k ‖M1:k‖. We need the following auxilliary

result:

P

(
max

1≤k≤n
1/k‖M1:k‖ > δ

)
≤ 4

A(d)C(ε)

δ2
n2d

n∑
t=1

(
1

t

)2

. (A.2)
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Suppose (A.2) holds. Then we can write

P ( max
2pm≤k≤2p+1m

1

k
‖M1:k‖ > δ) ≤P (

1

2pm
‖M1:m‖ >

δ

2
) (A.3)

+ P ( max
2pm+1≤k≤2p+1m

1

k
‖M2pm+1:2p+1m‖ >

δ

2
)

≤ 4
A(d)C(ε)

δ2
(2pm)2d−2 + 4

A(d)C(ε)

δ2
(2pm)2d

2p+1∑
t=2pm+1

(
1

t

)2

≤ 8
A(d)C(ε)

δ2
(2pm)2d−1.

Using equation (A.1) we have

P

(
max
k≥m

1

k
‖M1:k‖ > δ

)
≤ 8

A(d)C(ε)

δ2

∞∑
p=0

(2pm)2d−1 ≤ L

δ2
m2d−1, (A.4)

where L <∞ is a constant.

We prove equation (A.2) by the Markov inequality. To simplify notation we write Si:j =

maxk=i,...,j 1/k ‖M1:k‖. Specifically, we set out to prove

E
(
S2

1:n

)
≤ C(ε)A(d)n2d

n∑
t=1

1

t2
. (A.5)

If equation (A.5) holds, our auxiliary result (A.2) is proven by the Markov inequality. The claim

in (A.5) is proved by induction on n. For n = 1 the inequality is obvious for A(d) = 1 because

of the following inequality: Kechagias and Pipiras (2015) proved that for the partial sums Mi:j

there exists C(ε) <∞ such that, for all i, j,

E
(
‖Mi:j‖2

)
≤ C(ε) |j − i+ 1|2d+1. (A.6)

For the induction step we set m = dn2 e+ 1. Then, we note that

max
k=1,...,n

1

k
‖M1:k‖ ≤

1

m
M1:m+

((
max

k=1,...,m−1

1

k
‖M1:k‖

)2

+

(
max

k=m+1,...,n

1

k
‖M1:k‖

)2
)1/2

. (A.7)

Applying the Minkowski inequality to the above inequality yields

E
(
S2

1:n

)1/2 ≤ 1

m
(E(‖M1:m‖2)1/2 +

(
E(S2

1:m−1) + E(S2
m+1:n)

)1/2 (A.8)

≤ 1

m

(
C(ε)m2d+1

)1/2
+

(
A(d)C(ε)

(
(m− 1)2d

m−1∑
t=1

1

t2
+ (n−m)2d

n∑
t=m+1

1

t2

))1/2

≤

(
C(ε)m2d

n∑
t=1

1

t2

)1/2

+

(
A(d)C(ε)

(n
2

)2d
(
m−1∑
t=1

1

t2
+

n∑
t=m+1

1

t2

))1/2

≤

(
C(ε)n2d

n∑
t=1

1

t2

)1/2 (
1 +

(
A(d)

22d

)1/2
)
,

where we used equation (A.6) and the induction hypothesis in the second line and the fact that

1 ≤
∑m

t=1 1/t2 in the third line. Now we choose A(d) such that

1 +
A(d)1/2

2d
≤ A(d)1/2 ⇔ A(d) ≥

(
1− 1

2d

)−2

≥ 1. (A.9)
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The induction step is proven and thus this concludes the proof of inequality (A.5).

To state the following Lemma we repeat the notion of multivariate fractional Brownian motion

(cf. Marinucci and Robinson (2000), Davidson and Jong (2000), Chung (2002)). We denote by

WD(t) = (Wd1(t), . . . ,Wdn(t))′ an n-dimensional fractional Brownian motion with n different

memory parameters D = (d1, . . . , dn)′. Each Wdi(t) is a one-dimensional fractional Brownian

motion defined by

Wdi(t) =
1

Γ(di + 1)

(∫ t

0
(t− s)didW (i)

0 (s) +

∫ 0

−∞

(
(t− s)di − (−s)di

)
dW

(i)
0 (s)

)
, (A.10)

whereW (i)
0 (t) is the ith element of an n-dimensional Brownian motion with the covariance matrix

Ω.

Lemma A.2 (FCLT, SLLN). Let (ξi)i≥1 be a sequence of mean zero Rd-valued random vectors

that satisfy Assumption 4. Then

(a) (FCLT)

diag(T−1/2−d1 , . . . , T−1/2−dn)

[Tr]∑
t=1

ξt ⇒ ΩWD(r), (A.11)

where WD(r) is an n vector of independent fractional Wiener processes and ⇒ denotes

weak convergence under the Skorohod topology;

(b) (SLLN)

k−1
k∑
i=1

ξi
a.s.−−→ 0 as k →∞; (A.12)

Proof. a) Under our Assumptions Theorem 1 of Chung (2002) holds and gives this result.

b) Under our Assumptions Corollary 3 of Wu (2007) applies and gives this result.
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A.2 10 Properties of the Quasi-Likelihood Ratio

This section contains 10 properties of the quasi-likelihood ratio and parameter estimates. We

need them in subsequent proofs. In this subsection we write

L(1, k;β,Σ) =

k∏
t=1

f(yt|xt, ..., β,Σ)

k∏
t=1

f(yt|xt, ..., β0,Σ0)

, (A.13)

where β0 and Σ0 describe the true values of the coefficients. In the following we denote by β̂(k)

and Σ̂(k) estimates obtained from maximizing L(1, k;β,Σ). Then the following properties hold:

Property 1. For each δ ∈ (0, 1]

sup
Tδ≤k≤T

L(1, k; β̂(k), Σ̂(k)) = Op(1), (A.14)

sup
Tδ≤k≤T

(‖β̂(k) − β0‖+ ‖Σ̂(k) − Σ0‖) = Op(T
d−1/2). (A.15)

The following property is modified compared to property 2 of Qu and Perron (2007). Instead

of considering the supremum of the likelihoood over 1 ≤ k ≤ T we consider here the supremum

over δT ≤ k ≤ T for some δ ∈ (0, 1).

Property 2. For some δ ∈ (0, 1), each ε > 0, there exists a B > 0 such that

Pr

(
sup

δT≤k≤T
T−BL(1, k; β̂(k), Σ̂(k)) > 1

)
< ε (A.16)

for all large T .

Property 3. Let ST = {(β,Σ): ‖β − β0‖ ≥ T−1/2+d log T or ‖Σ− Σ0‖ ≥ T−1/2+d log T}. For

any δ ∈ (0, 1), D > 0 and ε > 0 the following statement holds when T is large:

Pr

(
sup
k≥δT

sup
(β,Σ)∈ST

TDL(1, k;β,Σ) > 1

)
< ε. (A.17)

Property 4. Not needed.

The following property is different from Qu and Perron (2007) in that we do not assume that the

limit of (hTd
2
T )/T exists. Instead as pointed out by Bai (2000) we assume the sufficient condition

that lim infT→∞(hTd
2
T )/T ≥ h > 0.

Property 5. Let hT and dT be positive sequences such that hT is nondecreasing, dT → ∞ and

lim infT→∞(hTd
2
T )/T ≥ h > 0. Define Θ3 = {(β,Σ): ‖β‖ ≤ p1, λmin(Σ) ≥ p2, λmax(Σ) ≤ p3},

where p1, p2 and p3 are arbitrary constants that satisfy p1 < ∞, 0 < p2 ≤ p3 < ∞. Define

ST = {(β,Σ): ‖β − β0‖ ≥ T−1/2+d log T or ‖Σ − Σ0‖ ≥ T−1/2+d log T}. Then, for any ε > 0,
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there exists an A > 0, such that

Pr

(
sup

k≥AhT
sup

(β,Σ)∈ST∩Θ̄3

L(1, k;β,Σ) > ε

)
< ε (A.18)

when T is large.

Property 6. With νT satisfying Assumption 6, for each β and Σ such that ‖β − β0‖ ≤ MvT

and ‖Σ− Σ0‖ ≤MvT , with M <∞, we have

sup
1≤k≤T 1/2−dv−1

T

sup
λ,Ξ

L(1, k;β + T−1/2+dλ,Σ + T−1/2+dΞ)

L(1, k;β,Σ)
= op(1). (A.19)

Property 7. Under the conditions of Property 6, we have

sup
1≤k≤Mv−2

T

sup
λ,Ξ

log
L(1, k;β + T−1/2+dλ,Σ + T−1/2+dΞ)

L(1, k;β,Σ)
= op(1). (A.20)

Property 8. We have

sup
Tδ≤k≤T

sup
β∗,Σ∗,λ,Ξ

log
L(1, k;β0 + T−1/2+dβ∗ + T−1+2dλ,Σ0 + T−1/2+dΣ∗ + T−1+2dΞ)

L(1, k;β0 + T−1/2+dβ∗,Σ0 + T−1/2+dΣ∗)
= op(1),

(A.21)

where the supremum with respect to β∗,Σ∗, λ,Ξ is taken over an arbitrary compact set.

Property 9. Let T1 = [aT ] for some a ∈ (0, 1] and let T2 = [T 1/2−dv−1
T ], where vT satisfies

Assumption 6. Consider

yt =x′tβ
0
1 + Σ0

1ηt, (t = 1, . . . , T1), (A.22)

yt =x′tβ
0
2 + Σ0

2ηt, (t = T1 + 1, . . . , T1 + T2), (A.23)

where ‖β0
1 − β0

2‖ ≤ MvT and ‖Σ0
1 − Σ0

2‖ ≤ MvT for some M <∞. Let k = T1 + T2 be the size

of the pooled sample and let (β̂n, Σ̂n) be the associated estimates. Then β̂n − β0
1 = Op(T

d−1/2)

and Σ̂n − Σ0
1 = Op(T

d−1/2).

Property 10. Not needed.
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A.3 Proof of Lemma 1

Proof. We show the consistency in two steps: First we prove an auxiliary result on the conver-

gence rate of the break point estimates. Second we use results from Bai (2000) to justify the

statement.

Let N := [T
1
2
−dν−1

T ]. Let Aj = {(k1, ..., km) ∈ Λε : |ki−k0
j | > N, i = 1, . . . ,m}, where Λε is given

in Assumption 11. Because LRT (k̂1, ..., k̂m) ≥ LRT (k0
1, ..., k

0
m) ≥ LRT (k0

1, ..., k
0
m, β

0,Σ0) = 1, to

show (k̂1, ..., k̂m) /∈ Aj , it suffices in a first step to show

P ( sup
(k1,...,km)∈Aj

LRT (k1, . . . , km) > ε) < ε. (A.24)

We extend the definition of LRT to every subset {l1, . . . , lr} of {1, 2, ..., T − 1} such that

LRT (l1, . . . , lr) = LRT (l(1), . . . , l(r)) where 0 < l(1) < · · · < l(r) are the ordered versions of

l(1), . . . , l(r). For every (k1, . . . , km) ∈ Aj ,

LRT (k1, . . . , km) ≤ LRT (k1, . . . , km, k
0
1, . . . , k

0
j−1, k

0
j −N, k0

j +N, k0
j+1, . . . , k

0
m). (A.25)

Denote the likelihood ratio of the segment [k, l] by

D(k, l, β,Σ) =

l∏
t=k+1

f(yt|xt;β,Σ)

l∏
t=k+1

f(yt|xt;β0,Σ0)

(A.26)

and its optimal value

D(k, l) = sup
β,Σ

D(k, l, β,Σ). (A.27)

The likelihood ratio of the entire sample can be written as

LRT (k1, . . . , km) = D(0, k1) ·D(k1, k2) · · · · ·D(km, T ). (A.28)

The right hand side of (A.25) can be written as the product of at most (2m+2) terms expressible

as D(l, k) as in (A.28). There are at most (2m + 2) terms because ki may coincide with k0
l for

some i and l. One of these (2m+ 2) terms is D(k0
j −N, k0

j +N) and all the rest can be written

as D(l, k) with [l, k] ⊂ [k0
1 + 1; k0

i+1] for some i. By Property 1 and 2, logD(l, k) = Op(log T )

uniformly in l, k such that k0
i + 1 ≤ l < k ≤ k0

i+1 with |l − k| > Tν. That is, D(k, l) = Op(T
B)

for some B > 0. Thus,

LRT (k1, . . . , km) ≤ Op(T (2m+1)B)D(k0
j −N, k0

j +N). (A.29)

We now show thatD(k0
j−N, k0

j+N) is small. Introduce the reparameterization. LR∗T (k, l, β,Σ) =

D(k, l, β0 + (l− k)−1/2β,Σ0 + (l− k)−1/2Σ) assuming that (β0,Σ0) is the true parameter of the
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segment [k, l]. We note that

D(k0
j −N, k0

j +N) = sup
β,Σ

[D(k0
j −N, k0

j ;β,Σ) ·D(k0
j , k

0
j +N ;β,Σ)]

= sup
β,Σ

[LR∗T (k0
j −N, k0

j ;N
1/2(β − β0

j ), N1/2(Σ− Σ0
j )) (A.30)

× (LR∗T (k0
j , k

0
j +N ;N1/2(β − β0

j+1), N1/2(Σ− Σ0
j+1))].

This follows from the definition of LR∗T and the fact that (β0
j ,Σ

0
j ) is the true parameter for the

segment [k0
j − N, k0

j ] and (β0
j+1,Σ

0
j+1) is the true parameter for the segment [k0

j + 1, k0
j + N ].

From max{‖x− z‖, ‖y − z‖} ≥ ‖x− y‖/2 for all (x, y, z), we have for all β and Σ

max{N1/2‖β − β0
j ‖, N1/2‖β − β0

j+1‖} ≥N1/2‖β0
j − β0

j+1‖/2 (A.31)

max{N1/2‖Σ− Σ0
j‖, N1/2‖Σ− Σ0

j+1‖} ≥N1/2‖Σ0
j − Σ0

j+1‖/2. (A.32)

By Assumption 6, we either have N1/2‖β0
j − β0

j+1‖/2 ≥ logN or N1/2‖Σ0
j − Σ0

j+1‖/2 ≥ logN .

This follows from if ‖β0
j − β0

j+1‖ ≥ νTC for some C > 0, then

N1/2‖β0
j − β0

j+1‖/2 = (T 1/2ν−1
T )1/2νTC = C(T 1/2νT )

1
2 ≥ log T ≥ logN. (A.33)

Now suppose that N1/2‖β0
j − β0

j+1‖/2 ≥ logN . Then we have either (i) N1/2‖β − β0
j ‖ ≥ logN

or (ii) N1/2‖β− β0
j+1‖ ≥ logN . For case (i) we can apply Property 3 to the first term inside the

brackets of (A.30) to obtain

LR∗T (k0
j −N, k0

j ;N
1/2(β − β0

j ), N1/2(Σ− Σ0
j )) = Op(N

−A) (A.34)

for every A > 0. Moreover, by Property 2 the second term inside the bracket of (A.30) is bounded

by Op(log T ). Similarly, for case (ii), we can apply Property 3 to show that the second term of

(A.30) is Op(N−A) and the first term is bounded by Op(log T ). So for each case, we have

D(k0
j −N, k0

j +N) = log T Op(N
−A) (A.35)

for an arbitrary A < 0. It is further N−A ≤ T−A/2 since N ≥ T 1/2 for all large T . Thus from

(A.29), LRT (k1, . . . , km) ≤ Op(T (2m+1)B− 1
2
A) log T

p−→ 0 for a large A. This proves (A.24).

Now by Proposition 2 of Bai (2000) we can deduce that k̂j − k0
j = Op(ν

2
T ) for j = 1, . . . ,m

using the preliminary convergence order given by Equation (A.24). The convergence rate for the

estimated regression coefficients βj and covariances Σj follows as in Bai (1997b) and Bai and

Perron (1998) due to the fast convergence of the estimated break points.
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A.4 Proof of Theorem 1

Proof. Without loss of generality, consider the j-th break date and start with the case where

the candidate estimate is before the true break date. We obtain an expansion for lr1
j ([s/ν

2
r ]) as

defined in Theorem 1. Note that s is implicitly defined by s = ν2
T (Ti− T 0

i ) = rν2
T . We deal with

each term separately.

For the first term, we have as in Qu and Perron (2007)

1

2

T 0
j∑

t=T 0
j +[s/ν2T ]

uTt

(
(Σ0

j )
−1−(Σ0

j+1)−1
)
ut (A.36)

=
1

2
tr
(

(Σ0
j )

1
2 (Σ0

j+1)−1Φj(Σ
0
j )
− 1

2 νT

T 0
j∑

t=T 0
j +[s/ν2T ]

(ηt η
T
t − I)

− r

2
νT tr

(
(Σ0

j+1)−1Φj

)
.

For the second term we have

− r

2
(log |Σ0

j | − log |Σ0
j+1|) =

r

2
νT tr

(
Φj(Σ

0
j+1)−1

)
+
r

4
ν2
T tr

(
[Φj(Σ

0
j+1)−1]2

)
. (A.37)

The sum of the first two terms is

1

2

T 0
j∑

T 0
j +[s/ν2T ]

uTt

(
(Σ0

j )
−1 − (Σ0

j+1)−1
)
ut −

r

2
(log|Σ0

j | − log|Σ0
j+1|) (A.38)

=
1

2
tr
(

(Σ0
j )

1
2 (Σ0

j+1)−1Φj(Σ
0
j )
− 1

2 νT

T 0
j∑

T 0
j +[s/ν2T ]

(ηt η
T
t − I)

)
+
r

4
ν2
T tr

(
[Φj(Σ

0
j+1)−1]2

)
= I + II.

Now

T 1−2d(I + II) d→1

2
tr
(

(Σ0
j )

1
2 (Σ0

j+1)−1Φj(Σ
0
j )
− 1

2 ξ1,d,j(s)
)

(A.39)

+
s

4
tr
(

[(Σ0
j+1)−1Φj ]

2
)

=
1

2
tr(A1,jξ1,d,j(s)) +

s

4
tr(A2

1,j),

- 34 -



where ξ1,d,j is a nonstandard Brownian motion process with var
[
vec(ξ1,d,j(s))

]
= Ω0

1,j . For the

third term we have

− 1

2

T 0
j∑

t=T 0
j +[s/ν2T ]

(β0
j − β0

j+1)Txt(Σ
0
j+1)−1xTt (β0

j − β0
j+1)

P→ 1

2
s δTj Q1,j δj . (A.40)

Note that xt belongs to regime j, but it is scaled by the covariance matrix of regime j+1 because

the estimate of the break occurs before the true break date. For the fourth term,

− T 1−2d

T 0
j∑

t=T 0
j +[s/ν2T ]

(β0
j − β0

j+1)Txt(Σ
0
j+1)−1ut

d→ δTj (Π1,j)
1
2 ζ1,d,j(s) (A.41)

with

Π1,j = lim
T→∞V ar

{
(T 0
j − T 0

j−1)−
1
2

[ T 0
j∑

t=T 0
j +[s/ν2T ]

xt(Σ
0
j+1)−1(Σ0

j )
1
2 ηt

]}
. (A.42)

Combining these results, we have, for s < 0

T 1−2dlr1
j

(
[
s

ν2
T

]
)

d→− |s|
2

[1

2
tr(A2

1,j) + δTj Q1,j δj

]
(A.43)

+
1

2
vec(A1,j)

T vec(ξ1,d,j(s)) + δTj (π1,j)
1
2 ζ1,d,j(s).

Now, vec(A1,j)
T vec(ξ1,d,j(s))

d
=
(
vec(A1,j)

TΩ0
1,jvec(A1,j)

) 1
2
V1,d,j(s), where V1,d,j(s) is a stan-

dard fractional Brownian motion.

Similarly, δTj (Π1,j)
1
2 ζ1,d,j(s)

d
= (δTj Π1,j δj)

1
2U1,d,j(s) and U1,d,j(s) is a standard fractional Brow-

nian motion. Under the stated conditions, V1,d,j(s) and U1,d,j(s) are independent. Then,(
vec(A1,j)

TΩ0
1,jvec(A1,j)/4

) 1
2
V1,d,j(s) +

(
δTj (π1,j)δj

) 1
2
U1,d,j(s) (A.44)

d
=
(
vec(A1,j)

TΩ0
1,jvec(A1,j)/4 + δTj (π1,j)δj

) 1
2
W1,j,d(s) (A.45)

≡T1,j W1,j,d(s), (A.46)

where Wd(s) is a unit fractional Brownian motion.

Hence with ∆1,j = tr(A2
1,j)/2 + δTj Q1,j δj , we have

T 1−2dlr1
j

(
[
s

ν2
T

]
)

d→ −|s|
2

∆1,j + T1,j W1,j,d(s) (A.47)

The proof for s > 0 is similar:

T 1−2dlr1
j

(
[
s

ν2
T

]
)

d→ −|s|
2

∆2,j + T2,j W2,j,d(s) (A.48)

with ∆2,j = tr(A2
2,j)/2 + δTj Q2,j δj and

T2,j =
[
vec(A2,j)

TΩ0
2,jvec(A2,j)/4 + δTj (π2,j)δj

] 1
2
. (A.49)
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By definition it is lr1
j (0) = 0. Given that s = ν2

T (Tj −T 0
j ), the argmax yields the scaled estimate

ν2
T (T̂j − T 0

j ). The result follows because we can take the argmax over the compact set CM

and with Lemma 1, this is equivalent to taking the argmax in an unrestricted set because with

probability arbitrarily close to 1, the estimates will be contained in CM

Hence,

T 1−2dν2
T (T̂j − T 0

j )
d→
argmax
s

 −
|s|
2 ∆1,j + T1,j Wj,d(s), s ≤ 0,

− |s|2 ∆2,j + T2,j Wj,d(s), s > 0,

(A.50)

where Wj,d(s) = W1,j,d(s) for s ≤ 0 and Wj,d(s) = W2,j,d(s) for s > 0. Multiplying by ∆1,j/T
2
1,j

and applying a change of variable with u = (∆2
1,j/T

2
1,j)s, we obtain Theorem 1.
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A.5 Proof of Theorem 2

Proof of Theorem 2. We introduce some notation first. Let

Σ̃1,j =
1

Tj

Tj∑
t=1

(yt − x′atβ̃a − x′btβ̃b1,j)(yt − x′atβ̃a − x′btβ̃b1,j) (A.51)

be the estimated covariance matrix using the full sample estimate of βa obtained under the null

hypothesis of no change and using the estimate of βb based on data up to the last date of regime

j, defined as

β̃b1,j = (

Tj∑
t=1

xbtΣ̃
−1
1,jx

′
bt)
−1

Tj∑
t=1

xtΣ̃
−1
1,j (yt − x

′
atβ̃a). (A.52)

Additionally,

Σ̂j =
1

Tj − Tj−1

Tj∑
t=Tj−1+1

(yt − x′atβ̂a − x′btβ̂bj)(yt − x′atβ̂a − x′btβ̂bj)′ (A.53)

is the estimate of the covariance matrix of the errors under the alternative hypothesis using the

full sample estimate of βa and using the estimate of βb based on data from regime j only, that

is,

β̂b,j = (

Tj∑
t=Tj−1+1

xbtΣ̂
−1
j x′bt)

−1

Tj∑
t=Tj−1+1

xtΣ̂
−1
j (yt − x′atβ̂a). (A.54)

Consider the log-likelihood of a given partition of the sample

LRT (T1, . . . , Tm) =
2

T 2d
log L̂T (T1, . . . , Tm)− 2

T 2d
log L̃T =

T

T 2d
log |Σ̃| − T

T 2d
log |Σ̂| (A.55)

=
1

T 2d

m∑
j=1

(Tj+1 log |Σ̃1,j+1| − Tj log |Σ̃1,j | − (Tj+1 − Tj) log |Σ̂j+1|)

=:
1

T 2d

m∑
j=1

F jT .

Using a second-order Taylor series expansion of each term gives

log |Σ̃1,j+1| = log |Σ0|+ tr((Σ0)−1(Σ̃1,j+1 − Σ0)) (A.56)

− 1

2
tr((Σ0)−1(Σ̃1,j+1 − Σ0)(Σ0)−1(Σ̃1,j+1 − Σ0))

+ op(T
−1),

log |Σ̃1,j | = log |Σ0|+ tr((Σ0)−1(Σ̃1,j − Σ0)) (A.57)

− 1

2
tr((Σ0)−1(Σ̃1,j − Σ0)(Σ0)−1(Σ̃1,j − Σ0)) + op(T

−1),

log |Σ̂j+1| = log |Σ0|+ tr((Σ0)−1(Σ̂j+1 − Σ0)) (A.58)

− 1

2
tr((Σ0)−1(Σ̂j+1 − Σ0)(Σ0)−1(Σ̂j+1 − Σ0)) + op(T

−1).
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Applying this to the terms F jT ,

F jT :=F j1,T + F j2,T

= tr(Tj+1(Σ0)−1(Σ̃1,j+1 − Σ0)− Tj(Σ0)
−1(Σ̃1,j − Σ0)) (A.59)

− (Tj+1 − Tj)(Σ0)−1(Σ̂j+1 − Σ0))

− 1

2
tr(Tj+1[(Σ0)−1(Σ̃1,j+1 − Σ0)]2 (A.60)

− Tj [(Σ0)−1(Σ̃1,j − Σ0)]2 − (Tj+1 − Tj)[(Σ0)
−1(Σ̂j+1 − Σ0)]2).

First we consider F j1,T and write the regression in matrix form. Under the null hypothesis, we

have

Y = Xaβa +Xbβb + U (A.61)

with E(UU ′) = IT ⊗ Σ0. If only data up to the last date of regime j are included, we have

Y1,j = Xa1,jβa +Xb1,jβb1,j + U1,j . (A.62)

We now define Y d
1,j = (IT ⊗ Σ̃

−1/2
1,j )Y1,j , W1,j = (IT ⊗ Σ̃

−1/2
1,j )Xa1,j , Z1,j = (IT ⊗ Σ̃

−1/2
1,j )Xb1,j and

Ud1,j = (IT ⊗ Σ̃
−1/2
1,j )U1,j . Then, omitting the subscript when the full sample is used, we have

β̃a = [W ′MZW ]−1W ′MZY
d, (A.63)

β̃b1,j = (Z ′1,jZ1,j)
−1Z ′1,j(Y

d
1,j −W1,j β̃a), (A.64)

where MZ = I − Z(Z ′Z)−1Z ′. The regression equation using only regime (j + 1) is

Yj+1 = Xa,j+1βa +Xb,j+1βb,j+1 + Uj+1. (A.65)

Define Ȳ d
j+1 = (IT ⊗ Σ̂

−1/2
j+1 )Yj+1, W̄j+1 = (IT ⊗ Σ̂

−1/2
j+1 )Xa,j+1, Z̄j+1 = (IT ⊗ Σ̂

−1/2
j+1 )Xb,j+1,

Ūdj+1 = (IT ⊗ Σ̂
−1/2
j+1 )Uj+1, Z̄ = diag(Z̄1, . . . , Z̄m+1). Then, omitting the subscript when the full

sample is used, we have

β̂a = [W̄ ′MZ̄W̄ ]−1W̄ ′MZ̄ Ȳ
d, (A.66)

β̂b,j+1 = (Z̄ ′j+1Z̄j+1)−1Z̄ ′j+1(Ȳ d
j+1 − W̄j+1β̂a). (A.67)

Note that the choice of the estimate of the covariance matrix in Equations (A.63) to (A.67)

will have no effect provided a consistent one is used. As Qu and Perron (2007) (supplement, p.

25 − 26) we can show for the first component of F j1,T (or with obvious changes for the second
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component) that

Tj+1 tr((Σ0)−1Σ̃j+1)

= A′TW
′
1,j+1MZ1,j+1W1,j+1AT − Ud

′
1,j+1PZ1,j+1U

d
1,j+1

− 2(MZ1,j+1W1,j+1AT )′Ud1,j+1 + U ′1,j+1(IT ⊗ (Σ0)−1)U1,j+1 + op(1),

where AT = [W ′MZW ]−1W ′MZU
d. For the third component of F j1,T it can be shown that

(Tj+1 − Tj) tr((Σ0)−1Σ̂j+1) (A.68)

=Ā′T W̄
′
j+1MZ̄j+1

W̄j+1ĀT − Ūd
′

j+1PZ̄j+1
Ūdj+1

− 2(MZ̄j+1
W̄j+1ĀT )′Ūdj+1 + U ′j+1(IT ⊗ (Σ0)−1)Uj+1 + op(1),

where ĀT = [W̄ ′MZ̄W̄ ]−1W̄ ′MZ̄Ū
d. Following the same arguments as in Bai and Perron (1998,

p.75), we have plimT→∞ T
1/2ĀT = plimT→∞ T

1/2AT Hence, all terms that involve ĀT and AT

eventually cancel and

F j1,T = Ud
′

1,jPZ1,jU
d
1,j + Ud

′
j+1PZ̄j+1

Udj+1 − Ud
′

1,j+1PZ1,j+1U
d
1,j+1 + op(1). (A.69)

Now, T−dZ ′1,jU
d
1,j ⇒ Q

1/2
b W ∗D,pb(λi) and T−1

∑Tj
t=1 xbt(Σ

0)−1x′bt →p λiQb where W ∗D,pb(λi) is

a pb vector of zeros and independent fractional Wiener processes defined on [0, 1] as given in

Theorem 2 and where Qb is the appropriate submatrix of Q that corresponds to the elements of

xbt. Hence,

T−2d Ud
′

1,j+1PZ1,j+1U
d
1,j+1 ⇒ [W ∗D,pb(λj+1)′W ∗D,pb(λj+1)]/λj+1. (A.70)

Using similar arguments

T−2d Ud
′

1,jPZ1,jU
d
1,j ⇒ [W ∗D,pb(λj)

′W ∗D,pb(λj)]/λj (A.71)

and

T−2d Ud
′

j+1PZ̄j+1
Udj+1 (A.72)

⇒ (W ∗D,pb(λj+1)−W ∗D,pb(λj))
′(W ∗D,pb(λj+1)−W ∗D,pb(λj))/(λj+1 − λj).

These results imply that the first component in (A.59) has the limit

F j1,T ⇒
(λjW

∗
D,pb

(λj+1)− λj+1W
∗
D,pb

(λj))
′(λjW

∗
D,pb

(λj+1)− λj+1W
∗
D,pb

(λj))

(λj+1 − λj)λjλj+1
. (A.73)
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Consider now the limit of
∑m

j=1 F
j
2,T when changes in Σ0 are allowed. We have

F j2,T =− 1

2

m∑
j=1

tr(Tj+1((Σ0)−1Σ̃1,j+1 − I)2) (A.74)

− Tj((Σ0)−1Σ̃1,j − I)2 − (Tj+1 − Tj)((Σ0)−1Σ̂j+1 − I)2.

Let ((Σ0)−1Σ̃1,j+1−I)F ("F" for full sample) be the matrix whose entries are those of ((Σ0)−1Σ̃1,j+1−

I) for the corresponding entries of Σ0 that are not allowed to vary across regimes; the remaining

entries are filled with zeros. Then[
((Σ0)−1Σ̃1,j+1 − I)F

]
i,k

=
σik

T

T∑
t=1

(yit − x′itβ̃)′(ykt − x′ktβ̃)− Ii,k, (A.75)

where σik is the (i, k) element of (Σ0)−1 and Ii,k is the (i, k) element of I. Also let ((Σ0)−1Σ̃1,j+1−

I)S ("S" for relevant segments) be the matrix whose entries are those of ((Σ0)−1Σ̃1,j+1 − I) for

the corresponding entries of Σ0 that are allowed to vary across regimes, the remaining entries

being filled with zeros. Then[
((Σ0)−1Σ̃1,j+1 − I)S

]
i,k

=
σik

Tj+1

Tj+1∑
t=1

(yit − x′itβ̃)′(ykt − x′ktβ̃)− Ii,k. (A.76)

Note that the entries for ((Σ0)−1Σ̃1,j+1 − I)F are the same for all segments. Define similarly

((Σ0)−1Σ̃1,j − I)F , ((Σ0)−1Σ̃1,j − I)S , ((Σ0)−1Σ̂j+1 − I)F and ((Σ0)−1Σ̂j+1 − I)S . Then

((Σ0)−1Σ̃1,j+1 − I) = ((Σ0)−1Σ̃1,j+1 − I)F + ((Σ0)−1Σ̃1,j+1 − I)S , (A.77)

((Σ0)−1Σ̃1,j − I) = ((Σ0)−1Σ̃1,j − I)F + ((Σ0)−1Σ̃1,j − I)S , (A.78)

((Σ0)−1Σ̂j+1 − I) = ((Σ0)−1Σ̂j+1 − I)F + ((Σ0)−1Σ̂j+1 − I)S , (A.79)

and, in view of (A.60),
m∑
j=1

F j2,T =− 1

2
tr(

m∑
j=1

[Tj+1((Σ0)−1Σ̃1,j+1 − I)S((Σ0)−1Σ̃1,j+1 − I)S (A.80)

− Tj((Σ0)−1Σ̃1,j − I)S((Σ0)−1Σ̃1,j − I)S

− (Tj+1 − Tj)((Σ0)−1Σ̂S
j+1 − I)S((Σ0)−1Σ̂S

j+1 − I)S ])

+ op(1)
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Now, because β̃ − β0 = Op(T
−1/2+d), we have

Tj+1

T 2d
((Σ0)−1Σ̃1,j+1 − I)S((Σ0)−1Σ̃1,j+1 − I)S (A.81)

=
T

Tj+1

T−1/2−d
Tj+1∑
t=1

[(Σ0)−1utu
′
t − I]

ST−1/2−d
Tj+1∑
t=1

[(Σ0)−1utu
′
t − I]

S

+ op(1)

⇒ ξdn(λj+1)Sξdn(λj+1)S

λj+1

Tj
T 2d

((Σ0)−1Σ̃1,j − I)S((Σ0)−1Σ̃1,j − I)S (A.82)

=
T

Tj

T−1/2−d
Tj∑
t=1

[(Σ0)−1utu
′
t − I]

ST−1/2−d
Tj∑
t=1

[(Σ0)−1utu
′
t − I]

S

+ op(1)

⇒ ξdn(λj)
Sξdn(λj)

S

λj

and

(Tj+1 − Tj)
T 2d

(Σ0)−1Σ̂S
j+1 − I)S((Σ0)−1Σ̂S

j+1 − I)S (A.83)

=
T

Tj+1 − Tj

T−1/2−d
Tj+1∑

t=Tj+1

[(Σ0)−1utu
′
t − I]

S

×

T−1/2−d
Tj+1∑

t=Tj+1

[(Σ0)−1utu
′
t − I]

S

+ op(1)

⇒
(ξ∗D,n(λj+1)− ξ∗D,n(λj))

S(ξ∗D,n(λj+1)− ξ∗D,n(λj))
S

λj+1 − λj
where ξ∗D(·) is an n× n matrix whose elements are

[ξ∗D(·)]i,j =


[ξD(·)]i,j , if di = dj = max1≤k≤n dk,

0, else,

(A.84)

and where ξD is (nonstandard) fractional Brownian motions defined on [0, 1] such that Var(vec(ξD(1))) =
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Ω (which follows from Theorem 4.8.2 of Giraitis et al. (2012) p.109). Hence,
m∑
j=1

F j2,T ⇒−
1

2
tr

(
ξ∗D,n(λj+1)Sξ∗D,n(λj+1)S

λj+1
−
ξ∗D,n(λj)

Sξ∗D,n(λj)
S

λj
(A.85)

+
(ξ∗D,n(λj+1)− ξ∗D,n(λj))

S(ξ∗D,n(λj+1)− ξ∗D,n(λj))
S

λj+1 − λj

)
=− 1

2

[
vec(ξ∗D,n(λj+1)S)′ vec(ξ∗D,n(λj+1)S)

λj+1

−
vec(ξ∗D,n(λj)

S)′ vec(ξ∗D,n(λj)
S)

λj

×
(

vec(ξ∗D,n(λj+1)S)− vec(ξ∗D,n(λj)
S)
)′

×
(vec(ξ∗D,n(λj+1)S)− vec(ξ∗D,n(λj)

S)

(λi+1 − λi)

]
using the fact that tr(AA) = vec(A)′ vec(A) for a symmetric matrix A. Now let H be the matrix

that selects the elements of vec(Σ0) that are allowed to change. Then

vec(ξ∗D,n(λj+1)S)′ vec(ξ∗D,n(λj+1)S) = vec(ξ∗D,n(λj+1))′H ′H vec(ξ∗D,n(λj+1)) (A.86)

d
= W ∗D,n∗b

(λj+1)′HΩH ′W ∗D,n∗b
(λj+1),

where W ∗D,n∗b is an n∗b vector of processes as defined in Theorem 2. Hence, we have
m∑
j=1

F j2,T ⇒−
1

2

[W ∗D,n∗b (λj+1)′H ′ΩHW ∗D,n∗b
(λj+1)

λj+1
−
W ∗D,n∗b

(λj)
′H ′ΩHW ∗D,n∗b

(λj)

λj
(A.87)

−
(W ∗D,n∗b

(λj+1)−W ∗D,n∗b (λj))
′H ′ΩH(W ∗D,n∗b

(λj+1)−W ∗D,n∗b (λj)

λj+1 − λj

]
=(λjW

∗
D,n∗b

(λj+1)− λj+1W
∗
D,n∗b

(λj))
′H ′ΩH

× (λjW
∗
D,n∗b

(λj+1)− λj+1W
∗
D,n∗b

(λj))/(λjλj+1(λj+1 − λj)).

By combining equations (A.73) and (A.87) we have shown the limiting distribution of our test.
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A.6 Proof of Theorem 3

Proof. From Theorem 1 we have the consistency of our break point estimates at each iteration.

If we have m0 break points in the data the break point test of Theorem 2 rejects in each iteration

m < m0 with a probability tending to one for T →∞ due to the Pitman efficiency of the test. In

iterationm0 the test has a type-I error of α and thus the hit rate of our procedure is (1−α)%.

B Proof of 10 Properties

This section contains proofs for properties of the quasi-likelihood ratio and parameter estimates.

Property 11. For each δ ∈ (0, 1]

sup
Tδ≤k≤T

L(1, k; β̂(k), Σ̂(k)) = Op(1),

sup
Tδ≤k≤T

(‖β̂(k) − β0‖+ ‖Σ̂(k) − Σ0‖) = Op(T
d−1/2).

Proof. The strong consistency of (β̂(k), Σ̂(k)) follows using the arguments of Qu and Perron (2007).

Then we can write

β̂(k) − β0 =

 k∑
t=)1

xtΣ̂
−1
(k)x

′
t

−1
k∑
t=1

xtΣ̂
−1
(k)ut

and apply the generalized Hájek-Rényi inequality on
∑k

t=1 xt(Σ0)−1ut. Together with the strong

consistency of Σ̂(k) this gives supTδ≤k≤T ‖β̂(k) − β0‖ = Op(T
−1/2+d).

Furthermore, we have

Σ̂(k) − Σ0 =
1

k

k∑
t=1

(ut − x′t(β̂(k) − β0))(ut − x′t(β̂(k) − β0))1 − Σ0.

Applying again the generalized Hájek-Rényi inequality gives supTδ≤k≤T ‖Σ̂(k)−Σ0‖ = Op(T
−1/2+d).

As a direct consequence this yields supTδ≤k≤T L(1, k; β̂(k), Σ̂(k)) = Op(1).

The following property is modified compared to property 2 of Qu and Perron (2007). Instead

of considering the supremum of the likelihoood over 1 ≤ k ≤ T we consider here the supremum

over δT ≤ k ≤ T for some δ ∈ (0, 1).

Property 12. For some δ ∈ (0, 1), each ε > 0, there exists a B > 0 such that

Pr

(
sup

δT≤k≤T
T−BL(1, k; β̂(k), Σ̂(k)) > 1

)
< ε

for all large T .
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Proof. This is a direct consequence of property 1.

Property 13. Let ST = {(β,Σ): ‖β− β0‖ ≥ T−1/2+d log T or ‖Σ−Σ0‖ ≥ T−1/2+d log T}. For

any δ ∈ (0, 1), D > 0 and ε > 0 the following statement holds when T is large:

Pr

(
sup
k≥δT

sup
(β,Σ)∈ST

TDL(1, k;β,Σ) > 1

)
< ε. (A.88)

Proof. We proceed in two steps: First we consider the behaviour of the likelihood function over

a compact set and show that the claim is true. Second we argue why this is still true once we

remove the requirement of a compact parameter subset. Define

Θ2 = {(β,Σ): ‖β‖ ≤ d1, λmin(Σ) ≥ d2, λmax(Σ) ≤ d3},

where λmin and λmax denote the smallest and largest eigenvalues of Σ and the finite constants

d1, d2 and d3 are chosen in such a way that (β0,Σ0) is an inner point of Θ2. As explained we first

show (A.17) with the second supremum taken over ST ∩ Θ2 which is compact. We decompose

the segmential log likelihood as logL(1, k;β,Σ) = L1,T + L2,T , where

L1,T = −k
2

log|I + ΨT | −
k

2

[
1

k

k∑
t=1

η′t(I + ΨT )−1ηt −
1

k

k∑
t=1

η′tηt

]
and

L2,T = β∗
′
k∑
t=1

xtΣ
−1ut −

k

2
β∗
′

(
1

k

k∑
t=1

xtΣ
−1x′t

)
β∗,

where β∗ = β − β0,Σ
∗ = Σ − Σ0, ηt = (Σ0)−1ut and ΨT = (Σ0)−1/2Σ∗(Σ0)−1/2. We note that

only L2,T depends on β∗. We split the parameter space ST = S1,T ∪ S2,T with

S1,T = {(β,Σ): ‖Σ− Σ0‖ ≥ T−1/2+d log T, β arbitrary}

and

S2,T = {(β,Σ): ‖β − β0‖ ≥ T−1/2+d log T and ‖Σ− Σ0‖ ≤ T−1/2+d log T}.

It has to be shown that

Pr

(
sup
k≥Tδ

sup
(β,Σ)∈S1,T∩Θ2

TDL(1, k;β,Σ) > 1

)
< ε (S.3)

and

Pr

(
sup
k≥Tδ

sup
(β,Σ)∈S2,T∩Θ2

TDL(1, k;β,Σ) > 1

)
< ε. (S.4)

We start to show (S.3). On S1,T , L2,T is a quadratic function of β∗ and has maximum value

sup
S1,T

L2,T =
k

2

(
1

k

k∑
t=1

xtΣ
−1ut

)′(
1

k

k∑
t=1

xtΣ
−1x′t

)−1(
1

k

k∑
t=1

xtΣ
−1ut

)
.
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Applying Property 1 gives

sup
k≥Tδ

sup
Θ2

∥∥∥∥∥∥
(

1

k

k∑
t=1

xtΣ
−1x′t

)−1
∥∥∥∥∥∥ = Op(1).

Additionally we see

sup
k≥Tδ

∥∥∥∥∥1

k

k∑
t=1

xtΣ
−1ut

∥∥∥∥∥ = sup
k≥Tδ

∥∥∥∥∥1

k

k∑
t=1

S′(In ⊗ zt)Σ−1ut

∥∥∥∥∥
= sup

k≥Tδ

∥∥∥∥∥S′(Σ−1 ⊗ In)
1

k

k∑
t=1

(In ⊗ zt)ut

∥∥∥∥∥
≤ sup

k≥Tδ

∥∥∥∥∥1

k

k∑
t=1

(In ⊗ zt)ut

∥∥∥∥∥∥∥S′(Σ−1 ⊗ In)
∥∥ .

From the FCLT of Lemma A.2 we have for fixed r > 0

lim
T→∞

Pr

(
sup
k≥Tδ

∥∥∥∥∥1

k

k∑
t=1

(In ⊗ zt)ut

∥∥∥∥∥ > rT d−1/2 log1/2 T

)
= 0,

while ‖S′(Σ−1 ⊗ In)‖ =
∑n

i=1(1 + λi)
−1Op(1), where λi (i = 1, ..., n) are the eigenvalues of

(Σ0)−1/2Σ∗(Σ0)−1/2. Hence,

sup
k≥Tδ

sup
S1,T∩Θ2

L2,T ≤
k

2

(
n∑
i=1

1

1 + λi

)2

(r2T 2d−1 log T ),

which implies

sup
k≥Tδ

sup
S1,T∩Θ̄2

L2,T ≤
k

2

n∑
i=1

1

1 + λi
r2b2T ,

where bT = T d−1/2 log T with the inequality holding with probability arbitrarily close to 1 for

large T . For L1,T we start by considering the term in brackets. Introduce an orthogonal matrix

U that diagonalizes (I + ΨT )−1. Then we have

1

k

k∑
t=1

η′t((I + ΨT )−1 − I)ηt = tr

(
diag

{
1

1 + λi
− 1

}(
1

k
U

k∑
t=1

ηtη
′
tU
′

))
.

Because ‖U‖ = 1 it suffices to investigate∥∥∥∥∥1

k
U

k∑
t=1

ηtη
′
tU
′ − I

∥∥∥∥∥ ≤ 1

k

∥∥∥∥∥
k∑
t=1

(ηtη
′
t − I)

∥∥∥∥∥ .
Then for any a > 0 by the FCLT of Lemma A.2

lim
T→∞

Pr

(
sup
k≥Tδ

1

k

k∑
t=1

‖(ηtη′t − I)‖ > abT

)
= 0.

Then arguing as Bai et al. (1998) we may show that

sup
k≥Tδ

sup
S1,T∩Θ2

L1,T ≤ −
k

2

[
n∑
i=1

(
log(1 + λi) +

(
1

1 + λi
− 1

)
(1 + sign(λi)abT )

)]
with probability arbitrarily close to 1 for large T , where a is a fixed positive number which can

be made arbitrarily small. Combining the preceding two inequalities we can show that

Pr

(
sup
k≥Tδ

sup
(β,Σ)∈S1,T∩Θ2

L1,T + L2,T > −D log T

)
< ε.
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It is now straightforward to see that using the similar arguments as Bai et al. (1998) one can show

that equation (S.4) holds. Therefore the claim is shown on the compact parameter space Θ2.

But as in Qu and Perron (2007) we can conclude that the result is valid also on an unrestricted

parameter space. Therefore the proof is complete.

Property 14. Not needed.

The following property is different from Qu and Perron (2007) in that we do not assume that the

limit of (hTd
2
T )/T exists. Instead as pointed out by Bai (2000) we assume the sufficient condition

that lim infT→∞(hTd
2
T )/T ≥ h > 0.

Property 15. Let hT and dT be positive sequences such that hT is nondecreasing, dT →∞ and

lim infT→∞(hTd
2
T )/T ≥ h > 0. Define Θ3 = {(β,Σ): ‖β‖ ≤ p1, λmin(Σ) ≥ p2, λmax(Σ) ≤ p3},

where p1, p2 and p3 are arbitrary constants that satisfy p1 < ∞, 0 < p2 ≤ p3 < ∞. Define

ST = {(β,Σ): ‖β − β0‖ ≥ T−1/2+d log T or ‖Σ − Σ0‖ ≥ T−1/2+d log T}. Then, for any ε > 0,

there exists an A > 0, such that

Pr

(
sup

k≥AhT
sup

(β,Σ)∈ST∩Θ̄3

L(1, k;β,Σ) > ε

)
< ε

when T is large.

Proof. As in Property 3 we only need to look at the behaviour of L2T over S1,T ∩ Θ̄3. The rest

of the proof is as in Bai et al. (1998). We need to show

P ( sup
k≥AhT

sup
(β,Σ)∈S1,T∩Θ̄3

L(1, k;β,Σ) > ε) < ε

or

P ( sup
k≥AhT

sup
(β,Σ)∈S1,T∩Θ̄3

L1T +L2T > ε) < ε.

Define bT := T−1/2dT . Now all the arguments in the proof of Property 3 still hold. Thus, we

have

sup
S1,T

L2T =
k

2
(
1

k

k∑
t=1

xtΣ
−1ut)

′(
1

k

k∑
t=1

xtΣ
−1x′t)

−1(
1

k

k∑
t=1

xtΣ
−1ut),

where

(

k∑
t=1

xtΣ
−1x′t)

−1 = (

k∑
t=1

S′(I ⊗ zt)Σ−1(I ⊗ z′t)S)−1 = (S′(Σ−1 ⊗
k∑
t=1

ztz
′
t)S)−1.

From l−1
∑l

t=1 ztz
′
t
a.s.−−→ Qz, for a given ε > 0 we can always find a k1 > 0 such that

P ( sup
k≥k1
‖1

k

k∑
t=1

ztz
′
t −Qz‖ > ε) < ε.
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Define Q4 := k−1
∑k

t=1 ztz
′
t −Qz. Then

(S′(Σ−1 ⊗ 1

k

k∑
t=1

zt z
′
t)S)−1 − (S′(Σ−1 ⊗Qz)S)−1

= (S′(Σ−1 ⊗Qz)S + S′(Σ−1 ⊗Q4)S)−1 − (S′(Σ−1 ⊗Qz)S)−1

= −A−1B(A+B)−1,

where A = S′(Σ−1⊗Qz)S and B = S′(Σ−1⊗Q4)S. Because Σ−1 has uniformly bounded eigen-

values and k−1
∑k

t=1 ztz
′
t is positive definite for large k, A−1 and B−1 have bounded eigenvalues.

Because B is uniformly small, −A−1B(A+B)−1 is uniformly small for large k. This is

(S′(Σ−1 ⊗ k−1
k∑
t=1

ztz
′
t)S)−1 − (S′(Σ−1 ⊗Qz)S)−1 a.s.

= o(1) as k →∞.

Now there exists an M > 0 such that sup(β,Σ)∈S1,T∩Θ̄3
|(S′(Σ−1 ⊗ Qz)S)−1| < M , and we have,

for any ε > 0, that there exists an A > 0 such that

P ( sup
k≥AhT

sup
(β,Σ)∈S1,T∩Θ̄3

‖( 1

k

k∑
t=1

xtΣ
−1x′t)

−1‖ > 2M) < ε.

Now,

sup
k≥AhT

‖1

k

k∑
t=1

xtΣ
−1ut‖ = sup

k≥AhT
‖1

k

k∑
t=1

S′(In ⊗ zt)Σ−1ut‖

≤ sup
k≥AhT

‖1

k

k∑
t=1

(In ⊗ zt)ut‖‖S′(Σ−1 ⊗ In)‖. (A.89)

From Lemma A.1 we have

P ( sup
k≥AhT

‖1

k

k∑
t=1

(In ⊗ zt)ut‖ > abT ) ≤ C1

AhTa2bT
<

2C1

Aa2h
(A.90)

for some C1 > 0, where the bound can be made arbitrarily small by choosing a large A. For the

second component,

‖S′(Σ−1 ⊗ In)‖ ≤ nC2

n∑
i=1

1

1 + λi
(A.91)

for some 0 < C2 <∞, which depends on the matrix S. Now, combining (A.89)-(A.91), we have,

for any ε > 0 that there exists an Ā > 0, such that with probability no less than 1− ε,

sup
k≥ĀhT

sup
(β,Σ)∈S1,T∩Θ̄3

|L2T | <ka2b2Tn
2C2

2M(

n∑
i=1

1

1 + λi
)2 ≤ k

2

n∑
i=1

Ga2b2T
1 + λi

=
k

2

n∑
i=1

γ2b2T
1 + λi

with G = 2n3C2
2M/p2. Because a2 can be made arbitrarily small by choosing a large A, so can

y2. Hence Property 5 follows.

The next properties are the same as Lemmas 6−10 of Bai (2000). Because the proofs are similar,

they are omitted.

Property 16. With νT satisfying Assumption 6, for each β and Σ such that ‖β − β0‖ ≤ MvT
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and ‖Σ− Σ0‖ ≤MvT , with M <∞, we have

sup
1≤k≤T 1/2−dv−1

T

sup
λ,Ξ

L(1, k;β + T−1/2+dλ,Σ + T−1/2+dΞ)

L(1, k;β,Σ)
= op(1).

Property 17. Under the conditions of Property 6, we have

sup
1≤k≤Mv−2

T

sup
λ,Ξ

log
L(1, k;β + T−1/2+dλ,Σ + T−1/2+dΞ)

L(1, k;β,Σ)
= op(1).

Property 18. We have

sup
Tδ≤k≤T

sup
β∗,Σ∗,λ,Ξ

log
L(1, k;β0 + T−1/2+dβ∗ + T−1+2dλ,Σ0 + T−1/2+dΣ∗ + T−1+2dΞ)

L(1, k;β0 + T−1/2+dβ∗,Σ0 + T−1/2+dΣ∗)
= op(1),

where the supremum with respect to β∗,Σ∗, λ,Ξ is taken over an arbitrary compact set.

Property 19. Let T1 = [aT ] for some a ∈ (0, 1] and let T2 = [T 1/2−dv−1
T ], where vT satisfies

Assumption 6. Consider

yt =x′tβ
0
1 + Σ0

1ηt, (t = 1, . . . , T1),

yt =x′tβ
0
2 + Σ0

2ηt, (t = T1 + 1, . . . , T1 + T2),

where ‖β0
1 − β0

2‖ ≤ MvT and ‖Σ0
1 − Σ0

2‖ ≤ MvT for some M <∞. Let k = T1 + T2 be the size

of the pooled sample and let (β̂n, Σ̂n) be the associated estimates. Then β̂n − β0
1 = Op(T

d−1/2)

and Σ̂n − Σ0
1 = Op(T

d−1/2).

Property 20. Not needed.

C Critical values of the UDmaxLRT test
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90%
m/d -0.49 -0.48 -0.46 -0.44 -0.42 -0.4 -0.38 -0.36 -0.34 -0.32 -0.3 -0.28 -0.26
1 8.410 17.846 26.491 34.309 39.193 35.994 39.441 37.912 37.097 36.898 30.827 30.891 28.523
2 24.276 44.007 72.370 93.699 101.748 105.425 118.393 95.369 96.470 89.007 76.508 81.029 71.999
3 34.579 61.969 104.355 130.856 145.328 146.919 145.735 131.450 135.958 124.616 104.839 108.244 96.204
4 40.347 75.998 120.862 150.517 170.464 171.259 169.404 153.776 157.105 143.193 126.115 124.425 110.262
5 46.367 79.971 133.176 164.134 191.383 189.105 182.596 171.821 175.159 157.489 143.972 137.865 120.730

-0.24 -0.22 -0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0
1 27.775 23.931 51.253 21.261 16.834 18.119 15.610 13.599 12.198 10.345 10.935 10.199 7.848
2 64.060 57.967 67.182 48.206 40.386 35.945 34.010 29.195 26.547 23.113 21.761 19.792 15.505
3 85.440 78.278 76.534 61.710 53.235 52.144 44.940 38.279 33.728 30.242 27.125 25.244 21.152
4 98.523 88.057 92.015 71.680 62.012 58.889 50.653 42.137 38.695 34.269 31.291 28.241 23.645
5 110.394 97.934 92.015 78.337 67.372 62.605 56.043 47.731 41.459 37.547 33.179 31.488 25.394

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
1 7.846 6.954 6.557 5.856 5.233 4.911 4.094 4.095 3.576 3.205 2.787 2.518 2.362
2 14.977 12.956 11.182 9.573 9.155 8.411 6.695 6.517 5.412 5.108 4.225 3.781 3.359
3 19.608 16.915 14.468 12.606 11.838 10.411 8.073 7.720 6.824 6.213 5.161 4.598 4.022
4 21.508 18.819 16.197 14.229 13.254 11.335 8.819 8.696 7.567 6.789 5.572 4.961 4.334
5 22.755 20.164 17.649 15.519 13.629 12.200 9.652 9.381 7.968 6.996 5.940 5.264 4.543

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.49
1 2.050 1.698 1.556 1.430 1.071 0.894 0.769 0.612 0.433 0.245 0.118 0.059
2 3.045 2.447 2.240 2.008 1.469 1.238 1.026 0.780 0.557 0.326 0.201 0.074
3 3.465 2.851 2.496 2.218 1.657 1.383 1.170 0.911 0.622 0.360 0.218 0.086
4 3.853 3.100 2.727 2.429 1.866 1.510 1.277 0.982 0.659 0.390 0.225 0.092
5 4.089 3.269 2.809 2.576 1.896 1.598 1.350 1.019 0.679 0.393 0.234 0.096

Table 4: Asymptotic critical values for the UDmaxLRT test, using ε = 0.05. These are obtained
from 10,000 Monte Carlo replications with 1, 000 increments.
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95%
m/d -0.49 -0.48 -0.46 -0.44 -0.42 -0.4 -0.38 -0.36 -0.34 -0.32 -0.3 -0.28 -0.26
1 10.126 20.489 31.669 39.739 46.815 43.505 44.244 41.594 43.839 44.949 38.438 35.138 33.807
2 27.227 48.129 79.026 99.144 111.514 113.695 125.206 107.440 109.675 102.952 87.820 85.306 78.340
3 36.716 66.400 110.651 138.349 160.067 156.946 160.882 147.343 151.418 139.355 117.222 119.344 104.340
4 43.673 78.056 131.583 162.124 182.726 183.895 186.022 172.254 171.460 157.489 137.487 139.132 120.228
5 47.814 84.137 145.187 174.638 212.650 202.412 202.834 188.747 186.820 172.324 163.417 151.156 130.191

-0.24 -0.22 -0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0
1 32.781 27.874 51.253 23.557 22.012 19.800 17.962 16.039 14.821 12.274 13.550 12.221 9.251
2 71.130 64.897 67.182 51.598 46.696 41.533 39.718 31.871 29.452 26.338 24.790 21.774 17.878
3 92.669 84.269 76.534 67.133 60.688 54.381 49.486 41.422 36.861 33.659 30.639 27.085 22.343
4 108.611 97.592 92.015 77.021 67.439 62.084 54.301 47.102 42.486 38.406 33.979 30.485 24.647
5 118.056 104.760 92.015 84.535 71.714 66.745 60.788 54.403 45.939 40.872 36.741 34.249 26.749

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
1 8.711 8.717 7.536 6.765 6.162 6.046 4.873 4.658 4.065 3.843 3.466 3.451 2.858
2 17.725 15.480 13.012 11.595 10.331 9.496 7.880 7.220 6.562 5.863 4.996 4.666 3.884
3 21.508 19.152 16.213 13.972 12.852 11.413 9.127 8.485 7.695 6.671 5.880 5.783 4.421
4 23.171 20.711 17.974 15.002 14.723 12.469 10.143 9.385 8.320 7.302 6.427 5.989 4.944
5 25.497 22.891 19.263 16.671 14.806 13.379 10.782 10.043 8.841 8.001 7.129 6.097 5.196

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.49
1 2.432 2.088 1.946 1.645 1.548 1.144 0.938 0.868 0.571 0.343 0.198 0.071
2 3.380 2.927 2.520 2.311 1.917 1.453 1.161 0.995 0.685 0.390 0.259 0.088
3 3.990 3.336 2.860 2.731 2.083 1.698 1.344 1.136 0.782 0.434 0.323 0.096
4 4.457 3.701 3.159 2.885 2.179 1.762 1.447 1.175 0.812 0.454 0.338 0.101
5 4.605 3.847 3.330 2.914 2.239 1.844 1.497 1.208 0.829 0.469 0.344 0.104

Table 5: Asymptotic critical values for the UDmaxLRT test, using ε = 0.05. These are obtained
from 10,000 Monte Carlo replications with 1, 000 increments.
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99%
m/d -0.49 -0.48 -0.46 -0.44 -0.42 -0.4 -0.38 -0.36 -0.34 -0.32 -0.3 -0.28 -0.26
1 13.242 27.302 41.304 51.161 60.097 58.974 56.234 54.063 61.337 62.121 66.550 48.803 45.649
2 31.624 55.570 101.378 114.483 137.152 149.019 133.183 132.250 127.398 150.242 103.128 98.281 100.489
3 44.328 73.390 135.962 161.676 193.512 218.208 187.724 182.320 173.746 215.210 127.916 156.701 128.524
4 48.597 82.612 149.202 184.739 214.974 254.592 209.437 215.628 194.856 233.235 163.417 159.445 140.256
5 56.680 94.172 161.373 204.324 240.566 254.592 227.372 233.447 216.968 261.370 185.785 189.944 151.578

-0.24 -0.22 -0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0
1 41.889 38.796 51.253 28.561 28.390 26.587 23.533 20.137 19.944 18.043 16.801 15.665 13.096
2 85.590 76.726 67.182 58.089 55.900 53.785 44.964 37.432 34.804 31.151 28.722 26.991 21.998
3 108.814 117.656 86.158 81.578 74.409 61.891 55.258 46.322 42.761 40.785 34.559 31.962 27.031
4 130.189 117.656 93.050 92.660 84.612 73.290 66.677 55.068 51.097 44.669 40.851 38.593 31.099
5 144.329 133.404 103.493 97.502 92.949 77.167 75.029 63.593 55.843 52.113 44.947 44.315 33.184

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
1 12.715 12.620 10.390 8.238 8.038 8.043 6.287 6.585 5.762 5.210 4.668 4.846 3.750
2 20.337 18.698 15.991 13.043 11.535 10.982 9.198 8.892 7.711 7.418 6.078 5.937 4.783
3 26.003 23.042 20.218 15.911 14.540 13.318 10.874 10.415 9.294 8.218 7.079 6.719 5.654
4 29.820 26.954 23.581 18.106 19.267 15.089 12.023 11.551 9.829 8.951 7.758 7.592 6.059
5 31.235 30.150 23.869 19.116 20.125 15.521 12.795 12.379 10.410 9.495 8.092 7.900 6.341

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.49
1 3.395 3.052 2.556 1.984 2.068 1.895 1.313 1.260 0.763 0.470 0.305 0.104
2 4.300 3.740 3.639 2.851 2.337 2.387 1.551 1.479 0.841 0.535 0.359 0.125
3 4.895 4.482 4.059 3.089 2.671 2.606 1.636 1.609 0.938 0.578 0.391 0.141
4 5.402 4.720 4.269 3.357 2.737 2.634 1.754 1.625 0.962 0.645 0.394 0.151
5 5.619 4.875 4.359 3.471 2.860 2.680 1.786 1.632 0.982 0.662 0.397 0.156

Table 6: Asymptotic critical values for the UDmaxLRT test, using ε = 0.05. These are obtained
from 10,000 Monte Carlo replications with 1, 000 increments.
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