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Non-technical summary 

Research Question 

Differences in expected returns of stocks are typically explained by the fact that these 
returns covary to different degrees with a particular risk factor. The so-called market price 
of risk (MPR) quantifies the compensation (in terms of expected return) per unit of risk. 
In order to be able to estimate the MPR, the factor mean must be known in advance. In 
practice, however, this mean is often estimated jointly with the MPR. This procedure 
creates a trade-off between an estimate of the factor mean that is as precise as possible 
and a high explanatory power of the model for asset prices. We examine to which extent 
this trade-off can bias the estimation results in the sense that irrelevant factors appear 
relevant or relevant factors appear irrelevant. 

Contribution 

We analyze the abovementioned trade-off for a particular estimator, which is frequently 
used in the literature due to its simplicity, and which is implemented via the generalized 
method of moments (GMM). We show that this estimator can incorrectly indicate a high 
explanatory power for a factor, i.e. a high cross-sectional R², if too little weight is put on 
a precise identification of the factor mean. In this case, the estimator suggests that the 
examined model approximates the true data-generating process for stock returns well, 
although this is not the case. We reveal the origins of this bias theoretically, gauge its size 
using simulations and document its practical relevance with a representative empirical 
example. 

Results 

We show that the GMM weighting matrix, which controls the abovementioned trade-off, 
is of first-order importance. We identify two major problems. First, irrelevant factors are 
considered relevant, i.e. the estimated MPR is large although the true MPR is zero. 
Depending on the choice of the weighting matrix, the estimated cross-sectional R² can 
take any value between 0 (the true value) and 1 (the maximum value). Second, weak and 
irrelevant factors can crowd out strong and truly relevant factors when estimating a multi-
factor model. The estimated MPRs for irrelevant factors are then incorrectly large, while 
for relevant factors they are small and indistinguishable from zero. Both problems 
generally apply to all kinds of factors. They occur regardless of the sample size and are 
the more severe the larger the number of securities in the estimation. 



 

 

Nichttechnische Zusammenfassung 

Fragestellung 

Unterschiede in erwarteten Renditen von Aktien werden in der Regel dadurch erklärt, 
dass diese Renditen in unterschiedlichem Maße von einem bestimmten Risikofaktor 
abhängen. Der sogenannte Marktpreis des Risikos (MPR) quantifiziert dabei die 
Kompensation (in Form von erwarteter Rendite) pro Einheit des eingegangenen Risikos. 
Um den MPR schätzen zu können, muss der Mittelwert des Faktors bekannt sein. In der 
Praxis wird dieser Mittelwert aber häufig erst gemeinsam mit dem MPR geschätzt. 
Dadurch entsteht allerdings ein Trade-off zwischen einer möglichst präzisen Schätzung 
des Faktormittelwerts und einem hohen Erklärungsgehalt des Modells für 
Wertpapierpreise. Wir untersuchen die Frage, inwieweit dieser Trade-off die 
Schätzergebnisse in dem Sinne verfälschen kann, dass irrelevante Faktoren als relevant 
oder relevante Faktoren als irrelevant erscheinen. 

Beitrag 

Wir analysieren den genannten Trade-off für einen speziellen, aufgrund seiner 
Einfachheit in der Literatur häufig eingesetzten Schätzer, der mittels der 
verallgemeinerten Momentenmethode (GMM) implementiert wird. Wir zeigen, dass 
dieser Schätzer fälschlicherweise einen hohen Erklärungsgehalt des betrachteten Faktors 
für die Renditen, also ein hohes Querschnitts-R² anzeigen kann, wenn zu wenig Gewicht 
auf eine genaue Identifikation des Faktormittelwerts gelegt wird. Der Schätzer suggeriert 
also in diesem Fall, dass das untersuchte Modell den wahren datenerzeugenden Prozess 
für Aktienrenditen gut approximiert, obwohl dies nicht der Fall ist. Wir leiten die 
Ursprünge dieses Problems theoretisch her, analysieren das Ausmaß des Problems 
mithilfe von Simulationen und dokumentieren die praktische Bedeutung des Problems 
anhand eines repräsentativen empirischen Beispiels. 

Ergebnisse 

Wir zeigen, dass die GMM-Gewichtungsmatrix, die den genannten Trade-off steuert, für 
den untersuchten Schätzer von herausragender Bedeutung ist. Wir identifizieren dabei 
zwei Hauptprobleme. Erstens werden in Wahrheit irrelevante Faktoren für relevant 
gehalten, d.h. der geschätzte MPR ist groß, obwohl der wahre MPR null ist. Das 
geschätzte Querschnitts-R2 kann dabei je nach Wahl der Gewichtungsmatrix jeden 
beliebigen Wert zwischen 0 (dem wahren Wert) und 1 (dem Maximalwert) annehmen. 
Zweitens können schwache und irrelevante Faktoren starke und in Wahrheit relevante 



 

 

Faktoren verdrängen, wenn ein Modell mit mehreren Faktoren geschätzt wird. 
Fälschlicherweise sind die geschätzten MPR für irrelevante Faktoren dann groß, während 
sie für relevante Faktoren klein und nicht von null unterscheidbar sind. Beide Probleme 
betreffen grundsätzlich alle Arten von Faktoren. Sie treten unabhängig von der 
Stichprobengröße auf und sind umso schwerwiegender, je mehr Wertpapiere in der 
Schätzung verwendet werden.
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1 Introduction

Cross-sectional asset pricing tests with GMM can generate spuriously low pricing errors and
high cross-sectional R2’s, which make the tested models appear close to the true data-generating
process when they should actually be rejected. We reveal the origins of this bias theoretically,
gauge its size in a controlled environment using Monte Carlo simulations, and document its
relevance with an empirical example.

We do not criticize the use of GMM for cross-sectional asset pricing per se, but a particular
design of a GMM estimator which has been used by several researchers, e.g., Yogo (2006),
Dhume (2010), Darrat, Li, and Park (2011), Maio and Santa-Clara (2012), Maio (2013), Lioui
and Maio (2014), Da, Yang, and Yun (2016), and Chen and Lu (2017). This estimator uses two
types of moment conditions. The first, 0 = E [Rei −Rei (F − µ)λ], states that expected excess
returns must be linear in the covariance between excess returns Re and candidate factors F .
The second moment condition, 0 = E[F − µ], identifies the factor mean µ.

This estimation approach is popular because it is very lean. It prescribes one moment condition
per factor to identify the factor means µ and one moment condition per test asset to identify
the factor risk premia λ, but does not require the identification of factor exposures (betas). The
alternative approach would comprise time series regressions to estimate betas and a regression
of average returns on estimated betas, either in two steps (see Fama and MacBeth, 1973) or
in a single step via GMM (see, e.g., Cochrane, 2005). To give an example, when estimating a
three factor model with 25 test assets, the latter approach estimates 103 parameters with 125
moment conditions. The lean approach discussed in our paper implies 28 moment conditions
for six parameters. Asymptotically, the two approaches must deliver the same estimates of the
factor risk premia, as long as the asset pricing model is correctly specified, but keeping the
number of moment conditions small, relative to the sample size, is crucial to obtain reliable
estimates in GMM (see, e.g., Newey and Windmeijer, 1994).

In applications, asset pricing models are always misspecified, i.e., the moment conditions never
hold exactly. Hence, the GMM weighting matrix has an impact on the parameter estimates.
We show that standard choices for that matrix, such as the identity matrix or the “optimal”
weighting matrix, estimated via iterated or continuously updating GMM, lead to biased param-
eter estimates and inflated model performance statistics. In a nutshell, too small a weight on
the second moment condition can lead to an imprecise estimate of µ in favor of an improved
cross-sectional fit, i.e., smaller pricing errors. This problem applies to weak and strong factors
alike, it occurs for all sample sizes, and it is the more severe, the larger the number of test
assets.

We identify two major problems: First, unpriced factors look priced, i.e., the estimated market
price of risk (MPR) is large and significant, although the true MPR is close to zero. This
scenario represents a type I error, in the sense that the null MPR = 0 is falsely rejected. The
corresponding estimated pricing performance can be heavily inflated, in the sense that pricing
errors seem small and cross-sectional R2’s seem large. We show that the estimated R2 can take
every value between the true cross-sectional R2 and 1, depending on the choice of the weighting
matrix. Importantly, the bias is substantial even for strong factors, i.e., factors that are strongly
correlated with the test asset returns in the time series.

Second, when estimating a linear factor model with multiple factors, weak and unpriced factors
can “drive out” strong and priced factors. More precisely, MPR estimates of weak factors are
large and significant, while those of strong and priced factors are small and insignificant. The
latter finding represents a type II error, in the sense that the null MPR = 0 is not rejected
although it actually should be rejected.

We exemplify these issues using a quarterly post war sample of the usual 25 size and book-to-

1



Table 1: Market prices of risks for the elephant model

A: High weight on µ B: Unit weight on µ C: Low weight on µ

MKT 3.10 3.43 3.07 0.38 0.50 -0.01
(2.70) (2.88) (3.34) (0.46) (5.85) (-0.09)

Elephants 595.71 0.03 101.25 128.50 5.90 7.64
(0.98) (0.00) (2.93) (5.81) (3.24) (5.88)

SMB 0.32 -1.72 -0.10
(0.18) (-1.19) (-1.25)

HML 5.76 -0.47 -0.07
(3.52) (-0.39) (-1.05)

RMSE (in %) 3.81 6.16 2.02 3.78 1.26 1.04 1.71 0.17 0.13

R2 (in %) -52.96 -213.03 56.64 -49.04 91.05 94.00 96.46 99.97 99.98

The table reports estimates of λ from a GMM estimation using the moment conditions

E [Rei −Rei (F − µ)λ] = 0 and E[F − µ] = 0 along with three different weighting matrices.

Heteroskedasticity- and autocorrelation-consistent (HAC) t-statistics (in parentheses) are calcu-

lated using a Bartlett kernel.

market sorted portfolios1 as test assets and the following set of factors: (i) the market factor,
a strong but basically unpriced factor (see Fama and French, 1992), (ii) SMB and HML, which
are strong and priced, and (iii) an obviously economically meaningless factor, namely the log
growth rate of the number of captive Asian elephants living in zoos around the world.2 The
elephant factor is a weak factor, as its time series correlation with returns is basically zero for
all test assets.

Table 1 shows MPR estimates and model performance statistics for three different GMM weight-
ing matrices. For Panel A, we assign the moment conditions that identify the factor means a
high weight to make sure it is correctly estimated. The results are the same as those from a
simple two-stage Fama and MacBeth (1973) regression. The model with the market return as
the only factor has a negative R2, despite the significant point estimate (which is due to the fact
that we run a cross-sectional regression without intercept). The elephant factor is insignificant
and does not explain cross-sectional return variation. HML betas are strongly positively related
to average returns in the cross-section, so that the model with four factors has a cross-sectional
R2 of around 57%.

Panel B shows the same statistics, estimated with an identity matrix for weighting the moment
conditions. The estimated cross-sectional R2 of the elephant model is 91%, and the MPR es-
timate is statistically significantly different from zero with a t-statistic of 2.93. Moreover, the
elephant factor drives out all three Fama-French factors. The cross-sectional R2 is basically
the same for the one-factor and the four-factor model (91% and 94%), suggesting that just the
elephant factor is enough to explain the cross-section of expected returns.

For Panel C, we assign a lower than unit weight on the moment conditions that identify the
factor means. The one-factor model featuring the strong market factor now shows a similar
behavior as the elephant factor in Panel B. The estimated cross-sectional R2 is close to 1 and

1Although the example focuses on the Fama-French test portfolios and a postwar sample, we show that this
artifact emerges for all sets of test assets and all sample sizes. It is, thus, different from the discussions on “lucky
factors” (see Harvey, Liu, and Zhou, 2016) and factor structure in the Fama-French portfolios (see Lewellen,
Nagel, and Shanken, 2010).

2The data are available at http://www.asianelephant.net/database.htm. We thank the creators of this
website, Jonas Livet and Torsten Jahn, for making these data publicly available.
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the pricing errors are close to zero.

The key insight to understand these results is that the first moment condition

0 = E [Rei −Rei (F − µ)λ] = E[Rei ]− E[Rei ]E[F − µ]λ− Cov(Rei , F )λ

has trivial solutions. These are characterized by the relation µ ≈ E[F ]− 1
λ between µ and λ and

by λ being close to zero. Of course, with a small λ, the difference between µ and E[F ] is large,
implying a high value for the second moment condition E[F −µ]. Still, the parameter estimates
end up in such a trivial solution if the moment E[F − µ] is assigned a small weight. Our paper
elaborates on various manifestations of this rationale theoretically, empirically, and via Monte
Carlo simulations.

The controlled environment of our simulation study, in which we know the true parameters, is
useful to gauge the size of the bias. In applications, however, we do not know the true factor
mean and the true market price of risk, so there is no clear benchmark to which the estimates
should be compared. Still, the results presented in our paper give rise to a “smell test”. One
advantage of GMM estimators is that they trade off the uncertainty about different moments,
here the uncertainty about the true factor means and the expected test asset returns. Choosing
the weights in a prespecified weighting matrix corresponds to taking a stand on this trade-off.
Our results help to diagnose whether we give the factor mean too much liberty in favor of a
good cross-sectional fit.

There are alternatives to a prespecified weighting matrix. In general, one can have the algorithm
put the highest weights on the most informative moments, by choosing the inverse of the co-
variance matrix of the moment conditions. We show in a controlled environment that using the
true covariance matrix can mitigate the problem. However, in applications, the true covariance
matrix is unknown and needs to be estimated. We show that an iterated GMM estimation does
not converge to the true covariance matrix and the point estimates depend on the weighting
matrix in the first iteration. Continuously updating GMM, i.e. optimizing over moments and
weights simultaneously, does not converge because the estimated covariance matrix is close to
singular around the trivial solution described above.

Our paper is structured as follows. Section 2 reviews the related literature. In Section 3, we
explain the bias theoretically for strong and weak, priced and unpriced factors, which can be
considered limiting cases. In Section 4, we conduct a detailed simulation analysis for the full
range of cases in between. While these two sections focus on prespecified weighting matrices,
Section 5 considers alternative choices. In Section 6, we reconsider the factor model proposed
by Yogo (2006), which has been tested using the GMM procedure analyzed in our paper. It
features the market return, the growth rate of nondurables and services consumption as well
as the growth rate of durable consumption as factors. For 25 size- and book-to-market sorted
portfolios he finds a cross-sectional R2 of 0.935 and a highly significant market price of risk of
around 170 for durable consumption growth. Starting from an exact replication of this result,
we modify the GMM weighting matrix until we end up with a cross-sectional R2 of 0.01 and a
market price of risk of−138. Section 7 concludes and discusses approaches for applied researchers
to diagnose and avoid the described bias.

2 Related literature

Our paper is linked to several strands of the literature. First of all, the use of GMM for cross-
sectional asset pricing has become standard practice and is covered extensively in textbooks like
Cochrane (2005), Campbell (2017), or Ferson (2019). However, although providing guidelines
how to use GMM in practice, to our knowledge, none of these textbooks explicitly cover the
peculiarities of the moment conditions discussed in our paper.
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Besides, there are papers dealing with the econometric details of cross-sectional asset pricing
with weak factors, like, e.g., Kan and Zhang (1999a,b), Kleibergen (2009), Gospodinov, Kan,
and Robotti (2014), Kleibergen and Zhan (2015, 2020), Bryzgalova (2016), or Burnside (2016).
Stock and Wright (2000) develop the general asymptotic theory for GMM estimators with weak
identification. However, the issue that we raise in our paper applies to both weak and strong
factors, irrespective of the sample size or the choice of a particular set of test assets.

Moreover, the concern raised in our paper is very different from the issue discussed in Lewellen
et al. (2010). First, these authors argue that using the standard 25 Fama-French portfolios is
problematic because the returns on these portfolios have a strong factor structure which is easy
to pick up by chance when testing a factor. Our argument against the use of a specific form of
GMM is relevant for all choices of test assets. The theory in our paper holds regardless of the
choice of the test portfolios and of the structure of the true data-generating process. Second,
Lewellen et al. (2010) conclude that the usual test statistics like cross-sectional R2 or t-statistics
are uninformative when using the Fama-French portfolios. We argue instead that these statistics
can even be “set” (almost) arbitrarily via the GMM weighting matrix.

In the late 1990s a debate has emerged whether the classical Fama-MacBeth approach or the
more advanced GMM-based method provides more reliable estimates of market prices of risk
(see Kan and Zhou, 1999; Cochrane, 2001; Jagannathan and Wang, 2002). We do not take a
stand in this debate. In particular, we do not argue that GMM should not be used for the
estimation of cross-sectional models, but we rather point out a potentially severe problem with
this method that researchers should be aware of.

The small sample properties of alternative GMM estimators are analyzed by Hansen, Heaton,
and Yaron (1996). Their analysis suggests that continuously updating GMM (CUGMM), i.e.,
the joint estimation of parameters and the weighting matrix, performs better than the iterative
approach. We find that CUGMM does not fix the problem described in our paper. Ronchetti
and Trojani (2001) stick to the iterative approach, but suggest an alternative estimator which
has a bounded influence function and is thus robust to outliers in the data. However, the concern
raised in our paper is not resolved by this approach either as it does not originate from issues
related to data quality or the exact distribution of error terms.

Section 6 of our paper is linked to the large literature investigating the performance of consumption-
based asset pricing models for the pricing of the cross-section of expected returns. Major ad-
vances in this literature have been made recently by, e.g., Parker and Julliard (2005), Savov
(2011), Ferson, Nallareddy, and Xie (2013), Boguth and Kuehn (2013), and Kroencke (2017).
Some authors (rather indirectly) point towards the issue discussed in our paper, e.g., Parker and
Julliard (2005) and Savov (2011). Instead of providing an in-depth analysis of the fundamental
problem that we focus on, they rather suggest ad hoc procedures to robustify their empirical
findings, such as fixing betas to their OLS counterparts.

Finally, besides the linear factor model which we criticize, the paper of Yogo (2006) also contains
a non-linear model from which the linear model is derived by loglinearization. The non-linear
model was recently criticized by Borri and Ragusa (2017). They find that the model in general
has a hard time explaining the interest rate and the equity premium simultaneously. This result,
however, is completely independent of the failure of the linear factor model that we document.

3 Cross-Sectional Regressions with GMM

This section consists of two parts. In the first, we discuss the GMM estimation approach under
the assumption that the estimated model is correctly specified. In this case, the estimator is of
course consistent. Here, we also introduce most of the notation and vocabulary used in the rest
of the paper. In the second part, we discuss various situations of misspecified models. In the
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context of linear asset pricing models for the cross-section of expected returns, misspecification
means that the cross-sectional R2 is below 1 even asymptotically, i.e. that there is cross-sectional
variation in expected returns that cannot be explained by exposures to the proposed factors.

3.1 Correctly specified models

Assume that there are n test assets with excess returns Rei,t (i = 1, . . . , n; t = 1, . . . , T ) and k
candidate pricing factors Fj,t (j = 1, . . . , k). An unconditional linear factor model implies that
the expected excess returns of all assets are proportional to the assets’ factor exposures:

E[Rei ] =
k∑
j=1

Cov(Rei , Fj)λ
∗
j

⇔ E[Rei ] =
k∑
j=1

(
E[ReiFj ]λ

∗
j − E[Rei ]E[Fj ]λ

∗
j

)

⇔ 0 = E

Rei − k∑
j=1

Rei (Fj − E[Fj ])λ
∗
j

 .
(1)

Here λ∗j denotes the true market price of Fj-risk, scaled by the variance of Fj (i.e. λ∗j =
MPRj
V ar[Fj ]

),

and is the parameter to be estimated.

The expected values of the factors, E[F ] = (E[F1], . . . , E[Fk])
′, are typically unknown to the

econometrician. Of course, ET [F ] = 1
T

∑T
t=1(F1,t, . . . , Fk,t)

′ is an unbiased estimator, but with
non-zero variance.3 To set the uncertainty regarding the estimate for the factor means in relation
to the uncertainty about λ∗ = (λ∗1, . . . , λ

∗
k)
′, the vector E[F ] is often replaced by a further

parameter vector µ = (µ1, . . . , µk)
′, which is estimated jointly with λ∗. Replacing E[F ] by µ

and λ∗ by λ, Equation (1) can be transformed as follows:

0 = E

Rei − k∑
j=1

Rei (Fj − µj)λj


⇔ E[Rei ] =

k∑
j=1

(E[ReiFj ]λj − E[Rei ]µjλj)

⇔ E[Rei ] = E[Rei ]
k∑
j=1

(
E[Fj ]− µj

)
λj +

k∑
j=1

Cov(Rei , Fj)λj

For the ease of exposition, consider the case of a model featuring a single factor (i.e., k = 1):

E[Rei ] = E[Rei ]
(
E[F ]− µ

)
λ︸ ︷︷ ︸

constant term

+Cov(Rei , F )λ︸ ︷︷ ︸
covariance term

(2)

If the model is correctly specified, the vector (Cov(Rei , F ))i is non-zero and proportional to the
vector of expected returns (E[Rei ])i, i.e. the true cross-sectional R2 is equal to 1. In this case, the

true parameter λ∗ is simply given by λ∗ =
E[Rei ]

Cov(Rei ,F ) for any i = 1, . . . , n. However, Equation (2)

can be solved in several ways. Indeed, substituting Cov(Rei , F ) =
E[Rei ]
λ∗ in Equation (2) and

3Throughout the paper, we use the notation of Hansen (1982) in which a subscript T denotes the sample
equivalent of a given moment.
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solving for µ gives

µ = E[F ] +
1

λ∗
− 1

λ
. (3)

In other words, when estimated jointly with GMM, the parameters λ and µ cannot be identified
separately using the pricing errors, i.e., the sample equivalent of Equation (2), as the only
moment condition. Importantly, Equation (3) does not depend on i, so considering more test
assets does not solve the problem.

There are two important special cases of the general set of solutions described by Equation (3).
First, one can set µ = E[F ] to eliminate the constant term in Equation (2). With this choice,
λ is equal to λ∗, the true market price of risk divided by the factor variance. We refer to this
solution as the desired solution.4

Second, consider cases where λ lies in a close neighborhood of zero, which implies that µ is
very large in absolute terms. In the limit λ → 0, the covariance term in Equation (2) vanishes
and the constant term goes to one.5 We refer to such cases as trivial solutions. They are trivial
in the sense that the true statistical relation between factor exposures and expected returns
is irrelevant, because the covariance term in Equation (2) can be made arbitrarily small. As
opposed to the desired solution, a trivial solution yields parameter estimates which are far away
from the true parameters.

In order to restore identification, it is a standard procedure to add a second set of moment
conditions of the form 0 = E [Fj − µj ] for j = 1, . . . , k, which identify the factor means.

In applications, the GMM point estimates are given by (λ̂, µ̂)′ = argminf(λ, µ), where

f(λ, µ) = g′T (λ, µ) W gT (λ, µ). (4)

Here, W denotes the GMM weighting matrix and gT is the (n+k)×1-vector of sample moment
conditions, given by

gT (λ, µ) = ET

[
Rei −

∑k
j=1R

e
i (Fj − µj)λj , i = 1, . . . , n

Fj − µj , j = 1, . . . , k

]
. (5)

We denote the second set of moment conditions as penalty terms, since they penalize deviations
of µ̂ from the factor means.

The additional moment conditions influence the set of minima of the GMM objective func-
tion (4). Asymptotically, only the desired solution, i.e. λ̂ = λ∗ and µ̂ = E[F ], will set all
moment conditions to zero. It is, thus, the global minimum. A trivial solution, i.e. bringing
the covariance term in Equation (2) close to zero by letting λ go to zero is now costly, since
µ̂ will be far away from E[F ]. All other “intermediate” solutions will also be penalized, since
ET [F − µ] = 1

λ −
1
λ∗ is asymptotically nonzero unless λ = λ∗.

3.2 Misspecified models

We have shown above that, in case the model is correctly specified, the GMM estimator that
minimizes the objective function (4) will asymptotically yield the true parameters, i.e., the
desired solution. Obviously, this finding is just a special case of the general result of Hansen

4This choice of µ is equivalent to using the moment condition 0 = E
[
Rei −Rei (F − F̄ )λ

]
, where F̄ denotes

the time series average of the factor. This alternative GMM estimator is also used in the literature, see, e.g., the
detailed discussion in Ferson (2019), p. 180, p. 220, or pp. 224ff.

5To see the latter, reformulate Equation (3) as 1 = λ
λ∗ + (E[F ] − µ)λ. The first term vanishes as λ goes to

zero, so the second must go to one.
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(1982). In applications, samples are small and asset pricing models are misspecified (see Kan
and Zhang, 1999b; Fama and French, 2015). As a consequence, the sample covariances do not
perfectly line up with the sample average returns, i.e., the cross-sectional R2 is smaller than 1
and at least one pricing error is larger than 0. In this situation, there is no parameter vector
(λ, µ)′, for which gT (λ, µ) = 0. The minimum of the GMM objective function then depends on
the choice of the weighting matrix W .

In the following, we show that certain standard choices of W lead to estimators suggesting that
factors with poor pricing abilities appear important for pricing assets and so, heavily misspecified
models appear close to correctly specified. For the ease of exposition, we study only weighting
matrices of the form

Wx =

(
In 0
0 10x Ik

)
= diag(1, . . . , 1, 10x, . . . , 10x) (6)

in this section.6 With W = Wx, the GMM objective function is given by

fx(λ, µ) = SSE(λ, µ) + 10x · SSP (µ),

where SSE denotes the sum of squared pricing errors, i.e. the sum of the first n squared entries
of gT , and SSP denotes the sum of squared penalty terms. We have added the subscript x to the
GMM objective function f to emphasize that the parameter x impacts the objective function,
and, thus, potentially also the values that minimize it.

In the remainder of the section, we discuss the solutions of the optimization problem minfx(λ, µ)
for a given x, making different assumptions about the candidate pricing factors. To characterize
factor j, we consider the following decomposition of the vector of sample covariances of the test
asset returns with factor j:

(CovT (Rei , Fj))i = (CovERij )i + (Cov⊥ij)i, (7)

where (CovERij )i is a multiple of (ET [Rei ])i and (Cov⊥ij)i is orthogonal to (CovERij )i in sample,

i.e.,
∑

iCov
ER
ij Cov⊥ij = 0 for all j.

We discuss different cases with single factors first. The interaction of multiple factors is analyzed
in Section 3.3. In case of a single factor, the model is misspecified if Cov⊥ is different from zero.
In this situation, our goal still is to estimate the parameter λ∗ which solves E[Rei ] = CovERλ∗.
The sample equivalent of the ith moment condition (2) now reads as

gT,i(λ, µ) = ET [Rei ]−
(
ET [Rei ]

(
ET [F ]− µ

)
λ︸ ︷︷ ︸

constant term

+ CovERi λ︸ ︷︷ ︸
priced covariance term

+ Cov⊥i λ︸ ︷︷ ︸
unpriced covariance term

)
(8)

3.2.1 Case 1: Strong perfectly unpriced factors

We call a factor perfectly unpriced if CovER = 0. In this case, the vector of average test asset
returns is orthogonal to the vector of factor exposures, which implies a true cross-sectional R2

of zero for the model featuring the perfectly unpriced factor as the only factor. In the following
section, we focus on the case where Cov⊥ 6= 0. This implies Cov(Rei , F )i 6= 0, and we therefore
label the factor as strong. If, instead, Cov(Rei , F )i is equal to zero, we call the factor perfectly
weak. We will treat the special case of perfectly weak factors in Section 3.2.3.7

6Alternative, more general weighting matrices are analyzed in Section 5.
7There is no consistent nomenclature in the literature. For instance, factors that are labeled “perfectly weak”

in our paper are called “useless” by Kan and Zhang (1999b) and others.
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We are looking for the parameters (λ, µ)′ that minimize the GMM objective function fx in
Equation (4). To facilitate the understanding of the general solution, it is instructive to look
at the minimization problem under the two constraints µ = ET [F ] and µ = ET [F ] − 1

λ first.
In accordance with the previous subsection, we label these two constrained optima as desired
constrained optimum and trivial constrained optimum. As will become clear below, the solutions
of the two constrained minimization problems represent corner solutions of the unconstrained
minimization problem, as x goes to infinity and to minus infinity, respectively.

Desired constrained optimum: The constraint µ = ET [F ] implies a zero penalty term, but
a nonzero pricing error. The GMM objective function fx is thus equal to SSE and minimizing
SSE also minimizes fx for all x. The first n sample moment conditions are given by

gT,i(λ, µ) = ET [Rei ]− CovT (Rei , F )λ = ET [Rei ]− Cov⊥λ.

The GMM objective function thus reads as

fx(λ,ET [F ])) = SSE(λ,ET [F ]) =
n∑
i=1

(ET [Rei ])
2 + λ2(Cov⊥)′Cov⊥.

The minimum is obviously given by λ = 0, i.e.

fx(0, ET [F ]) = SSE(0, ET [F ]) =

n∑
i=1

(ET [Rei ])
2.

Thus, under the constraint µ = ET [F ], we end up in the desired solution, which, in this case,
implies that the sum of squared pricing errors is equal to the sum of squared returns. This means
that the estimated cross-sectional R2 is equal to zero, in line with the true R2. Importantly,
this solution does not depend on the log weight x on the penalty term.

Trivial constrained optimum: Under the constraint µ = ET [F ] − 1
λ , the constant term in

Equation (8) is equal to one, such that the pricing errors are equal to the covariance term. The
GMM objective function is given by

fx((ET [F ]− µ)−1, µ) = (ET [F ]− µ)−2(Cov⊥)′Cov⊥ + 10x(ET [F ]− µ)2

and obviously depends on x. The first term, i.e., the sum of squared pricing errors, has a
supremum at µ = ET [F ] and converges to zero as µ goes to minus or plus infinity. The second
term, i.e. the sum of squared penalty terms, shows the opposite behavior, it is minimized at
µ = ET [F ].

When x is very negative, minimizing fx essentially boils down to minimizing the sum of squared
pricing errors SSE. Similar to the desired constrained minimum discussed above, λ ends up
being close to zero. The difference, however, is that the estimated cross-sectional R2 is close to
1 here, since the pricing errors are close to zero, while the estimated R2 is equal to 0 in the
desired constrained case. Thus, for very negative values of x, the trivial constrained optimization
returns a trivial solution with spuriously high R2 and tiny pricing errors.

For large positive values of x, the penalty term requires µ to be close to ET [F ], which implies
high pricing errors. In fact, fx((ET [F ] − µ)−1, µ) becomes arbitrarily large if x is chosen large
enough. In particular, for x large enough, the minimum of fx((ET [F ]−µ)−1, µ) with respect to
µ exceeds the desired constrained minimum f(0, ET [F ]), which is finite. The minimum under
the constraint µ = ET [F ]− 1

λ thus cannot be the global minimum when x is sufficiently high.

Global optimum: We have considered the minima of the GMM objective function under the
constraints µ = ET [F ], corresponding to an estimated R2 of 0 (which is equal to the true R2),
and µ = ET [F ]− 1

λ , corresponding to an estimated R2 of close to 1 as λ goes to zero. These two
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cases coincide with the corner solutions of the unconstrained minimization in the cases where
x goes to plus or minus infinity.

For large positive x, this results from the fact that the penalty term requires µ to be close to
ET [F ], and this is, by definition, the condition for the desired constrained optimization.

On the other hand, if x is chosen negative enough, we have seen that the value of the GMM
objective function in the trivial constrained optimization can be brought arbitrarily close to
zero. We thus conclude that the trivial constrained optimum represents the corner solution of
the global optimization problem as x goes to minus infinity.

For intermediate values of x, the unconstrained minimum will typically be between these two
cases. As we will see in the simulation study in Section 4, the parameter estimates go from the
R2 = 1 case for low values of x to the R2 = 0 case for high values of x and the point estimates
(λ̂, µ̂) go from (0,∞) to (λ∗, ET [F ]). Importantly, for seemingly natural choices of x, such as
x = 0, we typically find estimates that are far away from the desired solution.

3.2.2 Case 2: Strong priced factors

We next consider a single strong factor which has some explanatory power for the cross-section of
test asset returns, i.e., CovER 6= 0, but we assume that the model is not fully correctly specified,
i.e., Cov⊥ 6= 0. This is the case, we typically have to deal with in empirical applications. It turns
out that the rationale in this case is very similar to the case of perfectly unpriced factors.

We are interested in the parameter λ∗ that solves ET [Rei ] = λ∗CovER. Moment condition (8) is
then given as

gT,i(λ, µ) = ET [Rei ]−
(
ET [Rei ]

(
ET [F ]− µ

)
λ+ λCovER + λCov⊥

)
= ET [Rei ]−

(
ET [Rei ]

(
ET [F ]− µ

)
λ+

λ

λ∗
ET [Rei ] + λCov⊥

)
.

(9)

We consider the same constrained optima as in the previous subsection.

Desired constrained optimum: Under the constraint µ = ET [F ], the sum of squared pricing
errors SSE and thus fx has a minimum in λ = λ∗, and we have

fx(λ∗, ET [F ]) = (λ∗)2 (Cov⊥)′Cov⊥. (10)

These parameters correspond to the desired solution and yield an estimated cross-sectional R2

which is equal to the true R2, i.e., 1− (Cov⊥)′Cov⊥/((CovER)′CovER + (Cov⊥)′Cov⊥).

Trivial constrained optimum: Setting the constant term in Equation (8) to one by con-
straining λ = (ET [F ]− µ)−1 gives

fx((ET [F ]− µ)−1, µ) = (ET [F ]−µ)−2
(

(CovER)′CovER + (Cov⊥)′Cov⊥
)

+ 10x(ET [F ]− µ)2
(11)

Taking the first order condition of Equation (11) with respect to µ gives

µopt = ET [F ]± 4

√
(CovER)′CovER + (Cov⊥)′Cov⊥

10x
. (12)

Substituting this solution back into fx gives the minimum value

fx((ET [F ]− µopt)−1, µopt) = 2

√
10x
(

(CovER)′CovER + (Cov⊥)′Cov⊥
)

(13)
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Global optimum: From Equations (10), (12) and (13) we can again conclude that the two
constrained optima represent the corner solution of the unconstrained optimization problem for
large positive or negative x.

For large positive x, Equation (12) shows that the estimate of µ is close to ET [F ] also under the
constraint λ = (ET [F ]−µ)−1. However, from Equation (13), we see that the value fx((ET [F ]−
µopt)−1, µopt) exceeds fx(λ∗, ET [F ]) if x is large enough, so the trivial constrained optimum
cannot be the global optimum. Instead, the corner solution, when x goes to plus infinity, is
again given by the desired constrained optimum, exactly as in the previous subsection.

For large negative x, on the other hand, fx((ET [F ] − µopt)−1, µopt) can get arbitrarily close
to zero so that, again, the trivial constrained optimum represents the corner solution for the
unconstrained minimization problem when x goes to minus infinity.

For finite but low enough weights, fx((ET [F ]−µopt)−1, µopt) is smaller than fx(λ∗, ET [F ]), which
implies that the parameter estimates systematically move away from the true parameters as x
gets smaller and smaller. We will analyze the relation between the true cross-sectional R2, the
weight x, and the parameter estimates more thoroughly in our simulation study in Section 4.

3.2.3 Case 3: (Perfectly) weak factors

Finally, we call a factor perfectly weak if CovER = 0 and Cov⊥ = 0, i.e., if the time-series
covariance CovT (Rei , F ) is equal to zero for all test assets i = 1, . . . , n. Perfectly weak factors
are necessarily perfectly unpriced. The results from Section 3.2.1 largely carry over to this case,
except for the desired constrained optimization problem.

Desired contrained optimum: Under the constraint µ = ET [F ], the moment condition (8)
becomes

gT,i(λ, µ) = E[Rei ]− 0 · λ,

which implies that λ cannot be identified, independent of the choice of x.

Trivial constraint optimum: Setting the constant term to one by constraining λ = (ET [F ]−
µ)−1 automatically eliminates all pricing errors. The GMM objective function then comprises
only the sum of squared penalty terms:

fx((ET [F ]− µ)−1, µ) = 10x(ET [F ]− µ)2. (14)

Independent of x, it has an infimum at µ = ET [F ], which is, however, not a minimum, since
the initial constraint λ = (ET [F ] − µ)−1 is not defined at that point. Nevertheless, the GMM
objective function can be brought arbitrarily close to zero by choosing µ arbitrarily close to
ET [F ]. Hence, in applications, the GMM estimator always ends up in a trivial solution if a
factor is perfectly weak. In terms of estimates, this means that µ̂ ≈ ET [F ], λ̂ is extremely large
in absolute terms and the estimated cross-sectional R2 is close to 1.

A perfectly weak factor is of course a theoretical knife-edge case. In applications, however,
factors are often weak, in the sense that the sample covariances of all test asset returns with
the candidate factor are very close to zero. In this case, the rationale outlined above can still
serve as an intuition. If the covariance term in Equation (2) is close to zero, even highly positive
or negative values for λ do not make the covariance term particularly costly when minimizing
SSE. We will analyze the relation between weakness of a factor and estimation results more
thoroughly in our simulation study in Section 4.
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3.3 Multiple factors

With two or more factors, there is one constant and one covariance term per factor. To reduce
the pricing errors to zero, it is enough to set the constant term of one factor to one, i.e., choose
parameters that correspond to a trivial solution for only one factor. As we have seen in the one
factor cases, it is particularly cheap to do so in terms of penalty terms when a factor is weak.
As a consequence, in empirical applications like the one presented in the introduction, weak
factors have the potential to “drive out” strong factors, when the GMM weighting matrix is
chosen inappropriately.

To exemplify this rationale, consider the case of two factors F1 and F2, where F2 is perfectly
weak. Equation (8) then reads

gT,i(λ, µ) = ET [Rei ]−
(
ET [Rei ]

(
ET [F1]− µ1

)
λ1 + CovT (Rei , F1)λ1 + ET [Rei ]

(
ET [F2]− µ2

)
λ2

)
.(15)

One solution of this equation is given by (λ1, λ2, µ1, µ2)
′ = (0, (ET [F2] − µ2)

−1, ET [F1], µ2)
′.

In this case, the sum of squared penalty terms is equal to (ET [F2] − µ2)2 and can be made
arbitrarily small if µ2 is set close to ET [F2]. The pricing errors also vanish for these parameters,
so they must minimize the GMM objective function globally.

Hence, when estimating a linear model with multiple factors, one weak factor is enough to
end up with an estimated cross-sectional R2 of one and zero pricing errors, independent of the
weighting matrix. Importantly, the estimated parameters are far away from the true parameters
in a particularly misleading fashion. The market price of risk λ1 of the strong and (imperfectly)
priced factor is estimated at zero and, thus, appears irrelevant. Moreover, the market price of
risk λ2 of the perfectly weak factor is seemingly extremely large, either positive or negative.

As we will see in our application with simulated data in Section 4, factors which are “almost”
perfectly weak (i.e., for which the time series covariances with the test asset returns are non-
zero, but small) lead to similar results when combined with strong factors. Importantly, just as
stated above, λ1 is estimated to be equal to zero in these cases, falsely implying that the first
factor was unpriced, even if it is actually (imperfectly) priced. Moreover, since the factor mean
of the weak factor is typically close to the factor mean in sample, λ2 is estimated to be large
and significant.

We discuss the situation of two factors with different strengths and different explanatory powers
for the cross-section of test asset returns thoroughly in the simulation study in Section 4.

4 Simulation Study

Having discussed the behavior of the GMM objective function in the limits x → ±∞ and
for instructive special cases, we now analyze the full spectrum of possible factors and GMM
weighting matrices in a simulation study. The general idea is as follows. We make various choices
for the data-generating processes of factors and of test portfolio excess returns. For each choice,
we draw one representative monthly sample of factor realizations and excess returns. Finally, we
run the GMM estimation on each of these samples for various choices of the weighting matrix
W .8

8This approach is different from other studies that simulate many samples to analyze the finite sample
properties of estimators. As shown in Section 4.5, the properties we describe do not depend on the sample size.
As discussed below, we make sure that all properties of factors and returns even hold in sample.
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4.1 Data-generating processes

The factors F1, . . . , Fk are drawn independently from an i.i.d. normal distribution with means
and standard deviations which are all set to 1 percent per quarter. The data generating process
for excess returns is given as

Rei,t = E[Rei,t] +
k∑
j=1

βi,j(Fj,t − E[Fj,t]) + σi εi,t, (16)

where the ε’s are independent from one another and from the factors and are also i.i.d. nor-
mally distributed with means and standard deviations of 1 percent. In particular, the standard
deviation of the factors, σf , is equal to the standard deviation of the error terms, σε, which will
facilitate the interpretation of the coefficients βi,j and σi as explained in detail below. They are

chosen such that the volatility of excess returns, σr =
√
β2i,jσ

2
f + σ2i σ

2
ε , is 0.06 for all assets.

Unless stated otherwise, we simulate 25 return time series with 600 observations each. The
sample size corresponds to a standard monthly post-war sample, but we also analyze the impact
of the sample size in Section 4.5. The factor time series as well as the ε’s are sampled from an
i.i.d. normal distribution and orthogonalized subsequently, to make sure that they are perfectly
orthogonal even in our small sample.

The cross-sectional variation in expected returns E[Rei,t] is modeled as follows. We draw a true
factor exposure bi,j of the return of asset i to factor j from a normal distribution with mean and
standard deviation of 1 percent. Importantly, the true exposures are assumed to be constant
over time, i.e., they are only drawn once before we simulate the factor and return time series.
The vectors of true factor exposures (bi,j)i=1,...,n for different factors j are supposed to be
orthogonal. In our simulation study, we draw vectors of factor exposures, orthogonolize them,
and scale them subsequently, such that they all have a mean and standard deviation of 1 percent
in sample. To allow for model misspecification and varying degrees of explanatory power of the
factor exposures in our simulation framework, we set

E[Rei,t] =
k∑
j=1

(rjbi,j +
√

1− r2j ei,j), (17)

where the coefficients rj are chosen between 0 and 1 and the ei,j ’s have exactly the same
properties as the bi,j ’s, but are orthogonal to them.

To exemplify the intuition, assume that there is only one factor, such that the expected excess
return of asset i is given as rbi +

√
1− r2ei. Then, the cross-sectional correlation between the

vector of factor exposures and the vector of expected returns is r. In other words, the true
cross-sectional R2 is equal to r2. With multiple factors, the factor model’s cross-sectional R2 is
given by 1

k

∑k
j=1 r

2
j , i.e. factor j contributes r2j/k to the overall cross-sectional R2. Our design

allows us to analyze perfectly priced factors (by setting r = 1), perfectly unpriced factors (by
setting r = 0), and everything in between.

We also want to distinguish between weak and strong factors. To this end, we set

βi,j =
σr
σf
· sj ·

bi,j
max(|b·,j |)

, (18)

σi =
σr
σf

√√√√1−
k∑
j=1

(
sj ·

bi,j
max(|b·,j |)

)2

, (19)

so that the time series correlation between factors and returns is controlled by the choice vari-
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ables sj ∈ [0, 1].

Again, the intuition is best understood in the case of a single factor. Equations (18) and (19)
then reduce to βi = σr

σf
· s · bi/max(|b|) and σi = σr

σf
·
√

1− s · bi/max(|b|), respectively. The time

series R2 of the factor model for return i is given by

(βiσf )2

(βiσf )2 + (σiσε)2
=

β2i
β2i + σ2i

= s2
bi

max(|b|)
, (20)

where we make use of the fact that σf = σε. Normalizing the βi and σi by max(|b|) ensures
that s can easily be interpreted as the time series R2 of the asset with the highest absolute
factor exposure. Assets with lower factor exposures have lower time series R2 accordingly.9 The
scaling factor σr

σf
ensures that the volatility of excess returns is equal to 0.06 for all assets, as

explained above. This implies an annual return volatility of 20.78% for all test assets.

To sum up, the true cross-sectional R2 is always equal to 1
k

∑k
j=1 r

2
j , the true µj is always equal

to 0.01 by assumption, and, from plugging (18) into (17), we obtain the true λj as

λj =

{
rj max(|b·,j |)
sjσrσf

if sj > 0,

not identified if sj = 0.

In the following, we analyze the behavior of the GMM estimator using data from the time
series and cross-sectional model introduced above. We always hold all parameters fixed, with
the exception of s, r and the GMM weighting matrix W .

4.2 The impact of true R2

We start by analyzing the impact of the GMM weighting matrix for factors with varying cross-
sectional explanatory power, i.e., for different values for r. Throughout this section, we analyze
strong factors only, i.e. we set s = 1, and we stick to one factor models and weighting matrices
Wx of the form studied in Section 3.

We first consider a single strong but perfectly unpriced factor, i.e. we set s = 1 and r = 0. We
vary the log weight x on the penalty term and study the effects on the estimated R2, RMSE,
point estimates, and 95% confidence bands. Figure 1 shows these quantities for values of x
between -5 and 5.

We find exactly the pattern described in Section 3.2.1. If x exceeds a critical value, in this case
around 0.4, the estimates are in line with the true values, i.e. an R2 of zero, a root mean squared
pricing error that is equal to the cross-sectional standard deviation of expected returns, and
point estimates λ̂ = 0 and µ̂ = 0.01.10 For such high values of x, the weight on the penalty term
is so high that selecting a µ̂ different from the true factor mean in order to reduce the pricing
error is too costly.

For x→ −∞, the figure suggests that the estimated R2 goes to 1, the RMSE goes to zero, and
λ̂ and µ̂ go to 0 and −∞, respectively. This reflects what we labeled the trivial solution in the
previous section.

9Note that an asset with a zero factor exposure necessarily has a time series R2 of zero, so we decide to
couple the individual asset’s times series R2 to its factor exposure in general. In settings with multiple factors,
the values s1, . . . , sk have to be chosen such that the term under the root in Equation (19) is positive for all i.
The most conservative way of doing so is to assume that

∑k
j=1 sj ≤ 1.

10Although the four functions shown in Figure 1 seem to have a kink at the critical value, they are actually
differentiable. Making the grid finer in a close neighborhood of that point, we find that the first derivatives change
rapidly but smoothly.
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Figure 1:

A single strong and perfectly unpriced factor
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We apply a GMM estimation with the moment conditions in Equation (5) and the weighting matrix

in Equation (6). The figure shows estimated R2 and RMSE and the point estimates of λ and µ,

together with 95% confidence bounds as functions of x, the log weight on the moment condition

that identifies the factor mean. Returns are simulated according to Equations (16)-(19) with r = 0

and s = 1.

For intermediate values of x below 0.45, we observe an estimated R2 between 0 and 1 and large
and significant λ estimates. For example, when using the identity matrix for weighting (i.e.,
x = 0), we estimate an R2 of 0.53 and a λ of 16.67 with a t-statistic of 5.16.

To understand the impact of the true cross-sectional R2 on the estimated statistics, we next
simulate data under the assumptions that the factor is strong and the cross-sectional R2 is equal
to 0.5, i.e. r =

√
0.5 and s = 1, which implies a true λ of 33.90.

Figure 2 shows the estimation results. They suggest that the case of (imperfectly) priced factors
is very similar to the case of perfectly unpriced factors. For sufficiently high weights on the
penalty term, the estimated R2 and RMSE, as well as the point estimates of λ and µ are close
to the true values. Low values of x, on the other hand, lead to inflated R2’s and biased parameter
estimates. The figure again shows that even seemingly moderate choices of the weighting matrix,
such as the identity matrix, can result in such a pattern.

Figure 3 shows the results for all possible choices of r (including the cases r2 = 0 and r2 = 0.5
from above). It depicts heatmaps of the estimated R2 and the point estimate of µ as functions
of x (on the horizontal axis) and the true R2 (on the vertical axis). It is apparent that the
estimated R2 is far too high for low weights x when the true R2 is small. However, we also
observe that the parameter µ (and, thus, also λ which is close to (ET [F ]−µ)−1 in this region) is
seriously biased even for high values of the true R2 if x is low. This shows that, unless a factor
is perfectly priced, there is potential for biased parameter estimates, if the weight on the factor
mean is chosen inappropriately.
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Figure 2:

A single strong factor with a cross-sectional R2 of 0.5
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We apply a GMM estimation with the moment conditions in Equation (5) and the weighting matrix

in Equation (6). The figure shows estimated R2 and RMSE and the point estimates of λ and µ,

together with 95% confidence bounds as functions of x, the log weight on the moment condition that

identifies the factor mean. Returns are simulated according to Equations (16)-(19) with r =
√

0.5

and s = 1.

4.3 The impact of factor strength

Next, we analyze the impact of the strength of a factor on the estimated R2, RMSE, λ, and
µ, by varying the coefficient s in Equations (18) and (19), while keeping r fixed at

√
0.5. As

a starting point, Figure 4 shows the estimated quantities as functions of x for a very low s of√
0.025.11 With such a low value of s, most of the time series variation in the test asset returns

come from the unsystematic part and the factor is only weakly correlated with them. Figure 2
can serve as a benchmark, since the true cross-sectional R2 is the same in both figures and only
the time series R2, i.e., the strength of the factor, is reduced dramatically in Figure 4 compared
to Figure 2.

Qualitatively, we observe a pattern that is very similar to Figure 2. Quantitatively, one difference
is that the true λ is equal to 214 with these parameters. More interestingly, the range in which
the estimated R2 drops from 1 to 0 has moved to higher values of x, relative to Figure 2. Thus,
when fixing a particular weighting matrix, for example the identity matrix, biased parameter
estimates and inflated R2’s are the more likely the weaker the factor being tested. As discussed
in Section 3.2.3, if a factor is very weak, the covariance terms in Equation (8) are close to zero, so
even a very high λ does not lead to high pricing errors under the constraint λ = (ET [F ]−µ)−1.

The heatmaps in Figure 5 show the estimated R2 and µ as functions of the log weight x on the
penalty and of s2, the strength of the factor. The true cross-sectional R2 of the factor is again
set to 0.5. In line with the discussion above, we observe that for very weak factors (s close to
zero), the estimated R2 is close to 1 even for x = 1. Apart from such extreme choices of s, the

11Analyzing the case s = 0 is not feasible, because the estimation algorithm does not converge to a finite λ.
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Figure 3:

A single strong factor with a cross-sectional R2 of 0.5

We apply a GMM estimation with the moment conditions in Equation (5) and the weighting matrix

in Equation (6). The figure shows estimated R2 and the point estimates of µ as functions of x, the

log weight on the moment condition that identifies the factor mean, and the true R2. Returns are

simulated according to Equations (16)-(19) with s = 1.

Figure 4:

A single weak factor with a cross-sectional R2 of 0.5
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We apply a GMM estimation with the moment conditions in Equation (5) and the weighting matrix

in Equation (6). The figure shows estimated R2 and RMSE and the point estimates of λ and µ,

together with 95% confidence bounds as functions of x, the log weight on the moment condition that

identifies the factor mean. Returns are simulated according to Equations (16)-(19) with r =
√

0.5

and s =
√

0.025.

pattern in estimated R2’s and also the parameter estimates as functions of x are rather stable
across levels of s. This shows that the strength of a factor has only a minor impact on the bias
we describe, relative to the true explanatory power of a factor, as analyzed in Section 3.2.2.
Stated differently and as also pointed out in the introduction, the issue we raise does not apply
to weak factors only.
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Figure 5:

A single strong factor with a cross-sectional R2 of 0.5

We apply a GMM estimation with the moment conditions in Equation (5) and the weighting matrix

in Equation (6). The figure shows estimated R2 and the point estimates of µ as functions of x, the

log weight on the moment condition that identifies the factor mean, and the true R2. Returns are

simulated according to Equations (16)-(19) with s = 1.

4.4 Models with two factors

We continue with two factors which differ in terms of both cross-sectional and time series
explanatory power. We start with one strong and priced factor (setting r1 = 1 and s1 =

√
0.9)

and one rather weak and perfectly unpriced factor (setting r2 = 0 and s2 =
√

0.01). This
resembles the setup studied in Section 3.3. The true cross-sectional R2 is equal to 0.5 = 1

2(r21 +
r22). Figure 6 shows the usual statistics.

As before, the estimated R2 and RMSE go to the true values as x increases. For log weights x
above a certain threshold, in this case x = 2.6, deviations of µ̂ from the sample means of the
factors are so costly in terms of the penalty terms that the minimum of the GMM objective
function is equal to the true parameters. For values of x below that threshold, it is cheaper to
reduce the pricing errors at the cost of a penalty. This can be achieved by setting λ close to
(ET [F ] − µ)−1 for one of the factors, i.e., bringing the constant term in Equation (8) close to
one. As discussed in Section 3.3, the pricing error for the strong and imperfectly priced factor
is equal to λCov⊥ and can only be reduced by setting λ close to zero since Cov⊥ is large. A
small λ, however, results in a high penalty. For the weak factor, Cov⊥ is already close to zero,
so that there is no need to choose a small λ. We find exactly this pattern in the estimated λ2
in Figure 6. For weights below the critical value, λ2 estimates are positive and significant and
µ2 estimates are close to ET [F2]− 1

λ2
. The pattern in (λ̂2, µ̂2)

′ as a function of x is qualitatively
similar to the case of a single strong and perfectly unpriced factor, shown in Figure 1. The
difference is that the critical log weight x is larger in Figure 6, since the weak and unpriced
factor F2 here is much weaker than the unpriced factor in Figure 1.

For low values of x, the parameters (λ̂2, µ̂2)
′ correspond to a trivial solution, applied to the

weak factor, which brings the pricing errors close to zero. The strong and (imperfectly) priced
factor F1 hampers the good pricing performance of the model. To shut down its impact on the
pricing errors, λ1 is estimated close to zero for low values of x. As a consequence, the weak and
unpriced factor F2 appears priced while the strong and unpriced factor appears irrelevant.

In numbers, when weighting the moment conditions with the identity matrix, the market price
of risk λ1 of the strong and priced factor F1 is estimated at −2.03 (true value is 50) with a
t-statistic of −0.32. The market price of risk λ2 of the weak and perfectly unpriced factor F2

is estimated at 88.69 (true value is 0) with a t-statistic of 6.51. The estimated cross-sectional
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Figure 6:

One strong and priced and one weak and unpriced factor
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We apply a GMM estimation with the moment conditions in Equation (5) and the weighting matrix

in Equation (6). The figure shows estimated R2 and RMSE and the point estimates of λ1, λ2, µ1,

and µ2, together with 95% confidence bounds as functions of x, the log weight on the moment

condition that identifies the factor mean. Returns are simulated according to Equations (16)-(19)

with r1 = 1, r2 = 0, s1 =
√

0.9, and s2 =
√

0.01.

R2 is equal to 97.96% (true value is 50%) and the estimated root mean squared pricing error is
0.22% (true value is 1%).

To complete the analysis, we finally turn to the case of two equally strong factors, in the sense
that

(CovT (Re, F1))
′CovT (Re, F1) = (CovT (Re, F2))

′CovT (Re, F2) 6= 0,

where factor F1 is priced and factor F2 is perfectly unpriced. In terms of the parameters in
Equations (16) to (19), we set s1 = s2 =

√
0.5, r1 = 1, and r2 = 0, again implying a true

cross-sectional R2 of 0.5 for the two factor model. Figure 7 shows estimated R2 and RMSE,
together with the point estimates and 95% confidence intervals of the parameters.

We again find a critical value of x (now at 1.9), which separates the desired estimates (for x
above that value) from biased estimates (for x below that value). Compared to Figure 6, the
critical value is now slightly smaller, since the two factors are much stronger (compare the
analysis in Section 3.2.3).

Interestingly, in terms of the point estimates of the parameters, the two factors “share the work”
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Figure 7:

One strong and priced and one strong and perfectly unpriced factor
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We apply a GMM estimation with the moment conditions in Equation (5) and the weighting matrix

in Equation (6). The figure shows estimated R2 and RMSE and the point estimates of λ1, λ2, µ1,

and µ2, together with 95% confidence bounds as functions of x, the log weight on the moment

condition that identifies the factor mean. Returns are simulated according to Equations (16)-(19)

with r1 = 1, r2 = 0, s1 =
√

0.5, and s2 =
√

0.5.

for low log weights x. Since the two factors are equally strong, it is equally costly in terms of the
penalty term to let the µ estimates deviate from the sample means of the factors to decrease the
pricing errors. Compared to the analysis of Figure 6, which showed that weak factors drive out
strong factors, we thus cannot conclude that unpriced factors drive out priced factors if they
are comparable in terms of strength. Still, however, parameter estimates are biased and R2’s
are inflated when the weight on the penalty term is too low.

4.5 The impact of sample size and number of test assets

None of our arguments involve the sample size. Indeed, shrinking the pricing error at the cost
of a higher penalty is not more costly when the sample size is particularly small or large.
To corroborate this intuition, we simulate data with different sample sizes between 100 and
1.000.000 and repeat the estimation. We find that the parameter estimates and pricing statistics
are exactly equal across sample sizes. This stability is due to the fact that we orthogonalize and
standardize all time series in order to set all sample moments equal to their true moments even
in small samples.

We also analyze if and how the number of test assets has an impact on the estimated parameters
and the model performance statistics. We simulate factors and returns with s = 1 and r = 0,
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corresponding to a strong and perfectly unpriced factor, as in Section 3.2.1, but the following
intuition carries over to cases of weaker and priced factors. We fix x = 0, which means that
we use the identity matrix for weighting the moment conditions, and we simulate between 5
and 200 test asset return time series. Figure 8 shows estimated cross-sectional R2’s, root mean
squared pricing errors, and the point estimates of λ and µ, together with the 95% confidence
intervals, as functions of the number of test assets.

Figure 8:

The impact of the number of test assets
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We apply a GMM estimation with the moment conditions in Equation (5) and the identity weighting

matrix (x = 0). The figure shows estimated R2 and RMSE and the point estimates of λ and µ,

together with 95% confidence bounds as functions of the number of test assets. Returns are simulated

according to Equations (16)-(19) with r = 0 and s = 1.

Interestingly, we find that the bias in parameter estimates is more severe if the number of test
assets is large. With only five test assets, the estimated R2 coincides with the true R2 of zero,
and the estimates of λ and µ are equal to the true values of 0 and 0.01. With an increasing
number of test assets the estimated R2 goes to 1 and the estimated µ goes to pronounced
negative values.

Intuitively, when increasing the number of test assets, we also increase the number of moment
conditions. However, the number of moment conditions that identify the factor mean stays
unaltered and, thus, they become less relevant relative to the pricing errors. In that sense,
increasing the number of test assets indirectly increases the weight on the pricing errors or, in
other words, decreases the relative weight on the penalty terms.

We conclude that the bias in parameter estimates does not depend on the sample size, but the
number of test assets matters. Ceteris paribus, the bias is more severe if the number of test
assets is large. This is in contrast to, e.g. Lewellen et al. (2010), who suggest increasing the
number of test assets as an easy way to address the challenges laid out in their paper. However,
for the particular problem discussed in our paper, it makes the situation even worse.
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5 Alternative Weighting Matrices

The analysis in Sections 3 and 4 emphasizes the key role of the GMM weighting matrix for the
bias in the estimation. For ease of exposition, we focused on prespecified weighting matrices of
the form

W =

(
In 0
0 10x Ik

)
= diag(1, . . . , 1, 10x, . . . , 10x). (21)

In applications, however, weighting matrices are often chosen endogenously, for instance by
inverting a prior estimate of the covariance matrix of error terms. Therefore we now analyze
the behavior of the GMM estimator for alternative endogenous specifications of W . We start
with the theoretically optimal weighting matrix, namely the inverse of the true covariance
matrix of the errors. Of course, we typically do not know the true variances and covariances
of the moment conditions in applications. Therefore, we also discuss two popular alternatives:
A diagonal matrix with the inverses of the variances of the moment conditions on the main
diagonal, and the inverse of an estimate of the covariance matrix.

5.1 Inverse of the true covariance matrix

In general, the idea of using the inverse of the covariance matrix goes back to Hansen (1982),
who showed that the corresponding GMM estimator is efficient in the class of asymptotically
normal estimators. In applications, this approach requires a prior estimation of the variances of
the moment conditions, since the true parameters, and, thus, the true variances are unknown.
In our controlled simulation environment, however, we know the true parameters, in particular
the variances of the moment conditions. The statistics for pricing performance, such as R2 and
RMSE, are often not interpretable with this specification because the GMM objective function
no longer minimizes the pricing errors of the test assets, but the pricing errors of portfolios
of them. However, we can still investigate to what extent the bias in parameter estimates is
mitigated by this choice of the weighting matrix.

We start with the case of a strong and perfectly unpriced factor. We decompose the inverse of
the true covariance matrix of the moment conditions as

W =

(
Wpe ∗
∗ ∗

)
,

where Wpe is the weighting matrix for the pricing errors. Given the structure of our data-
generating process, all off-diagonal elements of Wpe are equal to zero. The weights on the
main diagonal are positively related to the respective test assets’ factor exposures in the clean
environment of our simulation study. The remaining parts of W , which are marked by asterisks,
are populated by non-zero elements. Intuitively, the first n moment conditions are correlated
through their dependence on the factor F . Efficient GMM gets rid of this joint variation by
considering differences between these moment conditions and F − µ.

To investigate whether the inverse of the true covariance matrix leads to correct parameter
estimates, we simulate a strong factor (s = 1) with varying true cross-sectional R2’s. Figure 9
shows the true parameters λ and µ (dotted lines), the parameter estimates (solid lines), and
the 95% confidence intervals, as functions of the true cross-sectional R2 of the simulated factor.
All other parameters in the simulation are as described in Section 4.

Overall, the figure shows that the point estimates are close to their true values. In additional
simulations not reported here, we vary the variances of returns and of the factor, the number
of test assets, and the strength of the factor, and we find this result to be very robust across
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Figure 9:

Using the inverse of the true covariance matrix for weighting
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We apply a GMM estimation with the moment conditions in Equation (5) and the use the inverse

of the true covariance matrix of the moment conditions as weighting matrix. The figure shows the

true λ’s and µ’s and point estimates of λ and µ, together with 95% confidence bounds as functions

of the true R2 of the factor model. Returns are simulated according to Equations (16)-(19) with

s = 1.

specifications. Our findings suggest that using the inverse of the true covariance matrix mitigates
the bias we describe in this paper. Unfortunately, in applications, the true covariance matrix
is typically unknown and needs to be estimated. In the following, we show that two popular
alternatives lead to biases that are comparable to those described in Section 4.

5.2 Diagonal weighting matrices

In asset pricing applications, a weighting matrix with off-diagonal elements implies that the
estimated parameters only minimize the pricing errors of portfolios of the test assets, but not
of the test assets themselves. Such portfolios often have extreme weights if there is a common
component in test asset returns that is not captured by the factors (a time effect, see Petersen,
2009). Cochrane (2005) argues that a prespecified weighting matrix with zero off-diagonal ele-
ments avoids this problem and allows for a clear interpretation of the estimated parameters and
a simple evaluation of the model’s pricing performance. Instead of assigning the different mo-
ment conditions a unit or some other arbitrary weight, Yogo (2006) suggests to use the inverses
of the variances of the moment conditions as weights to account for the fact that less volatile
moments are more informative about the parameters to be estimated (see Section 6).

In applications, this reduced-form approach also requires a prior estimation of the variances of
the moment conditions, so we again study it in our controlled simulation environment where we
know the true parameters. Again, we consider the situation of a strong and perfectly unpriced
factor first. In this case, the true λ is equal to zero, such that the variances of the individual
moment conditions in

g(λ, µ) =

[
Rei −Rei (F − µ)λ, i = 1, . . . , n

F − µ

]
(22)

are simply given by the variances of the test asset returns and of the factor. The corresponding
diagonal weighting matrix is then simply given by diag(V ar(Re1)

−1, . . . , V ar(Ren)−1, V ar(F )−1).

In asset pricing, it is common to use factor mimicking portfolios which are typically about as
volatile as the test asset returns themselves. But if the pricing factor F is as volatile as the test

22



asset returns, we are back in the case of an identity matrix as weighting matrix with all the
consequences described in Section 4.

If the pricing factor and the test asset returns have very different volatilities, we can simply scale
the pricing factor up or down. The true pricing performance of linear factor models is invariant
to affine linear transformations of the factors. Our theoretical analysis, however, reveals that
the estimated pricing performance is not invariant to scaling. When using a diagonal matrix
with inverse variances of the moment conditions on the main diagonale, multiplying a pricing
factor by a scalar m is tantamount to multiplying the weight on the penalty term by 1/m2.

For priced factors, this rationale does not change much. When the true λ is different from zero,
the variances of the pricing errors typically increase moderately, relative to the case where λ is
equal to zero. However, the intuition from above still applies. The weight on the penalty term
essentially reflects the magnitude of the factor variance relative to the return variances of the
test assets.

5.3 Iterated and continuously updating GMM

Instead of imposing a prespecified structure on the weighting matrix, researchers often try
to estimate the covariance matrix of the moment conditions via an iterated GMM estimation
approach. Parameter estimates in the current stage allow an estimation of the covariance matrix
whose inverse serves as the weighting matrix for the next stage. The algorithm then either runs
through a prespecified number of iterations or until the parameter estimates show signs of
“convergence” towards a limit.

We again simulate a strong (s = 1) and perfectly unpriced (r = 0) factor and run an iter-
ated GMM estimation. In the first step of the iteration we use the weighting matrix W =
diag(1, . . . , 1, 10x). Using the point estimates from this first stage, we estimate the covariance
matrix of the moment conditions. We calculate the inverse of this estimated covariance matrix
and use it as the weighting matrix in the next stage. We iterate the procedure until conver-
gence, i.e., until the point estimates from the current iteration stage are very close to those of
the previous stage.

Figure 10 shows the point estimates of λ and µ, together with 95% confidence intervals, as
functions of the log weight x on the penalty term in the first stage GMM estimation. If the
iteration always converged to the true parameters, the point estimates should be independent
of the weight x in the first stage.

The figure clearly shows that this is not the case. In fact, the pattern in point estimates is
remarkably similar to the one observed in Figure 1. Note that the results in Figure 1 are, by
construction, equal to the results in the first stage of the estimation analyzed here. We again
find that there is a critical value for x, which is slightly greater than zero. For log weights above
that critical value, the point estimates of λ are equal to zero, the true value. Starting with a
log weight below the critical value leads to biased parameter estimates. For these values, the µ
estimates are biased as well.

Our results suggest that biased first stage estimates carry over to higher stages in the iteration.
This is not surprising. Suppose the log weight x in the first stage is very low. As we have argued
in Sections 3 and 4, we then end up with parameter estimates that are close to a trivial solution
in the first stage estimation, meaning that µ̂ ≈ ET [F ] − 1

λ̂
and λ̂ ≈ 0. With these parameters,

the first n moment conditions in Equation (22), i.e., the pricing errors, approximately simplify
to R − R. This means that not only the sample average of these moment conditions, but in
fact each single observation is virtually equal to zero. Thus, the variances of the first n moment
conditions and their covariances with the penalty terms are close to zero. The covariance matrix
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Figure 10:

Using the inverse of the estimated covariance matrix for weighting
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We apply an iterated GMM estimation with the moment conditions in Equation (5) and use the

inverse of the covariance matrix of the moment conditions, estimated using the point estimates

from the previous stage, as weighting matrix. In the first stage GMM estimation, we use a diagonal

matrix of the form W = diag(1, . . . , 1, 10x) for weighting. The figure shows the point estimates of λ

and µ, together with 95% confidence bounds as functions of x, the log weight on the penalty term

in the first stage. Returns are simulated according to Equations (16)-(19) with s = 1 and r = 0.

of the moment conditions after the first stage approximately has the form

Ĉov(g) ≈

(
0n×n 0n×1

01×n ̂V ar(F )

)
,

and is (close to) singular. Intuitively, small but finite log weights x in the first stage lead to
parameters that we labeled as a trivial solution, so that the weights on the pricing errors in the
second stage will be very high. The estimated variance of the pricing errors is close to zero which
makes these moments seem much more informative about the parameters to be estimated than
the penalty term. This again leads to biased parameter estimates, and, consequently, biased
estimates of the covariance matrix, in the subsequent stages.12

As an alternative to iterated GMM, we also investigate continuously updating GMM (CUGMM),
suggested by Hansen et al. (1996). Instead of estimating the covariance matrix in an iterated
fashion and hoping that it converges to the true covariance matrix, this procedure considers the
estimated covariance matrix as a function of the true parameters and directly minimizes the

GMM objective function gT (λ, µ)′W (λ, µ) gT (λ, µ), whereW (λ, µ) is the inverse of ̂Cov(g(λ, µ)).

We run CUGMM estimations on our simulated data. We find that the algorithm runs into
areas of the parameter space where the estimated covariance matrix of the moment conditions
cannot be inverted and the algorithm does not converge to a solution. The global infimum of
the modified GMM objective function is at the trivial solution, where the estimated covariance
matrix of the moment conditions is singular.

Summing up, popular numerical strategies, such as iterated or CUGMM, do not mitigate the
biases in the parameter estimates that we describe in Section 3.

12We find the same pattern for the point estimates also with much larger sample sizes, suggesting that the
bias does not vanish as T →∞. The estimate of Cov(g) does not depend on T , implying that the weights do not
change as T increases. Thus, the intuition from Section 4.5 carries over to the case of iterated GMM.
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6 Example: The Durable Consumption Model

We finally turn to an example from the literature in which the estimation design outlined above
plays a major role, and which is therefore very susceptible to the bias outlined in our paper. Yogo
(2006) proposes a factor model in which expected excess returns of stocks or portfolios are linear
in the assets’ exposures (betas) with respect to three factors: the log growth rate of consumption
of nondurable goods and services (denoted by F1 subsequently), with a sample mean of 0.513%,
the log growth rate of consumption of durable goods (F2), with a mean of 0.915%, and the log
return on the aggregate stock market (F3), with a mean of 1.88%. The model is tested using
quarterly excess returns of the standard 25 size- and book-to-market-sorted portfolios from
1951:Q1 to 2001:Q4, which are available on Kenneth French’s webpage.13 The sample moment
conditions used to estimate the model parameters and evaluate the goodness of fit via GMM
are the ones given in Equation (5). In total, there are 28 moment conditions and 6 parameters
to be estimated.

The exact estimation procedure for the model is somewhat involved, so that a detailed descrip-
tion is delegated to Appendix A. In short, a two-stage GMM estimation is performed, where
the weighting matrix in the second stage is the inverse of the covariance matrix estimated in the
first stage. Most important in the context of our paper is the weighting matrix W (1) in the first
stage. This matrix is obtained using initial values for the parameters λ and µ (see Appendix A).
More specifically, W (1) is chosen as

W (1) =

(
det(Ω̂

(1)
1,...,25)

− 1
25 I25 0

0 (Ω̂
(1)
26,...,28)

−1

)
,

where Ω̂(1) is the estimate of the 28 × 28-covariance matrix of the moment conditions, given

these initial values. Ω̂
(1)
i,...,j denotes its submatrix

Ω̂
(1)
i,i . . . Ω̂

(1)
i,j

...
. . .

...

Ω̂
(1)
j,i . . . Ω̂

(1)
j,j


and I25 is the 25-dimensional identity matrix. To study the impact of the weights for the factor

mean moment conditions on the estimation results, we multiply the lower block (Ω̂
(1)
26,...,28)

−1 in

W (1) by a factor 10x, varying x between −4 and 4.

The results are shown in Table 2. Confirming our theoretical and simulation-based results, the
pricing performance of the model varies dramatically with x. With x = −4, the pricing error is
only 0.012% and the R2 is 0.999. Moreover, the first stage estimates of the factor means differ
dramatically from the sample averages because the weights on these moment conditions are very
low. Increasing x leads to an increase in mean absolute pricing errors and a decrease in R2. The
second column (x = 0) is identical to the results reported in Yogo (2006). It is also identical to
the first column in Table 3, which shows the results for several further specifications. For x = 4,
the R2 is down to 0.013. At the same time, the factor mean estimates are basically equal to the
sample averages, at least in the first stage regression.

As a final step, we also present point estimates and the cross-sectional R2 from a standard Fama-
MacBeth two-pass regression in the last column of Table 2. The R2 is very close to the one for
x = 4. There are no degrees of freedom for the factor means in a Fama-MacBeth regression (the
values for µ1, µ2, µ3 reported in this column are just the sample averages of the factors). It is

13See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Table 2: Parameter estimates for different weighting matrices

x = −4 x = 0 x = 1 x = 2 x = 4 FMB

First stage results

λ1 -5.448 15.537 73.012 313.970 335.626 278.738
[26.026] [113.722] [331.228] [191.854] [235.004] [76.001]

λ2 17.783 152.409 237.669 -307.570 -181.367 -103.759
[43.913] [39.411] [86.587] [240.471] [272.894] [64.467]

λ3 0.229 1.000 1.000 -6.398 -5.002 3.129
[1.354] [2.702] [6.651] [5.966] [6.626] [0.964]

µ1 0.254 0.480 0.495 0.516 0.513 0.513
[0.004] [0.001] [0.000] [0.001] [0.001] [0.051]

µ2 -4.783 0.299 0.593 1.007 0.916 0.915
[0.157] [0.002] [0.003] [0.001] [0.001] [0.074]

µ3 -0.741 1.595 1.730 1.921 1.880 1.880
[0.038] [0.006] [0.006] [0.006] [0.006] [0.549]

MAE 0.012 0.122 0.209 0.337 0.415 0.416
R2 0.999 0.935 0.767 0.409 0.013 0.009

Second stage results

λ1 -5.292 17.901 90.914 -34.333 139.981
[3.266] [31.280] [58.334] [39.597] [43.216]

λ2 19.196 170.569 267.807 34.729 -137.893
[1.787] [15.561] [34.157] [43.131] [53.529]

λ3 0.198 0.659 1.000 0.998 -2.077
[0.078] [0.849] [1.642] [1.061] [1.313]

µ1 0.395 0.533 0.491 0.506 0.556
[0.000] [0.000] [0.000] [0.000] [0.000]

µ2 -4.291 0.278 0.575 0.768 0.937
[0.005] [0.001] [0.001] [0.001] [0.001]

µ3 0.861 1.637 1.848 1.454 1.592
[0.004] [0.005] [0.005] [0.004] [0.005]

J 7.838 23.170 32.769 60.055 29.108
p-val 0.998 0.392 0.065 0.000 0.142

The table presents the results for the durable consumption model of Yogo (2006) for different choices

of the pre-estimation weighting matrix. The sub-block related to the three factor means is multiplied

by w. “FMB” denotes a standard Fama-MacBeth two-stage regressions. The µi in this last column

are the sample averages of the three factors and not part of the regressions. HAC standard errors

are in brackets. Details regarding the estimation of the model are presented in Appendix A.
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thus similar to the case x = 4 in which the additional parameters µi are also basically fixed to
the sample averages of the factors.

The wide range of estimates in Table 2, in particular in comparison with the Fama-MacBeth
results, suggests that the estimates with x = 4 may be regarded as close to the true parameters,
and those with x = 0 should be deemed wrong. However, we wish to emphasize that this
conclusion cannot be drawn with this generality. Contrary to the controlled simulation exercise
in Section 4, we do not know the true factor means. The R2 of the durable goods model may in
fact be close to 1. However, this would require the true mean growth rate of durable consumption
to be 0.3 percentage points, while the sample average equals 0.915 percentage points. Such a
discrepancy would in turn imply that the true covariance of durable consumption growth with
test asset returns is much higher than the sample covariance, i.e. the factor is in fact much
stronger than it seems in sample. The appeal of GMM is that it trades off information from
different moment conditions, so one is tempted to justify the high R2 by arguing that this
outcome is the most likely, given that the pricing error time series seem more informative (also
about the factor means) than the factor time series.

On the other hand, our extensive analysis in Sections 3, 4, and 5 has shown that the GMM
estimator tends to favor low pricing errors and thus produces biased estimates. From this point
of view, imagine that the true mean growth rate of durable consumption was exactly equal to
the sample average. In this case, our theoretical analysis predicts exactly the pattern that we
find in Table 2, and this pattern strongly suggests that the durable goods-model does a bad job
in explaining the cross-section of expected returns.

7 Summary and Discussion

Standard GMM cross-sectional asset pricing tests can generate spuriously high explanatory
power for linear factor models and biased parameter estimates for the market prices of factor
risks. Tests based on simulated and empirical data show that any desired level of cross-sectional
fit can be obtained by shifting the weights on the moment conditions. Our findings apply to all
sample sizes and the problem is the more severe the larger the number of test assets.

We identify two major problems. First, unpriced factors look priced. For instance, the market
factor and even the population growth of captive Asian elephants seemingly explain the cross-
section of expected stock returns close to perfectly, as long as a small weight is put on matching
the mean of these factors. The market prices of factor risk estimates are highly significant,
although their true value is close to zero, a typical type I error. Importantly, the problem
applies to strong and weak factors.

Second, strong factors with some explanatory power for the cross-section of expected returns can
be “crowded out” by weak and unpriced factors and become seemingly insignificant, a typical
type II error. For instance, in the introductory example, the elephant factor renders the three
Fama-French factors obsolete in a joint test.

In GMM estimations it is natural to assign more informative moments a higher weight. In the
light of this argument, one may conclude that a serious misestimation of the factor means in
favor of an improved cross-sectional fit is a natural result of the trade-off between the uncertainty
about the true factor mean and the pricing errors. However, as we show in simulations, standard
techniques to choose an “optimal” weighting matrix result in parameter estimates that show a
bias that is similar to the one we thoroughly describe for prespecified weighting matrices.

How can asset pricing researchers diagnose if their results are biased and the pricing performance
of their model is spuriously high? As mentioned by Parker and Julliard (2005), one can perform
several GMM estimations with varying weights on the moment condition that identifies the
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factor means. The figures in our paper suggest that, if the point estimates are stable across
weights in the neighborhood of a particular benchmark weight, we are either in the desired
solution (which means that the parameter estimates are unbiased) or in a trivial solution. In
the latter case, the estimated cross-sectional R2 is close to one and there is one factor for which
the estimated factor mean is close to its sample average minus 1/λ.

Alternatively, we suggest a sanity check of the factor mean estimates. Typically, these estimates
will be far away from the sample averages of the factors if the pricing performance of the
factors is inflated. As described in detail in Section 3.2.3, weak factors are the exception. As
a conclusion, researchers who apply the GMM estimation approach described here should run
established tests to see if their factors are weak (see Kleibergen and Paap, 2006; Kroencke, 2020)
and, in addition, always report the estimated factor means, together with estimated standard
errors.

Finally, a simple way of checking the plausibility of the model performance statistics is to
compare the results of the GMM estimation to the cross-sectional R2 and the pricing errors
from a Fama and MacBeth (1973) regression. Moreover, the point estimates of the market
prices of risk should be compared to Fama and MacBeth estimates as well. In case of a traded
factor, the λ estimate should not only be tested for being significantly different from zero.
Instead, researchers should also check if it is close to the sample average of the factor divided
by the factor variance.
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Appendix A The Durable Consumption Model: Details

A.1 Estimation algorithm

In this appendix we provide details on the analysis of the durable consumption model discussed
above in Section 6. The moment conditions are given in Equation (5), and the parameters to
be estimated are the three market prices of risk (scaled by the factor variance) λ = (λ1, λ2, λ3)

′

as well as the factor means µ = (µ1, µ2, µ3)
′.

Our analysis proceeds in two steps. We first present an exact replication of Yogo’s results
together with some modifications of the numerical procedure that already have a pronounced
effect on the GMM weighting matrix (Sections A.2 and A.3). Then we perform an analysis
similar to the one in Section 4, i.e., we explicitly manipulate the GMM weighting matrix, to
study the impact of this variation on the estimation results.

We start by replicating the results presented in Table 3 in Yogo (2006). The original code is
written in Gauss and available on Motohiro Yogo’s website.14 Our replication code is a line-
by-line translation to Matlab.

In the following, we describe the exact GMM algorithm used by Yogo (2006) to estimate the
six parameters λ and µ.

1. Initial parameter values. The initial value for µ is set to the sample average of F
and the initial value for λ is the solution of the system of linear equations ET [Re] =
[(Re)′(F−µ)/T ] λ. Here, T denotes the sample size, F denotes the T×3 matrix containing
the time series of the factors, and Re denotes a T ×24 matrix that contains the time series
of excess returns of portfolios 2 to 25. In particular, the small growth portfolio is dropped
when the initial value for λ is calculated.

2. Covariance matrix of moment conditions. The initial values calculated in Step 1 are
plugged into the moment condition function (Equation (5)). This allows the estimation
of the covariance matrix Ω̂1 of the moment conditions. For this purpose, a parametric
estimator along the lines of Den Haan and Levin (2000) is used.

3. GMM: first stage. The moment conditions are weighted by a sparse weighting matrix
of the form

W (1) =

(
det(Ω̂

(1)
1,...,25)

− 1
25 I25 0

0 (Ω̂
(1)
26,...,28)

−1

)

where Ω̂
(1)
i,...,j denotes the submatrix


Ω̂
(1)
i,i . . . Ω̂

(1)
i,j

...
...

Ω̂
(1)
j,i . . . Ω̂

(1)
j,j

 of Ω̂(1) and I25 denotes the 25-

dimensional identity matrix. The initial values for the optimizer are the same as in Step
1. The point estimates are constrained in the following way:

λ3 < 1

λ1 + λ2 + λ3 > 0.
(23)

In the theoretical model presented in Yogo (2006), these inequalities mean that the implied
relative risk aversion and the implied elasticity of intertemporal substitution parameters
are constrained to be positive.

14See https://sites.google.com/site/motohiroyogo/.
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4. Cross-sectional R2 and pricing errors. These are calculated based on the estimates
from Step 3.

5. Covariance matrix of moment conditions. The parameter estimates from Step 3 are
plugged into the moment condition function (5) to obtain a second estimate Ω̂(2) of the
covariance matrix of the moment conditions.

6. GMM: second stage. (Ω̂(2))−1 is used to weight the moment conditions. The point
estimates from Step 3 are used as initial values for the optimization routine.

Table 3 in Yogo (2006) shows the estimates of λ and the J-statistic from the second stage (Step
6) and the mean absolute pricing error and the R2 from the first stage (Step 4). The estimates
of µF are not reported.

Steps 2 and 5 involve the estimation of covariance matrices of autocorrelated time series. Yogo
(2006) uses a parametric estimation approach of the spectral density matrix as described by
Den Haan and Levin (2000). An alternative is to use a non-parametric estimator in the spirit
of Newey and West (1987).15 In our application, the first 25 moment conditions (the pricing
errors) and the factor mean of the market portfolio return are barely affected by the choice
of the covariance estimator. On the other hand, the parametric estimates for the variance of
nondurable (durable) consumption growth are 1.8 (14.4) times higher than the estimates that
we obtain using the nonparametric estimation procedure.

Tables 3 and 4 show the results from the estimation as reported in Table 3 in Yogo (2006),
together with the results from eight variations of the estimation procedure. The first one is
our one-to-one replication of Yogo (2006) (labeled “Replica”). Then, we keep the small growth
portfolio when calculating the initial covariance matrix for the first stage in Step 1 (“25 portf”).
For the next two replications, we use the nonparametric instead of the parametric covariance
matrix estimator, once without and once with including the small growth portfolio in Step 1
(“nonpara” and “25 portf & nonpara”, respectively). These four variations of the estimation
are performed with and without imposing the constraints on the parameters in Steps 3 and 6.

A.2 GMM: First stage

We are going to discuss the results from the first stage of the GMM (Table 3) first. Num-
bers in italics are not reported in the paper but only in the text file est dur available in the
supplementary material provided on Motohiro Yogo’s website.

A comparison of the first two columns shows that we perfectly replicate the results reported
in the paper when we use the original setup. The picture changes drastically, however, when
we consider the variations discussed above. The most important statistics from the first stage
are the cross-sectional R2 and the mean absolute pricing error. Both statistics reveal that the
superior pricing performance of the durable consumption model is already severely weakened
when we use all 25 portfolios for the estimation of the covariance matrix in the first stage.

The point estimates for µ and λ are reported for informational purposes only, as the estimates
in Table 3 of Yogo (2006) are obtained from the second stage of the GMM. However, we can see
from our replication that the point estimates from the first stage are not robust either. Most
importantly, although λ2 remains statistically significant throughout the cases, it switches sign,
which challenges the economic interpretation of the estimated coefficient. Equation (12) shows
that the estimated µ can easily change from above to below ET [F ] or vice versa upon a slight
change in the weighting matrix, depending on the sign of the root. The associated λ estimate

15We rely on the function longvar from the GMM package of Kostas Kyriakoulis. The full package can be
downloaded at https://personalpages.manchester.ac.uk/staff/Alastair.Hall/GMMGUI.html.

32

https://personalpages.manchester.ac.uk/staff/Alastair.Hall/GMMGUI.html


Table 3: GMM — First stage

Constrained estimation Unconstrained estimation

25 portf & 25 portf &
Yogo Replica 25 portf nonpara nonpara Replica 25 portf nonpara nonpara

λ1 15.535 15.535 69.109 256.877 264.701 70.902 125.284 189.463 201.017
[113.722] [113.722] [323.112] [124.084] [129.167] [84.769] [146.072] [139.604] [143.598]

λ2 152.410 152.410 227.504 -251.322 -258.972 -170.725 -291.337 -320.007 -327.990
[39.410] [39.410] [120.099] [131.489] [139.646] [47.550] [100.835] [135.343] [144.721]

λ3 1.000 1.000 1.000 -5.548 -5.685 -2.375 -3.954 -5.053 -5.254
[2.702] [2.702] [6.876] [3.570] [3.753] [1.694] [3.151] [3.726] [3.911]

µ1 0.5 0.480 0.421 0.453 0.458 0.536 0.575 0.497 0.496
[0.1] [0.052] [0.070] [0.048] [0.048] [0.051] [0.054] [0.046] [0.046]

µ2 0.3 0.299 0.600 1.065 1.053 1.441 1.195 1.105 1.090
[0.3] [0.255] [0.216] [0.078] [0.077] [0.151] [0.153] [0.086] [0.084]

µ3 1.6 1.595 1.569 1.406 1.441 2.121 2.157 1.495 1.516
[0.6] [0.555] [0.575] [0.570] [0.569] [0.559] [0.562] [0.568] [0.568]

MAE 0.122 0.122 0.198 0.249 0.260 0.120 0.212 0.247 0.258

R2 0.935 0.935 0.784 0.683 0.657 0.941 0.811 0.724 0.698

The table presents the results from Table 3 of Yogo (2006), from our replication and from several modifications of the replication. µ1,
µ2, µ3, and mean absolute pricing errors (MAE) are expressed in percentage points. HAC standard errors are in brackets.
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will then switch sign. Comparing the unconstrained and the constrained estimation, one can also
see that the constraints are always binding once they are imposed. The estimate of λ1 +λ2 +λ3
is always negative, which implies a negative risk aversion coefficient in the theoretical model.

To understand why our small changes to the estimation procedure affect the results so heavily, it
is instructive to look at the effect of the algorithm design on the initial GMM weighting matrix.
The small growth portfolio is the one with the largest pricing error in a simple regression-based
asset pricing test. Dropping this portfolio in Step 1 leads to less volatile pricing errors for the

remaining 24 portfolios, and, in turn, to a lower determinant of Ω̂
(1)
1,...,25. As a consequence, when

we reintroduce the small growth portfolio in Step 1, the weight on the first 25 moment conditions
decreases from 299.69 to 222.81. Thus, our adjusted estimation puts a lot less emphasis on having
low pricing errors at the benefit of better matching the factor means.

As mentioned at the end of Section A.1, the use of the parametric covariance estimator mainly
affects the weight on the 27th moment condition that identifies the durable consumption growth
factor mean. While omitting the small growth portfolio in Step 1 only affects the weighting
matrix in the first stage of the GMM, the choice of the covariance estimator affects the weighting
matrix in both GMM stages. It allows the algorithm to estimate the durable consumption growth
factor mean very imprecisely in order to decrease the pricing errors.

A.3 GMM: Second stage

Next, we analyze the robustness of the results from the second stage of the GMM estimation
(Table 4). Point estimates, J-statistic and p-value reported in Yogo (2006), Table 3, are based
on these second stage estimates.

First of all we find that the three-factor model is rejected by the J-test in most cases. In
particular after replacing the parametric covariance estimator by the nonparametric one, the
specification test rejects the model relative to all conventional significance levels. Comparing
the unconstrained and the constrained estimation, the estimate of λ3 is always greater than 1,
which implies a negative intertemporal elasticity of substitution in the equilibrium model.

Comparing the point estimates from the second stage to those from the first stage, we see that
these estimates are relatively close to each other in the original Yogo (2006) paper. However,
adjusting the design of the GMM estimator, we find pronounced differences across all our
replications. One possible conclusion could be that, after our modifications, two-stage GMM is
no longer enough and we need additional stages to have more reliable estimates. We perform
multi-stage GMM estimations (results not reported here for brevity) and find that the algorithm
does not converge towards an efficient point estimate. Instead, in all the cases considered, the
multi-stage GMM oscillates between two different point estimates.16 We conclude that the fact
that the point estimates in Yogo (2006) seem to converge after two stages of GMM is an artefact
and adjusting the code destroys this property.

Finally, it is also interesting to look at the estimated factor means. The sample averages of the
factors are 0.513, 0.915, and 1.880. The estimated mean growth rate of durable consumption in
our replication of Yogo (2006) is only 0.278 which is very low compared to the sample average of
0.915. However, as the pricing performance diminishes with our adjustments to the procedure,
the estimate of the mean growth rate of durable consumption comes closer to its sample average.
At the same time, the model is rejected by the J-test.

16This pattern is described, for instance, in Cochrane (2005), p. 226.
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Table 4: GMM — Second stage

Constrained estimation Unconstrained estimation

25 portf & 25 portf &
Yogo Replica 25 portf nonpara nonpara Replica 25 portf nonpara nonpara

λ1 17.898 17.899 92.025 -44.590 -43.977 -60.167 -66.300 -60.905 -49.488
[31.280] [31.280] [56.000] [38.454] [38.714] [24.788] [30.996] [41.054] [40.081]

λ2 170.569 170.569 259.283 74.121 71.670 141.629 151.692 59.016 69.862
[15.561] [15.561] [35.139] [30.003] [30.566] [19.751] [22.148] [32.477] [31.786]

λ3 0.659 0.659 1.000 0.998 0.998 2.523 3.194 2.514 2.278
[0.849] [0.849] [1.624] [1.087] [1.093] [0.605] [0.804] [1.216 ] [1.195]

µ1 0.5 0.533 0.454 0.526 0.526 0.511 0.520 0.513 0.511
[0.0] [0.040] [0.041] [0.043] [0.043] [0.034] [0.034] [0.043] [0.043]

µ2 0.3 0.278 0.587 0.746 0.751 0.418 0.642 0.762 0.766
[0.1] [0.104] [0.073] [0.056] [0.056] [0.094] [0.079] [0.056] [0.056]

µ3 1.6 1.637 1.834 2.053 2.048 1.596 1.671 2.085 2.049
[0.5] [0.473] [0.506] [0.516 ] [0.516] [0.400] [0.438] [0.522] [0.520]

J 23.170 23.170 35.515 254.120 255.947 21.376 25.200 179.853 177.939

p-val 0.392 0.392 0.034 0.000 0.000 0.498 0.288 0.000 0.000

The table presents the results from Table 3 of Yogo (2006), from our replication and from several modifications of the replication. µ1,
µ2, and µ3 are expressed in percentage points. HAC standard errors are in brackets.
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