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Abstract: 

We address the problem how to estimate default probabilities for sovereign countries based on market data of traded 
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1 Introduction

The analysis of country default risk faces several problems. On the one hand, there is
the problem of proper estimation of default probabilities. On the other hand, there is the
question how to evaluate the estimated probabilities. In this paper, both problems are
discussed and solutions are presented.

The difficulties in the estimation process arise from specific features of country risk.
The theoretical literature dealing with the causes of defaults of developing countries tells
us that – beside the ability to pay – the willingness to pay plays an important role. Both,
the ability to pay and – even more – the willingness to pay of countries are rather difficult
to quantify based on their causes. Hence, we look on observable effects in terms of prices
of defaultable government bonds. These prices are influenced by country default risk and,
thus, reflect the market assessment of country risk for the countries considered.

Based on observed market prices we derive the default probability by using a structural
credit risk model. Thereby, the parameters of the model have to be estimated simulta-
neously. Concerning the estimation of the parameters of structural credit risk models
for corporate liabilities, there exists a number of papers applying the two-equations ap-
proach1 originating from Jones, Mason & Rosenfeld (1984) and Ronn & Verma (1986).
This approach can still be found recited in textbooks such as Hull (2003) and Bluhm,
Overbeck & Wagner (2003) despite well known objections.2 To circumvent this, Duan,
Gauthier & Simonato (2005) and Ericsson & Reneby (2005) use a maximum likelihood
method valuing corporate liabilities based on the market value of equity.3 This approach
is not directly applicable to our case of sovereign risk, as there is no ‘sovereign equity’ at
hand. Hence, we estimate the parameters by applying the (modified) maximum likelihood
approach to prices of government bonds.

In the light of Basel II, the problem how to backtest default probability forecasts has
attracted more and more attention of the banking industry as well as of supervisory au-
thorities. The second part of this paper examines the question to what extent backtesting
of heterogeneous default probabilities can be done. A goodness-of-fit test based on the
likelihood ratio is constructed for both, testing the two-sided hypothesis that the probabil-
ity forecasts are exact and testing the one-sided hypotheses that the probability forecasts
are not too low or not too high. To determine the quantile of the exact distribution of the
likelihood ratio test statistic is a cumbersome task even for small samples. However, for
the decision whether to accept or reject the null hypothesis, simply the p-value is needed
which can be calculated by means of Monte Carlo simulation. Finally, the goodness-of-
fit tests developed below are applied to a sample of 105 default probability forecasts for
emerging market and transition countries.

The paper is organized as follows: a structural model for assessing country default
probabilities is presented in Section 2. The estimation of the model parameters based
on market data is described in detail in Section 3. The application and the input data
are explained in Section 4. In Section 5, the backtesting problem is addressed. Section 6
concludes.

1Solving Crosbie & Bohn (2003, p. 16, equation (7) and (8)) or Crouhy, Galai & Mark (2000, p. 88,
equation (10) and (11)) for the unknown volatility.

2See Crouhy et al. (2000, p.88, second paragraph) or Duan (1994, p.163, footnote 4) for the problematic
approach to treat a stochastic volatility as constant.

3This idea is based on Duan (1994), where the underlying framework is formulated rather generally.
Duan (1994) provides applications, e.g. for the valuation of insurance contracts for bank deposits, see
also the correction Duan (2000).
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2 Model

For the following two sections, our focus is on modeling the default triggering process of a
single country. The approach is finally applied to 19 different sovereign states. Structural
pricing models are based on the idea that a default occurs if a stochastic state variable falls
below a certain threshold value. In models considering corporate default risk, the state
variable equals the value of the firm.4 But what is the appropriate interpretation in the
case of sovereign default risk? In the literature, structural pricing models are often applied
by estimating the state variable based on possible causes of defaults. Macroeconomic
variables are used in order to describe a country’s ability to pay. But even if the ability
to pay could be measured in a proper way, there is still the problem of unwillingness to
pay, because in the case of a sovereign borrower it is not possible to enforce payments
internationally. In the present work, market prices are used to infer the value of the
stochastic state variable which triggers the default, so that there is no need for an exact
distinction between ability and willingness to pay. It can be assumed that the state
variable is affected by both.

In the following, the term default trigger is used for the stochastic state variable. It is
a latent variable which describes the maximum amount of debt servicing payments that
a country is able or willing to pay.

To model the stochastic nature of the state variable, the following assumption is made.

Assumption 2.1. The default trigger is a stochastic process (Wt)t≥0 which satisfies

dWt = µWtdt + σWtdUt,

where µ and σ > 0 are constants and (Ut)t≥0 is a standard Brownian motion.

If it is assumed that the debt of the country consists of only one homogeneous class of
traded bonds, which promise payments at only one calendar date T of a cumulate amount
of B, then the event of default takes a simple form:

Assumption 2.2. A default occurs if at payment date T the value WT of the default trig-
gering process is lower than the value B of outstanding debt. In this case, the government
pays the amount WT which it is able and willing to pay. Otherwise, the full amount B is
payed out.

Let Φ(.) denote the cumulative standard normal distribution function, then the prob-
ability of default with time horizon T − t is given by

π(t, T, µ, σ,B) = Φ

(
ln(B/Wt) − (µ − σ2/2)(T − t)

σ
√

T − t

)
. (1)

It depends on the actual value of the state variable Wt, its parameters µ and σ, the time
to maturity T − t and the contractual payment amount B. Thereby, B and T − t are
assumed to be known and exogenously given.

The central part of a structural model is a pricing equation which links the value of
default risky securities to its determinants. In structural pricing models the following
assumptions are standard:

4In the model of Merton (1974), for example, a firm defaults if the value of the firm is below the
repayment requirements due.
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Assumption 2.3. Securities are traded without arbitrage opportunities on perfect mar-
kets. There is one risk-free interest rate r for borrowing and lending which is constant
over time.

Although idealized, these assumptions are well accepted and used in many models, for
example in option pricing theory, real option theory and especially in structural models
on corporate as well as sovereign default risk. For the last two applications, the main
difference relates to the securities which are considered. In the case of corporate default
risk, as in Merton (1974), these securities are the debt contract (derivative security),
a risk-free security and the value of the firm (underlying security). In our case, the
underlying is the default trigger, which is of course not tradable (and not observable).5

But instead of the default trigger, we can use other securities depending on this underlying
to build and maintain a risk-free portfolio. For example, credit default swaps or other
credit derivatives can be combined with debt contracts to build such a risk-free portfolio.
In the last decade, liquid markets for credit default swaps for government bonds have
been developed, so that risk-free portfolios can be constructed.

In the framework described above, the faire value at time t of government debt is given
by

Yt = Be−r(T−t) − Put(Wt, σ, B, T − t, r),

where Put(Wt, σ, B, T − t, r) denotes the Black-Scholes formula for the European put
option with underlying Wt, volatility σ, strike B, time to maturity T − t and risk-free
interest rate r. Therefore,

Yt = Wt − WtΦ(dt + σ
√

T − t) + Be−r(T−t)Φ(dt) (2)

where

dt =
ln(Wt/B) + (r − σ2/2)(T − t)

σ
√

T − t
.

An alternative pricing equation (and a corresponding equation for the default prob-
ability) is derived by Geske (1977) for corporate bonds with more than one payment
outstanding by using compound option theory.6 This makes it possible to model the term
structure of debt servicing payments in detail, whereby a default can occur at every pay-
ment date. This kind of modeling would be more realistic, since in reality, there is much
more than one single payment date. However, the availability of input data is a problem.
For example the single payment dates and the corresponding amounts of payment are
not known. The only available (actual) data concerning the term structure of debt of
developing countries are the amount of short term debt with maturity up to one year and
the whole amount of debt (whereas the maturity is not known).

Other papers rely on the approach of Black & Cox (1976), who allow default to occur
at any point of time until maturity. This can be seen as a simple model of multi-payment
debt, e.g. a coupon bond, where a default is possible on several payment dates. Defaults
before maturity are modeled by the assumption that default occurs if the stochastic
state variable falls below a certain threshold value for the first time. However, unlike
the models of Geske or Merton, this threshold value is not directly linked to the term
structure of payments. By contrast, the default threshold is assumed to be a constant or
a monotonically increasing function of time. But the debt structure of many countries
contradicts this assumption. Typically, for developing countries, the term structure of

5It is worth mentioning that the value of a firm is not tradable and usually not observable, too.
6See also Geske (1979), Delianedis & Geske (2003) and Maltritz (2006).
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debt shows that the short term debt (with a maturity up to one year) is higher than debt
repayments due in subsequent years.7 Thus, a constant or monotonic threshold value
until maturity seems to be rather inadequate. Another drawback of such models is that
they involve typically more parameters to be estimated, as for example the value of the
default threshold and the recovery rate (respectively the loss given default). Typically,
the estimation of these parameters leads to considerable problems.8

Hence, like in a number of other papers,9 the single payment model explained above
is used where only short term debt is considered. Thereby, it is assumed that payments
on later payment dates have no influence on the decision or the ability to pay on the first
payment date of the short term debt being due. Then, the default threshold equals the
amount of short term debt. This kind of application reflects the influence of short term
debt on default risk in an appropriate way.

For the model proposed in the present work, the default threshold equals the contrac-
tual amount of payments for which data are available. Thus, the debt servicing payments
and the repayment date are assumed to be known and exogenously given. Hence, in order
to calculate the default probability there are just the values of the default trigger Wt and
its parameters µ and σ that need to be determined. How these quantities are estimated
is explained in the next section.

3 Parameter Estimation

For each country, we fix time points t0 < t1 < . . . < tN where the market price Ytnof the
country’s debt is observed and denoted by Yn for notational ease. Each risky sovereign
bond Yn is interpreted as a zero coupon bond with nominal value Bn at maturity time
Tn. Also, for the latent default trigger, we write Wn instead of Wtn .

The function gn is defined by

gn(Wn) = Bne−r(Tn−tn) − Put(Wn, σ, Bn, Tn − tn, r), n = 0, . . . , N, (3)

so that gn transforms the underlying Wn into the price Yn of the risky sovereign bond

Yn = gn(Wn), n = 0, . . . , N.

For fixed quantities σ, Bn, Tn−tn and r, the Black-Scholes put price is a strictly decreasing
function of the underlying, so that the inverse of the function gn exists, denoted by
hn = g−1

n , i.e.
Wn = hn(Yn), n = 0, . . . , N.

Note that the functions gn and hn will be considered for different choices of σ.

7For the sample of countries analyzed here, the ratio of the short term debt to total debt is 33% on
average. If the allocation of residual long term debt on single future years is considered, it can be seen
that the actual payment amount becoming due in any single period is much lower.

8For example, Keswani (2000) identifies the recovery ratio with the collateralization of Brady bonds.
But the payments to bond holders in the case of default can be higher than the collateralization. Lehrbass
(2000) assumes a recovery rate of 40%, which is the average recovery rate of US corporate defaults
according to Moody’s, (see Keenan, Carty & Shtogrin (1998)). By contrast, for emerging market countries
in the years from 1987 to 2000, the ratio between debt forgiven and debt rescheduled is around 25%,
as can be seen from Global Development Finance, formerly World Debt Tables, published annually by
the World Bank, Washington D.C. This means the expected recovery rate should be around 75%. But
it is worth mentioning that this ratio is highly volatile. Hence, simple backward looking estimation is
problematic.

9See, for example, Clark (1991) or Claessens & van Wijnbergen (1993).

5



Due to the fact that (Wt)t≥0 is assumed to be a geometric Brownian motion, the
log-returns Z1, . . . , ZN defined by

Zn = ln
Wn

Wn−1

= ln hn(Yn) − ln hn−1(Yn−1), n = 1, . . . , N, (4)

are stochastically independent and Zn has a normal distribution with expectation value
(µ − σ2

2
)τn and variance σ2τn where

τn = tn − tn−1, n = 1, . . . , N.

As shown in Appendix A, the (conditional)10 log-likelihood function for observed realiza-
tions y0, . . . , yN of the debt prices Y0, . . . , YN is given by

LLF(µ, σ) = −
N∑

n=1

⎡⎢⎣ln
√

2πσ2τn + kn(yn) +

(
ln hn(yn)

hn−1(yn−1)
− (µ − σ2

2
)τn

)2

2σ2τn

⎤⎥⎦
where the term

kn(yn) = ln hn(yn) + ln Φ

(
ln Bn

hn(yn)
− (r + σ2

2
)(Tn − tn)

σ
√

Tn − tn

)

reflects that the log-returns Zn are unobservable and that the actual observations are the
transformed data Yn.

Since the functions hn and kn depend on σ but not on µ, the log-likelihood function
is maximized for a fixed σ with respect to µ by

µ∗(σ) =
σ2

2
+

∑N
n=1 ln hn(yn)

hn−1(yn−1)∑N
n=1 τn

. (5)

Note that
∑N

n=1 τn = tN − t0 and that the value of hn(yn) can be determined numerically
for every fixed σ. Numerical maximization of the function LLF(µ∗(σ), σ) with respect to
σ yields the maximum likelihood estimate

σ̂ML = argmax
σ

LLF(µ∗(σ), σ)

for σ. The maximum likelihood estimate for µ is then given by

µ̂ML = µ∗(σ̂ML).

Given these estimates of µ and σ, the actual time t and the observed value of the current
market price Yt of the country’s debt, equation (2) can be solved numerically for the
trigger Wt. Then, the probability that the country will be in default at maturity time
T − t can be calculated by (1).

We add two remarks regarding the existing literature. First, the maximum likelihood
estimation procedure can be applied to infer the drift µ and the volatility σ of the latent
underlying process from price observations of any contingent claim.11 In the present
work, bond prices are used for the parameter estimation, whereas in Duan et al. (2005)

10On the condition that Y0 = y0.
11See Duan (1994).
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the parameters of the corresponding model are derived from stock prices which, in the
Merton model, are interpreted as call prices. No matter whether the Black-Scholes bond
prices or stock prices are used, in both approaches, the log-likelihood can analytically
be maximized with respect to µ as in (5), so that numerical maximization has to be
performed in one dimension only, i.e. with respect to σ.12 Second, in both approaches the
maximum likelihood estimate for σ could also be obtained by using the following iterative
procedure: choose an initial value for σ, compute the implied time series of log-returns
z1, . . . , zN as in (4), update σ by the sample standard deviation of z1, . . . , zN , compute
the implied time series of log-returns again, and so on. This procedure is heuristically
mentioned in Crosbie & Bohn (2003) from Moody’s KMV. But it was shown by Duan et al.
(2005) that in the basic Merton model this iteration will also converge to the maximum
likelihood estimate of σ, and that the iterative procedure is equivalent to determining the
ML estimate by an EM algorithm. In more complex models however, the application of
the iterative procedure mentioned above has no theoretical justification and may indeed
lead to poor estimates.

4 Data and Application

Our estimation approach is now applied to a sample of 19 emerging market and transition
countries to estimate default probabilities for quarterly data from 1998 till 2005. The
observation dates t0, t1, . . . , tN are identified with the first trading date in each quarter.
Thus, Bn is the amount of debt with a maturity up to one year (i.e. the following four
quarters) outstanding at the beginning of the nth quarter, i.e. Tn = tn+4. How the
corresponding market value Yn of this debt at time tn and the other input data are
determined is explained now.

The following data have to be known for each country and each estimation date: mar-
ket data on prices respectively interest rates of government bonds, data on the amount of
(short term) repayment requirements and, finally, the risk-free interest rate. The selection
of countries and observation periods are in large part determined by the availability of
these input data.

Data on sovereign debt strongly limit the frequency of the time series used as well as
the modeling of the term structure of debt. As mentioned earlier, current and detailed
information on the duration of single debt issues or on the amounts of debt corresponding
to certain duration periods are not available. Only for short term debt (up to one year)
the amount due is published. For the long term debt, no detailed and current data are
available. Hence, we focus on short term debt and short term default probability (as
explained in Section 2) and assume the time to maturity to be one year.

Current data on country debt are provided by different sources. For example, there
are annual data from the Economist Intelligence Unit r© (EIU), which are available via
DataStream r©, and quarterly data from the joint database of international organizations
(BIS, IMF, OECD, World Bank). The main drawback of the joint database is that no
data on the whole amount of short term debt are available. For example, trade credits or
credits to other countries are not provided. Nevertheless, this database enables the market
participants to obtain information on the changes of debt, so that rational agents are able
to infer correct market prices of risk on a quarterly base. According to the availability of
data, our methodology is applied quarterly, whereas total short term debt is updated on
an annual base, as provided by the EIU.

12This point is not clarified by Duan (1994, p. 165).
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The amount of debt BT and the time to maturity T − t are needed in both, the
equation for the default probability (1) and the pricing equation (2). The latter is used
to determine the other quantities, i.e. the default triggering process and its parameters.
To estimate these quantities, the market value of the debt, Yt, is needed. The market
value of debt is derived from data on the market prices of government bonds issued by
the respective states. More precisely, we use the internal rates of return as given by the
market prices of the bonds.

Generally, the current value of future payments is calculated by discounting these
promised future payments. If there is no default risk, the risk-free interest rate should be
applied. Since the payments considered here are affected by default risk, a risk-adjusted
interest rate is to be used. This risk-adjusted interest rate is derived from the internal
rate of return of market traded government bonds.

Here we use data from the Emerging Market Bond Index+ (EMBI+) published by
JP Morgan. The EMBI+ is calculated for a number of countries based on Brady- and
Eurobonds and represents the weighted average of several single bond issues (in case more
than one issue of a country exists). To calculate the market value Yt of the country debt
considered at date t, the (short term) repayment requirements B are discounted over the
time to maturity T − t of one year using the risky interest rate given by the EMBI+.

Besides the amount of debt and its market value, the risk-free interest rate is needed
in the pricing equation (2). It is derived by subtracting the spread from the corresponding
risky interest rate. This procedure is based on Assumption 2.3 which implies a flat term
structure of interest rates.

Data on the spread are also provided by JP Morgan as part of the EMBI+ data.
According to JP Morgan, the published spread is the difference between the average risky
interest rate and the interest rate given by the US term structure which corresponds to
the average time to maturity of the bonds used to calculate the EMBI+. Thereby, it is
assumed that the default risk of US bonds is negligible and, hence, the corresponding
interest rates are unaffected by default risk.

For a given time series of market values of debt Yn, (n = 0, . . . , N), as well as the
corresponding risk-free interest rates rn and debt values Bn, the estimation methodology
described in the last section is used to derive the estimates of the model parameters µ
and σ, and of the default trigger Wn. Hence, all quantities needed to calculate the default
probability via formula (1) are available.

The analyzed sample of countries as well as of the observation period is determined
by the availability of data from EMBI+. To achieve time series of sufficient length we
consider 19 countries for which EMBI+ data are available since 1998. For countries where
the necessary data are available at earlier dates the estimation includes these observations,
too.

Table 1 shows the annual default probabilities forecasted at the beginning of every
year. For the evaluation of these probabilities, we need a definition of crisis. Our notion
of debt crisis, respectively default, follows Manasse, Roubini & Schimmelpfennig (2003).
A country is defined to be in default if it has a rating of D or SD by Standard & Poor’s
or if a large IMF emergency credit (which is below 100 percent of quota) is announced.
The latter is applied in order to cover situations where a country is de facto in default
while a default in the legal sense is avoided by the help of the international community.
We assume a debt crisis to persist as long as the S&P rating is D or SD, or as long as
the IMF arrangement lasts or is renewed. Years where the country already is in default
at the first of January are excluded since it is the aim of the structural approach to
estimate the probability of default and not the probability of remaining in a debt crisis.
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In addition, we add a waiting period of one year before we continue the calculation and
evaluation of default probabilities. This accounts for the fact that a default in the year
following a debt crisis is seen as a continuation of the existing crisis rather than as an
arising of a new crisis. Periods which are not considered in the evaluation are symbolized
by missing values (dots) in Table 1. The numbers in Table 1 describe the probability
that the observed country will default during the year considered. These annual default
probabilities are used for the evaluation performed in the next section.

Table 1: Estimated annual default probabilities

Year
Country 1998 1999 2000 2001 2002 2003 2004 2005

Argentina 0.112 0.162 0.126 0.177 . . . .
Brazil 0.162 . . . . . . .

Bulgaria . . . . . 0.059 0.036 0.018
China 0.012 0.020 0.013 0.016 0.009 0.008 0.005 0.005

Colombia 0.212 0.357 . . . . . .
Ecuador 0.065 0.159 . . 0.122 0.173 0.080 0.068
Malaysia 0.037 0.108 0.032 0.044 0.038 0.038 0.018 0.015
Mexico 0.145 0.233 0.136 0.139 0.113 0.117 0.075 0.066
Morocco 0.120 0.189 0.109 0.155 0.137 0.101 0.043 0.054
Panama . 0.135 0.120 0.144 0.121 0.128 0.101 0.098

Peru . . 0.143 0.207 0.165 0.183 0.105 0.090
Philippines . . . . 0.230 0.236 0.200 0.220

Poland 0.011 0.013 0.009 0.012 0.009 0.008 0.003 0.002
Russia 0.065 . . . 0.065 0.044 0.022 0.020

South Africa 0.048 0.124 0.053 0.081 0.062 0.045 0.027 0.018
South Korea . . . . 0.038 0.025 0.017 0.020

Thailand . . . . 0.007 0.006 0.003 0.002
Turkey 0.155 0.270 0.174 . . . . .

Venezuela 0.096 0.236 0.179 0.195 0.222 0.221 0.119 0.089

5 Backtesting

Problem and data

Predicted default probabilities, as given in Table 1, need some kind of evaluation. Our
focus is not on testing binary default predictions, as widely used in the literature13, but on
evaluation methods for default probabilities. Thereby, the method shall be applicable es-
pecially in the case of heterogeneous default probabilities where any attempt to construct
nearly homogeneous classes (each with a reasonable number of members) fails.

More precisely, we deal with estimated default probabilities being the components of
the vector

π̂ = (π̂1, π̂2, . . . , π̂m).

Here, π̂ consists of the m = 105 annual default probability estimates given in Table 1.
The true, but unknown, default probabilities

π = (π1, π2, . . . , πm)

13See Pesaran & Timmermann (1992).
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are unobservable. Observable are the outcomes xi of Bernoulli random variables Xi as
given in Table 2 with

P (Xi = 1) = πi, P (Xi = 0) = 1 − πi, i = 1, . . . ,m,

where Xi = 1 if the debtor is in default at the end of the year, and Xi = 0 if not.
The binary default indicator is reported only for those country-year combinations where
default probabilities have been estimated in Table 1. The goal is to find a statistical test

Table 2: Observed realizations xi of Bernoulli variables Xi

Year
Country 1998 1999 2000 2001 2002 2003 2004 2005

Argentina 0 0 0 1 . . . .
Brazil 1 . . . . . . .

Bulgaria . . . . . 0 0 0
China 0 0 0 0 0 0 0 0

Colombia 0 1 . . . . . .
Ecuador 0 1 . . 0 0 0 0
Malaysia 0 0 0 0 0 0 0 0
Mexico 0 0 0 0 0 0 0 0
Morocco 0 0 0 0 0 0 0 0
Panama . 0 0 0 0 0 0 0

Peru . . 0 0 0 0 0 0
Philippines . . . . 0 0 0 0

Poland 0 0 0 0 0 0 0 0
Russia 1 . . . 0 0 0 0

South Africa 0 0 0 0 0 0 0 0
South Korea . . . . 0 0 0 0

Thailand . . . . 0 0 0 0
Turkey 0 0 1 . . . . .

Venezuela 0 0 0 0 0 0 0 0

in order to decide whether the outcomes x1, . . . , xm of the Bernoulli trials X1, . . . , Xm

are compatible with the stated default probabilities π̂1, . . . , π̂m or whether the hypothesis
π = π̂ should be rejected.

Likelihood ratio tests

From a statistical point of view, the numbers π̂i are estimates for the unknown distribution
parameters πi. The difference to the situation usually treated in textbooks on statistical
inference is that the Xi are not identically distributed, but each Xi is governed by its
own Bernoulli parameter πi. In the common framework of hypothesis testing relying
on asymptotic statistics the observations are usually drawn from the same distribution.
Here, in contrast, by observing more and more Xi, we increase the number of distribution
parameters to be tested. With each additionally observed Xi, a new unknown Bernoulli
parameter enters the hypothesis to be inspected.

Thus, there is no hope to find a test that can detect when one of the π̂i has been a
wrong prediction, since, strictly speaking, we have only one single observation Xi for each

10



distribution. Nonetheless, the prediction system of default probabilities can be tested as
a whole. For a first attempt, we assume X1, . . . , Xm to be stochastically independent.14

Theorem 5.1. The test for the hypothesis

H0 : π = π̂ versus H1 : π �= π̂ (6)

with test statistic

T1 =
m∑

i=1

Xi ln
π̂i

1 − π̂i

(7)

is a likelihood ratio test of size
αk = Pπ̂(T1 < k),

where H0 is rejected if T1 < k.

The subscript π̂ of P denotes the case where the vector π of true unknown default
probabilities equals π̂. Choosing the value of k determines the level of significance αk.
The proof of Theorem 5.1 is given in Appendix B. The exact distribution of T1 under H0

can be calculated in principle. But finding the number k which yields a given significance
level α, might become a cumbersome computational task when m is large: there are 2m

points in {0, 1}m which all have positive probability and are relevant for computational
inspection. Instead, for computational ease, we calculate the p-value using the Monte
Carlo method. The p-value is the smallest possible significance level so that H0 is rejected
based on the observed values x1, . . . , xm. Applying the test to the data shown in Tables
1 and 2, we get the test statistic

105∑
i=1

xi ln
π̂i

1 − π̂i

= −9.65728.

Running 108 Monte Carlo trials15, we obtain the following p-value

Pπ̂

(
105∑
i=1

Xi ln
π̂i

1 − π̂i

≤ −9.65728

)
= 0.9376 (0.000024)

with an estimated standard error of 2.4 · 10−5. The test can be used in order to detect
significant deviations from the null hypothesis H0 : π = π̂. For our sample, i.e. anyone
questioning the probability estimates π̂ and advocating the alternative H1 must admit a
probability of type I error of at least 93%.

In practical applications, e.g. taking the position of a banking supervisory authority,
it may be uncritical if banks overestimate the default probabilities of their debtors. Here,
a one-sided test may be of interest. By rejecting the null hypothesis of the following
test, an authority could prove that a bank significantly underestimates some of its default
probabilities.

14See the discussion on this point below.
15This number of Monte Carlo trials assures that the p-value is determined with an accuracy of ±10−4.

Thereby, the accuracy is measured by four standard deviations. For practical purposes, an accuracy
of 10−3 or even 10−2 may be sufficient, which requires only n = 106 or n = 104 Monte Carlo trials,
considering that the standard deviation is proportional to n−1/2.
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Theorem 5.2. The test for the hypothesis

H0 : π ≤ π̂ versus H1 : π �≤ π̂ (8)

with test statistic

T2 =
m∑

i=1

Xi ln π̂i (9)

is a likelihood ratio test of size

αk = sup
π≤π̂

Pπ(T2 < k) = Pπ̂(T2 < k),

where H0 is rejected if T2 < k.

Thereby, the relation ≤ between vectors means that ≤ holds for all components. In con-
trast, �≤ for vectors means that at least one component violates the relation ≤. Theorem
5.2 is proved in Appendix C.

Testing the hypotheses (8) for the probability estimates of Table 1 with the data in
Table 2 yields the test statistic

105∑
i=1

xi ln π̂i = −10.9018.

The p-value

Pπ̂

(
105∑
i=1

Xi ln π̂i ≤ −10.9018

)
= 0.9347 (0.000025)

is determined by 108 Monte Carlo trials with an estimated standard error of 2.5·10−5. This
test can be used to detect significant deviations from the null hypothesis H0 : π ≤ π̂. In
our case, anyone advocating H1, i.e. supporting the opinion that some of the probability
estimates π̂ are too low, must admit a probability of type I error of at least 93%.

For a bank as a lending institution, it is not of its own interest to use default probability
estimates that are too large, thereby tying more regulatory capital than necessary. Anyone
using default probability estimates that are significantly too large is alerted when rejecting
the null hypothesis of the following test.

Theorem 5.3. The test for the hypothesis

H0 : π ≥ π̂ versus H1 : π �≥ π̂ (10)

with test statistic

T3 =
m∑

i=1

(1 − Xi) ln(1 − π̂i) (11)

is a likelihood ratio test of size

αk = sup
π≥π̂

Pπ(T3 < k) = Pπ̂(T3 < k),

where H0 is rejected if T3 < k.
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Thereby, the relations ≥ and �≥ between vectors are analogously defined as above. Theo-
rem 5.3 follows directly from Theorem 5.2 taking into account that π ≥ π̂ is equivalent
to 1 − π ≤ 1 − π̂.

Applying this test to the probability estimates of Table 1 and the data in Table 2, we
get the test statistic

105∑
i=1

(1 − xi) ln(1 − π̂i) = −9.52120.

From 108 Monte Carlo trials we infer the p-value

Pπ̂

(
105∑
i=1

(1 − Xi) ln(1 − π̂i) ≤ −9.52120

)
= 0.1982 (0.000040)

with an estimated standard error of 4.0 · 10−5. Anyone advocating H1, i.e. thinking that
some of the probability estimates π̂ are too large, must admit a probability of type I error
of at least 19%.

In practical applications, depending on the respective problem, one would choose one of
the three tests. Here, the results of the three tests together indicate overall confirmation of
the predicted default probabilities. Indeed, the fact that none of the three null hypotheses
can be rejected with any usual error probability suggests that our default probabilities
are highly consistent with the data.

Quick tests based on asymptotics

Since the test statistics (7), (9) and (11) are regarded as sums of stochastically independent
random variables, the question arises whether the central limit theorem applies, so that
the standard normal distribution could be used to infer approximate p-values instead of
performing Monte Carlo simulations. Assuming that π = π̂, as postulated by H0 in (6),
the standardized test statistic is

T̃1 =
T1 − µ1

σ1

, (12)

where the expectation and variance of T1 according to (7) are given by

µ1 =
m∑

i=1

π̂i ln
π̂i

1 − π̂i

and σ2
1 =

m∑
i=1

π̂i(1 − π̂i)

(
ln

π̂i

1 − π̂i

)2

.

The likelihood ratio test of Theorem 5.1 can equivalently be applied using the standardized
test statistic T̃1. Under the condition

lim
m→∞

m∑
i=1

π̂i(1 − π̂i) = ∞,

the sample distribution of T̃1 under H0 converges to the standard normal distribution.16

Note that even though the standard normal distribution is symmetric, the null hypothesis
in (6) is rejected only for low values of T̃1, i.e. values which are less than the chosen

threshold value, since low values of T̃1 imply a low likelihood ratio.
The tests of Theorem 5.2 and 5.3 can analogously be based on standardized test

statistics T̃2 and T̃3. For the probability estimates in Table 1, the sample distributions
of T̃1, T̃2 and T̃3 given π = π̂ are compared with the standard normal approximation in

13



Figure 1: Sample distributions of the test statistics T̃1 (top), T̃2 (center) and T̃3 (bottom)
compared to the density (left panels) and the distribution function (right panels) of the
standard normal distribution (solid line)
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Figure 1. In the left panels the sample distributions from 108 Monte Carlo iterations are
compared to the standard normal density. In the right panels the respective cumulative
distribution functions are compared to the standard normal distribution function.

In Table 3, the p-values of the likelihood ratio tests, applied to the default proba-
bility estimates of Table 1 and the observations of Table 2, are reported together with
their standard normal approximation. The effect of the central limit theorem seems to

Table 3: Exact p-values and standard normal approximations for the likelihood ratio tests
applied to the default probabilities of Table 1 and the data of Table 2

p-value from
simulation standard

Testing of exact normal
H0: distribution approximation

π = π̂ 0.9376 0.9260
π ≤ π̂ 0.9347 0.9243
π ≥ π̂ 0.1982 0.1927

be strong enough in order to calculate approximate p-values from the standard normal
distribution. We conclude that a quick test based on the standard normal approximation
is justified here. In general however, the question whether the normal approximation of
the distribution of the likelihood ratio statistic is appropriate, depends on m and the
specific values of π̂.

Methodological Aspects

The assumption that the Bernoulli trials Xi are stochastically independent is critical, since
i denumerates all country-year combinations of the estimated annual default probabilities.
Whereas cross-sectional independence among the countries within a one-year period is
rather an idealization, serial independence over time can be justified by an argument
relying on conditional independence, considering the fact that the default probabilities
are conditional on the information of the past history.

The methods presented in Section 5 may serve as goodness-of-fit tests applicable with-
out large computational effort. They do not rely on the model in which the default prob-
abilities are estimated, instead they are based on the assumption of independent default
events. However, backtesting of default probabilities which accounts for dependencies can-
not be formulated in this manner. The modeling of default correlations is usually based
on conditional independence given some exogeneous or endogeneous risk factors. There-
fore, understanding the case of independent Bernoulli trials is an inevitable requisite for
any credit risk model. To detect parameter misspecification in such a correlation model,
a lot more observations than in our case are necessary, firstly because additional param-
eters specifying the dependence structure must be estimated, and secondly because more
extreme realizations x1, . . . , xm are compatible with the hypothesis π1 = π̂1, . . . , πm = π̂m.

Under the assumption of independent Bernoulli trials, it can be shown that no other
tests can be found yielding uniformly better error probabilities, this means, the tests are

16See Petrov (1995, pp. 123–125).
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admissible17 in the sense of statistical test theory. The criterion of unbiasedness18 for
hypothesis testing cannot be applied because, except for trivial and non-relevant cases,
no unbiased tests exist for the hypotheses considered here. If the null hypothesis H0

is exchanged for its alternative H1 in (6),(8) or (10) respectively, no non-trivial tests
exist at all. Thus, we cannot confirm the predicted default probabilities by rejecting an
alternative hypothesis with a given error probability, but we can – more weakly – confirm
the predicted probabilities by not rejecting the null hypothesis which is a typical property
of goodness-of-fit tests.

6 Conclusion

This paper deals with several problems arising in the analysis of country default risk. This
concerns the estimation of default probabilities as well as their evaluation. According to
the theoretical literature, besides the ability to pay the willingness to pay is an important
determinant of country default. Since both, the ability to pay as well as the willingness to
pay are difficult to estimate based on their – partly unobservable – causes, we quantify the
default risk based on observable effects: we use the prices, respectively the corresponding
risky interest rates, of defaultable government bonds because they reflect the market
assessment of default risk. To infer the default risk from the bond market data we estimate
a structural pricing model. This is done for a broad sample of emerging market and
transition countries for which the necessary market data are available.

To our knowledge, the problem how to backtest heterogeneous default probabilities has
not yet been treated in the literature. The problem is to evaluate not predictions of events
but probability predictions. We suggest goodness-of-fit tests based on likelihood ratio test
statistics. The tests can be applied even if the sample size is small. To derive the test
decision, the p-value can be obtained by Monte Carlo simulation with high accuracy and
little computational effort. A standard normal approximation is justified when the sample
size is large, even more simplifying the computational effort. The Revised International
Capital Framework of Basel II requires the validation of all internal estimates of risk
parameters, especially the backtesting of estimated default probabilities.19 If the number
of debtors is small and default probabilities are heterogeneous, which is typical for country
risk, the proposed methodology can be applied where standard approaches20 fail.

The evaluation of the estimated default probabilities yields plausible and promising
results. The use of structural pricing models and the maximum likelihood approach to
estimate the unknown quantities based on market data is a practical methodology to
quantify country default risk. The methods presented in the paper give also a solution
to the problem how to backtest country default probabilities, more generally speaking, to
tackle the evaluation problem when default probabilities are heterogeneous.

17See e.g. Lehmann & Romano (2005, p. 17).
18See e.g. Lehmann & Romano (2005, p. 110).
19See Basel Committee on Banking Supervision (2006, pp. 109–110) and Basel Committee on Banking

Supervision (2005, pp. 8–9).
20For example the binomial and chi-square test mentioned in Basel Committee on Banking Supervision

(2005, p. 33).
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A Appendix. LLF for Transformed Data

For technical reasons, we add the definition

Z0 = ln W0 = ln h0(Y0) (13)

and assume Z1, . . . , ZN to be stochastically independent of Z0. The probability density
function of Z0, . . . , ZN is given by

fZ0,...,ZN
(z0, . . . , zN) = fZ0(z0)

N∏
n=1

1√
2πσ2τn

exp

⎧⎨⎩−1

2

(
zn − (µ − σ2

2
)τn

σ
√

τn

)2
⎫⎬⎭

The random vector Y0, . . . , YN is a transformation of Z0, . . . , ZN , the backward transfor-
mation is given by (13) and (4). Thus, the probability density function of Y0, . . . , YN is
given by21

fY0,...,YN
(y0, . . . , yN) =

=
∣∣∣ det(J)

∣∣∣ · fZ0

(
ln h0(y0)

) · N∏
n=1

1√
2πσ2τn

exp

⎧⎨⎩−1

2

(
ln hn(yn)

hn−1(yn−1)
− (µ − σ2

2
)τn

σ
√

τn

)2
⎫⎬⎭

where J is a Jacobi matrix whose elements above and right to the main diagonal equal
zero. The nth element on the main diagonal of J is

Jnn =
h′

n(yn)

hn(yn)
=

1

hn(yn)

1

g′
n(hn(yn))

n = 0, . . . , N,

where the prime symbol ′ stands for the derivative. Recall equation (3) for the fact that
the function g′

n equals the “delta” of a European put option multiplied by −1, so that

g′
n(hn(yn)) = 1 − Φ

(
ln hn(yn)

Bn
+ (r + σ2

2
)(Tn − tn)

σ
√

Tn − tn

)
.

It is ∣∣ det(J)
∣∣ =

N∏
n=0

Jnn

by virtue of the zero entries in J and the positivity of the functions hn and g′
n. Taking

into account that
fY0(y0) = J00 fZ0(ln h0(y0)),

the density of Y0, . . . , YN can be written as

fY0,...,YN
(y0, . . . , yN) =

= fY0

(
y0

) · N∏
n=1

Jnn√
2πσ2τn

exp

⎧⎨⎩−1

2

(
ln hn(yn)

hn−1(yn−1)
− (µ − σ2

2
)τn

σ
√

τn

)2
⎫⎬⎭ .

21See e.g. Casella & Berger (2002, p. 185).
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Hence, the conditional22 log-likelihood function for observations y0, . . . , yN of debt prices
is given by

LLF(µ, σ) = ln fY1,...,YN |Y0(y1, . . . , yN |y0) =

= −
N∑

n=1

⎡⎢⎣ln

√
2πσ2τn

Jnn

+

(
ln hn(yn)

hn−1(yn−1)
− (µ − σ2

2
)τn

)2

2σ2τn

⎤⎥⎦
= −

N∑
n=1

⎡⎢⎣ln
√

2πσ2τn + ln
(
hn(yn) g′

n

(
hn(yn)

))
+

(
ln hn(yn)

hn−1(yn−1)
− (µ − σ2

2
)τn

)2

2σ2τn

⎤⎥⎦ .

B Appendix. Proof of Theorem 5.1

Let x = (x1, . . . , xm) ∈ {0, 1}m be a fixed vector of outcomes of independent Bernoulli
random variables X1, . . . , Xm. The likelihood function is

L(π;x) =
m∏

i=1

πxi
i (1 − πi)

1−xi , π ∈ Θ = ]0, 1[ m.

The likelihood ratio test is based on the test statistic

Λ =
L(π̂;X)

supπ∈Θ L(π;X)
,

where H0 : π = π̂ is rejected if
Λ < c

for a chosen constant c with 0 < c < 1. Further,

sup
π∈Θ

L(π;x) = sup
0<π1<1

. . . sup
0<πm<1

m∏
i=1

πxi
i (1 − πi)

1−xi =
m∏

i=1

1 = 1, (14)

for all x ∈ {0, 1}m yields
Λ = L(π̂;X).

H0 is rejected, if the statistic

ln Λ =
m∑

i=1

(
Xi ln π̂i + (1 − Xi) ln(1 − π̂i)

)
=

m∑
i=1

(
Xi ln

π̂i

1 − π̂i

+ ln(1 − π̂i)
)

is less than ln(c), or equivalently, if the test statistic given in (7) is smaller than a chosen
value k = ln(c) − ∑m

i=1 ln(1 − π̂i).

C Appendix. Proof of Theorem 5.2

The likelihood ratio test statistic is

Λ =
supπ≤π̂ L(π;X)

supπ∈Θ L(π;X)
= sup

π≤π̂

L(π;X) ,

22On the condition that Y0 = y0.
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where the second equality follows from (14). The test statistic T2 in (9) results from
taking the logarithm of

Λ = sup
π≤π̂

L(π;x) =
m∏

i=1

sup
πi≤π̂i

πxi
i (1 − πi)

1−xi =
m∏

i=1

π̂xi
i .

Rejecting H0 : π ≤ π̂, if Λ < c, is equivalent to rejecting H0, if T2 < k = ln c.
For the proof of the second statement of Theorem 5.2

sup
π≤π̂

Pπ(T2 < k) = Pπ̂(T2 < k),

the test statistic Λ =
∏m

i=1 π̂Xi
i is examined for fixed π̂ but for alternative distributions

of X with different parameters π. Let Λπ =
∏m

i=1 π̂Xi
i denote the random variable with

stochastically independent Xi ∼ Ber(πi) for a parameter vector π = (π1, . . . , πm) with

π ≤ π̂. And let Λπ̂ =
∏m

i=1 π̂X̂i
i denote the random variable with stochastically indepen-

dent X̂i ∼ Ber(π̂i). Then we have Xi ≤st X̂i for i = 1, . . . ,m, where ≤st denotes the
usual stochastic order for random variables, which is also known as first order stochastic
dominance. Since

ψ : R
m → R, with ψ(a1, . . . , an) = −

m∏
i=1

π̂ai
i ,

is a non-decreasing function with respect to all its arguments, Theorem 1.2.4 of Müller &
Stoyan (2002, p. 7) can be applied to infer, that Λπ̂ ≤st Λπ, which means

P (Λπ̂ ≤ t) ≥ P (Λπ ≤ t)

for all t. Therefore, we have

Pπ(Λ < c) ≤ Pπ̂(Λ < c)

for all 0 < c < 1 and for all π ≤ π̂. Hence,

sup
π≤π̂

Pπ(Λ < c) = Pπ̂(Λ < c) .
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