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1 Introduction

There is some political consensus that the mitigation of anthropogenic climate change,
which is caused by the emission of so-called greenhouse gases, in particular CO2, is one of
the most urgent challenges humanity faces today. In industrialized countries, the biggest
source of CO2 is the combustion of fossil fuels for energy production and transportation.
Therefore, it is clear that a successful climate change mitigation strategy has to include
a shift from carbon intensive to carbon neutral energy technologies in the long-run.1

Yet, the transition to a low-emission energy industry is a time-consuming process,
marked by the interplay of different kinds of technological change. For instance, the grad-
ual refinement of established polluting energy technologies via abatement technologies
competes with changes of the structural kind via the introduction of new less-polluting
energy technologies. While traditional environmental policy is motivated by the external
effect caused by emissions and favors market-based instruments, such as taxes or cap-
and-trade mechanisms for their internalization, in recent years an ever more detailed
knowledge has grown about additional market failures the process of technological trans-
formation comprises. In general, the development and innovation of a new technology
is related to a high degree of uncertainty with regard to its success. Its innovation is
likely to create knowledge spillovers to other firms which may profit from it by using
the new technology as a template for their own R&D. Moreover, the diffusion of new
technologies is typically related to dynamic increasing returns stemming from learning-
by-using, learning-by-doing or network externalities (Jaffe et al. 2005). The latter provide
justification for – possibly supplementary – interventions of technology policy.

The model we develop in this paper provides complementary reasons why successful
environmental regulation has to be complemented by technology policy, which do not
draw on the standard explanations of uncertain R&D success, technology spillovers and
dynamic increasing returns. Therefore, our model, which focuses on the transition from
an established polluting to a new clean energy technology, is characterized by two partic-
ular time-related features. First, we assume that the creation of new capital goods needs
a positive time span σ. That is, there is a time-lag σ between the costs of investment
and the benefits of production of new capital goods. Second, we assume that the social
rate of time preference is smaller than the private rate of time preference, i.e. individual
actors are more impatient to consume than society as a whole. While both, the time-to-
build feature and the possible split of social and individual rates of time preference, are
known in the environmental economics literature, they have so far, to the best of our
knowledge, never been applied in combination.

We further distinguish two kinds of endogenous technological change, gradual and
structural. By gradual technological change, we understand the refinement of the existing
technology via an end-of-pipe abatement technology. By structural technological change,
we mean the introduction of a new clean technology, which is only to be produced

1 In order to comply with the 2 degrees centigrade increase limit of global mean temperature as com-
pared to pre-industrial levels specified by the 1992 UN Framework Convention on Climate Change,
the EU Council, for example, recently adopted CO2 reduction goals of 30% by 2020 and 60–80% by
2050 compared to 1990.
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and may replace the established one. The two kinds of technological change mainly
differ in two characteristics. First, while abatement immediately reduces the level of
emissions, structural change implies that resources must be invested in the accumulation
of the specific capital goods for a certain time which could have directly been used
in energy production by means of the established technology otherwise. Second, while
abatement implies a rise in unit costs of production, structural change may be both more
environmentally benign (by inducing less pollution) and economically more efficient (by
exhibiting lower unit costs of production).

Our paper contributes to the wide-spanned literature on (induced) technological change
and the environment. Closest to our approach are environmental-economic endogenous
growth models, such as e.g. Bovenberg and Smulders (1995, 1996) and Tahvonen and
Salo (2001), and applied simulation models, such as e.g. Van der Zwaan et al. (2002),
Buonanno et al. (2003) and Gerlagh and Lise (2005). While they depart from a more
encompassing analytical setting comprising also R&D or learning by doing, allow for
different kinds of technological change and analyze both environmental and technol-
ogy policies, they do not focus on the interplay of gradual and structural technological
change and assume a unique rate of time preference. Further contributions on induced
technological change, such as e.g. Goulder and Schneider (1999) and Goulder and Mathai
(2000), rather concentrate on the effects from environmental policy. The adoption, diffu-
sion and R&D of advanced abatement technologies constitute the focus of the literature
on dynamic incentives of environmental policies (for an overview see, for example, Re-
quate 2005a). Denicolo (1999) and Requate (2005b) study particularly the timing of
policy measures in a sequential setting. Interestingly, this strand of literature usually
refrains from the analysis of specifically dynamic features, such as time preferences or
time-lagged processes, or a dynamic analysis,2 as well as the interplay of different kinds
of technological change.

We depart from a modeling framework of time-lagged capital theory which combines
different elements developed in a general way by Winkler (2003, 2005).3 Methodically,
we extend it by taking into account abatement, the explicit analysis of market failures
and the consideration of the split of the rates of time preference.4 We derive conditions
both for investment in the new technology and for full replacement of the established
technology in the long-run stationary state. It turns out that the unit costs of energy
of the new technology depend positively on the time-lag σ and the respective rate of
time preference. We show that from the split of the rates of time preference a second
market failure arises the extent of which positively depends on the time-lag in capital
accumulation. We study how the two market failures lead in a mutually reinforcing way
to less favorable circumstances in the unregulated market regime compared to the social

2 An exception is Parry et al. (2003), who calculate the welfare gains from innovation induced by
environmental policy e.g. for different social discount rates.

3 The idea of time-lagged capital accumulation goes back to the Austrian school of economics (von
Böhm-Bawerk [1889]1921) and was revived by the neo-Austrian capital theory in the 1970s (e.g.
von Weizsäcker 1971, Hicks 1973, Faber 1979). In the modern macroeconomics real business cycle
literature the time-to-build feature became prominent with Kydland and Prescott (1982).

4 The assumption of the split of the rates of time preference is discussed in detail in section 2.
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optimum, both for investment in the new technology and for full replacement in the long-
run stationary state. Finally, we consider how the external effects can be internalized by
environmental and technology policy.

Although derived from a stylized theoretical model, our results have direct policy
implications. First, we provide additional reasons why environmental regulation should
be complemented by technology policy. Second, we can substantiate Porter and van der
Linde’s (1995) claim that “well-designed” environmental regulations exhibit a double
dividend. And third, our results give theoretical economic support to existing or planned
regulations on subsidizing renewable energies.

The paper is organized as follows. Section 2 introduces the model and discusses the
assumption of the split of social and individual rates of time preference. In sections 3
and 4, the intertemporal optimization problem is solved and conditions of investment
and replacement are derived for the cases of the social optimum and an unregulated
competitive market economy, respectively. Section 5 shows how the two external effects,
stemming from the emissions and the split of social and individual rates of time prefer-
ence, can be implemented via environmental and technology regulation. We discuss our
model assumptions and policy implications in section 6. Section 7 concludes.

2 The model

In this section, we set up our model, which focuses on the structural change of the energy
sector under environmental and technology regulation and encompasses two distinctive
features.

First, we assume that the creation of new capital goods needs a positive time span
σ. That is, there is a time-lag σ between the costs of investment and the benefits of
production of new capital goods. The intuition behind this assumption is that energy
plants are not build in a day but need substantial time for creation. In general, the time
span σ strongly depends on the type of plant produced: while a nuclear power plant may
take some ten years to build, a gas cogeneration plant is set up in a year or two. However,
in this model we abstract from these differences and only consider an established and a
new energy technology.

Second, we assume that the social rate of time preference is smaller than the private
rate of time preference, i.e. individual actors are more impatient to consume than the
society as a whole. The theoretical literature identifies a variety of reasons why the
social and the private rate of time preference may differ. In our paper, we focus on the so-
called schizophrenic behavior approach (e.g. Marglin 1963), i.e. atomistically, individuals
maximize personal utility while, in aggregate, individuals prefer a government to care for
the overall welfare of society. Moreover, empirical evidence supports the schizophrenic
behavior in so far that individuals exhibit higher rates of time preference in private than
in social decision contexts.

In the following, the model is introduced in detail.
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2.1 The model economy

Consider an economy with a production system composed of two vertically integrated
sectors, the energy sector and the investment sector. Labor constitutes the only primary
input, which is given in a fixed amount of 1 at all times t.

The energy sector comprises two technologies, an established and a new one. The
established technology is assumed to be fully set up at the beginning of the planning
horizon. As a consequence, we do not explicitly consider capital for the established
technology, as the costs of employing and maintaining the capital stock are subsumed in
the labor costs, which are normalized to 1. Thus, the established technology generates
one unit of energy x for every unit of labor l1 employed. In addition, each unit of energy
produced gives rise to one unit of an unwanted and harmful joint output j:

x1(t) = l1(t) , (1)

j(t) = x1(t) = l1(t) . (2)

The joint output can be (partially) disarmed by abatement. If a is the abatement ef-
fort per unit of output (or joint product, respectively), G denotes the fraction of the
joint output j which is disarmed by abatement. G is a concave and twice continuously
differentiable function with the following properties:

G(0) = 0 , G′ > 0 , G′′ < 0 , lim
a→∞

G(a) = 1 . (3)

Furthermore, G satisfies Inada conditions. They ensure that the abatement effort a along
the optimal path is strictly positive and finite as long as l1 is positive:

lim
a→0

G′(a) = ∞ , lim
a→∞

G′(a) = 0 . (4)

As a consequence, net emissions e equal the amount of joint output j minus abatement:

e(t) = x1(t)
(
1−G(a(t))

)
. (5)

The new technology employs λ units of labor together with κ units of the capital good
k to produce one unit of energy:

x2(t) = min

[
l2(t)

λ
,
k(t)

κ

]
. (6)

In contrast to the established technology, the new one does not produce any unwanted
joint output.5

5 The non-pollution assumption of the new technique is without loss of generality compared to the
case of positive but less pollution, because the optimality condition only depends on the difference
of the pollution factors. Note further that, if one supposes full employment of the capital stock k in
every period, an efficient labor allocation among the three production processes in the two sectors, an
initial capital stock of k(0) = 0 and intertemporal welfare as defined in equations (9) and (10) below,
full employment of the capital stock is also efficient (Winkler 2005). As a consequence, equation (6)
yields x2(t) = l2(t)

λ = k(t)
κ .
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Energy is supposed to be homogeneous. Thus, total energy production x equals:

x(t) = x1(t) + x2(t) . (7)

The investment sector employs one unit of labor to produce one unit of the capital
good. It is assumed that it takes a positive time span σ to turn the investment i into
productive capital k, which, in turn, deteriorates at the constant and exogenously given
rate γ. Therefore, the equation of motion for the capital stock k reads:

dk(t)

dt
= i(t− σ)− γk(t) . (8)

Due to the time-lag σ, the equation of motion for the capital stock (8) constitutes a
retarded differential-difference equation, such that variations of the capital stock k do
not only depend on parameters evaluated at time t, but also on parameters evaluated
at the earlier time t− σ.

2.2 Social and individual preferences

We assume a representative consumer who derives instantaneous utility from energy con-
sumption and disutility from net emissions. However, we assume that this representative
consumer behaves in a schizophrenic way (e.g. Marglin 1963) in so far as, atomistically,
she maximizes individual utility while, in aggregate, she prefers a social planner to maxi-
mize social welfare. Recently, the terms homo oeconomicus for an individual maximizing
private utility, and homo politicus for an individual who seeks to maximize social welfare
have been introduced into the literature (e.g. Faber et al. 1997, Faber et al. 2002, Nyborg
2000).

In our model, the schizophrenic behavior of the representative consumer is reflected by
different intratemporal weights between utility derived from consumption and disutility
derived from net emissions, and different intertemporal weights, i.e. rates of time pref-
erence, between welfare today compared to welfare tomorrow, depending on whether
she acts in a private or a social decision context. For the sake of simplicity, we con-
sider instantaneous welfare to be additively separable in energy consumption x and net
emissions e. As a consequence, as an individual the representative consumer maximizes

Wp =

∫ ∞

0

[
U(x(t))− αD(e(t))

]
exp[−ρpt] dt , (9)

while, at the same time, she wants the social planner to maximize

W =

∫ ∞

0

[
U(x(t))−D(e(t))

]
exp[−ρt] dt , (10)

where U and D are twice differentiable functions with U ′ > 0, U ′′ < 0 and limx→0 U ′ = ∞
and D′(0) ≥ 0, D′ > 0 for any positive amount of emissions e and D′′ > 0.

Without loss of generality, we assume in the following that the weighting factor α = 1,
as it has no effect on the outcome of our analysis. This holds, because net emissions e
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constitute an externality in the unregulated market solution, which is not taken into
account by the market mechanism and, thus, the market outcome is independent of the
individual valuation of the disutility derived from net emissions. However, we assume
that the private rate of time preference ρp is higher than the social rate of time preference
ρ, i.e. ρp > ρ.

From a purely descriptive point of view, our assumption that individuals discount
at a higher rate in individual decision contexts compared to social decision contexts is
justified, as it is supported by empirical evidence. Lazaro et al. (2001) find in an experi-
mental setting that law students apply higher rates of time preference in individual than
in social decision contexts. Moreover, our assumption reflects a typical aspect of sustain-
ability policies. Often, individuals display a higher rate of time preference than policy
goals imply at the social level, as formulated, for example, in national sustainability
strategies or the 1992 Rio declaration.

The theoretical economic literature identifies a variety of reasons for the social and
private rate of time preference to differ (for an overview see, for example, Luckert and
Adamowicz 1993). Two lines of argument we briefly want to summarize are that the
welfare of future generations has public good properties and that in an uncertain world
individual and social risk may differ. The first assumes that the welfare of both present
and future generations are part of the individuals’ utility functions, i.e. individuals ex-
hibit a certain extent of altruism towards both present and future generations. Depending
on the weights given to the welfare of the present and the future generation compared
to own welfare, a situation known as the isolation paradox can arise (Marglin 1963,
Sen 1961, 1967). This situation is structurally equivalent to the well known prisoner’s
dilemma. Given the choice either to save one unit of consumption today in order to
provide 1 + w units of consumption for future generations or to consume the unit them-
selves, all individuals prefer to consume themselves no matter the decisions of all other
individuals. However, all individuals prefer that all individuals save over all individuals
consuming. A close cousin of the isolation paradox is the assurance problem (e.g. Sen
1967, Runge 1984, Sugden 1984), which only differs from the former in that all individ-
uals prefer saving as long as all other individuals safe, too. As Runge (1984) and Sugden
(1984) show the assurance problem provides a link between the schizophrenic behavior
approach and the assumption of altruistic utility functions.

The second line of argument concentrates on uncertainty (e.g. Sen 1961). If individuals
are risk averse, the rate of time preference also includes a risk premium addressing the
variation of the actual from the expected outcome for postponing consumption today
to consumption tomorrow. The argument is that individuals face a higher risk than the
society as a whole for postponing consumption into the future via savings or investments.
Examples for higher individual risk are the mortality risk an individual faces but not the
society as a whole and that societies as a whole may have better risk pooling abilities
than the individual.

However, in our model neither altruistic preferences nor uncertainty are explicitly
considered. Thus, we rather stick to the schizophrenic behavior explanation for the
private and the social discount rate to differ.
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3 Social optimum

We now derive the optimal plan for the development of the model economy as outlined
in section 2. Social welfare is assumed to be given by equation (10). Thus, the social
planner solves the following maximization problem:

max
a(t),i(t)

W =

∫ ∞

0

[
U(x(t))−D(e(t))

]
exp[−ρt] dt , (11a)

subject to

x(t) =
1− λ

κ
k(t)− i(t)

1 + a(t)
+

1

κ
k(t) , (11b)

e(t) =
(
1−G(a(t))

)[1− λ
κ
k(t)− i(t)

1 + a(t)

]
, (11c)

dk(t)

dt
= i(t− σ)− γk(t) , (11d)

i(t) ≥ 0 , (11e)

l1(t) ≥ 0 , (11f)

k(0) = 0 , (11g)

i(t) = ξ(t) = 0, t ∈ [−σ, 0) . (11h)

For the dynamics of the model economy it is important that, due to the linearity of the
production techniques, two corner solutions can occur along the optimal development
path. Either, it can be optimal to only use the established technology at all times, which
corresponds to i(t) = 0 ∀ t. Or, if investment in the new technology is optimal (i.e.
i(t) > 0 ∀ t), it may eventually be optimal for the new technology to fully replace the
established one and thus l1(t) = 0 ∀t ≥ t′. As a consequence, we have to explicitly check
these two corner solutions, apart from the inner solution, in order to characterize the
complete dynamics of the model economy.

3.1 Necessary and sufficient conditions for the social optimum

To solve the optimization problem (11), we apply the generalized maximum principle
derived in El-Hodiri et al. (1972) for time-lagged optimal control problems. One obtains
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the following present-value Hamiltonian H:

H =
[
U(x(t))−D(e(t))

]
exp[−ρt] +

qx(t)

[
1− λ

κ
k(t)− i(t)

1 + a(t)
+

1

κ
k(t)− x(t)

]
+

qe(t)

[(
1−G(a(t))

)1− λ
κ
k(t)− i(t)

1 + a(t)
− e(t)

]
+ (12)

qk(t + σ)i(t)− qk(t)γk(t) +

qi(t)i(t) +

ql1(t)
1− λ

κ
k(t)− i(t)

1 + a(t)
,

where qk denotes the costate variable or shadow price of the capital stock k, and qx,
qe, qi and ql1 denote the Kuhn-Tucker parameters for the (in)equality conditions (11b),
(11c), (11e) and (11f). Assuming the Hamiltonian H to be continuously differentiable
with respect to the control variables a and i, the following necessary conditions hold for
an optimal solution:

qx(t) = U ′(x(t)) exp[−ρt] , (13a)

qe(t) = −D′(e(t)) exp[−ρt] , (13b)

qx(t)l1(t)

1 + a(t)
= −qe(t)l1(t)

[
G′(a(t)) +

1−G(a(t))

1 + a(t)

]
+

ql1(t)l1(t)

1 + a(t)
, (13c)

qx(t)

1 + a(t)
= −qe(t)

[
1−G(a(t))

1 + a(t)

]
+ qk(t + σ) + qi(t)−

ql1(t)

1 + a(t)
, (13d)

dqk(t)

dt
= qe(t)

λ(1−G(a(t))

κ(1+a(t))
− qx(t)

1+a(t)− λ

κ(1+a(t))
+ qk(t)γ +

ql1(t)λ

κ(1+a(t))
, (13e)

qi(t) ≥ 0 , qi(t)i(t) = 0 , (13f)

ql1(t) ≥ 0 , ql1(t)l1(t) = 0 . (13g)

As the maximized Hamiltonian is concave (cf. Appendix A.1), the necessary conditions
(13a)–(13g) are also sufficient if, in addition, the following transversality condition holds:

lim
t→∞

qk(t)k(t) = 0 . (13h)

Due to the strict concavity of the maximized Hamiltonian, the optimal solution is also
unique.

Conditions (13a) and (13b) state that along the optimal path the shadow price of
energy equals the marginal utility of energy and the shadow price of net emissions equals
the marginal disutility of net emissions. From condition (13g) we know that ql1l1 = 0
holds at all times t. Hence, the last term in condition (13c) equals 0 and, as long as
l1(t) > 0, we achieve by inserting conditions (13a) and (13b):

U ′(x(t)) = D′(e(t)) [G′(a(t)) (1 + a(t)) + 1−G(a(t))] . (14)

9



This condition expresses that along the optimal path (and as long as condition (11f)
is not binding) the utility (in current values) of an additional marginal unit of energy
equals the disutility (in current values) of the emissions induced by that marginal unit
of energy. Along the optimal path this equation determines the optimal value of the
abatement effort a per unit of output x1. In the case that inequality (11f) is binding,
and thus l1 equals 0, condition (13c) reduces to the truism 0 = 0. It is obvious, however,
that in the case where the established technique is not used at all, the optimal abatement
effort a = 0 as no emissions have to be abated.

As noted above, the optimal system dynamics of the optimization problem (11) splits
into three cases, an interior solution and two corner solutions. In Appendix (A.2) we
derive the system of functional differential equations for the system dynamics and show
that each case exhibits a (different) stationary state. In particular, the stationary state
of the interior solution represents a saddle point, i.e. for all sets of initial conditions there
exists a unique optimal path which converges towards the stationary state.

We first restrict our attention to the case of an interior solution, i.e. both qi(t) =
ql1(t) = 0. Together with transversality condition (13h) and inserting conditions (13a)
and (13b) condition (13e) can be unambiguously solved:

qk(t) =

∫ ∞

t

U ′(x(s))(1+a(s)−λ) + D′(e(s))λ
(
1−G(a(s))

)
κ(1+a(s))

exp[−γ(s−t)−ρs)]ds . (15)

Thus, along the optimal path the shadow price for the capital stock equals the net
present value of all future welfare gains of one additional marginal unit of the capital
good. As capital goods are long lived, they contribute over the whole time horizon
increasingly less though due to deterioration. The fraction under the integral equals the
marginal instantaneous welfare gain of an additional unit of capital, which comprises two
components. The first is the direct welfare gain due to the energy produced. It is positive
if the new technology needs less labor input per unit of output than the established one,
i.e. λ < 1 + a. The second term is always positive and denotes the welfare gain due to
emissions abated by switching from the established to the new production technique.

Inserting conditions (13a) and (13b) in equation (13d) yields:

U ′(x(t)) + D′(e(t))
(
1−G(a(t))

)
1 + a(t)

exp[−ρt] = qk(t + σ) (16)

The equation states that along the optimal path the present value of the welfare loss by
investing in one marginal unit of new capital, which is given by the present value welfare
gain of the alternative use of one marginal unit of labor in the established production
technique (left-hand side), equals the net present value of the sum of all future welfare
gains by using the new capital good in production. As the investment needs the time
span σ to become productive capital, the sum of all future welfare gains of an investment
at time t is given by the shadow price of capital at time t+σ, qk(t+σ). Note that equation
(16) implies that pk is always positive along the optimal path and, thus, the second term
of the fraction in equation (15) outweighs the first.
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3.2 Conditions for investment and replacement

So far, however, it is not clear to which of the three possible stationary states the
system will tend. In the following, we derive conditions for the exogenous parameters
identifying which of the three possible cases for the system dynamics applies. In fact,
these conditions determine whether there is any investment in the new technology, and
if so, whether the established technology is eventually fully replaced by the new one. We
start with the investment condition.

In order to derive a condition which identifies whether investment is optimal, we
assume the economy to stay in the no investment corner solution and derive a condition
for which the corner solution violates the necessary and sufficient condition for an optimal
solution. The following proposition states the result.

Proposition 1 (Investment condition in the social optimum)
Given the optimization problem (11), the new technology is innovated, i.e. i(0) > 0, if
and only if the following condition holds:

1 + a0 +
1−G(a0)

G′(a0)
> λ + κ(γ + ρ) exp[ρσ] , (17)

where a0 is determined by the unique solution of the implicit equation:

U ′(1− a0)

D′
(
(1− a0)(1−G(a0))

) = G′(a0)(1 + a0) + 1−G(a0) . (18)

Proof: Assume that it is optimal not to invest at all times t. As a consequence, the econ-
omy will remain in the no investment corner solution where no capital is accumulated.
Hence, i(t) = 0, qi(t) ≥ 0 ∀ t and inequality (11e) is binding. All energy is solely pro-
duced by the established production technique which implies that x0 = x0

1 = 1−a0, x0
2 =

0, l01 > 0 and inequality (11f) is not binding (i.e. ql1 = 0). The optimal abatement effort
a0 is determined by equation (14) by inserting x0 = 1−a0 and e0 = x0(1−G(a0)) which
yields equation (18). Due to the assumed curvature properties of V , D and G, there
exists a unique solution for a0.

In the corner solution i(t) = 0, we derive the shadow price of capital q0
k(t) by inserting

equation (14) in equation (15) and solving the integral:

q0
k(t) = D′(e0)

[
(1 + a0 − λ)G′(a0) + 1−G(a0)

]exp[−ρt]

κ(γ + ρ)
. (19)

Equating conditions (13c), and (13d) and inserting equations (13b) and q0
k(t + σ) yields

the following necessary and sufficient condition for the corner solution to be optimal:

D′(e0)G′(a0) exp[−ρt]−qi(t) = D′(e0)
[
(1+a0−λ)G′(a0)+1−G(a0)

]exp[−ρ(t + σ)]

κ(γ + ρ)
.

(20)
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Taking into account that qi(t) ≥ 0, dividing by D′(e0)G′(a0) and rearranging terms
yields:

1 + a0 +
1−G(a0)

G′(a0)
≤ λ + κ(γ + ρ) exp[ρσ] . (21)

Note that condition (21) is independent of t. This implies that it is optimal not to invest
at all times t, if it is optimal not to invest at time t = 0. Thus, if condition (21) holds,
the optimal solution of the optimization problem (11) is to remain in the no investment
corner solution forever.

This, in turn, implies that it is optimal to invest in the new technology, if and only if
condition (21) does not hold, which is exactly what condition (17) states.
�

Remark: Condition (17) for investment in the new technology has an intuitive economic
interpretation. In the corner solution without investment the left-hand side corresponds
to the unit costs of energy production of the established technology UC0

T1
, the right-hand

side to the unit costs of energy production of the new technology UC0
T2

. Thus, condition
(17) states that for the new technology to be innovated its unit costs of production have
to be below those of the established technology, i.e. UC0

T2
< UC0

T1
.

The unit costs of production of the first technology are composed of three components,
the ‘pure’ labor costs per unit of energy production, the labor costs for abatement per
unit and the social costs of unit emissions in terms of labor. The unit costs of production
of the non-polluting new technology comprise apart from the ‘pure’ labor costs per unit
the costs for building up and maintaining the necessary capital good in terms of labor per
unit of output. Obviously, the capital costs per unit of output depend positively on the
capital intensity κ, the dynamic characteristics γ and σ of the capital good production,
as well as on the time preference rate ρ. In particular, the longer the time-lag σ and the
higher the rate of time preference ρ the higher are the unit costs of energy of the new
technology.

Note that as consumption and emission levels change over time in general the unit
costs of energy during transition periods are not constant and are thus not necessarily
given by UC0

T1
and UC0

T2
.

However, despite the infinite time horizon and the linearity of the two production
techniques full replacement of the established technology by the new technology in the
long run is not guaranteed, if condition (17) holds. In the following, we deduce conditions
for which complete or partial replacement occur in the long run.

Formally, the case of full replacement of the established by the new production tech-
nique is given by the full replacement corner solution l1(t) = 0. The line of argument
to derive a condition for full replacement is similar to the inference of proposition 1.
Assuming the economy to be in a long-run stationary state in which the new technology
is fully developed and all labor is used up to employ and maintain the capital stock we
investigate under which conditions such a full replacement stationary state is consistent
with the necessary and sufficient conditions for an optimal solution as given by equations
(13a)–(13h). The following proposition states the result.
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Proposition 2 (Full replacement condition in the social optimum)
Given the optimization problem (11) and that U ′(x∞)−D′(0) 6= 0 full replacement of the
established technology by the new one in the long-run stationary state is consistent with
the necessary and sufficient conditions for a social optimum, if and only if the following
condition holds:

1 +
D′(0)

U ′(x∞)−D′(0)
≥ λ + κ(γ + ρ) exp[ρσ] , (22)

where x∞ is given by x∞ = 1
λ+κγ

.

Proof: Assume that it is optimal in the long-run stationary state to use the total
labor endowment to employ and maintain the capital stock for the new technology,
i.e. x∞2 = 1

λ+κγ
. Then, all output is solely produced by the new technology, i.e. x∞ = x∞2 ,

x∞1 = l∞1 = 0. In addition, no emissions are produced and have to be abated and, thus,
e∞ = 0 and a∞ = 0.

Inserting conditions (13a) and (13b) into equation (13e) yields:6

−dq∞k (t)

dt
=

U ′(x∞)(1− λ) + D′(0)λ− q∞l1 λ

κ
exp[−ρt]− qk(t)γ . (23)

Together with the transversality condition (13h), equation (23) can be solved to yield:

q∞k (t) =
exp[−ρt]

κ(γ + ρ)

[
U ′(x∞)(1− λ) + D′(0)λ− q∞l1 λ

]
. (24)

By inserting conditions (13a), (13b) and q∞k (t + σ) into equation (13d), and taking into
account that q∞l1 ≥ 0, we derive condition (22).
�

Remark: The economic interpretation of the full replacement condition (22) is analo-
gous to the case of the investment condition (17). Full replacement can only take place,
if the costs per unit of output of the new technology in the full replacement stationary
state UC∞

T2
(right-hand side) are smaller than or equal to the costs of the established

technology UC∞
T1

(left-hand side). As there are no emissions, there are no labor costs
for abatement effort in the full replacement stationary state. Thus, the unit costs of the
established technology only consist of the ‘pure’ labor costs plus the social costs, which
stem from emissions. In the common case that D′(0) = 0 (which implies that the first
marginal unit of emissions does not exhibit any environmental damage and which holds
for example, if the disutility function D is a power function with an exponent greater
than 1), the unit costs of the established technology reduce to the ‘pure’ labor costs of
production. Note that condition (22) is not well defined, if limx→x∞ U ′(x) = D′(0) holds.
However, also in this special case full replacement will occur if, in addition, condition
(17) holds because the welfare gain of an additional unit of labor assigned to the old

6 Note that ql1(t) is constant in current values in the stationary state and, thus, ql1(t) = q∞l1 exp[−ρt]
with some constant q∞l1 ≥ 0 in present values.
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technology vanishes while the shadow price of capital, which is the net present value
of all future welfare gains of an additional unit of capital, remains positive. The unit
costs of the new technology are identical in both situations as they do not depend on
the level of emissions and its implied disutility.7 Note that for full replacement to occur
conditions (17) and (22) must hold at the same time.

A straightforward corollary from propositions 1 and 2 is that partial replacement of
the established by the new technology (i.e. the long-run stationary state is an interior
solution) takes place, if condition (17) holds but condition (22) is violated.

Corollary 1 (Partial replacement condition in the social optimum)
Given the optimization problem (11) and that U ′(x∞)−D′(0) 6= 0 partial replacement of
the established technology by the new one is optimal in the long-run stationary state, i.e.
the long-run stationary state is an interior solution, if and only if the following condition
holds:

1 + a0 +
1−G(a0)

G′(a0)
> λ + κ(γ + ρ) exp[ρσ] > 1 +

D′(0)

U ′(x∞)−D′(0)
, (25)

where x∞ = 1
λ+κγ

and a0 is given by the unique solution of the implicit equation (18).

In sum, investment is never optimal if the labor costs per unit of output of the new
technology, UCT2 = UC0

T2
= UC∞

T2
, are higher than the labor costs per unit of output

of the established technology in the no investment corner solution, UC0
T1

. If investment
is optimal, i.e. UCT2 < UC0

T1
, then full replacement in the long-run stationary state is

optimal if, in addition, UCT2 ≤ UC∞
T1

holds. Otherwise, i.e. if UC∞
T1

< UCT2 < UC0
T1

, the
new technology will partially replace the established technology in the optimal long-run
stationary state.

4 Unregulated competitive market equilibrium

In this section, we assume that the allocation of the model economy is determined by
an unregulated market regime. We assume competitive markets for labor, capital and
energy in which one representative household and two representative firms interact. We
suppose that all markets are cleared at all times and thus supply equals demand. As
emissions are free though negatively valued by the household the firms do not account
for them in their market decisions. Moreover, as explained in section 2.2, we consider
a representative consumer who exhibits different preferences in an individual compared
to a social decision context. More precisely, we assume that in the market regime the
preferences of the representative consumer are given by equation (9) (with α = 1), which
differs from equation (10) by a higher rate of time preference ρp.

In analogy to the analysis of the social optimum, we derive the conditions for in-
vestment in the new technology and for replacement of the established technology in
the long-run stationary state. We study the effect of the two external effects the model
comprises on these conditions.

7 In fact, the unit costs of the new technology are the same among all possible stationary states.
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4.1 The household’s market decisions

The household is assumed to own the two firms and the total endowment 1 of labor in the
economy. In line with the standard literature on capital accumulation and growth (e.g.
Barro and Sala-i-Martin 1995: chap. 2), we assume that also capital assets are owned
by the household. Thus, the household chooses between selling labor to the firms at the
market price of labor w or to invest labor in the accumulation of capital k, which the
household rents to the firms at the market price of capital r. In addition, the household
buys energy x at the market price of energy p. As the household cannot incur debts, the
following budget constraint has to hold at all times t:

p(t)x(t) = w(t)
(
1− i(t)

)
+ r(t)k(t) + π1(t) + π2(t) , (26)

where π1 and π2 denote the profits of firm 1 and 2. In addition, capital can be accumu-
lated according to equation (8).

The household is assumed to maximize its intertemporal welfare (9), i.e. the household
solves the following maximization problem:

max
i

∫ ∞

0

[
U(x(t))−D(e(t))

]
exp[−ρpt] dt , (27a)

subject to

p(t)x(t) = w(t)
(
1− i(t)

)
+ r(t)k(t) + π1(t) + π2(t) , (27b)

dk(t)

dt
= i(t− σ)− γk(t) , (27c)

i(t) ≥ 0 , (27d)

k(0) = 0 , (27e)

i(t) = ξ(t) = 0, t ∈ [−σ, 0) . (27f)

Thus, the present value Hamiltonian HH reads:

HH =
[
V (x(t))−D(e(t))

]
exp[−ρpt] + (28a)

qb(t)
[
w(t)

(
1− i(t)

)
+ r(t)k(t)− p(t)x(t)

]
+ (28b)

qk(t + σ)i(t)− qk(t)γk(t) + (28c)

qi(t)i(t) , (28d)

where qk denotes the costate variable or shadow price of the capital stock k, and qb and
qi denote the Kuhn-Tucker parameters for the (in)equality conditions (27b)and (27d).
The strict concavity of the Hamiltonian HH can be shown following a similar line of
argument as in Appendix A.1.

Assuming that the Hamiltonian HH is continuously differentiable with respect to the
control variable i the following necessary conditions hold for an optimal solution:

qb(t)p(t) = U ′(x(t)) exp[−ρpt] , (29a)

qb(t)w(t) = qk(t + σ) + qi(t) , (29b)

−dqk(t)

dt
= qb(t)r(t)− qk(t)γ , (29c)

qi(t) ≥ 0 , qi(t)i(t) = 0 . (29d)
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Due to the concavity of the Hamiltonian, the necessary conditions (29a)–(29d) are also
sufficient if in addition a transversality condition analogous to condition (13h) holds.
Moreover, the strict concavity of the Hamiltonian ensures a unique solution. Then, to-
gether with condition (29a) condition (29c) can be unambiguously solved:

qk(t) = exp[γt]

∫ ∞

t

qb(s)r(s) exp[−γs]ds . (30)

4.2 The firms’ market decisions

The firms are assumed to maximize their profits in the competitive market equilibrium
taking prices as given. Firm 1 produces energy according to the first production tech-
nology described by equations (1) and (11c). Thus, the profit π1 at time t is given by:

π1(t) = p(t)l1(t)− w(t)
(
1 + a(t)

)
l1(t) . (31)

Firm 1 chooses l1 and a such as to maximize the net present value of all future profits
which is equivalent to maximize the profit π1 at all times t. As the negative externality of
emissions is not accounted for in the unregulated market economy, abatement effort a is
a pure cost to the firm. As a consequence, a necessary condition for profit maximization
for firm 1 is:

a(t) = 0 . (32)

As π1 is linear in l1, π1 is non negative for any l1 > 0 as long as output prices exceed
input prices. The labor demand of firm 1 is given by the following correspondence:

l1(t)


= ∞ , if p(t) > w(t)

∈ [0,∞) , if p(t) = w(t)

= 0 , if p(t) < w(t)

. (33)

Firm 2 produces energy according to the second production technology described by
equation (6). Thus, the profits π2 at time t equal:

π2(t) =
1

κ
p(t)k(t)− λ

κ
w(t)k(t)− r(t)k(t) , (34)

which is a linear function of k. As a consequence, profits π2 are non negative for any
k > 0 as long as the value of outputs exceeds the value of inputs. Analogously to firm 1,
firm 2 demands as much capital as possible together with λ

κ
k units of labor, if the value

of the output exceeds the value of the inputs. Thus, the demand of firm 2 is given by
the following correspondence:

k(t)


= ∞ ∧ l2(t) = λ

κ
k(t) , if p(t) > λw(t) + κr(t)

∈ [0,∞) ∧ l2(t) = λ
κ
k(t) , if p(t) = λw(t) + κr(t)

= 0 ∧ l2(t) = 0 , if p(t) < λw(t) + κr(t)

. (35)
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4.3 Necessary and sufficient condition for the market equilibrium

In the market equilibrium supply equals demand on all markets. As in the social opti-
mum, the market solution may exhibit two corner solutions. This is either the case, if
the household does not invest in capital at all times or if the total labor endowment is
used to employ and maintain the capital stock. In the former case, firm 2 is unable to
operate, while in the latter case firm 1 is driven out of the market.

First, we analyze the interior market equilibrium where both firms operate. From the
demand correspondences (33) and (35) of firm 1 and firm 2 we know that for any positive
and finite amount of l1, l2 and k the following conditions hold:

w(t)

p(t)
= 1 ,

r(t)

p(t)
=

1

κ

(
1 + λ

w(t)

p(t)

)
=

1− λ

κ
. (36)

Solving equation (29a) for qb and taking into account conditions (36), we achieve for the
shadow price of capital qk

qk(t) =
1− λ

κ
exp[γt]

∫ ∞

t

U ′(x(s)) exp[−(γ + ρp)s] ds , (37)

and the following necessary and sufficient condition for an interior market equilibrium:

U ′(x(t)) exp[−ρpt] = qk(t + σ) . (38)

Analogously to the corresponding condition (16) in the social optimum, equation (38)
states that along the optimal path the present value of the household’s welfare loss
by investing in one marginal unit of new capital, given by the present value welfare
gain of the alternative use of one marginal unit of labor in the established production
technique (left-hand side), equals the net present value of the sum of all future welfare
gains by using the new capital good in production. As investment needs the time span
σ to become productive capital, the sum of all future welfare gains of an investment
at time t is given by the shadow price of capital at time t + σ, qk(t + σ). Both costs
and benefits of investment are smaller in the market equilibrium compared to the social
optimum. However, in order to decide how the external effects influence the conditions
of investment and replacement we have to check them explicitly.

4.4 Conditions for investment and replacement

In order to derive an investment condition similar to condition (17) in the social opti-
mum, we assume again the economy to stay in the no investment corner solution. Given
the stationary state with no investment in capital at all times, we derive a condition
on the exogenous parameters for which the corner solution violates the necessary and
sufficient condition (38) for an unregulated market solution. The following proposition
states this condition.
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Proposition 3 (Investment condition in the competitive market equilibrium)
Given the optimization problem (27) of the representative household and the profit func-
tions (31) and (34) of firm 1 and firm 2, the new technology is innovated, i.e. i(0) > 0,
if and only if the following condition holds:

1 > λ + κ(γ + ρp) exp[ρpσ] . (39)

Proof: Assume that it is optimal not to invest at all times t. As a consequence, the
economy will remain in the no investment corner solution where no capital is accumu-
lated. Hence, i(t) = 0 qi(t) ≥ 0 ∀ t and the inequality (29d) is binding. All energy is
solely produced by the established production technique (i.e. x0 = x0

1 = 1, x0
2 = 0).

From the demand correspondences (33) and (35) we know that

w(t)

p(t)
= 1 ,

r(t)

p(t)
≥ 1

κ

(
1− λ

w(t)

p(t)

)
=

1− λ

κ
. (40)

Solving equation (29a) for qb and inserting it, together with conditions (40), in equation
(30) yields the following inequality for the shadow price of capital:

q0
k(t) ≥

1− λ

κ(γ + ρp)
U ′(1) exp[−ρpt] . (41)

Inserting qb(t) and q0
k(t + σ) into equation (29b) and taking into account that qi(t) ≥ 0

yields the following necessary and sufficient condition for the corner solution to be a
market equilibrium:

U ′(1) exp[−ρpt] ≥
1− λ

κ(γ + ρp)
U ′(1) exp[−ρp(t + σ)] . (42)

Dividing by U ′(1) exp[−ρpt] and rearranging terms yields that it is optimal to invest in
the new technology, if and only if condition (39) holds.
�

Remark: Condition (39) displays the unit costs of energy production of the established
and the new technology, respectively, in the competitive market equilibrium. Again,
the new technology has to necessarily display lower unit costs of production than the
established technology in order to be innovated. As the social costs of pollution are
not accounted for in the unregulated market regime firm 1 has no incentive to abate.
Thus, the unit costs of energy of the established technology reduce to the ‘pure’ costs of
production and are thus lower than socially optimal. The unit costs of energy of the new
technology display the same composition as at the social optimum. As they now depend
on ρp > ρ they exceed the socially optimal unit costs of energy of the new technology.
Thus, in the unregulated market regime higher (compared to the social optimum) unit
costs of energy of the new technology must stay below lower units costs of energy of the
established technology for the new technology to be innovated.
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As there is no abatement investment in the new technology according to condition
(39) always implies the full replacement of the initially established technology in the
long run and thus excludes partial replacement. The following proposition states these
results.

Proposition 4 (Full replacement in the competitive market equilibrium)
Given the optimization problem (27) of the representative household, the profit functions
(31) and (34) of firm 1 and firm 2, full replacement of the established technology by the
new one in the long-run stationary state is consistent with the necessary and sufficient
conditions for a competitive market equilibrium, if and only if the following condition
holds:

1 ≥ λ + κ(γ + ρp) exp[ρpσ] . (43)

In particular, this implies that partial replacement of the established technology by the
new one cannot occur in the unregulated market regime.

Proof: Assume that it is optimal in the long-run stationary state to use the total
labor endowment to employ and maintain the capital stock for the new technology,
i.e. l∞1 = 0, l∞2 = λ

λ+κγ
. Then, all output is solely produced by the new technology, i.e.

x∞ = x∞2 = 1
λ+κγ

, x∞1 = l∞1 = 0.

From the demand correspondences (33) and (35) we know that

w(t)

p(t)
≥ 1 ,

r(t)

p(t)
=

1

κ

(
1− λ

w(t)

p(t)

)
. (44)

Solving equation (29a) for qb and inserting, together with conditions (44) in equation
(30) yields for the shadow price of capital:

q∞k (t) =
1− λw∞

κ(γ + ρp)
U ′(x∞) exp[−ρpt] , (45)

where w∞ = w(t)
p(t)

evaluated at the full replacement stationary state, and is thus a con-

stant. Inserting qb(t) and q∞k (t+σ) into equation (29b) we derive the following condition:

w∞U ′(x∞) exp[−ρpt] =
1− λw∞

κ(γ + ρp)
U ′(x∞) exp[−ρp(t + σ)] . (46)

Dividing by U ′(x∞)
κ(γ+ρp)

exp[−ρp(t + σ)], taking into account that w∞ ≥ 1 and rearranging

terms yields condition (43).
�

Remark: At first sight it might be puzzling that condition (39) is a strict inequality
while condition (43) also allows for the equality sign to hold. The interpretation is,
however, straightforward. Condition (43) states the requirements for a full replacement

19



stationary state to be consistent with the necessary and sufficient conditions for a mar-
ket equilibrium. However, from the strict inequality (39) we know that starting with a
vanishing capital stock k(0) = 0 there is no investment at all times, if the equality sign in
(43) holds. Nevertheless, in the hypothetical situation that the economy would already
start with the full replacement capital stock k∞ = κ

λ+κγ
and that, in addition, condi-

tion (43) holds with equality the economy would stay in the full replacement market
equilibrium forever.

In sum, in the unregulated market economy the new technology has to exhibit lower
costs per unit of output than the ‘pure’ labor costs of the established technology to
be innovated. This holds as the social costs of emissions which are an inevitable joint
output of the old production technique are not accounted for in the market equilibrium.
Moreover, the unit costs of the new technology are higher in the unregulated market
equilibrium compared to the social optimum. This holds as the ‘costs’ of the period
of waiting between the investment and the new capital good becoming productive are
higher, due to the higher rate of time preference ρp of individual actors compared to
the social rate of time preference ρ. Thus, in a mutually reinforcing way the two market
failures imply that the new technology might not be innovated in the competitive market
equilibrium, although innovation would be socially optimal.

5 Competitive market equilibrium with emission tax and investment
subsidy

In this section, we consider how the social optimum can be implemented. In general, two
independent instruments are needed to implement the social optimum corresponding to
the two externalities arising in the model. In fact, we study the introduction of an emis-
sion tax τe to internalize the external effect from emissions, and of an investment subsidy
τi to internalize the second externality from the individuals’ higher time preference. We
assume the emission tax to be a tax per unit of emissions, directly collected from firm
1, and the investment subsidy to be a subsidy per unit of investment, paid directly to
the household.

5.1 The household’s and firms’ market decisions under regulation

The emission tax and the investment subsidy alter the profit function of firm 1 and
the household’s maximization problem, respectively. Thus, we have to reconsider the
corresponding decisions in a regulated market regime.

Given a per unit tax τe per unit of emissions, the profit function of firm 1 alters as
follows:

π1(t) = p(t)l1(t)− w(t)(1 + a(t))l1(t)− τe(t)
(
1−G(a(t))

)
l1(t) . (47)

Firm 1 chooses both labor l1 and abatement effort a such as to maximize the net present
value of all future profits which is equivalent to maximizing the profit π1 at all times t.
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A necessary condition for profit maximization is

∂π1(t)

∂a(t)
= −l1(t)w(t) + τe(t)G

′(a(t))l1(t) = 0 , (48)

which is an implicit equation for the unique optimal abatement effort a?(t) as long as
l1(t) > 0. However, if l1(t) = 0, the optimal abatement effort a?(t) = 0 as in this
case there are no emissions which have to be abated. Again, the profit function π1(t) is
linear in the labor demand l1(t). Thus, the demand for l1(t) is given by the following
correspondence:

l1(t)


= ∞ , if p(t) > w(t)

(
1 + a(t)

)
+ τe(t)

(
1−G(a(t))

)
∈ [0,∞) , if p(t) = w(t)

(
1 + a(t)

)
+ τe(t)

(
1−G(a(t))

)
= 0 , if p(t) < w(t)

(
1 + a(t)

)
+ τe(t)

(
1−G(a(t))

) , (49)

where the optimal abatement effort a is given by the solution of the implicit equation
τe(t)G

′(a(t)) = w(t) if l1(t) > 0, and a(t) = 0 if l1(t) = 0.
With the investment subsidy τi(t) paid per unit of investment i, the household’s budget

constraint equals:8

p(t)x(t) = w(t)
(
1− i(t)

)
− τi(t)i(t) + r(t)k(t) + π1(t) + π2(t) . (50)

Thus, the necessary and sufficient condition (29b) is replaced by:

qb(t)
(
w(t) + τi(t)

)
= qk(t + σ) + qi(t) . (51)

Neither the emission tax τe nor the innovation subsidy τi directly affect firm 2. As a
consequence, the market decisions of firm 2 remain unaltered.

5.2 Necessary and sufficient condition for the regulated market equilibrium

Given the adjusted equations (47) and (51), which replace equations (33) and (29b) of
section 4 in the case that an emission tax τe and an investment subsidy τi are enacted,
we analyze how the interior market equilibrium changes.

From conditions (48), (49) and (35) we derive the following conditions for an interior
market equilibrium where both firms operate (i.e. l1(t) > 0, i(t) > 0):

1 =
τe(t)

p(t)

[
G′(a(t))(1 + a(t)) + 1−G(a(t))

]
, (52)

w(t)

p(t)
=

1− τe(t)
p(t)

(
1−G(a(t))

)
1 + a(t)

, (53)

r(t)

p(t)
=

1 + a(t)− λ + λ τe(t)
p(t)

(
1−G(a(t))

)
κ(1 + a(t))

. (54)

8 For the sake of consistency, a positive τe (τi) denotes a tax and a negative τe (τi) denotes a subsidy.
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Solving equation (29a) for qb and taking into account conditions (54) we achieve for the
shadow price of capital qk:

qk(t) =
exp[γt]

κ

∫ ∞

t

1 + a(s)− λ + λ τe(s)
p(s)

(
1−G(a(s))

)
1 + a(s)

U ′(x(s)) exp[−(γ+ρp)s] ds . (55)

Inserting qb and equation (53) into equation (51) yields

1− τe(t)
p(t)

(
1−G(a(t))

)
1 + a(t)

U ′(x(t)) exp[−ρpt] = qk(t+σ)− τi(t)

p(t)
U ′(x(t)) exp[−ρpt] , (56)

which together with equation (52) determines the interior market equilibrium for a given
emission tax τe and investment subsidy τi. Note that equations (52) and (56) determine
the market equilibrium only in terms of relative prices. Thus, one price can freely be
chosen as a numeraire.

Choosing the price of energy p as numeraire we calculate the optimal emission tax
and the optimal investment subsidy. Comparing equation (52) with the corresponding
condition (14) in the social optimum we achieve for the optimal emission tax τ opt

e :

τe(t)
opt

p(t)
=

D′(e(t))

U ′(x(t))
. (57)

For condition (56) and the corresponding condition (17) in the social optimum to coincide
the investment subsidy τ opt

i has to be set to:

τi(t)
opt

p(t)
= −exp[−γ(t+σ)]

κU ′(x(t))

∫ ∞

t+σ

U ′(x(s))(1 + a(s)− λ) + D′(e(s))λ
(
1−G(a(s))

)
1 + a(s)

× exp[−γs]
(
exp[−ρ(s− t)]− exp[−ρp(s− t)]

)
ds . (58)

As expected, if the two instruments are set in such a way that the market equilibrium
is identical to the social optimum, τ opt

e is always positive (i.e. emissions are taxed) and
τ opt
i is always negative (i.e. investment is subsidized).
In the following, we consider how the conditions for investment and replacement, i.e.

the two corner solutions, change compared to the unregulated market economy when
an emission tax τe is raised from firm 1 and an investment subsidy τi is paid to the
household. We show that setting τe and τi as defined in equations (57) and (58) also
implements the social optimum in case of the corner solutions.

5.3 Conditions for investment and replacement

Again, we first consider the case that the economy stays in the no investment corner
solution. We derive a condition for positive investment to be a market equilibrium in the
regulated market regime with emission tax τe and investment subsidy τi. The following
proposition states this condition.
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Proposition 5 (Investment condition in the regulated market regime)
Given the optimization problem (27) of the household with the adjusted budget constraint
(50), the profit functions (47) and (34) of firm 1 and firm 2, and the emission tax
τe(t)
p(t)

and the investment subsidy τi(t)
p(t)

, the new technology is innovated in the market

equilibrium, i.e. i(0) > 0, if and only if the following condition holds:

1 + a0 +
1−G(a0)

G′(a0)
> λ +

[
1 +

τ 0
i

τ 0
e G′(a0)

]
κ(γ + ρp) exp[ρpσ] , (59)

where τ 0
e = τe(t)

p(t)
, τ 0

i = τi(t)
p(t)

evaluated at the no investment stationary state and a0 is
determined by the unique solution of the implicit equation:

1 = τ 0
e

(
G′(a0)(1 + a0) + 1−G(a0)

)
. (60)

Condition (59) for the market equilibrium is identical to the corresponding condition
for the social optimum (17), if τ 0

e and τ 0
i are set as follows:

τ 0
e =

D′(e0)

U ′(x0)
> 0 , (61)

τ 0
i =

D′(e0)
[
(1+a0−λ)G′(a0)+1−G(a0)

]
κU ′(x0)

(
exp[−ρpσ]

γ + ρp

− exp[−ρσ]

γ + ρ

)
< 0 , (62)

where x0 = 1− a0 and e0 = (1− a0)(1−G(a0)).

Proof: The proof is analogous to the proof of proposition 3. Assume that it is optimal
not to invest at all times t. As a consequence, the economy will remain in the no in-
vestment corner solution where no capital is accumulated. Hence, i(t) = 0, qi(t) ≥ 0 ∀ t
and the inequality (29d) is binding. All energy is solely produced by the established
production technique (i.e. x0 = x0

1 = 1 − a0, x0
2 = 0). We know from conditions (48),

(49) and (35):

1 = τ 0
e

(
G′(a0)(1 + a0) + 1−G(a0)

)
, (63a)

w(t)

p(t)
= τ 0

e G′(a0) , (63b)

r(t)

p(t)
≥

τ 0
e

[
(1 + a0 − λ)G′(a0) + 1−G(a0)

]
κ

. (63c)

Equation (63a) determines the profit maximizing abatement effort a0 of firm 1. Solving
equation (29a) for qb and inserting, together with conditions (63c), in equation (29c)
yields the following inequality for the shadow price of capital:

q0
k(t) ≥

τ 0
e

[
(1 + a0 − λ)G′(a0) + 1−G(a0)

]
κ(γ + ρp)

U ′(x0) exp[−ρpt] . (64)

Inserting equation (63b), qb and q0
k into equation (51) and taking into account that

qi(t) ≥ 0 we derive:

τ 0
e G′(a0)U ′(x0) ≥

τ 0
e

[
(1 + a0 − λ)G′(a0) + 1−G(a0)

]
κ(γ + ρp)

U ′(x0) exp[−ρpσ]−τ 0
i U ′(x0) . (65)
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Dividing by τ 0
e G′(a0)U ′(x0) and rearranging terms yields that the no investment corner

solution is a market equilibrium, if:

λ +

[
1 +

τ 0
i

τ 0
e G′(a0)

]
κ(γ + ρp) exp[ρpσ] ≥ 1 + a0 +

1−G(a0)

G′(a0)
. (66)

That, in turn, implies that in the regulated market equilibrium there is investment in
the new technology, if and only if condition (59) holds.

By setting τ 0
e = D′(e0)

U ′(x0)
, condition (63a) which determines the profit maximizing abate-

ment effort a0 becomes identical to equation (18) which determines the socially optimal
abatement level. Furthermore, inserting τ 0

e and τ 0
i from equations (61) and (62) into

condition (59) yields (after some tedious calculations) the investment condition in the
social optimum (17).
�

Remark: Condition (59) displays the unit costs of energy production of the established
and of the new technology, respectively, in the no investment market equilibrium when
an emission tax τe is imposed and an innovation subsidy τi is paid. By implementing
a cost on the output of emissions e the imposition of the emission tax τe induces a
positive abatement effort a of firm 1 and provides for the social cost of emissions to
be taken into account in the unit costs of production of the established technology. By
setting τ 0

e equal to the ratio between marginal damage from environmental degradation
and marginal benefit from consumption the unit costs of production of the established
technology are raised to their socially optimal level and thus the external effect from the
emissions is internalized. However, it is obvious from condition (59) that an emission tax
does not suffice for the market equilibrium to resemble the socially optimal outcome.
In addition, an investment subsidy has to be paid, lowering the unit costs of energy
production for the new technology to their level at the social optimum.

Note that conditions (61) and (62) are identical to the corresponding conditions (57)
and (58) for an interior market equilibrium evaluated at the no investment corner solu-
tion.

We will now derive the conditions for which full replacement of the established by
the new technology is a market equilibrium in the long run given the state imposes an
emission tax τe and pays an investment subsidy τi.

Proposition 6 (Full replacement condition in the regulated market regime)
Given the optimization problem (27) of the household with the adjusted budget constraint

(50), the profit functions (47) and (34) of firm 1 and firm 2, the emission tax τe(t)
p(t)

and

the investment subsidy τi(t)
p(t)

, full replacement of the established technology by the new one
in the long-run stationary state is consistent with the necessary and sufficient conditions
for a regulated market equilibrium, if and only if the following condition holds:

1 +
τ∞e

1− τ∞e
≥ λ +

[
1 +

τ∞i
1− τ∞e

]
κ(γ + ρp) exp[ρpσ] , (67)
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where τ∞e = τe(t)
p(t)

, τ∞i = τi(t)
p(t)

evaluated at the long-run stationary state.

Condition (67) for the market equilibrium is identical to the corresponding condition
for the social optimum (22), if τ∞e and τ∞i are set as follows:

τ∞e =
D′(0)

U ′(x∞)
≥ 0 , (68)

τ∞i =
U ′(x∞)(1− λ) + D′(0)λ

κU ′(x∞)

(
exp[−ρpσ]

γ + ρp

− exp[−ρσ]

γ + ρ

)
< 0 , (69)

where x∞ = 1
λ+κγ

.

Proof: Assume that using the total labor endowment to employ and maintain the capi-
tal stock for the new technology in the long-run stationary state is a market equilibrium,
i.e. l∞1 = 0, i∞ > 0 and q∞i = 0. Then, all output is solely produced by the new tech-
nology, i.e.x∞ = x∞2 = 1

λ+κγ
and x∞1 = l∞1 = 0. In addition, no emissions are produced

and have to be abated and thus e∞ = 0 and a∞ = 0. For this case, we know from the
demand correspondences (49) and (35) of firm 1 and firm 2:

w(t)

p(t)
≤ 1− τe(t)

p(t)
, (70a)

r(t)

p(t)
=

1

κ

(
1− λ

w(t)

p(t)

)
. (70b)

Solving equation (29a) for qb and inserting it, together with condition (70b), in equation
(29c), yields for the the shadow price of capital:

q∞k (t) =
1− λw∞

κ(γ + ρp)
U ′(x∞) exp[−ρpt] , (71)

where w∞ = w(t)
p(t)

evaluated at the full replacement stationary state and thus is a constant.

Inserting qb, qk and inequality (70a) into equation (51), and taking into account that
qi(t) = 0 we derive the following condition:

(1− τ∞e )(λ + κ(γ + ρp) exp[ρpσ]) ≤ 1− τ∞i κ(γ + ρp) exp[ρpσ] . (72)

Dividing by (1− τ∞e ) and rearranging terms yields condition (67).
Furthermore, inserting τ∞e and τ∞i from equations (68) and (69) into condition (67)

yields (after some tedious calculations) the full replacement condition in the social op-
timum (22).
�

Remark: Note that although in the case of full replacement the external effect from the
emissions vanishes the emission tax has to be raised as long as D′(0) > 0 for the market
equilibrium to resemble the social optimum. If D′(0) = 0, then the optimal tax in the
full replacement stationary state is given by τ∞e = 0. However, the optimal investment
subsidy τ∞i has to be non-zero in any case.
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As in the case of the social optimum, conditions (59) and (67) have to hold simulta-
neously for full replacement to occur in the regulated market regime in the long run.
Moreover, if the emission tax τe and the investment subsidy τi are such that condition
(59) is always fulfilled but condition (67) is always violated, the economy exhibits a
market equilibrium where both technologies are used, i.e. there is a partial replacement
of the established by the new technique.

6 Discussion

Before we discuss our results with respect to model assumptions and policy implications,
we briefly summarize our findings graphically. Figure 1 displays the conditions of invest-
ment and full and partial replacement in the cases of the unregulated market regime and
the social optimum as well as the effects from the application of the policy instruments,
the emission tax and the investment subsidy.
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Figure 1: Full, partial and no investment in the unregulated market equilibrium and the social
optimum

For the emission externality, our model resembles the standard environmental eco-
nomic result that there is no incentive to abate in an unregulated market economy
where the social costs of emissions are not taken into account by the polluting firm. As
a consequence, the unit costs of the established technology UCT1 equal its ‘pure’ labor

costs per output unit of 1, which is below the socially optimal level of 1 + a0 + 1−G(a0)
G′(a0)

.

26



In addition to the standard setting we assume in our model that the new energy pro-
ducing technology exhibits a time-lag σ for the accumulation of the specific capital good
and that social and individual rates of time preferences differ. This has implications for
the unit costs of energy of the new technology UCT2 . Apart from the labor costs per
output unit λ, they comprise the capital costs per output unit which depend, in particu-
lar, positively on the time-lag σ and the rate of time preference. Thus, the schizophrenic
behavior assumption implies that UCT2 in the unregulated market equilibrium is above
its socially optimal level.

The new technology is only innovated, if the unit costs of energy of the new technology
are below those of the established technology. Thus, for investment in the new technology
to be (individually) optimal in the unregulated market regime, a higher UCT2 has to stay
below a lower UCT1 compared to the social optimum. Thus, investment is hampered by
the combined effect of both externalities.

Figure 1 shows the double effect the levy of the emission tax τe has on the conditions of
investment and replacement, respectively. While τ 0

e raises the unit costs of energy of the

established technology to its socially optimal level 1 + a0 + 1−G(a0)
G′(a0)

, and thereby creates,
in particular, the possibility of an interior solution with both technologies operating in
the long-run stationary state, τ∞e moves the point until which full replacement takes

place to1 + D′(0)
U ′(x∞)−D′(0)

. The social optimum can, in general, only be implemented if
in addition an investment subsidy τi is paid which reduces the unit costs of the new
technology to their socially optimal level.

6.1 Model assumptions

The most crucial assumption for our results to hold is that the social and the individual
rate of time preference differ. The line of argument we draw upon is schizophrenic be-
havior, i.e. the household applies different preferences depending on whether the decision
context is of private or social interest. This assumption has been discussed in detail in
section 2.2.

In fact, the second distinctive feature of our model that the accumulation of the
specific capital good for the new technology exhibits a substantial time-lag σ is not
necessary for the second externality to occur. However, the externality imposed by the
differing discount rates is amplified by the time-lag σ. Thus, the second externality gains
higher importance the higher is σ, as it can easily be seen from the term ρp exp[ρpσ]
in the unit costs of the new technology. As time-to-build is of considerable length in
energy plant construction (ranging from two years for gas cogeneration plants up to
some ten years for the construction of a nuclear power plant), the second externality is
of particular importance in the context of the technological transition of energy systems.
In our opinion, this importance justifies the additional mathematical obstacles incurred
by time-lagged equations of motion.

By modeling the energy producing technologies as linear and linear limitational func-
tions, respectively, we assume very specific forms of technology for the production of
energy. The rationale for this specific functional form is to account for rigidities in en-
ergy production due to technical and thermodynamic constraints. However, for the sake
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of simplicity fuel inputs are not considered explicitly but subsumed under the one non-
producible production input labor. Moreover, we want to concentrate on substitution
effects between (the established and the new) production technologies and therefore ex-
clude substitution possibilities within the individual energy technologies. From a more
technical point of view, it is the linearity of the production functions which gives rise
to the corner solutions which we exploit to derive conditions for investment, and partial
and full replacement.

Finally, for the sake of a tractable model we abstract from a series of peculiarities of the
economics of the energy industry. First, the energy industry exhibits oscillatory demand
fluctuations on different time-scales (for example day/night-time, summer/winter, etc.).
As different energy technologies exhibit different turn-on/turn-off costs and rigidities,
a mix of energy technologies is in general preferable over ‘energy monocultures’ (for
example, hydroelectric power and gas cogeneration plants can easily be turned-on and
switched off and are therefore well suited to supply energy for peak demands while
nuclear power plants are extremely costly and time-consuming to load adjustments and
are thus preferably used to supply the base load).

Second, in contrast to our assumption of a perfectly competitive market the energy
industry rather exhibits a oligopolistic market structure. As it is well known from the
industrial organization literature, unregulated oligopolistic market regimes lead in gen-
eral to market failures in the sense that the market outcome is not a social optimum.
We abstract from these additional market failures to concentrate on the externalities
imposed by emissions and differing private and social discount rates.

6.2 Policy implications

The main result of our paper is that for the transition towards a low-emission energy
industry the imposition of an energy tax is in general not sufficient to achieve the social
optimum. Although this result was derived from a highly stylized theoretical model,
there are direct policy implications to be drawn which are relevant for the regulation of
energy markets in order to induce a socially optimal transition towards a cleaner energy
system.

First, Jaffe et al. (2005) argue that the development and innovation of a new tech-
nology is generally related to a high degree of uncertainty with regard to its success.
Furthermore, its innovation is likely to create knowledge spillovers to other firms, and the
diffusion of new technologies is typically related to dynamic increasing returns stemming
from learning-by-using, learning-by-doing or network externalities. Thus, the process of
technological change involves a series of (potential) market failures which provide rea-
sons for state interventions of technology policy. In our model, we derive a similar result
without taking into consideration the uncertain nature of R&D and by abstracting from
dynamic effects, such as learning-by-doing or network externalities. In fact, in our model
it is the time-consuming nature of bringing a new technology into use combined with the
split of the social and individual rates of time preference which leads to an additional
externality. Thus, we provide a complementary justification for technology policies.

Second, Porter and van der Linde (1995) argue that “well-designed” environmental
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regulations may exhibit a double dividend in the sense that they achieve both less
pollution due to higher environmental standards, taxes, etc., and higher competitiveness
by increasing the productivity with which resources are used. With the findings of our
model we can substantiate what constitutes a “well-designed” environmental regulation.
We distinguish between gradual and structural technological change which we identify
in the context of the transition to a low-emission energy industry with the installation
of an end-of-pipe abatement technology or with a switch to a clean energy technology,
respectively. It is obvious from the formulae of the unit costs of production for the
established and the new technology that gradual technological change always induces
additional costs to the existing technology, while structural technological change may
exhibit higher, equal or lower unit costs of production compared to the pure labor costs
of the established technology. In the latter case, the new technology offers in fact a
double dividend in the sense of the Porter hypothesis (no emissions and lower unit
costs). Yet, the standard environmental policy of solely imposing an emission tax favors
gradual technological change and does not sufficiently account for structural change
as compared to the social optimum. These findings suggest that for a well-designed
environmental regulation the standard environmental policy has to be supplemented by
technology policy. This holds even more, if we consider in addition the dynamic effects
of R&D and innovation, as discussed by Jaffe et al. (2005).

Third, our findings provide theoretical economic support for policies that subsidize
clean energy technologies, such as the German “Erneuerbare-Energien-Gesetz” (Renew-
able Energy Sources Act), first enacted in April 2000 and amended in August 2004.
The stated purpose of the act is to increase the share of renewable energy technologies
to at least 12.5% in 2010 and 20% in 2020. Moreover, the act aims at a sustainable
provision of energy, a reduction of insecure markets for fossil fuels and a promotion of
technological progress in renewable energy technology. According to the act, suppliers
of renewable energy get unit subsidies which depend on the energy technology and the
size of the plant. Moreover, the subsidies are decreasing over time to give incentives
for productivity increases. The subsidy rates are adjusted regularly (last adjustment in
August 2004). At least the basic idea of subsidizing renewable energies of the Renewable
Energy Sources Act is supported by the combined findings of Jaffe et al. (2005), Porter
and van der Linde (1995) and our own results. However, if both the instrument of feed-in
tariffs employed by the Renewable Energy Sources Act and their respective levels are
efficient is beyond the scope of our paper.

7 Conclusion

In this paper, we have studied the relationship between gradual and structural tech-
nological change in the transition to a low-emission energy industry. Our findings are
driven by the combined effect of a standard emission externality and the additional ex-
ternal effect, stemming from the split of private and social rates of time preference, and
the time-to-build feature of capital accumulation. We have derived the ratio of the unit
costs of energy of the two technologies as the decisive criterion whether investment and
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partial or full replacement of the new technology occur. Our results imply that environ-
mental policy has to be supplemented by technology policy in order to achieve the social
optimum in a market regime. Moreover, in the case that only an emission tax is enacted
the investment decision is biased in favor of gradual technological change compared to
the social optimum.

In our analysis we abstract from a series of peculiarities of the economics of techno-
logical change and power systems. This allows us to show that another market failure
may arise in technological transition processes stemming from the split of social and
individual rates of time preference, which is fostered by the time-to-build feature of the
specific capital goods and, thus, particularly relevant in the energy sector.

Therefore, our investigation provides an additional reason why it may be beneficial, in
terms of economic efficiency, to combine instruments of environmental and technology
policy to achieve a socially optimal outcome, which does not draw on the standard
explanations of uncertain R&D success and technology spillovers. Apart from that, the
analysis shows that structural change may exhibit a double dividend in the sense of
the Porter hypothesis being both economically more efficient and more environmentally
benign. In fact, our model can substantiate Porter and van der Linde’s (1995) claim
of “well-designed” environmental regulations. Thus, our findings provide some general
theoretical support for policies which subsidize renewable energies.

Moreover, the results constructively contribute to the Kyoto conflict between the
United States and the European Union. While the European Union strongly promotes
emission regulation policies, the United States rather advocate technology policy. Our
findings indicate that the correct question to ask is not which of the two kinds of policy
is the most beneficial in terms of social welfare but rather which combination of the two
is to be applied.

Of course, the analysis provides only a theoretical indication. It is up to further em-
pirical research to investigate how social and individual preferences actually differ in the
case of essential and desired goods, such as energy, the production of which is necessarily
linked to the by-production of a harmful joint output. This is particularly important to
derive concrete levels of investment subsidies for technology policies. Moreover, we did
not take into account the oligopolistic market structures which are common in energy
markets and the integration of which into our model constitutes a fruitful agenda for
further theoretical research.
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Appendix

A.1 Concavity of the Hamiltonian along the optimal path

In the following, we show that the maximized Hamiltonian H0, which is the Hamiltonian H
as defined in equation (12) in which the optimal paths for a and i are substituted, is jointly
concave in the variables x, e, and k along the optimal path. Although we cannot solve the
optimal paths for a and i, we can eliminate them by employing the necessary conditions for
an optimal solution.

The Hamiltonian (12) can be written as:

H = [V (x(t))−D(e(t))] exp[−ρt] + qx(t)
[

1
κ

k(t)− x(t)
]
− qe(t)e(t) +

+qk(t + σ)i(t)− qk(t)γk(t) + qi(t)i(t) + ql1

1− λ
κk(t)− i(t)
1 + a(t)

+ (A.1)

1− λ
κk(t)− i(t)
1 + a(t)

[
qx(t) + qe(t)

(
1−G(a(t))

)]
,

From the necessary condition (13d), we know that

qx(t) + qe(t)
(
1−G(a(t))

)
1 + a(t)

= qk(t + σ) + qi(t)−
ql1(t)

1 + a(t)
. (A.2)

Inserting equation (A.2) into equation (A.1) yields the maximized Hamiltonian H0, in which
the control variables a and i are eliminated:

H0 = [V (x(t))−D(e(t))] exp[−ρt] + qx(t)
[

1
κ

k(t)− x(t)
]
− qe(t)e(t)

+qk(t + σ)
[
1− λ

κ
k(t)

]
− qk(t)γk(t) . (A.3)

Obviously, H0 is concave, as it is the sum of concave functions.

A.2 Optimal transition dynamics and stationary states

The optimal system dynamics of the optimization problem (11) splits into three cases. The first
case corresponds to the corner solution i(t) = 0 ∀ t. In this case, there is no system dynamics
at all. The system will remain in a stationary state where the labor endowment is used up by
energy production via the established technology and abatement.

In the second case, the optimal system dynamics is an interior solution, i.e. along the optimal
path i(t) > 0 ∀ t and l1(t) > 0 ∀ t holds. Then, the system dynamics is governed by the following
system of differential equations

di(t)
dt

= Φ1(t)
[
(γ + ρ)D′(t)G′(t) +

exp[−ρσ]
κ

(
λD′(t+σ)G′(t+σ) + U ′(t+σ)

)]
+

+Φ2(t) [i(t−σ)− γk(t)] , (A.4a)
da(t)
dt

= Φ3(t)
[
(γ + ρ)D′(t)G′(t) +

exp[−ρσ]
κ

(
λD′(t+σ)G′(t+σ) + U ′(t+σ)

)]
+

+Φ4(t) [i(t−σ)− γk(t)] , (A.4b)
dk(t)
dt

= i(t−σ)− γk(t) , (A.4c)
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where Φn(t) (n = 1, . . . , 4) are functions of i(t), a(t) and k(t) as shown in Appendix A.3. As
di(t)
dt , da(t)

dt and dk(t)
dt also depend on advanced (i.e. at a later time) and on retarded (i.e. at an

earlier time) variables, equations (A.4) form a system of functional differential equations.9

Although this system is not analytically soluble in general (not even in the linear approx-
imation around the stationary state), we show in Appendix A.3 that the unique stationary
state, which is given by the following implicit equations

U ′(x?) = D′(e?)
[
G′(a?) (1 + a?) + 1−G(a?)

]
, (A.5a)

γ + ρ = exp[−ρσ]
λD′(e?)G′(a?) + U ′(x?)

κD′(e?)G′(a?)
, (A.5b)

i? = γk? , (A.5c)

is a saddle point. Hence, for all sets of initial conditions there is a unique optimal path which
converges towards the stationary state. In general, these optimal paths are oscillatory and
exponentially damped.10

In the third case, which corresponds to the corner solution l1(t) = 0, the established tech-
nology will eventually be fully replaced by the new technology, and all labor is used to employ
and maintain the capital stock k. Thus, if the restriction l1(t) ≥ 0 is binding, there exists a
direct link between the capital stock k and the investment i:

k(t) =
κ

λ
(1− i(t)) . (A.6)

Differentiating with respect to time t and inserting into the equation of motion for the capital
stock (11d), yields the following linear first-order differential-difference equation of retarded
type, which governs the system dynamics:

di(t)
dt

+ γi(t) +
λ

κ
i(t−σ) = γ . (A.7)

The solution to this equation is analyzed in detail in Winkler et al. (2005). In general, the
optimal paths converge oscillatorily and exponentially damped towards the stationary state,
which is given by

i? =
κγ

λ + κγ
, k? =

κ

λ + κγ
. (A.8)

A.3 Saddle point stability of the interior solution

To show the saddle point property of the stationary state in the case of an interior solution,
we investigate the following general maximization problem

max
∫ ∞

0
F (i(t), a(t), k(t)) exp[−ρt] dt (A.9a)

9 For an introduction to functional differential equations see Asea and Zak (1999: section 2) and Gan-
dolfo (1996: chapter 27). A detailed exposition for linear functional differential equations is given in
Bellman and Cooke (1963) and Hale (1977).

10 The system of functional differential equations (A.4) may also exhibit so called limit-cycles, i.e. the
optimal paths oscillate around the stationary state without converging towards or diverging from it
(e.g. Feichtinger et al. 1994, Asea and Zak 1999, Liski et al. 2001 and Wirl 1995, 1999, 2002).
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subject to

k̇ = i(t−σ)− γk(t) , (A.9b)
i(t) = ξ(t) = 0, t ∈ [−σ, 0) , (A.9c)

which is equivalent to the optimization problem (11) in the case of an interior solution with

F = V

(
1− λ

κk(t)− i(t)
1 + a(t)

+
k(t)
κ

)
−D

((
1−G(a(t))

)1− λ
κk(t)− i(t)
1 + a(t)

)
. (A.10)

the corresponding present-value Hamiltonian reads

H = F (t) exp[−ρt] + q(t+σ)i(t)− q(t)γk(t) , (A.11)

where q denotes the shadow price for the state variable k.
If the maximized Hamiltonian (A.11) is strictly concave, which is assumed in the following,

the following conditions are necessary and sufficient for an optimal solution:11

q(t+σ) = −Fi(t) exp[−ρt] , (A.12a)
Fa(t) = 0 , (A.12b)
q̇(t) = −Fk(t) exp[−ρt] + γq(t) , (A.12c)

lim
t→∞

q(t)k(t) = 0 . (A.12d)

Differentiating equations (A.12a) and (A.12b) with respect to time t, inserting (A.12a), (A.12c)
and (A.9b) into the resulting equations, and solving for di(t)

dt , da(t)
dt and dk(t)

dt yields the following
set of functional differential equations:

di(t)
dt

=
Faa(t)
∆F (t)

[(γ + ρ)Fi(t) + exp[−ρσ]Fk(t+σ)] +

+
Fia(t)Fak(t)− Faa(t)Fik(t)

∆F (t)
[i(t−σ)− γk(t)] , (A.13a)

da(t)
dt

=
Fia(t)
∆F (t)

[(γ + ρ)Fi(t) + exp[−ρσ]Fk(t+σ)] +

+
Fia(t)Fik(t)− Fii(t)Fak(t)

∆F (t)
[i(t−σ)− γk(t)] , (A.13b)

dk(t)
dt

= i(t−σ)− γk(t) , (A.13c)

where ∆F (t) = Fii(t)Faa(t)− Fia(t)2. Introducing the following abbreviations

Φ1(t) =
Faa(t)
∆F (t)

, Φ2(t) =
Fia(t)Fak(t)− Faa(t)Fik(t)

∆F (t)
,

Φ3(t) = − Fia(t)
∆F (t)

, Φ4(t) =
Fia(t)Fik(t)− Fii(t)Fak(t)

∆F (t)
,

11 In the following, partial derivatives are denoted by subscripts and for presentational convenience only
the time argument is stated explicitly.
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and inserting Fi(t) and Fk(t+σ), yields the system of differential equations (A.4).
In the stationary state, di(t)

dt = da(t)
dt = dk(t)

dt = 0 holds. Thus, the unique stationary state
(i?, a?, k?) is determined by the three implicit equations:

γ + ρ = − exp[−ρσ]
Fi(i?, a?, k?)
Fk(i?, a?, k?)

, (A.14)

0 = Fa(i?, a?, k?) , (A.15)
i? = γk? . (A.16)

Inserting Fi, Fa and Fk, yields the equations (A.5).
To investigate the stability properties of optimization problem (A.9) in a neighborhood

around the stationary state (i?, a?, k?), we linearize the system of functional differential equa-
tions (A.13) around the stationary state. Therefore, we first introduce new variables î(t) =
i(t)− i?, â(t) = a(t)− a? and k̂(t) = k(t)− k?. Applying the first order Taylor approximation
of the system (A.13) around the stationary state (i?, a?, k?), yields

dî(t)
dt

≈ Φ1 exp[−ρσ]
[
Fiki(t+σ)− FiiFk

Fi
i(t) + Faka(t+σ)− FiaFk

Fi
a(t) + Fkkk(t+σ)−

− FikFk

Fi
k(t)

]
+ Φ2 [u(t−σ)− γk(t)] , (A.17a)

dâ(t)
dt

≈ Φ3 exp[−ρσ]
[
Fiki(t+σ)− FiiFk

Fi
i(t) + Faka(t+σ)− FiaFk

Fi
a(t) + Fkkk(t+σ)−

− FikFk

Fi
k(t)

]
+ Φ4 [u(t−σ)− γk(t)] , (A.17b)

dk̂(t)
dt

≈ u(t−σ)− γk(t) , (A.17c)

where all functions are evaluated at the stationary state (i?, a?, k?). Similar to the case of
ordinary linear first-order differential equations, the elementary solutions for î, â and k̂ are
exponential functions, and the general solution is given by the superposition of the elementary
solutions

î(t) ≈
∑

n

in exp[znt] , â(t) ≈
∑

n

an exp[znt] , k̂(t) ≈
∑

n

kn exp[znt] , (A.18)

where the in, an and kn are constants, which can (at least in principle) be unambiguously
determined by the set of initial conditions and the transversality condition. The eigenvalues zn

are the roots of the characteristic polynomial Q(z). The characteristic polynomial Q(z) for the
system of differential-difference equations (A.17) is given by the determinant of the Jacobian
of (A.17) minus the identity matrix times z

Q(z) =

∣∣∣∣∣∣
A11 − z A12 A13

A21 A22 − z A23

A31 A32 A33 − z

∣∣∣∣∣∣ , (A.19a)
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where

A11 = Φ1

{
Fik

(
exp[σ(z − ρ)]− exp[−σz]

)
+ Fii(γ + ρ)

}
+

FiaFak

∆F
exp[−σz] , (A.19b)

A12 = Φ1

{
Fak exp[σ(z − ρ)] + Fia(γ + ρ)

}
, (A.19c)

A13 = Φ1

{
Fkk exp[σ(z − ρ)] + Fik(2γ + ρ)

}
− FiaFak

∆F
γ , (A.19d)

A21 = Φ2

{
Fik

(
exp[σ(z − ρ)]− exp[−σz]

)
+ Fii(γ + ρ)

}
− FiiFak

∆F
exp[−σz] , (A.19e)

A22 = Φ2

{
Fak exp[σ(z − ρ)] + Fia(γ + ρ)

}
, (A.19f)

A23 = Φ2

{
Fkk exp[σ(z − ρ)] + Fik(2γ + ρ)

}
+

FiiFak

∆F
γ , (A.19g)

A31 = exp[−σz] , (A.19h)
A32 = 0 , (A.19i)
A33 = −γ . (A.19j)

Thus, one obtains for the characteristic polynomial Q(z):

Q(z) = −(z − γ − ρ)(z + γ) + Φ2

{
(z − γ − ρ) exp[−σz]− (z + γ) exp[σ(z − ρ)]

}
+

+
FaaFkk − F 2

ak

∆F
exp[−σρ] . (A.20)

Q(z) is a quasi-polynomial, which exhibits an infinite number of complex roots. To determine
whether the stationary state is a saddle point we need to know the signs of the real parts of the
characteristic roots. In fact, we show that the characteristic polynomial Q(z) has an infinite
number of roots with negative real part and an infinite number of roots with positive real part
and, thus, the stationary state is a saddle point.

First, note that the characteristic roots are symmetric around ρ/2, i.e. if z0 is a characteristic
root, then ρ − z0 is also a characteristic root (one can easily verify that Q(z0) = Q(ρ − z0)).
Second, we introduce the new variable y = σz and multiply Q with σ2 exp[y]

Q(y) = −(y − σγ − σρ)(y + σγ) exp[y]− σΦ2

{
(y − σγ − σρ)− (y + σγ) exp[2y − σρ]

}
+

+σ2 FaaFkk − F 2
ak

∆F
exp[y − σρ] , (A.21)

in order to apply Theorem 13.1 of Bellman and Cooke (1963: 441). As Q(y) has no principal
term, i.e. a term where the highest power of y and the highest exponential term appear jointly,12

Q(y) has “an unbounded number of zeros with arbitrarily large positive real part” (ibid). But,
as the characteristic roots are symmetric around ρ/2, this also implies an unbounded number
of roots with arbitrarily large negative real part.
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