Siebe, Wilfried; Milde, Hellmuth; Broll, Udo; Bieta, Volker

Working Paper
A Strategic Approach to Financial Options

Dresden discussion paper in economics, No. 01/06

Provided in Cooperation with:
Technische Universität Dresden, Faculty of Business and Economics

Suggested Citation: Siebe, Wilfried; Milde, Hellmuth; Broll, Udo; Bieta, Volker (2006) : A Strategic Approach to Financial Options, Dresden discussion paper in economics, No. 01/06

This Version is available at:
http://hdl.handle.net/10419/22728

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
A Strategic Approach to Financial Options

VOLKER BIETA
UDO BROLL
HELLMUTH MILDE
WILFRIED SIEBE

Dresden Discussion Paper in Economics No. 01/06
A Strategic Approach to Financial Options

Volker Bieta
University of Trier
Department IV - Money, Credit and Finance
54286 Trier
bieta@uni-trier.de

Udo Broll
Technische Universität Dresden
Department of Business Management and Economics
01062 Dresden
Udo.Broll@tu-dresden.de

Hellmuth Milde
University of Trier
Department IV - Money, Credit and Finance
54286 Trier
milde@uni-trier.de

Wilfried Siebe
University of Rostock
Department of Business Management and Economics
18057 Rostock

Abstract:
To explain the strategic dimension in pricing options, it will be helpful to go back to the heart of the idea behind the concept of an option: options open up the possibility to postpone current decisions to a future point of time. Because of this flexibility additional information and new experiences can be taken into consideration. There are advantages and benefits resulting from this flexibility. The value of the option with the probabilities of the states of nature occurring. These probabilities will turn out the strategic decision variables of a new player as explained in the paper.

JEL-Classification: C7, G12

Keywords: Financial Option, Real Option, Option Premium Game
1. Howard’s Party Problem

To explain the strategic dimension in pricing options, it will be helpful to go back to the heart of the idea behind the concept of an option: First of all, options open up the possibility to postpone current decisions to a future point of time. Because of this flexibility additional information and new experiences can be taken into consideration. Of course, there are advantages and benefits resulting from this flexibility. The value of the flexibility is reflected in the positive option price. The discussion on real options is emphasizing this feature very much.

To give this aspect more intuition we have a brief look at the Party Problem in Howard (1996). This problem is a pure problem of choice under uncertainty, that is to say, a pure decision problem in the absence of any strategic interaction. The next chapter will put the party problem into a strategic perspective.

At time $t = 0$, Jane is planning a party that is to come off at time $t = 1$. She has three alternatives: having the party outdoors (O), on the porch (P), or indoors (I). The decision on the location must be taken at $t = 0$. At $t = 1$, nature will choose one of two possible states: weather will be sunny (S) or rainy (R). Let us assume that Jane assigns probability .4 to S and .6 to R. The money values to the various combinations of location and weather are shown in Figure 1. In addition, Jane is risk neutral by assumption:
Figure 1: Jane’s Decision Tree
In this figure, x_i denotes a decision node, $i = 0, 1, 2, 3$. At x_i, $i = 1, 2, 3$, nature makes a chance move: alternative S with probability .4 and alternative R with probability .6. At x_0, Jane’s decision node, Jane chooses one of her alternatives O, P, or I. After nature’s move, the “game against nature“ is completely represented by the terminal nodes z_i, $i = 1,...,6$. At each terminal node of this one-person decision problem, a monetary payoff to Jane is listed arising from the sequence of moves leading to that terminal node.

By choosing one of her alternatives O, P, and I at x_0, Jane actually chooses one of three possible lotteries: L_O, L_P, and L_I, being defined by $L_O := (100, 0; .4, .6)$, $L_P := (90, 20; .4, .6)$, and $L_I := (40, 50; .4, .6)$. Let the corresponding expected return of each lottery be denoted by E_O, E_P, and E_I respectively. Since we have $E_O = 40$, $E_P = 48$, and $E_I = 46$, Jane, being risk-neutral, will choose the alternative P at her decision node x_0.

2. The Party Problem and the Option Idea

In the preceding section, the decision on the party’s location has to be taken today, at time $t=0$. Now suppose Jane has been offered the possibility to decide on the party’s place after the state of nature has been disclosed, that is at $t = 1$. This comes to offering her an option: The offer permits a future decision following the revelation of information. From an alternative perspective this means that Jane has access to an early warning system. The question is: What is the maximum price Jane is willing to pay in order to get access the warning system?
Holding this option for Jane means switching to a new lottery $L_\ast = (100, 50; .4, .6)$. The reason is simple. Knowing the state of nature, if it is sunny (S), Jane will choose the alternative O, the outdoor party, and, if it is rainy (R), she will choose I, the indoor party, which gives her payoffs of 100 and 50 respectively. In the following, this new lottery is referred to as the „option lottery“.

If Jane has access to this option, she has available a new lottery with an expected return of 70. Without this option she could realize at best an expected return of 48 at best. Hence the value of this option is 22 (= 70−48). This difference is the maximum price Jane is willing to pay to get access to the new lottery. Note that the value of the option varies with the probabilities of the two states of nature occurring. These probabilities will turn out the strategic decision variables of a new player as explained in the next section.

3. Strategic Option Pricing: The Theoretical Background

Now think of the hypothetical situation in which the „rainmaker“ St. Peter enters the stage. St. Peter makes his choice within a set of probability distributions over the two possible states S and R. His decision variables are the two probabilities for the states of nature. St. Peter has a good incentive to do so because he can expect to get paid a substantial share of the benefit of 22 calculated above.

Consequently, the probabilities of the different states of nature are no longer exogenously given. Moreover, St. Peter is in a position to make the offer that permits Jane a decision on the party’s locality at time $t = 1$ following the revelation of the
true state of nature. Given this scenario, Howard’s party problem becomes a non-cooperative two-person game, with St. Peter as player 1 and Jane as player 2.

We are going to discuss a simple case in which player 1 has only two strategies: \(Q_1 := (q_1, 1-q_1) \) and \(Q_2 := (q_2, 1-q_2) \). The choice of strategy \(Q_i \) means that states S and R will be realized with probabilities \(q_i \) and \(1-q_i \) respectively, \(i = 1, 2 \).

As before, the set of strategies of player 2 consists of the alternatives O, P, and I. To be more intuitive about the introduction of the strategic feature into Howard’s party problem, let us pick (without loss of generality) two alternatives: \(Q_1 := (.7, .3) \) and \(Q_2 := (.5, .5) \). The strategic interaction between player 1 and player 2 is demonstrated by the following game representation in extensive form: (see figure 2)

The game starts at an initial decision node, \(x_0 \), where player 1 makes his move, deciding whether to let the sun shine with probability .7, or to let it shine with probability .5. The nodes \(x_1 \) and \(x_2 \) are player 2’s decision nodes. We have drawn a circle around the nodes to indicate that these two nodes are elements in a single „information set“ (I2). The meaning of this information set is that when it is player 2’s turn to move, she cannot tell which of these two nodes she is at because she has not observed player 1’s previous move.
Figure 2: A strategic extension of Howard’s Party Problem
The terminal nodes z_i, $i = 1, \ldots, 6$, indicate the end of the game, and an outcome is assigned to each terminal node. We think of the players attaching monetary values to the various outcomes. At each terminal node, we list the players’ monetary payoffs arising from the sequence of moves leading to that terminal node. The first component of the respective payoff vector refers to player 1’s payoff and the second to player 2’s payoff. We assume that player 1, St. Peter, is risk-neutral as well.

Player 2’s payoffs at the terminal nodes are determined as follows: Suppose player 1 had chosen the alternative Q_1 at x_0. If player 2, who is uninformed about the choice of player 1, chooses the alternative O at her information set I_2, the lottery $L(O, Q_1)$ defined by $L(O, Q_1) := (100, 0; .7, .3)$ is put into effect (see Figure 1). The expected return of this lottery is 70. This gives player 2 a payoff of 70 at the terminal node z_1.

In a comparable way, the terminal nodes z_2 and z_3 are connected with the lotteries $L(P, Q_1)$ and $L(I, Q_1)$ respectively, where $L(P, Q_1)$ is defined by $L(P, Q_1) := (90, 20; .7, .3)$ and $L(I, Q_1)$ by $L(I, Q_1) := (40, 50; .7, .3)$ (see Figure 1). The expected returns of these lotteries are 69 and 43 respectively, which gives a payoff to player 2 of 69 at the terminal node z_2 and of 43 at z_3.

The payoffs to player 2 at the terminal nodes z_j, $j = 4, 5, 6$, result in similar way from the expected returns of the lotteries $L(O, Q_2)$, $L(P, Q_2)$, and $L(I, Q_2)$ respectively, being defined by $L(O, Q_2) := (100, 0; .5, .5)$, $L(P, Q_2) := (90, 20; .5, .5)$, and $L(I, Q_2) := (40, 50; .5, .5)$ (see Figure 1). Hence player 2’s payoffs at the terminal nodes z_4, z_5, and z_6 are 50, 55, and 45 respectively.
Player 1’s payoffs at the terminal nodes are calculated in the following way: Imagine that player 1, St. Peter, offers player 2, Jane, the possibility to decide on the party’s location after the true state of nature will be disclosed. If player 2 accepted this offer, player 1 should then be given the corresponding value of the option as his payoff.

If, for instance, player 1 were committed to the alternative $Q_1 = (.7, .3)$ at x_0, the corresponding „option lottery“ $L_*(Q_1)$ is given by $L_*(Q_1) := (100, 50; .7, .3)$: This lottery describes the situation into which player 2 is put, if it were possible for her to decide on the party’s locality after the true state of nature will be revealed and the probabilities of the two possible states are given by Q_1.

The expected return of this lottery is 85. The value of this option for player 2 at the terminal node z_1, that is in case she had chosen the alternative O at time $t = 0$ (choice of O at her information set I_2) is given by the difference 15 ($= 85–70$). Therefore player 1’s payoff at z_1 is fixed at 15. Player 1’s payoffs at z_2 and z_3 are fixed in a parallel way at 16 and 42 respectively: note that the value of the option in question for player 2 at the terminal node z_2 is given by the difference 16 ($= 85–69$) and at z_3 by the difference 42 ($= 85–43$).

If player 1, instead, were committed to his alternative $Q_2 = (.5, .5)$ at x_0, the corresponding option lottery $L_*(Q_2)$ takes on the form $L_*(Q_2) := (100, 50; .5, .5)$ with an expected return of 75. Thus, the hypothetical option price at the terminal nodes z_4, z_5, and z_6 is given by 25 ($= 75–50$), 20 ($= 75–55$), and 30 ($= 75–45$) respectively. The (uniquely determined pure strategy) Nash equilibrium of this hypothetical game will
serve as a benchmark for strategically determining an option premium for the extended party problem of Howard (1996). (Note: A Nash equilibrium occurs when each player makes his or her best response. A player’s best response is the strategy that maximizes that player’s payoff, given the strategies of other players)

Let q^* denote the probability with which St. Peter will realize in equilibrium state S and let J^* denote the equilibrium payoff to Jane. Finally, let E^* be the expected return of the option lottery determined by the equilibrium, i.e., E^* is the expected return of the lottery L^* given by $L^* = (100, 50; q^*, 1–q^*)$. Then, the strategically determined price for the option that permits a decision on the party’s locality after the state of nature will be disclosed is given by $E^* - J^*$. Note that $E^* - J^*$ is just the equilibrium payoff to St. Peter in our hypothetical game discussed above.

4. Option-Premium Game

We are in a position to derive the following properties:

(i) There is a uniquely determined non-cooperative equilibrium in the preceding „option-premium game“ which is given by the pair (Q_2, P). First observe that strategy I of player 2 is dominated by her strategy P and thus can be eliminated. The game of Figure 2 can therefore be reduced to the following strategically equivalent 2 x 2 - game:
It is easy to see that Q₂ is a best reply of player 1 to the strategy choice P of player 2, and vice versa. This is a unique Nash equilibrium. As a result, we obtain a strategically determined premium for the option of 20 (= 75 − 55). The details of the lottery and the payoffs are given by: \(L^* = (100, 50; .5, .5) \), \(E^* = 75 \), \(J^* = 55 \).

(ii) Note that at this option price player 2 is just indifferent between the equilibrium of the preceding game giving her the (expected) payoff \(J^* = 55 \) and the situation of the „equilibrium option lottery“ giving her the (expected) payoff of 75 but only at a price of 20 (the maximum price player 2 is willing to pay in equilibrium to be in the option lottery situation).
Literature

Dresden Discussion Paper Series in Economics

20/03 Broll, Udo / Wong, Kit Pong: Capital Structure and the Firm under Uncertainty
01/04 Lehmann-Waffenschmidt, Marco: A Note on Continuously Decomposed Evolving Exchange Economies
02/04 Friedrich, B. Cornelia: Competition and the Evolution of Market Structure in the E-conomy.
03/04 Berlemann, Michael / Dittrich, Marcus / Markwardt, Gunther: The Value of Non-Binding Announcements in Public Goods Experiments. Some Theory and Experimental Evidence
04/04 Blum, Ulrich / Schaller, Armin / Veltins, Michael: The East German Cement Cartel: An Inquiry into Comparable Markets, Industry Structure, and Antitrust Policy
05/04 Schlegel, Christoph: Analytical and Numerical Solution of a Poisson RBC model
06/04 Lehmann-Waffenschmidt, Marco: Die ökonomische Botschaft in Goethes „Faust“
07/04 Fuchs, Michaela / Thum, Marcel: EU Enlargement: Challenges for Germany's New Laender
08/04 Seitz, Helmut: Implikationen der demographischen Veränderungen für die öffentlichen Haushalte und Verwaltungen
09/04 Sülze, Kai: Duopolistic Competition between Independent and Collaborative Business-to-Business Marketplaces
10/04 Broll, Udo / Eckwert, Bernhard: Transparency in the Interbank Market and the Volume of Bank Intermediated Loans
11/04 Thum, Marcel: Korruption
12/04 Broll, Udo / Hansen, Sabine / Marjit, Sugata: Domestic labor, foreign capital and national welfare
13/04 Nyamtseren, Lhamsuren: Challenges and Opportunities of Small Countries for Integration into the Global Economy, as a Case of Mongolia
01/05 Schubert, Stefan / Broll, Udo: Dynamic Hedging of Real Wealth Risk
02/05 Günther, Edeltraud / Lehmann-Waffenschmidt, Marco: Deceleration - Revealed Preference in Society and Win-Win-Strategy for Sustainable Management. Concept and Experimental Evidence
03/05 Sennewald, Ken: Controlled Stochastic Differential Equations under Poisson Uncertainty and with Unbounded Utility
04/05 Sennewald, Ken / Wälde, Klaus: "Itô’s Lemma" and the Bellman equation: An applied view
05/05 Neumann, Anne / Siliverstovs, Boriss: Convergence of European Spot Market Prices for Natural Gas?
06/05 Hirschhausen, Christian von / Cullmann, Astrid: Efficiency Analysis of German Electricity Distribution Utilities
07/05 Seitz, Helmut / Freigang, Dirk / Kempkes, Gerhard: Demographic Change and Federal Systems: Some Preliminary Results for Germany
08/05 Bemmann, Martin: Verbesserung der Vergleichbarkeit von Schätzgüterergebnissen von Insolvenzprognosestudien
09/05 Thum, Marcel: Korruption und Schattenwirtschaft
10/05 Seitz, Helmut / Kempkes, Gerhard: Fiscal Federalism and Demography
01/06 Bieta, Volker / Broll, Udo: A Strategic Approach to Financial Options