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1 Introduction

Dynamic latent factor models have become a popular tool for studying child development

(Cunha et al. , 2010; Agostinelli & Wiswall, 2020; Pavan, 2016; Del Bono et al. , 2020;

Attanasio et al. , 2017, 2020). In these models, unobserved child skills evolve dynamically

according to a specified production technology, where the inputs can include past child

skill levels, parental skills, and parental investments. Typically, the inputs and outputs of

the technology are unobserved, but multiple noisy measures of each latent construct are

available. Identification of these models is a challenge since latent skills have no natural

units and lack a known location and scale. In order to jointly identify the production tech-

nology and measurement model, a location and scale normalization is required. Moreover,

because the latent skills have no natural units, it can be useful to anchor them to an adult

outcome such as earnings or completed schooling.

After choosing a parametric function for the production technology and a set of scale

and location normalizations, researchers can estimate the parameters of the measurement

system and production technology. The model can then be used to assess how altering

skill inputs across different developmental stages influences final period child skills or adult

outcomes. In this paper, we illustrate that the parametric form of the production tech-

nology has important implications for the generality of these estimated treatment effects.

We prove that input treatment effects associated with a translog production function can

be identified regardless of any scale and location normalization. The same is not true for

the constant elasticity of substitution technology, another commonly used specification of

the production function, where only specific normalizations produce unbiased treatment

effects (Freyberger, 2020). Our findings indicate that there are important advantages to

choosing a translog production function when estimating a dynamic latent factor model.

This paper builds on the recent and growing literature focused on the identification

of dynamic latent factor models. Cunha & Heckman (2008) show that with a sufficient

number of noisy measures relative to the latent skill and the appropriate scale and location

normalizations, it is possible to identify a linear production technology that is anchored

to an adult outcome. Cunha et al. (2010) extend this work, proving non-parametric
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identification of the production technology after applying a scale and location normalization

to the measures. While Cunha et al. (2010) prove non-parametric identification of the

production technology, for estimation they employ a constant returns to scale, constant

elasticity of substitution (CES) production function. Agostinelli & Wiswall (2016) show

that the estimated shape of this technology is not invariant to different location and scale

normalizations applied to the measures, and Agostinelli & Wiswall (2020) demonstrates

that if age invariant measures of the underlying skills are available, then identification of

a more general production function with free returns to scale is possible.

Agostinelli & Wiswall (2020) claim that when knowledge of the production parameters

is important, age invariance is a useful measurement property. An age invariant measure is

one where differently aged children with identical latent skill levels attain the same value

for the measure on average. There are two benefits associated with employing age invariant

measures. First, the units of the latent factors are readily interpretable since they match

those of the age invariant measures.1 Second, age invariance requires that the intercept

and loading factor for the age invariant measure are constant across time. As a result,

once these parameters are normalized in the initial period, no additional normalizations

are necessary. It then follows that changes in the location and scale of the skill distribution

(through TFP dynamics and returns to scale production) are identified by changes in the

location and scale of the age invariant measure. Many of the most recent dynamic latent

factor models employ age-invariant measures (Agostinelli et al. , 2020; Attanasio et al. ,

2019; Aucejo & James, 2019) to allow for time-varying TFP and free returns to scale.

However, relying on age-invariant measures to identify and estimate a production func-

tion that allows for TFP dynamics and free returns to scale is limiting in at least three

dimensions. First, although skill measures may be designed to be age-invariant, there is no

ex-post method to verify this property. Second, the location and scale of the age-invariant

measure are typically normalized in the initial period. The estimated production param-

eters and treatment effects can be sensitive to this normalization, as noted in Attanasio

et al. (2019). Finally, age invariant measures are not always available. This is especially

1Assuming the initial scale of the age invariant measure is set to 1, which is often the default.
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true for child non-cognitive skills, implying that a researcher’s flexibility in modeling joint

skill dynamics is limited.

Rather than rely on age-invariant measures to identify flexible production functions and

their associated treatment effects, we propose that researchers rely instead on a particu-

lar form for the production technology, the translog function (Christensen et al. , 1973).

We show that treatment effects stemming from a translog production function with TFP

dynamics and free returns to scale can be identified regardless of which location and scale

normalization is implemented. This is not a general property of all production functions,

and in fact the CES technology does not possess this feature.

Although the translog production function is a second-order Taylor polynomial approx-

imation of the CES function (Kim, 1992), there are important differences between the two.

The translog technology imposes no a priori restrictions on the cross-elasticities of substi-

tution and, more importantly, it is linear in the parameters. Given that scale and location

normalizations are linear transformations of the latent factors, any normalizations embed-

ded in a linear measurement model will be counterbalanced by a change in the translog

technology parameters. As a result, the implied marginal effects, when anchored appro-

priately, will be unaffected. The same is not true when the technology is non-linear in the

parameters, as with the CES. For the CES, a specific set of normalizations is required to

estimate unbiased treatment effects (Freyberger, 2020). A number of papers in the litera-

ture already employ variants of the translog production function because of its flexibility

in capturing substitution patterns among inputs (Agostinelli et al. , 2020; Moroni et al. ,

2019; Boneva & Rauh, 2017; Ronda, 2017).2 Our results indicate that there is an important

added benefit of working with a translog production technology.

Absent any location or scale normalization, the parameters of the translog production

technology in a dynamic latent factor model cannot be interpreted without loss of gen-

erality. However, in the case of a translog technology, the production parameters can be

difficult to interpret directly when higher-order terms are included. To understand the pro-

2The translog production function has also been used to study various industries in the US, including
electric power generation (Christensen & Greene, 1976), manufacturing (Humphrey & Moroney, 1975;
Hellerstein et al. , 1999), and public schooling (Figlio, 1999).
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ductivity and substitutability of various inputs, a simple approach is to study the treatment

effects of various inputs. We show that these treatment effects can be identified without

any location or scale normalization. The fact that we only identify treatment effects is

not particularly limiting since most papers in the literature use the estimated production

function to examine how changes in a key input, such as household income, impact future

child skills or adult outcomes (Agostinelli & Wiswall, 2020; Attanasio et al. , 2019; Aucejo

& James, 2019).

In the first part of the paper (Section 2) we formally prove that appropriately anchored

treatment effects based on a translog production function are identified absent any scale

or location normalization. The setup of the model is similar in spirit to the ones employed

in Cunha et al. (2010) and Agostinelli & Wiswall (2020). There is a single latent skill

that evolves dynamically as a function of lagged latent skill and latent parental invest-

ment. Parental investment is determined by child skill and household income. Within

this framework, we focus on identifying treatment effects associated with changes in family

income across different periods of development. We show that if an adult outcome is avail-

able, income treatment effects can be anchored to this outcome. Alternatively, when an

adult outcome is not available, income treatment effects can be anchored to the standard

deviation of the child skill.

The second part of the paper (Section 3) provides simulation evidence in support of

the theoretical proof. Specifically, we show that identification of treatment effects does

not depend on location and scale normalizations when we adopt a translog production

function, even when these normalizations are imposed to point estimate all parameters.

For the simulation, we also expand on the theoretical framework by allowing for multiple

latent skills, a link between skills and the evolution of household income, and a flexible

translog technology. Finally, we illustrate that our result does not extend to other pro-

duction technologies under commonly utilized normalizations, such as the CES production

function. In that case the estimated treatment effects are sensitive to location and scale

normalizations. Moreover, the availability of an age-invariant measure is not a solution

since even an age-invariant measure requires an initial normalization that will impact the
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estimated treatment effects.

Our paper is the first to highlight that age-invariance is unnecessary when using a

translog technology and not particularly useful even when adopting a CES technology. A

contemporaneous paper by Freyberger (2020) also addresses issues of identification in dy-

namic models of latent skills formation, illustrating the types of policy relevant parameters

that are identified absent location and scale normalizations and age-invariance for a broad

class of production functions. Additionally, Freyberger (2020) shows that the adoption

of a CES production function requires a very specific set of normalizations to both point

identify the production parameters and produce unbiased estimates of treatment effects.

However, these normalizations have never been used in the literature on skills formation

to the best of our knowledge.

2 Location and Scale Invariance of Translog Treat-

ment Effects

The setup of our theoretical framework builds off the models utilized in Cunha et al. (2010)

and Agostinelli & Wiswall (2020). There is one latent child skill (θt) that evolves over time

(t) and a latent level of parental investment (It) that also varies over time. Investment

depends on household income (Yt) and child skill, and income evolves stochastically. An

adult outcome (Q) is available as an anchor for child skills. Multiple noisy measures of

child skill (Zθ,t,mt) and parental investment (ZI,t,lt) are available each period, where mt and

lt index the specific skill and investment measures employed in period t.

The following equations describe the key components of the model. Skill dynamics are

determined by the following translog technology

ln θt+1 = At + ψt (γ1t ln θt + γ2t ln It + (1− γ1t − γ2t) ln θt · ln It) + ηθt.

In our simulations we extend the function to allow for square terms. Parental investment
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is determined by

ln It = α0t + α1t ln θt + α2t lnYt + ηIt.

We assume and adult outcome is available and given by

Q = µQ + αQ ln θT + ηQ,

while household income transitions according to

lnYt+1 = ρ0t + ρ1t lnYt + ηY t.

Finally, multiple measures of latent skill and parental investment are available each period.

These measures take the following form3

Zθ,t,mt = µθ,t,mt + λθ,t,mt ln θt + uθ,t,mt

ZI,t,lt = µI,t,lt + λI,t,lt ln It + uI,t,lt .

While Cunha et al. (2010) allow for more general forms of measurement equations, our

framework requires that the measures are log-linear in the latent variables. We maintain

the orthogonality assumptions outlined in Agostinelli & Wiswall (2020). In particular,

we assume that ηθt is mean zero, i.i.d, and independent of the current stock of skills

and investment. ηIt is mean zero, i.i.d, and independent of the current stock of skills

and household income. ηY t is mean zero, i.i.d, and independent of all latent variables.

Finally, all measurement errors (including ηQ) are assumed independent of each other

(across measures and over time), and all measurement errors are assumed independent of

3While the skill measures can be understood as the raw measures found in a survey, researchers often
employ age-standardized measures. Age-standardizing the measures has no impact on our theoretical
result. Assume, for example, that the raw skill measures are given by

ZRθ,t,mt = µRθ,t,mt + λRθ,t,mt ln θt + uRθ,t,mt ,

and then apply a linear transformation such that: Zθ,t,mt =
ZRθ,t,mt−am,t

bm,t
. We can then re-define µθ,t,mt =

µRθ,t,mt−am,t
bm,t

, λθ,t,mt = λRθ,t,mt/bm,t and uθ,t,mt = uRθ,t,mt/bm,t and proceed accordingly.
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the latent variables, household income, and the structural shocks (ηθt, ηIt, ηY t). Specific

distributional assumptions for these shocks are not necessary for this discussion, although

we do require these distributions to be continuous and have finite first moments.

While the above equations define the dynamic features of the latent factor model, the

initial conditions must be specified. We assume

Ω = (ln θ1, lnY1)

Ω ∼ F (µΩ,ΣΩ)

The correlation between initial skill and income means that income and skill will remain

correlated throughout. Thus, if one is interested in estimating the impact of an income

boost early in life on adult outcomes Q, it will be critical to account for latent skills of the

child.

The remainder of this section shows that properly anchored treatment effects based

on the technology described in point (1) are identified absent any location and scale nor-

malization of the underlying latent factors. The proof proceeds by identifying components

of the signal, investment, and production models. We then show how to combine these

components to recover properly anchored treatment effects using either the available adult

outcome or the standard deviation of latent skill.

2.1 Identifying Skill and Investment Signals

In the first part of our identification proof, we show that the joint density of all signal com-

ponents (the measures minus the idiosyncratic noise) can be identified without imposing

any normalization. We use this result in Section 2.5 to derive the distribution of treatment

effects.

Assume that two measures of child skill and parental investment are available each

period, and three measures are available at least once. Consider first the measurement
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equations associated with child skill. Notice that

cov
(
Zθ,t,mt , Zθ,τ,m′′t

)
cov
(
Zθ,t,m′t , Zθ,τ,m′′t

) =
λθ,t,mt
λθ,t,m′t

and E (Zθ,t,mt) = µθ,t,mt + λθ,t,mtµθt (where µθt = E(ln θt)) are directly identified from the

observable measures. Multiplying the mean of measure m′t, E
(
Zθ,t,m′t

)
, by the ratio of the

factor loadings from measures mt and m′t leads to

λθ,t,mt
λθ,t,m′t

E
(
Zθ,t,m′t

)
=
λθ,t,mt
λθ,t,m′t

µθ,t,m′t + λθ,t,mtµθt.

Taking the difference between the above and E (Zθ,t,mt) yields

λθ,t,mt
λθ,t,m′t

E
(
Zθ,t,m′t

)
− E (Zθ,t,mt) =

λθ,t,mt
λθ,t,m′t

µθ,t,m′t − µθ,t,mt .

The left hand side of the above equation is identified, meaning that Z̆θ,t,m′t =
λθ,t,mt
λθ,t,m′t

Zθ,t,m′t−
λθ,t,mt
λθ,t,m′t

E
(
Zθ,t,m′t

)
+ E (Zθ,t,mt) is also identified. Therefore, we can derive the joint density

of Zθ,t,mt and Z̆θ,t,m′t .

Stacking the equations for Zθ,t,mt and Z̆θ,t,m′t ,

Zθ,t,mt = µθ,t,mt + λθ,t,mt ln θt + uθ,t,mt

Z̆θ,t,m′t = µθ,t,mt + λθ,t,mt ln θt +
λθ,t,mt
λθ,t,m′t

uθ,t,m′t ,

reveals that they are noisy measures of the same underlying signal, µθ,t,mt + λθ,t,mt ln θt.

Given our previous assumptions, µθ,t,mt + λθ,t,mt ln θt, uθ,t,mt , and
λθ,t,mt
λθ,t,m′t

uθ,t,m′t are mutu-

ally independent, continuous, have finite first moments, and E(uθ,t,mt) = 0. Then, using

Kotlarski’s lemma (Kotlarski, 1967), we can identify the density of µθ,t,mt + λθ,t,mt ln θt.

Taking an identical approach, we can also identify the density of µI,t,lt + λI,t,lt ln It.

Stacking these signals within and across periods, we can identify the joint density of the

child skill and investment signals.

8



2.2 Identifying Reduced-Form Investment Parameters

To identify the parameters of the parental investment function, consider ZI,t,lt . This mea-

sure is a noisy signal of parental investment, ln It. Substituting the parental investment

function for ln It in ZI,t,lt yields

ZI,t,lt = µI,t,lt + λI,t,ltα0t + λI,t,ltα1t ln θt + λI,t,ltα2t lnYt + λI,t,ltl1ηIt + uI,t,lt

In the above equation, ln θt is unobserved. To replace it, notice that

ln θt =
Zθ,t,mt
λθ,t,mt

− µθ,t,mt
λθ,t,mt

− uθ,t,mt
λθ,t,mt

Substituting for ln θt using the measure mt results in

ZI,t,lt = µI,t,lt + λI,t,ltα0t −
λI,t,ltα1tµθ,t,mt

λθ,t,mt

+
λI,t,ltα1t

λθ,t,mt
Zθ,t,mt + λI,t,ltα2t lnYt

−λI,t,ltα1t

λθ,t,mt
uθ,t,mt + λI,t,ltηIt + uI,t,lt

where Zθ,t,mt is correlated with the error term. Using Zθ,t,m′t as an instrument we identify

three coefficients:

β0
I,t (lt,mt) = µI,t,lt + λI,t,ltα0t −

λI,t,ltα1tµθ,t,mt
λθ,t,mt

β1
I,t (lt,mt) =

λI,t,ltα1t

λθ,t,mt
β2
I,t (lt,mt) = λI,t,ltα2t (1)

Throughout the paper, we use β to indicate known regression coefficients. The precise

notation for the reduced form investment coefficients is βjI,t (mt, lt) where j represents

the coefficient number and the arguments reflect the child skill and investment measures

utilized in the regression. For ease of presentation, we suppress the arguments of the βjI,t

coefficients when possible.
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2.3 Identifying Reduced-Form Production Parameters

Similar to our approach for identifying the investment function, first consider a t + 1

period measure of child skill, Zθ,t+1,mt+1 . This is a noisy measure of ln θt+1. However, we

can substitute for ln θt+1 using the production function. This yields

Zθ,t+1,mt+1 = µθ,t+1,mt+1 + λθ,t+1,mt+1At + λθ,t+1,mt+1ψtγ1t ln θt + λθ,t+1,mt+1ψtγ2t ln It

+λθ,t+1,mt+1ψt (1− γ1t − γ2t) ln θt · ln It + λθ,t+1,mt+1ηθt + uθ,t+1,mt+1 .

In the above equation, both ln θt and ln It are unobserved, but we can substitute for

them using their respective measurement equations, Zθ,t,mt and ZI,t,lt . Making these sub-

stitutions and organizing terms appropriately yields

Zθ,t+1,mt+1 = µθ,t+1,mt+1 + λθ,t+1,mt+1At − λθ,t+1,mt+1ψtγ1t
µθ,t,mt
λθ,t,mt

+

− λθ,t+1,mt+1ψtγ2t
µI,t,lt
λI,t,lt

+ λθ,t+1,mt+1ψt (1− γ1t − γ2t)
µθ,t,mt
λθ,t,mt

µI,t,lt
λI,t,lt

+
λθ,t+1,mt+1

λθ,t,mt
ψt

(
γ1t − (1− γ1t − γ2t)

µI,t,lt
λI,t,lt

)
Zθ,t,mt +

+
λθ,t+1,mt+1

λI,t,lt
ψt

(
γ2t − (1− γ1t − γ2t)

µθ,t,mt
λθ,t,mt

)
ZI,t,lt +

+
λθ,t+1,mt+1

λθ,t,mtλI,t,lt
ψt (1− γ1t − γ2t)Zθ,t,mt · ZI,t,lt

+ εθt+1

where εθt+1 is a mean zero error term correlated with Zθ,t,mt , ZI,t,lt and Zθ,t,mt · ZI,t,lt ,

meaning that we cannot recover the reduced-form parameters by regressing Zθ,t+1,mt+1 on

these three observed variables. Instead, we employ Zθ,t,m′t , ZI,t,l′t , and Zθ,t,m′t · ZI,t,l′t as

instruments, where l′t 6= lt and m′t 6= mt. This allows us to recover the following reduced
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form parameters

β1
θ,t (mt+1,mt, lt) = µθ,t+1,mt+1 + λθ,t+1,mt+1At − λθ,t+1,mt+1ψtγ1t

µθ,t,mt
λθ,t,mt

+

− λθ,t+1,mt+1ψtγ2t
µI,t,lt
λI,t,lt

+ λθ,t+1,mt+1ψt (1− γ1t − γ2t)
µθ,t,mt
λθ,t,mt

µI,t,lt
λI,t,lt

β2
θ,t (mt+1,mt, lt) =

λθ,t+1,mt+1

λθ,t,mt
ψt

(
γ1t − (1− γ1t − γ2t)

µI,t,lt
λI,t,lt

)
β3
θ,t (mt+1,mt, lt) =

λθ,t+1,mt+1

λI,t,lt
ψt

(
γ2t − (1− γ1t − γ2t)

µθ,t,mt
λθ,t,mt

)
β4
θ,t (mt+1,mt, lt) =

λθ,t+1,mt+1

λθ,t,mtλI,t,lt
ψt (1− γ1t − γ2t) .

Similar to the investment coefficients, βjθ,t (mt+1,mt, lt) indicates known regression co-

efficients for the cognitive skills regression, where again j is the coefficient number and the

arguments represent the measures utilized for the regression. While it does not matter

which measure we use for a given latent variable, it is useful to consistently employ the

same measure when referring to a latent variable from the same period.

Finally, it will be useful in the next section to have the parameters of the production

technology defined in terms of the the known regression coefficients. Doing so yields,

λθ,t+1,mt+1ψt = β4
θ,t (λθ,t,mtλI,t,lt + µI,t,ltλθ,t,mt + µθ,t,mtλI,t,lt) +

(
λθ,t,mtβ

2
θ,t + λI,2,ltβ

3
θ,t

)
ψtγ1t =

(
µI,t,ltλθ,t,mtβ

4
θ,t + λθ,t,mtβ

2
θ,t

)
λθ,t+1,mt+1

ψtγ2t =

(
µθ,t,mtλI,t,ltβ

4
θ,t + λI,t,ltβ

3
θ,t

)
λθ,t+1,mt+1

(2)

2.4 Identifying the Marginal Effect of Income on Log Skill

As noted in the introduction, it is common for researchers use the estimated technology to

simulate how child skills are impacted by interventions in various periods of development.

In this section we show that given the parameters already identified, these policy effects

are identified up to a normalizing constant.

Consider the marginal change in period t+k skill given a marginal change in household
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income in period t, holding income in all other periods fixed.4 This derivative can be

written
∂ ln θt+k
∂ lnYt

=
∂ ln θt+k−1

∂ lnYt

(
∂ ln θt+k
∂ ln θt+k−1

+
∂ ln θt+k
∂ ln It+k−1

∂ ln It+k−1

∂ ln θt+k−1

)
The three derivatives inside the parenthesis can be written as

∂ ln θt+k
∂ ln θt+k−1

= ψt+k−1γ1t+k−1 + ψt+k−1 (1− γ1t+k−1 − γ2t+k−1) ln It+k−1

∂ ln θt+k
∂ ln It+k−1

= ψt+k−1γ2t+k−1 + ψt+k−1 (1− γ1t+k−1 − γ2t+k−1) ln θt+k−1

∂ ln It+k−1

∂ ln θt+k−1

= α1t+k−1

Using the results from equations (1) and (2), we can show that

∂ ln θt+k
∂ lnYt

=
∂ ln θt+k−1

∂ lnYt

λθ,t+k−1,mt+k−1

λθ,t+k,mt+k

[ (
β2
θ,t+k−1 + β4

θ,t+k−1

(
µI,t+k−1,lt+k−1

+ λI,t,lt+k−1
ln It+k−1

))
+ β1

I,t+k−1

(
β3
θ,t+k−1 + β4

θ,t+k−1

(
µθ,t+k−1,mt+k−1

+ λθ,t+k−1,mt+k−1
ln θt+k−1

)) ]
This defines ∂ ln θt+k

∂ lnYt
as a function of known regression coefficients, signals, and a scaled

version of ∂ ln θt+k−1

∂ lnYt
. We can then continue recursively, replacing ∂ ln θt+k−1

∂ lnYt
using a similar

formula until

∂ ln θt+1

∂ lnYt
=

β2
I,t

λθ,t+1,mt+1

(
β3
θ,t + β4

θ,t (µθ,t,mt + λθ,t,mt ln θt)
)

We can express the recursive structure of the marginal effect of income in the following

4A temporary change in household income in period t that does not impact future household income is
akin to a one-time government transfer that has been investigated in the previous literature (Agostinelli
& Wiswall, 2020). However, our framework can easily accommodate permanent income changes.
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way

∂ ln θt+k
∂ lnYt

=
k−1∏
s=1

[ (
β2
θ,t+s + β4

θ,t+s

(
µI,t+s,lt+s + λI,t,lt+s ln It+s

))
× β1

I,t+s

(
β3
θ,t+s + β4

θ,t+s

(
µθ,t+s,mt+s + λθ,t+s,mt+s ln θt+s

)) ]
×

β2
I,t

λθ,t+k,mt+k

(
β3
θ,t + β4

θ,t (µθ,t,mt + λθ,t,mt ln θt)
)

(3)

Because the reduced form β’s are known and the joint distribution of the skills and in-

vestment signals are known, the distribution of ∂ ln θt+k
∂ lnYt

is identified up to a scaling factor,

1
λθ,t+k,mt+k

.

2.5 Identifying Appropriately Anchored Treatment Effects

The final step is to show that we can identify appropriately anchored treatment effects.

There are two possibilities, anchor to an observable adult outcome or to the standard

deviation of the latent child log skill.5

2.5.1 Anchoring to an adult outcome

In this case, the derivative of interest becomes ∂Q
∂ lnYt

= αQ
∂ ln θT
∂ lnYt

. Because we can choose

mT = Q, λθ,T,mT = αQ. Substituting for ∂ ln θT
∂ lnYt

with equation (3) and choosing mT =

Q means that the αQ terms cancel and we can identify the distribution of ∂Q
∂ lnYt

absent

any scaling factor. We can then use this derivative to construct the appropriate average

treatment effect. Suppose, for example, that we are interested in estimating the average

impact of a one-time increase in income of δ × 100% during t = 1. Assuming δ is small,

we can approximate percent changes with log changes, i.e. ∆ lnY1 = δ. The resulting

5Notice that in both cases the treatment effects are linear transformations of log skills. Freyberger (2020)
shows that if we instead consider outcomes that depend on the level of skills, the resulting treatment effects
would depend on the normalizations. Given that in our framework adult outcomes and all measures are
linear functions of log skills, we find it natural to consider treatment effects that utilize the same units.
It should also be noted that while Freyberger (2020) considers treatment effects anchored to the adult
outcomes or in terms of quantiles of the skill distribution, utilizing standardized log skills is a unique
feature of this paper.
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expected increase in skills measured in adult outcome units is

E(∆Q|∆ lnY1 = δ) =

∫
δ × ∂Q(m1, ...,mT , l1, ..., lT−1)

∂ lnY1

dF (m1, ...,mT , l1, ..., lT−1)

where F (m1, ...,mT , l1, ..., lT−1) is a compact notation to represent the joint density of the

signal content of the measures, whose identification was shown in section 2.1. ∂Q(m1,...,mT ,l1,...,lT−1)

∂ lnY1

is the derivative previously identified, where we make explicit its dependence on a partic-

ular set of measures utilized in the analysis. The treatment effect is a linear function of δ

since the derivative of the adult outcome with respect to log-income is not a function of

income. Although we only show the average treatment effect of a % increase in income,

we can also identify the treatment effects associated with different changes in income for

different populations.6

It should be noticed that even in the absence of an adult outcome, we can still identify

the distribution of treatment effects if we express the impact in terms of any of the measures

available. For example, we can measure the impact of a change in income in terms of the

measure mT if we calculate λθ,T,mT
∂ ln θT
∂ lnYt

, which can be identified using a similar strategy

to the above.

2.5.2 Identifying Treatment Effects in terms of Standard Deviations

If an adult outcome is not available and it is inconvenient to use any of the existing

measures to normalize the units of the treatment effect of interest, it is still possible to

identify the distribution of treatment effects expressed in terms of the standard deviation

of the underlying variables, in this case log skills. Using three measures of child skill we

can identify:

λθ,t,mσln θ,t =

√
cov (Zθ,t,m, Zθ,t,m′) cov (Zθ,t,m, Zθ,t,m′′)

cov (Zθ,t,m′ , Zθ,t,m′′)

Knowledge of the above in combination with equation (3) allows us to identify the ratio
∂ ln θt+k
∂ lnYt

σln θ,t+k
. This ratio is the marginal effect of a change in income on “standardized” skills,

6Additional details available upon request.
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where we define standardized skills as ln θ̃t = ln θt
σln θ,t

. From this it follows that ∂ ln θ̃T
∂ lnY1

=
∂ ln θT
∂ lnY1

σln θ,T
.

As before, if we are interested in estimating the average impact of a temporary increase in

income of δ × 100% during t = 1, we can write the expected increase as:

E(∆ ln θ̃T |∆ lnY1 = δ) =

∫
δ × ∂ ln θ̃T (m1, ...,mT , l1, ..., lT−1)

∂ lnY1

×dF (m1, ...,mT , l1, ..., lT−1)

where again we make explicit the dependence of the derivative on the underlying measures.

3 Simulation Evidence

So far we have shown that without making any location or scale assumptions on either

the measurement model or production function, we are able to show that the distribution

of relevant policy effects are identified in a fairly standard dynamic latent factor model

where we assume that the production technology takes the translog form. While the

policy effects can be identified without a precise location and scale normalization, these

normalizations will still be needed when researchers want to separately estimate all the

production technology and measurement parameters.

In this section we present a series of simulations to support our theoretical findings.

Specifically, we show that when using a translog technology the estimated treatment effects

are correct regardless of the specific location and scale normalization. The same is not true

when using a CES production function. For the CES, different location and scale normal-

izations can lead to different estimated treatment effects, all of which can be incorrect. We

focus on the CES production function because it is a commonly used specification in the

literature on skill formation (Cunha et al. , 2010; Attanasio et al. , 2019; Aucejo & James,

2019). Additionally, we only consider normalizations that are typically implemented in

empirical applications. In particular, we focus on initial scale normalizations and those

implied by age-invariance of the measures.7

7See Freyberger (2020) for the specific types of normalizations which are truly without loss of generality
in the CES case.
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3.1 Setup

To show that our theoretical result is not driven by the particular setup of Section 2 (other

than the translog technology), we adopt a more general framework in our simulations. We

consider a model with two time varying latent skills, and allow one of these skills to affect

the evolution of income. Additionally, we assume that the adult outcome depends on both

latent skills. The inclusion of the second latent skill is motivated by the literature on skill

development, where it is common to model the evolution of child cognitive skills together

with either parental skills and/or a second child trait, such as non-cognitive skills.

Agents are characterized by two latent skills θ1t and θ2t, parental investments It, and

family income Yt. Parental investments are determined by skills, income, and a shock

according to

ln It = α0t + α1t ln θ1t + α2t ln θ2t + α3t lnYt + ηIt.

Define the vector Θt = (θ1t, θ2t, It). The translog skill technology then takes the following

form

ln θjt+1 = Ajt +
3∑

k=1

γjkt ln Θkt +
3∑

k=1

γj(k+3)t ln θjt · ln Θkt + ηθjt

where j = (1, 2) and ln Θkt is the log of the kth argument of the vector Θt.

The adult outcome is allowed to be a function of both latent skills and can be written

as

Q = µQ + α1Q ln θ1T + α2Q ln θ2T + ηQ.

Household income evolves as

lnYt+1 = ρ0t + ρ1t lnYt + ρ2t ln θ2t + ηY t.

The initial draw of (ln θ11, ln θ21, lnY1) comes from a mixture of two joint normals, while

all other shocks are from independent normal distributions. Lastly, we assume that skill
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and investment measures take the following form

Zθj ,t,mjt = µθj ,t,mjt + λθj ,t,mjt ln θjt + uθj ,t,mjt for j = 1, 2

ZI,t,lt = µI,t,lt + λI,t,lt ln It + uI,t,lt .

Our theoretical proof relies on the availability of multiple skills and investment measures

to identify the distribution of signals (Section 2.1) and to eliminate endogeneity in the

reduced form production and investment equations (Sections 2.2 and 2.3). Since these

identification issues are not relevant to demonstrate the importance (or not) of location

and scale normalizations, we simplify the simulation exercise and assume that one error-free

measure of each latent factor is available according to:

Zθj ,t = µθj ,t + λθj ,t ln θjt for j = 1, 2

ZI,t = µI,t + λI,t ln It.

Given the results from Section 2.1, the joint distribution of Zθj ,t and ZI,t is identified, and

thus our approach is without loss of generality.

In addition to the above model, we also simulate and estimate a version where we

assume a CES production technology. In this case the production function is given by

θjt+1 = Ajt

(
γj1tθ

φjt
1t + γj2tθ

φjt
2t + (1− γj1t − γj2t) I

φjt
t

)ψjt
φjt eηθjt .

All other model components are as described above.

3.2 Simulation and Results

We simulate data for 500,000 individuals and T = 4 periods, generating latent skills, in-

come, and measures according to the equations above. We create different datasets, varying

the form of the true production technology (translog or CES) and whether the true mea-

sures are age-invariant. For each scenario, we estimate income treatment effects employing
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different assumptions about the shape of the production technology and different normal-

izations for the location and scale parameters. Table 1 anchors the estimated treatment

effects to an adult outcome, while Table 2 anchors treatment effects to the standard de-

viation of final period log skills. The tables present the bias in the estimated treatment

effects relative to the truth for the various technology and normalization assumptions. It

should be stressed that we do not calibrate the model parameters, so in what follows we

focus primarily on the presence of bias rather than its magnitude.

To initiate the simulation, we select reasonable parameter values for the production

function, investment function, income dynamics, and initial conditions.8 We begin by

assuming that the true measures of skills are not age invariant (Panel A of both tables).

We do this by choosing values for µθj ,t and λθj ,t for j = 1, 2 that change over time.9 In the

second part of our simulation exercise (Panel B of both tables), we consider the case in

which age invariant measures for both skills are available, and set µθj ,t = 2 and λθj ,t = 5

for j = 1, 2 and all periods. Within Panels A and B, we simulate data for four different

production technologies. First, we use a translog production function (column 1), then

we adopt a CES production function with decreasing, constant and increasing returns to

scale, respectively (columns 2-4).

Once we simulate the data, we estimate the model parameters and treatment effects

imposing two alternative location and scale normalizations:

1. µ̃θj ,t = 0 and λ̃θj ,t = 1 for j = 1, 2 and all t

2. Technology restrictions: for the translog technology, we set Ãjt = 0 and
∑6

k=1 γ̃jkt =

1, while for the CES technology, we set Ãjt = 0 and ψ̃jt = 1.10

We use tildes to emphasize that these are normalizations made for estimation purposes

and they do not necessarily reflect the true underlying parameter values.

8The precise values for the technology parameters can be found in appendix Table A1. In the appendix,
we also replicate the main results simulating 200 data sets, each using randomly chosen set of parameter
values from a reasonable range. There is no change when using the translog production function. The
CES function continues to produce biased treatment effects.

9The loading factors for both skills take the values 5, 2, 10, and 7, while the mean takes the values 0, 1,
2 and 3. For simplicity we always set µI,t = 0 and λI,t = 1 both in the simulation and in the normalization.

10Agostinelli & Wiswall (2020) use these normalizations and define the resulting technologies as Known
Location and Scale (KLS).
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The first normalization restricts the location and scale of the measures to be the same

across all periods and is common in the literature on the dynamics of skills formation. In

Panel A of Tables 1 and 2, we assume that the true measures are not age invariant, even

though the researcher is imposing this property with the first normalization. In Panel B,

the true measures are age invariant, but the researcher picks an arbitrary initial location

and scale for the factors. This is justified by the idea that although a researcher may know

that a measure’s mean and loading are constant over time, they will not know their true

values, as noted in Attanasio et al. (2019). Thus, it makes sense to examine the effect of

picking an incorrect location and scale even when age invariance is satisfied. The second

normalization restricts the functional form of the technology in order to pin down the

location and scale of the measures and shows the effect of making the wrong technology

assumptions. Notice that in this second scenario, the researcher still needs to normalize

the initial location and scale parameters, which we set to µ̃j,1 = 0 and λ̃j,1 = 1, in line with

the first normalization.11

Looking at the first column of Table 1, we see that for a translog technology the

treatment effect associated with a one standard deviation increase in initial log income is

unbiased under each of the normalizations, regardless of whether an age-invariant measure

is available. When a CES technology is used instead, the treatment effect is biased under all

normalizations, although no conclusion about the magnitude and sign of the bias should be

drawn given we arbitrarily chose the parameters for the purpose of this simulation. Clearly,

the biases would be smaller the closer the chosen location and scale normalizations are to

the truth.

Importantly, the bias that emerges when we adopt a CES technology is present both in

Panel A, where no age invariant measure is present, and in Panel B, where we assume both

skills have an age invariant measure. The bias in Panel B stems from the fact that although

the researcher correctly identified an age-invariant measure, the true mean and loading are

11As mentioned earlier, an interested reader should look at Freyberger (2020), where the details of the
CES normalizations that are truly without loss of generality are derived. Specifically, he shows that setting
the location of the unobservables and the loading factor of the adult outcome leads to point identification
of the relevant parameters without biasing treatment effects.
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unknown. Similarly, bias arises even when we impose a CRS normalization and the true

technology is CRS (column 3). This is because we still need an initial normalization of the

measures and the values chosen can be different from the true values.

In Table 2 we calculate the impact of a one standard deviation increase in initial log

income on final log skills (ln θ1T ) anchored to the standard deviations of those log skills.

This is particularly useful when researchers do not have access to adult outcomes. The

same considerations apply to this set of results as for Table 1. We do not see biases when

adopting a translog specification and different normalizations, but these biases emerge

when using a CES technology even when age invariant measures are available.

4 Concluding Remarks

A growing interest in early childhood skill development combined with enhanced data on

child skill measures has spawned a rich literature that employs latent factor models to study

skill dynamics. Identifying the technology of skills formation when skills are unobserved

relies on the availability of multiple noisy measures of child skills each period. While

these measures aid in identification, it is still the case that the location and scale of the

latent skills needs to be pinned down in order to estimate the production function and

measurement parameters.

In this paper we show that in contrast, no location or scale normalizations are necessary

to identify certain policy-relevant treatment effects when employing a translog production

technology. Moreover, the estimated treatment effects are invariant to the actual scale

and location normalization implemented to point identify the model. This property does

not generalize, and in particular does not hold for the most common production function

used in the literature, the CES. In the case of the CES, the estimated treatment effects

are sensitive to the particular normalization chosen even when an age-invariant measure

is available. Recent work by Freyberger (2020) shows that some normalizations do not

distort treatment effect estimates when using the CES, but these normalizations are quite

different from the ones implemented in the literature thus far.
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The key takeaway from our paper is that employing a translog production function when

estimating a dynamic latent factor model of skill development confers two benefits. First,

the translog technology puts no a priori restrictions on the cross-elasticities of substitution,

a well-known result in the literature. Second, treatment effect estimates are unaffected by

location and scale normalizations, an added benefit relative to other widely used parametric

forms for skill technology.
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Table 1: % Bias in Adult Outcome Effect

Panel A: Time Varying µt and λt

translog CES
DRS CRS IRS

Normalizations:

µ̃t = 0, λ̃t = 1 for all t 0% -12.3% -12.1% -10.6%

Tech. restrictions + initial normalization 0% -16.6% -16.7% -15.3%

Panel B: Age invariant µt = 2 and λt = 5

translog CES
DRS CRS IRS

Normalizations:

µ̃t = 0, λ̃t = 1 for all t 0% -12.3% -12.3% -11.3%

Tech. restrictions + initial normalization 0% -13.6% -14.5% -13.3%

Notes: In this table we show the impact of an increase of one standard deviation in initial log income
on an adult outcome, according to the model specified in section 3. In panel A, the true loading
factors for both skills take the values 5, 2, 10 and 7 over time, while the mean takes the values 0,
1, 2 and 3. In panel B, we impose age-invariance and set the true loading factors for both skills
according to λt = 5 and µt = 2 for all t. All other parameters have been chosen arbitrarily but
are reasonable given the estimates in the literature. See appendix Table A1. When estimating the
model under technology restrictions, we impose an initial normalization of µ̃1 = 0 and λ̃1 = 1.
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Table 2: % Bias in Standardized Skills

Panel A: Time Varying µt and λt

translog CES
DRS CRS IRS

Normalizations:

µ̃t = 0, λ̃t = 1 for all t 0% -15.7% -15.5% -14.9%

Tech. restrictions + initial normalization 0% -54.5% -63.4% -60.3%

Panel B: Age invariant µt = 2 and λt = 5

translog CES
DRS CRS IRS

Normalizations:

µ̃t = 0, λ̃t = 1 for all t 0% -15.6% -15.5% -15.1%

Tech. restrictions + initial normalization 0% -29.6% -46.8% -46.6%

Notes: In this table we show the impact of an increase of one standard deviation in initial log income
on the standardized final level of the first skill, according to the model specified in section 3. In
panel A, the true loading factors for both skills take the values 5, 2, 10 and 7 over time, while the
mean takes the values 0, 1, 2 and 3. In panel B, we impose age-invariance and set the true loading
factors for both skills according to λt = 5 and µt = 2 for all t. All other parameters have been chosen
arbitrarily but are reasonable given the estimates in the literature. See appendix Table A1. When
estimating the model under technology restrictions, we impose an initial normalization of µ̃1 = 0
and λ̃1 = 1.
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Appendix

A Monte Carlo Exercise

In this appendix we present the results of a simple Monte Carlo exercise. The purpose

is to illustrate that the biases (or lack thereof) in Tables 1 and 2 are not specific to

the parameter values selected. We repeat the same simulation exercise utilized in Tables

1 and 2 two-hundred times and vary at each iteration the value of the true parameters,

randomly drawing them from a wide range of possible values. The ranges for the technology

parameters specifically are shown in Table A1. The model is identical to the one outlined in

section 3 and utilized for Tables 1 and 2, with the only difference that at each iteration we

only simulate 100,000 individuals. For each iteration, we fix the measurement parameters

in the age-varying and age-invariant cases equal their counterparts from the simulation

exercises exhibited in Tables 1 and 2.

Table A2 reports the average and the standard deviation of the absolute value of the

bias across all iterations for each normalization and true technology. The results are con-

sistent with the findings in Table 1. The translog technology yields unbiased estimates of

the impact a one standard deviation change in initial income on adult outcomes regardless

of the normalization imposed. In contrast, the CES yields biased estimates for all normal-

izations, regardless of whether an age-invariant measure is available. This is the result of

incorrectly normalizing the initial scale parameter.
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Table A1: Parameter Values for the Simulation

Parameters Tables 1 and 2 Monte Carlo
t = 1 t = 2 t = 3 All t

Translog for θ1
A1t 1 2 3 [ 0 , 3 ]
γ11t 0.6 0.7 0.8 [ 0.5 , 1.5 ]
γ12t 0.3 0.2 0.2 [ 0.2 , 0.6 ]
γ13t 0.3 0.3 0.2 [ 0.2 , 0.8 ]
γ14t -0.1 -0.1 -0.1 [ -0.1 , 0.2 ]
γ15t 0.1 0.2 0.2 [ -0.1 , 0.2 ]
γ16t 0.1 0.1 -0.1 [ -0.1 , 0.2 ]
σθ1t 0.6 0.5 0.4 [ 0.3 , 0.6 ]
Translog for θ2
A2t 2 2 1 [ 0 , 2 ]
γ21t 0.1 0.1 0.1 [ 0.1 , 0.4 ]
γ22t 0.6 0.7 0.8 [ 0.5 , 1.5 ]
γ23t 0.5 0.4 0.3 [ 0.2 , 0.6 ]
γ24t 0.1 0.1 0.2 [ -0.1 , 0.2 ]
γ25t -0.1 -0.1 -0.1 [ -0.1 , 0.2 ]
γ26t 0.1 0.2 0.2 [ -0.1 , 0.2 ]
σθ2t 0.6 0.5 0.4 [ 0.3 , 0.6 ]
Investment Function
α0t 1 2 3 [ 0 , 3 ]
α1t 0.2 0.3 0.4 [ -0.01 , 0.4 ]
α2t 0.2 0.2 0.1 [ -0.01 , 0.3 ]
α3t 0.3 0.3 0.3 [ 0.1 , 0.5 ]
σIt 0.3 0.3 0.4 [ 0.2 , 0.5 ]
CES for θ1
A1t 1 2 1 [0 , 2 ]
γ11t 0.6 0.7 0.6 [0.33 , 0.88 ]
γ12t 0.2 0.1 0.2 [ 0.05 , 0.45 ]
γ13t 0.2 0.2 0.2 [ 0.05 , 0.45 ]
φ1t 0.7 0.2 -1.0 [ -1.0 , 0.8 ]
σθ1t 0.5 0.5 0.4 [0.3 , 0.5 ]
ψ1t for DRS 0.7 0.7 0.7 [ 0.6 , 0.8 ]
ψ1t for IRS 1.3 1.7 2.3 [ 1.1 , 2 ]
CES for θ2
A2t 2 2 1 [ 0 , 2 ]
γ21t 0.1 0.1 0.1 [ 0.07 , 0.42 ]
γ22t 0.6 0.7 0.8 [ 0.37 , 0.82 ]
γ23t 0.3 0.2 0.1 [ 0.07 , 0.42 ]
φ1t -0.5 -0.5 -0.5 [ -1.0 , 0.7 ]
σθ2t 0.5 0.4 0.3 [ 0.3 , 0.5 ]
ψ2t for DRS 0.7 0.7 0.7 [ 0.6 , 0.8 ]
ψ2t for IRS 2 2 2 [ 1.1 , 2 ]

Notes: This table contains the parameter values utilized for the simulations in Table
1 and 2 and the Monte Carlo exercise of appendix Table A2. The intervals for the
Monte Carlo column represent the range of the parameter values from which the
parameter was drawn at each iteration. For brevity we do not report the parameter
values for the initial distribution of the random variables, for the income function,
and the adult outcome equation.
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Table A2: % Bias in Adult Outcome Effect - A Monte Carlo Exercise

Panel A: Time Varying µt and λt

translog CES
DRS CRS IRS

µ̃t = 0, λ̃t = 1 for all t
Average Absolute Value Bias 0% 25% 22% 23%
Standard Deviation Absolute Value Bias 0% 32% 27% 27%

Tech. restrictions + initial normalization
Average Absolute Value Bias 0% 29% 28% 27%
Standard Deviation Absolute Value Bias 0% 35% 30% 29%

Panel B: Age invariant µt = 2 and λt = 5

translog CES
DRS CRS IRS

µ̃t = 0, λ̃t = 1 for all t
Average Absolute Value Bias 0% 24% 22% 23%
Standard Deviation Absolute Value Bias 0% 30% 26% 26%

Tech. restrictions + initial normalization
Average Absolute Value Bias 0% 25% 25% 24%
Standard Deviation Absolute Value Bias 0% 30% 27% 27%

Notes: In this table we show the average impact of an increase of one standard
deviation in initial log income on an adult outcome, according to the model specified
in section 3. We repeat the exercise 200 times and report the average and the
standard deviation of the absolute value of the bias. At each iteration we vary the
model parameters, picking them randomly from a reasonable range. The ranges for
the technology parameters are presented in appendix Table A1. The measurement
parameters do not vary across iterations. In panel A, the true loading factors for
both skills take the values 5, 2, 10 and 7 over time, while the mean takes the values
0, 1, 2 and 3. In panel B, we impose age-invariance and set the true loading factors
for both skills according to λt = 5 and µt = 2 for all t. When estimating the model
under technology restrictions, we impose an initial normalization of µ̃1 = 0 and
λ̃1 = 1.
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