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1 Introduction

This paper is concerned with the optimal control of stochastic differential equations

(SDEs) in an infinite time horizon where uncertainty is given by one or more Pois-

son processes. Such controlled SDEs are a standard tool in the economic literature

for modeling dynamic behavior of economic variables that are hit by randomly oc-

curring shocks and that can be controlled by an agent. They can be found (in a

deterministic disguise) in quality-ladder models of growth (e.g., Grossman and Help-

man (1991), Segerstrom (1998), Howitt (1999)), in the endogenous cycles and growth

literature with uncertainty (e.g., Wälde (1999, 2005), Steger (2005)), in the labor

market matching literature (e.g., Moen (1997), Postel-Vinay (2002)), and in finance

(e.g., Merton (1971) and subsequent work), to name only a few applications. Often,

Poisson processes are included as a special case in a framework with jump-diffusion,

piecewise deterministic or general Markov processes, see, e.g., Aase (1984), Bellamy

(2001), Framstad et al. (2001), and, in a more mathematical context, Davis (1993)

or Fleming and Soner (1993).

Usually, the objective consists in finding an optimal control that maximizes (or

minimizes) a certain performance criterion. The performance achieved with the opti-

mal control is called the value function. As is well known, under certain assumptions

the value function and, if existing, the optimal Markov control satisfy a partial dif-

ferential equation, generally known as the Hamilton-Jacobi-Bellman (HJB) equation.

On the other hand, if there is a function and a Markov control solving the HJB equa-

tion and satisfying certain terminal conditions, this function is the value function and

the Markov control is optimal. Hence, the HJB equation provides both a necessary

and sufficient criterion for optimality. In the economic literature, Merton (1971) was

one of the first to state a HJB equation for an optimal control problem with Poisson

processes. Since then it has found widespread use.

Unfortunately, the required conditions that allow the application of the HJB equa-

tion as either necessary or sufficient criterion are rather strong. In particular, besides

a sufficiently smooth value function, many authors assume the utility or cost function

to be bounded, see, e.g., Gihman and Skorohod (1979) for jump-diffusion processes
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or Dempster (1991) and Davis (1993) for piecewise deterministic processes.1 ,2 The

same applies for the coefficient functions in the controlled SDE, which govern the

evolution of the controlled process. Other authors impose, instead of boundedness,

other underlying conditions, such as a countable state and action space, cf., e.g., van

Dijk (1988) for controlled jump processes. In some cases the required conditions are

rather difficult to check without strong mathematical background, see, e.g., Kushner

(1967) and Fleming and Soner (1993), who assume the value function to be in the do-

main of the infinitesimal generator of the controlled Markov process.3 Kushner (1967)

requires furthermore a certain uniform integrability condition. In other cases, precise

assumptions on, for example, utility are missing, or the HJB equation is derived at a

rather heuristic level, see, e.g., Kushner (1967), Malliaris and Brock (1982), Kushner

and Dupuis (1992), Fleming and Soner (1993), and Dixit and Pindyck (1994).4

If one thinks of the frequently used class of CRRA (constant relative risk aversion)

utility functions, such as u (c) = (c1−σ − 1) / (1− σ), the condition on bounded utility

is apparently too strong for economic modeling. Also, if one considers, for example, a

budget constraint as in Merton (1971), the assumption of bounded coefficients in the

controlled SDE seems to be too restrictive. Likewise, the assumption of countable

state or action spaces is not convenient if one regards the continuous time modeling.

The objective of the present paper is therefore to present rigorous proofs for the

necessity and sufficiency of the HJB equation under weaker boundedness assumptions

than before. In particular, to show necessity, we allow the utility function and the

coefficients to be linearly bounded, whereas for deriving sufficiency we nearly do

not impose – apart from a terminal condition – any boundedness restrictions at all.

Furthermore, since the HJB equation applies only for Markov controls, and one might

feel that considering Markov controls only is too restrictive, it is also shown that the

performance of Markov controls is as that good as for any other class of controls. That

1If the smoothness conditions are not satisfied, the value function can still be a viscosity solution
of the HJB equation. This result was first derived by Crandall and Lions (1983). An excellent survey
is provided by Crandall, Ishii and Lions (1992).

2A function f : S → Rm, S ⊂ Rn, is said to be bounded if there exists K ∈ R such that
kf (x)k ≤ K for all x ∈ S.

3The domain of the infinitesimal generator is given by all functions f for that the limit
limh&0 (Etf (Xt+h)− f (Xt)) /t exists where X denotes the controlled process and Et the expecta-
tion conditional on information at time t.

4In both Kushner (1967) and Fleming and Soner (1993) only the necessity part is derived heuris-
tically, wheras sufficiency is proven rigorously.
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is, an optimal Markov control is also optimal within the class of general controls.

For discrete time and in a deterministic environment, Rincón-Zapatero and Rodriguez-

Palmero (2003) and Le Van and Morhaim (2002) are concerned with a similar prob-

lem. They show for unbounded utility that the HJB equation possess a unique so-

lution and that this solution is the value function. In this paper, the proofs follow

the proceeding given in Kushner and Dupuis (1992) and Fleming and Soner (1993).

This means in particular, the HJB equation is derived via the dynamic programming

approach, where the main tool is the change of variables formula.5 Crucial for show-

ing the necessity property of the HJB equation is that the value function belongs to

the domain of the infinitesimal generator of the controlled process, what, e.g., Flem-

ing and Soner (1993) simply assumed. Herein lies a major improvement compared

to the literature. Whereas this condition was so far almost trivially satisfied due to

the boundedness assumption for the utility and coefficient functions, we show that

it holds as well in the more general case where these functions are linearly bounded.

The well-known result on the performance of Markov controls was derived by, e.g.,

Gihman and Skorohod (1972) and Fleming and Soner (1993), but under stronger

assumptions, as mentioned above. For our proof we adapt the proof presented in

Øksendal (2000), who derived an analogous result for controlled diffusion processes.

As an illustration of the proofs and results presented in this paper, an optimum

consumption and investment problem with labor income is given in the accompanying

paper Sennewald and Wälde (2005). A reader that is not interested in the proofs can

directly refer to this paper and use it as a toolbox for own modeling.

The organization of this paper is as follows. The subsequent section gives some

general assumptions and definitions concerning the formal background. In section 3

we establish the control problem with the necessary assumptions. Then, section 4

provides useful properties of the controlled state process and the value function. In

section 5 we present the main results of the paper, the HJB equation as optimality

criterion. The proofs are given in section 6, and the last section, finally, concludes.

5In a framework with Brownian motion the change of variables formula is also known as Itô’s
formula.
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2 General definitions and assumptions

We start by stating briefly some general assumptions and definitions. Let (Ω,F , P ) be
a probability space with a filtration {Ft, t ≥ 0}. A filtration is an increasing sequence
of sub-σ-algebras of F , that is Fs ⊂ Ft ⊂ F for all 0 ≤ s < t. The σ-algebra Ft can

be thought of as the set of information available at time t.

Let {Xt (ω) , t ≥ s} be a n-dimensional stochastic process starting at time s ≥ 0.
Then it is said to be adapted (to the filtration {Ft, t ≥ s}) if Xt (·) is Ft -measurable

for each t ≥ s. In the following we omit the stochastic argument ω, and we write

shortly X for {Xt (ω) , t ≥ s}, whenever there is no risk of confusion. X is called

cádlág if its paths are continuous from the right with left limits.6 The left limit of

X at time t, limτ%tXτ , is denoted by Xt−, where Xs− := 0. Trivially, Xt− coincides

with Xt if X possess continuous paths. Note that, if X is cádlág, the paths of the

process X− defined by (X−)t := Xt− for each t ≥ s are continuous from the left with

right limits.7 In the following the expression cádlág is also used for any real-valued

function f (x) that is continuous from the right with left limits in its argument x. If

f : Rn → Rm, n,m ∈ N, is such a cádlág function, and the process X adapted and

cádlág, the process f (X) becomes adapted and cádlág, too, and we denote the left

limit in t, limτ%t f (Xτ), by f (Xt)−.
8 Then, if f is continuous, f (Xt)− = f(Xt−).

Let x, y ∈ Rn. Then x · y :=Pn
i=1 xiyi stands for the standard scalar product and

kxk := (Pn
i=1 x

2
i )
1/2 for the Euclidean norm. C1 denotes the space of once continuously

differentiable functions.

3 The Control Problem

Let C be a r-dimensional adapted cádlág process and N1, ..., Nd independent adapted

Poisson processes with arrival rates λ1, . . . , λd. Then the n-dimensional state process

X controlled by the process C and starting at time s in point x ∈ Rn is supposed to

6The expression cádlág is an acronym from the french expression “continu á droite, limites á
gauche”. Any Poisson process, for example, is cádlág.

7In analogy to cádlág, a process continuous from the left with right limits is called cáglád.
8From the assumption of the piecewise continuity of f we can easily deduce that f is measurable,

which in turn ensures that the process f (X) is adapted.
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obey a SDE of the form

(1) Xt = x+

Z t

s

α0 (τ ,Xτ , Cτ) dτ +
dX

k=1

Z t

s

αk(τ ,Xτ−, Cτ−)dN
k
τ ,

with continuous coefficient functions α0, . . . , αd : [0,∞) × Rn × Rr → Rn.9 The

coefficient function α0 describes the time continuous evolvement of the state process

X, whereas for each k = 1, . . . , d the function αk gives the magnitude of the jump in

X whenever Poisson process Nk jumps. Both the time continuous behavior and the

jump size are controlled by the choice of the control process C. In the following it

is always assumed that SDE (1) possess a unique adapted solution, which is denoted

by XC,s,x. A detailed analysis of SDEs with sufficient conditions for the existence of

such a unique solution can be found in, e.g., Protter (1995).

According to requirements in many economic models, we introduce a state space

constraint by assuming that the state process X is allowed to range only within

a certain connected concave space Θ ⊂ Rn, which is called the state space. We

require furthermore that, if at time t state z ∈ Θ is observed, the control at this

time, Ct, can take only values in a certain connected control space Γt,z ⊂ Rr. Let

Γ := ∪(t,z)∈[0,∞)×ΘΓt,z be the union of all possible control spaces. A control C with

Ct ∈ Γt,XC,s,x
t

for all t ≥ s and for that the corresponding state process XC,s,x remains

in Θ is called admissible control.

Notice that in the economic literature SDEs appear often in differential notation.

In this somewhat shorter notation, SDE (1) reads

dXt = α0 (t,Xt, Ct) dt+
dX

k=1

αk

¡
t,Xt−, Ct−

¢
dNk

t , Xs = x.

This expression might appear more intuitive since it seems to show more clearly what

the (infinitesimal) change of X at time t is driven by. Nevertheless, the differential

notation is only an abbreviation of the integral form, and both notations have the

same meaning. Throughout this paper, we shall always use the integral notation.

Let u : [0,∞)×Θ×Γ→ R (the “instantaneous utility function”) and ρ : [0,∞)→
9Notice that, due to the continuity of the coefficient functions, we can write αk(τ ,Xτ− , Cτ−) for

αk(τ ,Xτ , Cτ )−.
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R+ (the “time preference rate”) be continuous functions. Suppose that for all admis-
sible controls,

(2) Es

Z ∞

s

e−
R t
s ρ(τ)dτ

¯̄̄
u
³
t,XC,s,x

t , Ct

´¯̄̄
dt <∞,

where Es denotes the conditional expectation with respect to Fs. Then the objective

is to find an admissible control that maximizes the performance criterion (“expected

lifetime utility”)10

(3) WC(s, x) := Es

Z ∞

s

e−
R t
s ρ(τ)dτu

³
t,XC,s,x

t , Ct

´
dt.

Such a control is called optimal control for the starting point (s, x). We can now

consider WC as a function of the initial point (s, x) ∈ [0,∞)×Θ. Then WC is called

performance function.

There exist various types of controls that may be considered. Following Øksendal

(2000), these are, e.g.,

• Processes that are adapted to the Filtration {Mt, t ≥ s} whereMt denotes the

σ-algebra generated by
©
Xs,x,C

τ , s ≤ τ ≤ t
ª
. That is, the choice of the control

value at time t depends on the whole history of Xs,x,C
t . These controls are called

feedback or closed loop controls.

• Deterministic or open loop controls. These are controls that do not depend on
ω, i.e., they are deterministic.

• Controls whose value at time t is given as a function of current time and state.
That is, Ct (ω) = φ(t,Xs,x,C

t (ω)) for some function φ : [0,∞) × Rn → Rr.

Such controls are called Markov controls since the corresponding state process,

Xs,x,C
t , becomes a Markov process.

In applied optimization problems, Markov controls present the most practical class

of controls since they “say clearly” what to do if at a certain time a certain state is

10In some cases one may wish to minimize WC , for example, if u stands for a cost rate. Then
one equivalently maximizes −WC , where u in (3) is replaced with −u and the following proceeding
remains the same.
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observed. Moreover, the HJB equation provides a powerful tool to characterize and

verify optimal Markov controls, as we shall see in theorems 5.1 and 5.3. It even

turns out that, under very mild assumptions, one obtains as good a performance

with a Markov control as with any other admissible control, see theorem 5.5. Hence,

it is justified if we work in our analysis only with Markov controls.11 The following

definitions give the necessary tools to formulate our control problem precisely:

(i) A cádlág function φ : [0,∞) × Rn → Γ, (t, z) 7−→ φ(t, z) is called a policy.

Let Xt be an adapted cádlág process. Then a Markov control Cφ induced by a

policy φ via Cφ
t := φ (t,Xt) is adapted and cádlág, too. Thus, the integrals in

the controlled SDE (1) are well-defined if the state is controlled by a Markov

control with policy φ. For SDE (1) we write then

(4) Xt = x+

Z t

s

αφ
0 (τ ,Xτ) ds+

dX
k=1

Z t

s

αφ
k(τ ,Xτ )−dNk

τ ,

where αφ
k(t, x) := αk(t, x, φ (t, x)). The unique solution is denoted by Xφ,s,x.

Furthermore, the performance function, defined according to (3), is indicated

by the superscript φ (instead of C) and reads with uφ (t, x) := u (t, x, φ (t, x))

and ρs (t) :=
1

t−s
R t
s
ρ (τ) dτ (the “average time preference rate” from s to t):

(5) W φ(s, x) = Es

Z ∞

s

e−ρs(t)(t−s)uφ
³
t,Xφ,s,x

t

´
dt.

(ii) A policy φ is called admissible if φ (t, z) ∈ Γt,z for all (t, z) ∈ [0,∞)×Θ and if for
any starting point (s, x) ∈ [0,∞)×Θ the controlled process Xφ,s,x never leaves

Θ, i.e., Xφ,s,x
t ∈ Θ for all t ≥ s. The space of admissible policies is denoted by

Π.

(iii) If the supremum is finite for all (s, x) ∈ [0,∞) × Θ, we call the function V :

[0,∞)×Θ→ R given by

(6) V (s, x) := sup
φ∈Π

W φ(s, x)

11Restricting ourselves only to deterministic controls is clearly not sufficient since in a stochastic
environment it is not likely that a deterministic control is optimal.
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the value function.

(iv) An admissible policy φ∗ ∈ Π is called optimal policy if its performance function

is equal as the value function (6) for all (s, x) ∈ [0,∞)×Θ. That is,

W φ∗(s, x) = V (s, x) ∀ (s, x) ∈ [0,∞)×Θ.

Notice that the optimal policy does not depend on the initial point (s, x).

The control problem consists in finding an optimal admissible policy and can be

tackled with the HJB equation. As mentioned before, we do not limit ourselves to a

bounded utility function or bounded coefficients to ensure application to more general

modeling. Nevertheless, to show the necessity of the HJB equation for optimality

in theorem 5.1 we assume at least the following conditions to be satisfied. For the

sufficiency part in theorem 5.3 they are not required.

(H1) We say that u satisfies a linear boundedness condition if there exists a constant

m > 0 such that for all (t, z) ∈ [0,∞)×Θ and c ∈ Γt,z,

(7) |u (t, z, c)| ≤ m [1 + kzk+ kck] ,

where k·k denotes the Euclidean norm.12

(H2) The coefficient function αk satisfies a linear growth condition if for each t ≥ 0
there exist boundedness coefficients ak (t) ≥ 0 and bk (t) ≥ 0 such that for all
z ∈ Θ and c ∈ Γt,z,

(8) |αk (t, z, c)| ≤ ak (t) + bk (t) kzk ,

and the mappings t 7→ ak (t) and t 7→ bk (t) are cádlág. Notice that this condi-

tion must hold uniformly over the control variable c.

(H3) Define for any s ∈ [0,∞)

(9) Ps (t) :=
1

t− s

Z t

s

Ã
b0 (τ) +

dX
k=1

λkbk (τ)

!
dτ, t ≥ s,

12For the definition of the Eucledian norm see section 2.
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and

(10) Qs (t) :=

Z t

s

e−Ps(τ)(τ−s)
Ã
a0 (τ) +

dX
k=1

λkak (τ)

!
dτ, t ≥ s.

If for some k there exists a t∗ ≥ 0 with ak (t
∗) > 0, the right continuity of ak

implies that Q0 (t) > 0 for all t > t∗, and we say that the regularity condition

is satisfied if

(11) A :=

Z ∞

0

e−[ρ0(t)−P0(t)]tQ0 (t) dt <∞.

If, in contrast, in the degenerated case, for each k ∈ {0, 1, . . . , d} the bound-
edness coefficient ak (t) is equal as 0 for all t ≥ 0 , then Q0 (t) = 0 and the

regularity condition is said to be satisfied if

(12) B :=

Z ∞

0

e−[ρ0(t)−P0(t)]tdt <∞.

(H4) If there exists an optimal policy φ∗, the expected present value of the cor-

responding Markov control discounted with the time preference rate is finite.

That is,

(13) Es

Z ∞

s

e−ρs(t)t
°°°φ∗ ³t,Xs,x,φ∗

t

´°°° dt <∞, ∀ (s, x) ∈ [0,∞)×Θ.

Let us give a quick preview of the results presented in the subsequent section to

explain why and where we shall have need of the conditions stipulated in (H1)-(H4).

The linear growth condition (8) gives an upper bound for the growth rate of the

controlled process Xφ,s,x. It allows to derive a finite upper bound for the expectation

of Xφ,s,x
t , which can be expressed in terms of the initial state x, see lemma 4.1.

Regularity conditions (11) and (12), respectively, make sure that the expected present

value of the controlled process is finite for any admissible policy φ, see corollary 4.3.

Then, together with the linear boundedness condition (7) and condition (13), we can

deduce that the value function is linearly bounded with respect to the initial state

x, see lemma 4.4. This result will be used to show that the value function belongs to

10



the domain of the infinitesimal generator of the controlled process (see lemma 6.3),

which in turn is crucial for deriving the HJB equation as a necessary criterion for

optimality in theorem 5.1. Notice that the regularity conditions (11) and (12), as

well as condition (13), are only satisfied for a sufficiently high time preference rate.

This can also be seen in part (ii) of the following remark.

Remark 3.1 (i) The following conclusion will be helpful for the proofs in section
6. In the non-degenerated case, where there exist some k and t∗ with ak (t

∗) > 0,

regularity condition (11) implies B < ∞, where B is defined as in (12). This result

is derived in appendix A. On the other hand, if ak (t) = 0 for all k ∈ {0, 1, . . . , d}
and t ≥ 0, we obtain immediately A = 0. Thus, in either case we have A < ∞ and

B <∞.
(ii) If the linear boundedness coefficients and the time preference rate are constants,

i.e., ak (t) := ak, bk (t) := bk, and ρ (t) := ρ for all t ≥ 0, then regularity conditions
(11) and (12), respectively, hold if and only if ρ > b0 +

Pd
k=1 λkbk.

4 Properties of the state process and the value

function

This section serves as preparation for the derivation of the HJB equation as a nec-

essary condition for optimality in the subsequent sections. It provides some useful

properties of the controlled state process, the objective and the value function if the

assumptions in (H1)-(H4) from the preceding section are met. The proofs are given in

section 6. The first lemma shows that the expectation of ||Xφ,s,x
t || is linearly bounded

with respect to the initial value x. This property holds uniformly over all admissible

policies φ ∈ Π.

Lemma 4.1 If the coefficients α0, . . . , αd satisfy the linear growth condition (8), then

for all admissible policies φ ∈ Π,

E
°°°Xφ,s,x

t

°°° ≤ ePs(t)(t−s) [kxk+Qs (t)] ,

where Ps (t) and Qs (t) are defined as in (9) and (10), respectively.

11



From lemma 4.1 we deduce the following corollary.

Corollary 4.2 If the coefficients α0, . . . , αd satisfy the linear growth condition (8),

then for all admissible policies φ ∈ Π,

E sup
s≤τ≤t

°°Xφ,s,x
τ

°° ≤ ePs(t)(t−s) [kxk+Qs (t)] .

The next corollary shows that, for any admissible policy φ, the expected present

value of the controlled process Xφ,s,x discounted with the time preference rate is finite

and linearly bounded with respect to the initial state x.

Corollary 4.3 If the coefficients α0, . . . , αd satisfy the linear growth condition (8)

such that regularity conditions (11) and (12), respectively, hold, then for all admissible

policies φ ∈ Π,

Es

Z ∞

s

e−ρs(t)(t−s)
°°°Xφ,s,x

t

°°° dt ≤ A (s) +B (s) kxk <∞,

where

(14) A (s) :=

Z ∞

s

e−(ρs(t)−Ps(t))(t−s)Qs (t) dt

and

(15) B (s) :=

Z ∞

s

e−(ρs(t)−Ps(t))(t−s)dt,

and Ps (t) and Qs (t) are defined as in (9) and (10), respectively.

If the utility function u is linearly bounded in the sense of (7), we derive from the

preceding results the following theorem 4.4. It shows that the value function, as well,

is linearly bounded with respect to the initial state x.

Theorem 4.4 Let the utility function u satisfy the linear boundedness condition (7)

and the coefficients α0, . . . , αd the linear growth condition (8), such that regularity

conditions (11) and (12), respectively, hold. Assume that there exists an optimal

12



policy φ∗ satisfying (13). Then for all (s, x) ∈ [0,∞)×Θ,

|V (s, x)| ≤ K (s) +mB (s) kxk+mEs

Z ∞

s

e−ρs(t)(t−s)
°°°φ∗ ³t,Xφ∗,s,x

t

´°°° dt <∞,

where B (s) is defined as in (15), and K (s) is a deterministic value that depends on

the boundedness coefficients m, a0, . . . ad, and b0, . . . , bd.

From theorem 4.4 we can deduce immediately that the performance function is

linearly bounded, too.

Corollary 4.5 If the conditions of theorem 4.4 are satisfied, then for any admissible
policy φ,

¯̄
W φ (s, x)

¯̄ ≤ K (s) +mB (s) kxk+mEs

Z ∞

s

e−ρs(t)(t−s)
°°°φ∗ ³t,Xφ,s,x

t

´°°° dt <∞.

5 The Hamilton-Jacobi-Bellman equation

This section presents the main results of the paper, the HJB equation as a necessary

and sufficient criterion for optimality. To achieve a shorter notation, we define at first

the following differential operator D associated with the controlled SDE (4). For a

C1-function f : [0,∞)×Rn → R let

(16) Dcf(s, x) := ft (s, x)+α0(s, x, c) ·fx(s, x)+
dX

k=1

λk[f(s, x+αk(s, x, c))−f(s, x)],

where ft denotes the partial derivative with respect to the time argument t, and fx

stands for the gradient with respect to the state argument x.13 Then the necessity

part is given in the following theorem.

Theorem 5.1 Assume that for any (t, z) ∈ [0,∞) × Θ and c ∈ Γt,z there exists

an admissible policy φ with φ (t, z) = c. Let the utility function u satisfy the linear

boundedness condition (7), and the coefficients α0, . . . , αd the linear growth condition

(8), such that regularity conditions (11) and (12), respectively, hold. Assume that

13Recall from section 2 that the operator “·” denotes the standard scalar product.
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an optimal policy φ∗ satisfying (13) exists. If furthermore the value function V is

once continuously differentiable with bounded first derivatives, the following equation

is satisfied for all (s, x) ∈ [0,∞)×Θ:

(17) ρ (s)V (s, x) = max
c∈Γs,x

{u(s, x, c) +DcV (s, x)} ,

and the maximum is achieved by φ∗ (s, x).

Equation (17) is called the HJB equation. Theorem 5.1 says that under the

stipulated conditions the HJB equation must be necessarily satisfied by the value

function and the optimal policy. Based on the fact that the optimal policy maximizes

the right-hand side of (17), we derive the following corollary.

Corollary 5.2 Let the conditions of theorem 5.1 be satisfied, and let furthermore u

be differentiable with respect to c. Then, for all (s, x) ∈ [0,∞)×Θ for that φ∗ (s, x)

lies in the inner of Γs,x the following first-order condition holds:

(18)
∂

∂ci
u(s, x, φ∗ (s, x)) = − ∂

∂ci
Dφ∗(s,x)V (s, x) , i = 1, . . . , r.

If the value function and the optimal policy are unknown, equation (18) can be

used to do further analysis. For example, starting from (18) it is possible to derive a

Keynes-Ramsey rule for optimum-consumption problems, see, e.g., Wälde (1999) and

the accompanying paper Sennewald and Wälde (2005) or, for the case of Brownian

motion, Turnovsky (2000). In some cases, one may even derive explicit expressions

for candidates of both the value function and the optimal policy.

So far, we know only that the HJB equation is necessary. That it is also a sufficient

condition for optimality is shown in the subsequent theorem.

Theorem 5.3 Let a C1 - function J : [0,∞)×Θ→ R satisfy for all (s, x) ∈ [0,∞)×
Θ inequality

(19) ρ (s)J(s, x) ≥ u(s, x, c) +DcJ(s, x), ∀c ∈ Γs,x,

and suppose that there exists an admissible policy φ∗ such that

(20) ρ (s)J(s, x) = uφ
∗
(s, x) +Dφ∗(s,x)J(s, x), ∀ (s, x) ∈ [0,∞)×Θ.

14



If furthermore for all (s, x) ∈ [0,∞)×Θ the limiting condition

(21) lim
t→∞

E
h
e−ρs(t)tJ(t,Xφ∗,s,x

t )
i
= 0

and the limiting inequality

(22) lim
t→∞

E
h
e−ρs(t)tJ(t,Xφ,s,x

t )
i
≥ 0, ∀φ ∈ Π,

are satisfied, then J is the value function V and the policy φ∗ is optimal.

The HJB equation from theorem 5.1 is here divided into inequality (19) and equa-

tion (20). The theorem tells us that, if there exist a C1-function and a policy such

that this policy maximizes the HJB equation and terminal conditions (21) and (22)

are satisfied, then this policy is optimal and the function is the value function. Thus,

one can use theorem 5.3 to verify whether a given function and a given policy (which

were, for example, found by “guessing” or via the first-order conditions in corollary

5.2)14 coincide with the value function and the optimal policy. Such theorems are

therefore also called verification theorems. Notice that the conditions in theorem 5.3

are much milder than in the necessity theorem 5.1. In particular, one can show that

the linear boundedness and growth conditions, (7) and (8), together with regularity

conditions (11) and (12) and condition (13) are sufficient for both terminal conditions,

(21) and (22), to be satisfied.

Limiting condition (21) generalizes the boundary condition for final time in fi-

nite time horizon settings, see, e.g., Kushner and Dupuis (1992). In a deterministic

framework, Michel (1982) and later Kamihigashi (2001) show that such terminal (or

transversality) conditions may even be necessary conditions. In many control prob-

lems, the utility function u is assumed to be nonnegative. Then limiting inequality

(22) holds obviously since only candidates J for the value function with J(s, x) ≥ 0
for all (s, x) ∈ [0,∞)×Θ are sensible.

The following corollary shows that, under certain conditions and making use of the

fact that a concave function can have only a unique maximum point, the verification

can be undertaken quite easily.
14The method of “guessing” the value function and then verifying it has first been applied by

Merton (1971). He showed that, if the utility function u is of the HARA class, then the value
function can easily be guessed since it is of similar form as the utility function u.
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Corollary 5.4 Let the instantaneous utility function u be nonnegative as well as

strictly concave and differentiable in the control variable c. Assume furthermore that

also the coefficients α0, . . . αd are concave c.15 Then, if a concave C1 - function

J : [0,∞) × Θ → R and an admissible policy φ∗ satisfy equation (20) and the first-

order condition

(23)
∂

∂ci
u(s, x, φ∗ (s, x)) = − ∂

∂ci
Dφ∗(s,x)J (s, x) , i = 1, . . . , r,

and if furthermore limiting condition (21) holds, φ∗ is an optimal policy and J is the

value function V .

The following theorem tells us that an optimal Markov control is even optimal

within the class of general admissible controls under very mild assumptions.

Theorem 5.5 Suppose that an optimal Markov policy φ∗ exists. Let the value func-
tion V be once continuously differentiable and satisfy for all (s, x) ∈ [0,∞) × Θ

inequality

(24) ρ (s)V (s, x) ≥ u(s, x, c) +DcV (s, x), ∀c ∈ Γs,x.

Furthermore, assume that the following limiting inequality holds for all admissible

controls C:

(25) lim
t→∞

Es

h
e−ρs(t)tV (t,XC,s,x

t )
i
≥ 0.

Define the supremum of the performance function over all general admissible controls

by V a (s, x) := sup
©
WC (s, x) : C admissible control

ª
. Then, V (s, x) = V a (s, x) for

all (s, x) ∈ [0,∞)×Θ.

The result in theorem 5.5 is actually not surprising since, regarding the “implicit”

Markov nature of the controlled SDE (1), one can guess that Markov controls repre-

sent, so to speak, the natural class of controls, and no wider class has to be taken into

account. Note that the HJB equation is sufficient for inequality (24) to be satisfied.

That is, under the conditions of theorems 5.1 and 5.3, inequality (24) holds, and only

limiting condition (25) has to be verified.
15Note that α0, . . . , αd can be linear in the control variable as well.
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6 Proof of results

This part presents the proofs for the statements made in the sections 4 and 5. Before

starting, we repeat some useful properties of the stochastic integral with respect to

Poisson processes. We are given a Poisson process N with arrival rate λ and a cádlág

process X. Both processes are assumed to be adapted. Then, since N has paths

of finite variation, the stochastic integral
R t
s
Xτ−dNτ , if existing, coincides with the

Lebesgue-Stieltjes integral, computed path by path, see, e.g., Protter (1990, theorem

II. 17).16 Hence, any stochastic integral in this paper can be considered pathwise,

instead, as usually, in the Itô-sense, where the integral is only known in probability.

Furthermore, it follows from the martingale property of the compensated Poisson

process, Nt − λt, that for any 0 ≤ r ≤ s < t

(26) Er

·Z t

s

Xτ−dNτ

¸
= λEr

·Z t

s

Xτdτ

¸
,

see, e.g., Garcia and Griego (1994, theorems 3.5 and 5.3).

We turn now to the proofs and present at first some preliminary results. The

central tool is the change of variables formula, given in the following theorem.

Theorem 6.1 Let X be a n-dimensional adapted cádlág process and f : [0,∞) ×
Rn → R a C1 - function. Then the process {f(t,Xφ,s,x

t ) : t ≥ s} is adapted and
cádlág, too, and it obeys

f
³
t,Xφ,s,x

t

´
= f (s, x) +

Z t

s

£
ft
¡
τ ,Xφ,s,x

τ

¢
+ α0

¡
τ ,Xφ,s,x

τ

¢ · fx ¡τ ,Xφ,s,x
τ

¢¤
dτ

+
dX

k=1

Z t

s

h
f
³
τ ,Xφ,s,x

τ− + αφ
k(τ ,X

φ,s,x
τ− )

´
− f

¡
τ ,Xφ,s,x

τ−

¢i
dNk

τ ,

where ft denotes the partial derivative of f with respect to t and fx stands for the

gradient of f with respect to x.

This formula allows to describe the evolvement of processes induced by a C1-

mapping of the time-state process {(t,Xφ,s,x
t ) : t ≥ s}. We omit the proof since it

16This does not apply if the integrator, such as Brownian motion, does not have paths of finite
variation.
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is a simple conclusion of Garcia and Griego (1994, p. 344), who consider stochas-

tic differential equations driven by Poisson processes. One has only to make sure

that Xφ,s,x
t is cádlág and that the stochastic integrals in the controlled SDE (4) are

Lebesgue-Stieltjes integrals. But as mentioned above at the beginning of this section,

any integral in this paper can be considered as a Lebesgue-Stieltjes integral. The

cádlág property of Xφ,s,x
t follows immediately from SDE (4).

For the reader’s convenience we recall the following result from real analysis. It

can be proven using the (ε, δ) - definition of continuity at point t. A proof can be

found in many textbooks on real analysis as in, e.g., Browder (1996).

Lemma 6.2 Let the function f : [0,∞) → R be integrable and right continuous at
point t ∈ [0,∞). Then,

lim
h&0

1

h

Z t+h

t

f(τ)dτ = f(t).

We turn now to the proof of lemma 4.1, which shows that the expectation of

||Xφ,s,x
t || is linearly bounded with respect to the initial state x.
Proof of lemma 4.1. Using a comparison principle as, e.g., Bassan et al. (1993,

corollary 3.5), we deduce from the linear growth condition (8) that
°°°Xφ,s,x

t

°°° ≤ Zs,x
t ,

where Zs,x
t denotes the unique solution of 17

(27) Zt = kxk+
Z t

s

[a0 (τ) + b0 (τ)Zτ ] dτ +
dX

k=1

Z t

s

£
ak (τ−) + bk (τ−)Zτ−

¤
dNk

τ .

Hence,

(28) Es

°°°Xφ,s,x
t

°°° ≤ EsZ
s,x
t .

We compute now EsZ
s,x
t . Taking expectation on SDE (27) and using the martingale

property (26) yields

(29) EsZ
s,x
t = kxk+Es

Z t

s

"
a0 (τ) + b0 (τ)Zτ +

dX
k=1

λk [ak (τ) + bk (τ)Zτ ]

#
dτ.

17With Protter (1990, theorem V.6) one can show easily that (27) has a unique solution, which is
cádlág and has finite expectation.
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Then, by interchanging expectation and integral due to the theorem of bounded

convergence,18

EsZ
s,x
t = kxk+

Z t

s

"
a0 (τ) +

dX
k=1

λkak (τ) +

Ã
b0 (τ) +

dX
k=1

λkbk (τ)

!
EsZ

s,x
τ

#
dτ.

This deterministic linear differential equation in EsZ
s,x
t has the unique solution

(30) EsZ
s,x
t = ePs(t)(t−s) [kxk+Qs (t)] ,

where Ps (t) and Qs (t) are defined as in (9) and (10), respectively. This together with

(28) finishes the proof.

The preceding proof immediately implies the subsequent proof of corollary 4.2.

Proof of corollary 4.2. Since the boundedness coefficients a0, . . . , ad and

b0, . . . , bd are nonnegative, Zs,x has increasing paths. Remember from the proof of

lemma 4.1 that
°°°Xφ,s,x

t

°°° ≤ Zs,x
t for all t ≥ s. Thus, sups≤τ≤t

°°Xφ,s,x
τ

°° ≤ sups≤τ≤t Zs,x
τ =

Zs,x
t and hence, Es sups≤τ≤t

°°Xφ,s,x
τ

°° ≤ EsZ
s,x
t , which together with (30) yields corol-

lary 4.2.

Proof of corollary 4.3. From the proof of lemma 4.1 we know that
°°°Xφ,s,x

t

°°° ≤
Zs,x
t . Thus, Es

R∞
s

e−ρs(t)(t−s)
°°°Xφ,s,x

t

°°° dt ≤ Es

R∞
s

e−ρs(t)(t−s)Zs,x
t dt. Using (30) and

assuming for the moment thatA (s) andB (s) defined as in (14) and (15), respectively,

are finite, we can now apply the theorems of bounded and monotone convergence to

interchange expectation and integral on the right-hand side, which yields19

(31) Es

Z ∞

s

e−ρs(t)(t−s)
°°°Xφ,s,x

t

°°° dt ≤ A (s) +B (s) kxk .

It remains to be shown that A (s) and B (s) are finite. For this purpose we use that

(32) A (s) ≤ e[ρ0(s)−P0(s)]sA

18See appendix B to see how to use the theorem of bounded convergence in this case.
19See appendix C.
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and

(33) B (s) ≤ e[ρ0(s)−P0(s)]sB.

But since we know from remark 3.1 (i) that due to regularity conditions (11) and

(12), respectively, A and B are always finite, the result follows.

We proceed with the proof of theorem 4.4, which shows that the value function is

linearly bounded with respect to the initial value x.

Proof of theorem 4.4. Using the linear boundedness condition (7), we can

find the following upper bound for the value function:

|V (s, x)| = ¯̄
W φ∗(s, x)

¯̄
(34)

≤ Es

Z ∞

s

e−ρs(t)(t−s)
¯̄̄
uφ

∗
³
t,Xφ∗,s,x

t

´¯̄̄
dt

≤ m

Z ∞

s

e−ρs(t)(t−s)dt+mEs

Z ∞

s

e−ρs(t)(t−s)
°°°Xφ∗,s,x

t

°°° dt
+mEs

Z ∞

s

e−ρs(t)(t−s)
°°°φ∗ ³Xφ∗,s,x

t

´°°° dt.
Since B (s) is an upper bound for

R∞
s

e−ρs(t)(t−s)dt and B (s) is finite according to (33)

and remark 3.1 (i), the first term on the right-hand side is finite, too. The second

term is finite according to corollary 4.3, whereas the third term is finite by assumption

(13). Hence, if we define now

K (s) := m

Z ∞

s

e−ρs(t)(t−s)dt+mA (s) <∞,

it follows altogether

|V (s, x)| ≤ K (s) +mB (s) kxk+mEs

Z ∞

s

e−ρs(t)(t−s)
°°°φ∗ ³Xφ∗,s,x

t

´°°° dt <∞,

which is what was to be shown.

To simplify the notation in the following, we drop the explicit time argument by

introducing the time-state process

(35)
n
Y φ,y
t =

³
s+ t,Xφ,s,x

s+t

´
, t ≥ 0

o
, Y φ,y

0 := y := (s, x) .
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Then the state space corresponding to this process is Θ̃ := [0,∞) × Θ ⊂ Rn+1, and

Y φ,y
t solves the transformed SDE

(36) Yt = y +

Z t

0

α̃φ
0 (Yτ) dτ +

dX
k=1

Z t

0

α̃φ
k (Yτ )− dÑ

k
τ ,

where the coefficients are given by α̃φ
0 (t, x) :=

³
1, αφ

0 (t, x)
´0
and α̃φ

k (t, x) :=
³
0, αφ

k (t, x)
´0
,

k = 1, . . . , d, and for each k = 1, . . . , d the process Ñk defined by Ñk
τ := Nk

s+τ −Nk
s

forms a Poisson process. The corresponding filtration is
n
F̃t, t ≥ 0

o
, where F̃t :=

Fs+t. The performance function we rewrite by time transformation as

(37) W φ(y) = Ẽ0

Z ∞

0

e−ρ̃s(τ)τuφ
³
Y φ,y
t

´
dt,

where ρ̃s (t) :=
1
t

R t
0
ρ (s+ r) dr = ρs (s+ t), and Ẽt denotes the conditional expecta-

tion with respect to F̃t.

Altogether, by deriving (36) and (37), we have transformed the general control

problem into a time-autonomous one. The corresponding differential operator D is

the same as in (16) and reads adapted to the time-autonomous setup

(38) Dcf(y) = α̃0(y, c) · fy(y) +
dX

k=1

λk[f(y + α̃k(y, c))− f(y)],

where f : [0,∞)× Rn → R is a C1 - function and fy denotes the gradient of f .

The following lemma shows that the value function V belongs to the domain of

the infinitesimal generator of the controlled process Xφ,s,x for any admissible policy

φ. This result is crucial for deriving the necessity of the HJB equation in theorem

5.1. Whereas the proof is almost trivial if utility (or value function)20 and the coeffi-

cients are bounded, it becomes more complex for the more general case with linearly

bounded utility and coefficient functions.

Lemma 6.3 Let the conditions of theorem 5.1 be satisfied. Then for any admissible

20As one can show easily, a bounded utility function implies that the value function is bounded
as well.
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policy φ,

lim
h&0

1

h
Ẽ0
h
e−ρ̃s(h)hV (Y φ,y

h )− V (y)
i
= Dφ(y)V (y)− ρ (s)V (y).

Proof. Applying the change of variable formula from theorem 6.1 to the C1 -

function f (v) = f (t, z) = e−ρ̃s(t)tV (v) yields

e−ρ̃s(h)(h)V
³
Y φ,y
h

´
− V (y)

=

Z h

0

h
α̃φ
0

¡
Y φ,y
τ

¢ · e−ρ̃s(τ)τVy ¡Y φ,y
τ

¢− ρ (s+ τ) e−ρ̃s(τ)τV (Y φ,y
τ )

i
dτ

+
dX

k=1

Z h

0

h
e−ρ̃s(τ)τV

³
Y φ,y
τ− + α̃φ

k

¡
Y φ,y
τ

¢
−

´
− e−ρ̃s(τ)τV (Y φ,y

τ− )
i
dÑk

τ .

Taking expectation and dividing by h gives together with (26)

1

h
Ẽ0
h
e−ρ̃s(h)hV (Y φ,y

h )− V (y)
i

(39)

= Ẽ0

·
1

h

Z h

0

e−ρ̃s(τ)τ
h
α̃φ
0

¡
Y φ,y
τ

¢ · Vy ¡Y φ,y
τ

¢− ρ (s+ τ)V (Y φ,y
τ )

i
dτ

¸
+

dX
k=1

λkẼ0

·
1

h

Z h

0

e−ρ̃s(τ)τ
h
V
³
Y φ,y
τ + α̃φ

k

¡
Y φ,y
τ

¢´− V (Y φ,y
τ )

i
dτ

¸
Now let h tend to 0. We show that the theorem of bounded convergence can be applied

to interchange limit and expectation on the right-hand side in (39). For this purpose

we have to find an upper bound with finite expectation for each of the d+ 1 random

variables inside the expectations. Notice that such a bound must hold uniformly over

all h small enough. Whereas the bound is obvious if the utility function and the

coefficients are bounded, we have to do some more calculation for the more general

case with linear boundedness. Herein can be seen the heart of the contribution of the

present paper.

We first consider the most-left integral on the right-hand side of (39). Remember

from real analysis that for any univariate piecewise continuous function f ,
R y
x
f (z) dz ≤

(y − x)maxx≤z≤y f (z). With this result we derive for h ≤ 1, using the linear bounded-
ness of α0, the linear boundedness of V according to theorem 4.4, and the boundedness
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of the first derivative of V :¯̄̄̄
1

h

Z h

0

e−ρ̃s(τ)τ
h
α̃φ
0

¡
Y φ,y
τ

¢ · Vy ¡Y φ,y
τ

¢− ρ (s+ τ)V (Y φ,y
τ )

i
dτ

¯̄̄̄
(40)

≤ (1 + ka0k1) k5Gk+ kρk1 kKk1 + (kb0k1 k5Gk+m kρk1 kAk1) sup
τ∈[0,1]

°°°Xφ,s,x
s+τ

°°°
+m kρk1 sup

τ∈[0,1]
Es+τ

Z ∞

s+τ

e−ρs+τ (t)[t−(s+τ)]
°°°°φ∗µt,Xφ∗,s+τ,Xφ,s,x

s+τ

t

¶°°°° dt,
where k5Gk := supy∈Θ̃ kGy (y)k <∞ and ka0k1 := supτ∈[0,1] a0 (s+ u) <∞, kb0k1 :=
supτ∈[0,1] b0 (s+ τ) < ∞, and so forth. According to lemma 4.2, supτ∈[0,1]

°°°Xφ,s,x
s+τ

°°°
possess finite expectation. Furthermore,

Es sup
τ∈[0,1]

Es+τ

Z ∞

s+τ

e−ρs+τ (t)[t−(s+τ)]
°°°°φ∗µt,Xφ∗,s+τ,Xφ,s,x

s+τ

t

¶°°°° dt
≤ eρEs

Z ∞

s

e−ρs(t)(t−s)
°°°φ∗ ³t,Xφ∗,s,x

t

´°°° dt,
which is finite by assumption (13). Hence, the right-hand side in (40) is an upper

bound with finite expectation for the first integral on the right-hand side in (39). In

analogy, for each of the remaining k integrals in (39) an upper bound for all h ≤ 1 is
given by ¯̄̄̄

1

h

Z h

0

e−ρ̃s(τ)τ
h
V
³
Y φ,y
τ + α̃φ

k

¡
Y φ,y
τ

¢´− V (Y φ,y
τ )

i
dτ

¯̄̄̄
≤ 2 kKk1 +m kAk1

"
kakk1 + (2 + kbkk1) sup

τ∈[0,1]

°°°Xφ,s,x
s+τ

°°°#

+m sup
τ∈[0,1]

Es+τ

Z ∞

s+τ

e−ρs+τ (t)(t−(s+τ))
°°°°φ∗µt,Xφ,s+τ,Xφ,s,x

s+τ +αφk(X
φ,s,x
s+τ )

t

¶°°°° dt
+m sup

τ∈[0,1]
Es+τ

Z ∞

s+τ

e−ρs+τ (t)(t−(s+τ))
°°°°φ∗µXφ,s+τ,Xφ,s,x

s+τ

t

¶°°°° dt.
Again with lemma 4.2 and assumption (13) we deduce that the expectation of this

upper bound is finite. The theorem of bounded convergence can hence be applied on
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(39) to interchange limit and expectation. This, finally, yields with lemma 6.2

lim
h&0

1

h
Ẽ0
h
e−ρ̃s(h)hV (Y φ,y

h )− V (y)
i

= α̃φ
0 (y) · Vy (y)− ρ (s)V (y) +

dX
k=1

λk
³
V
³
y + α̃φ

k (y)
´
− V (y)

´
= Dφ(y)V (y)− ρ (s)V (y),

which is what was to be shown.

In the remaining part of this section we finally present the proofs of the main

results from section 5.

Proof of theorem 5.1. Let y ∈ Θ̃. We first prove that the optimal policy φ∗

yields equality in the HJB equation (17). Take some small h > 0. Then,

0 = Ẽ0

Z ∞

0

e−ρ̃s(t)tuφ
∗
³
Y φ∗,y
t

´
dt− V (y)(41)

= Ẽ0

Z h

0

e−ρ̃s(t)tuφ
∗
³
Y φ∗,y
t

´
dt+ Ẽ0

Z ∞

h

e−ρ̃s(t)tuφ
∗
³
Y φ∗,y
t

´
dt− V (y)

= Ẽ0

Z h

0

e−ρ̃s(t)tuφ
∗
³
Y φ∗,y
t

´
dt

+Ẽ0

½
e−ρ̃s(h)hE

·Z ∞

0

e−ρ̃s+h(t)tuφ
∗
³
Y φ∗,y
h+t

´
dt

¯̄̄̄
Y φ∗,y
h

¸¾
− V (y)

= Ẽ0

Z h

0

e−ρ̃s(t)tuφ
∗
³
Y φ∗,y
t

´
dt+ Ẽ0

h
e−ρ̃s(h)hV (Y φ∗,y

h )− V (y)
i
.

Dividing by h and applying the limit h& 0, this becomes

0 = lim
h&0

Ẽ0
1

h

Z h

0

e−ρ̃s(t)tuφ
∗
³
Y φ∗,y
t

´
dt+ lim

h&0
Ẽ0
1

h

h
e−ρ̃s(h)hV (Y φ∗,y

h )− V (y)
i
.

For the first term we use in analogy to appendix B the theorem of bounded con-

vergence to interchange expectation and integral.21 Then, we obtain with lemma 6.2,

limh&0 Ẽ0 1h
R h
0
e−ρ̃s(t)tuφ

∗
³
Y φ∗,y
t

´
dt = uφ

∗
(y). For the second term, corollary 6.3 gives

the limit. Thus, altogether, 0 = uφ
∗
(y) +Dφ∗(y)V (y)− ρ (s)V (y), which shows that

21An upper bound is given by
R∞
0

e−ρ̃s(t)t
¯̄̄
uφ
∗
³
Y φ∗,y
t

´¯̄̄
dt, which possess finite expectation due

to assumption (2).
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equality in (17) is satisfied for the optimal policy.

It remains to be shown that for any c ∈ Γy, ρ (s)V (y) ≥ u(y, c) + DcV (y). For

this purpose we follow an argument applied by Kushner and Dupuis (1992) and Duffie

(1992), in defining a policy

ψy,h (v) :=

(
φ (v) for s ≤ t < s+ h

φ∗ (v) for t ≥ s+ h
, v = (t, z) ∈ Φ̃,

where φ is an arbitrary admissible control with φ (y) = c.22 Since from time h on the

policies ψy,h and φ∗ equal each other, we obtain

Wψy,h(Y
ψy,h,y
t ) =W φ∗(Y

ψy,h,y
t ) = V (Y

ψy,h,y
t ), ∀t ≥ h.

Then in analogy to (41),

0 ≥Wψy,h(y)− V (y) = Ẽ0

Z h

0

e−ρ̃s(t)tuφ(Y φ,y
t )dt+ Ẽ0

h
e−ρ̃s(h)hV (Y φ,y

h )− V (y)
i

Now, if we divide by h and let h tend toward 0, we obtain

0 ≥ lim
h&0

Ẽ0
1

h

Z h

0

e−ρ̃s(t)tuφ(Y φ,y
t )dt+ lim

h&0
1

h
Ẽ0
h
e−ρ̃s(h)hV (Y φ∗,y

h )− V (y)
i
.

Again, the limit of the first term is derived by first interchanging expectation and

integral according to the theorem of bounded convergence and then by applying

lemma 6.2, whereas lemma 6.3 gives the second limit. Hence, 0 ≥ u(y, c)+DcV (y)−
ρ (s)V (y). Since c ∈ Γy was chosen arbitrarily, the proof is completed.

Proof of corollary 5.2. Let y ∈ Θ̃. Since according to theorem 5.1, uφ
∗
(y) +

Dφ∗(y)V (y) ≥ u(y, c)+DcV (y) for all c ∈ Γy, (18) must hold as a first order condition

if φ∗ (y) lies in the inner of Γy.

Proof of theorem 5.3. We have a continuously differentiable function J : Θ̃→
R that satisfies inequality (19) and, with an admissible policy φ∗, equation (20). We
show

(i) J(y) ≥W φ(y) for any arbitrary admissible policy φ and

22By assumption, there exists an admissible policy φ with φ (y) = c for any c ∈ Γy.
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(ii) J(y) =W φ∗(y).

This implies that φ∗ is an optimal policy and that J =W φ∗ is the value function

V .

Step (i): Let φ ∈ Π be an arbitrary admissible policy. Then inequality (19) gives

(42) −ρ (s)J(y) +Dφ(y)J(y) ≤ −uφ(y), ∀y ∈ Θ̃.

Applying the change of variables formula from theorem 6.1 to the C1 - function

f (v) = f (t, z) = e−ρ̃s(t)tJ(v) and taking the expectation on both sides yields together

with martingale property (26)

Ẽ0e
−ρ̃s(t)tJ(Y φ,y

t )−J(y) = Ẽ0

Z t

0

e−ρ̃s(τ)τ
h
−ρ (s+ τ)J(Y φ,y

τ ) +Dφ(Y φ,y
τ )J(Y φ,y

τ )
i
dτ.

Then, inequality (42) implies J(y) ≥ Ẽ0
R t
0
e−ρ̃s(τ)τuφ(Y φ,y

τ )dτ + Ẽ0e
−ρ̃s(t)tJ(Y φ,y

t ).

Letting t approach infinity and applying the theorem of bounded convergence on the

first term on the right-hand side gives J (y) ≥ W φ(y) + limt→∞ Ẽ0e
−ρ̃s(t)tJ(Y φ,y

t ).23

Thus, since by assumption (22) the limit on the right-hand side is equal as 0, or

greater, J(y) ≥W φ(y).

Step (ii): We may rewrite (20) as −ρ (s)J(y) +Dφ∗(y)J(y) = −uφ∗(y). Then, in
exactly the same way as in step (i), only with “=” instead of “≤”, we can deduce
J(y) = W φ∗(y) + limt→∞ Ẽ0e

−ρ̃s(t)tJ(Y φ∗,y
t ). Since by limiting condition (21), the

right-most term goes to zero, we obtain J(y) = W φ∗(y), which completes the proof.

Proof of corollary 5.4. We show that the conditions of theorem 5.3 are

satisfied. Then, by theorem 5.3, the result follows. At first we can derive from the

nonnegativity of u that the value function V is nonnegative, too. Hence limiting

inequality (22) holds. Thus, it remains to be shown,

(43) uφ
∗
(y) +Dφ∗(y)J(y) ≥ u(y, c) +DcJ(y) ∀c ∈ Γy,

i.e., φ∗(y) is a global maximum point of u(y, c) +DcJ(y).

23An upper bound with finite expectation is given by
R∞
0

e−ρ̃s(τ)τ
¯̄
uφ(Y φ,y

τ )
¯̄
dτ .
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The first order condition for φ∗ (y) to be a local maximum point is satisfied by

assumption (23). From the strict concavity of u and V and the concavity of α0, . . . , αd

we know that u(y, c) +DcJ(y) is strictly concave in c as well. Hence, φ∗ (y) is both

a local and a global maximum point.

Proof of theorem 5.5. This proof is similar to the one presented in Øksendal

(2000) for controlled diffusion processes. In analogy to part (i) of the proof of theorem

5.3, we get for any admissible control C, V (y) ≥WC (y) + limt→∞ e−ρ̃s(t)tẼ0J(Y
C,y
t ).

According to limiting inequality (25) the limit on the right-hand side is equal as 0,

or greater. Thus, V (y) ≥ WC (y). Since the control C was chosen arbitrarily and

the class of Markov controls is included in the class of generalized admissible controls

(and thus V (y) ≤ V a (y)), the theorem follows.

7 Conclusion

In a model of optimal control where the state variable is subject to random jumps

driven by one or more independent Poisson processes we have presented rigorous

proofs for both the necessity and the sufficiency of the HJB equation under milder

conditions than before. We especially relax the assumption of bounded utility and

coefficient functions. More precisely, it could be shown that the HJB equation is

still a necessary condition for optimality if these functions are linearly bounded. On

the other hand, apart from a terminal condition, sufficiency could be derived even

without requiring any boundedness condition.

Nevertheless, we required, at least in the necessity part, other underlying, extrinsic

conditions to be satisfied, namely (i) the expected present value of the optimal control

and (implicitly) the state process to be finite (see assumption (H3), (H4) and lemma

4.1) and (ii) the value function to be once continuously differentiable with bounded

first derivatives. These issues are left for further research.
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A Derivation of remark 3.1 (i)

If there exist some k and t∗ with ak (t
∗) > 0, the cádlág property of the boundedness

coefficient ak and the fact that Q0 (t) is increasing in t yields Q0 (t) > 0 for all t ≥ t∗.

Thus, for some T > t∗,

B ≤
Z T

0

e−[ρ0(t)−P0(t)]tdt+
1

Q0 (T )

Z ∞

T

e−[ρ0(t)−P0(t)]tQ0 (t) dt

≤
Z T

0

e−[ρ0(t)−P0(t)]tdt+
A

Q0 (T )
,

and hence, due to (11), B <∞.

B Interchanging expectation and integral in (29)

If we define the process Hτ := a0 (τ) + b0 (τ)Zτ +
Pd

k=1 λk [ak (τ) + bk (τ)Zτ ], (29)

reads EsZ
s,x
t = kxk+Es

R t
s
Hτdτ . We may express the integral as a limit of Rieman

sums by
R t
s
Hτdτ = lim∆→0∆

Pn∆−1
T=0 Hs+T , where ∆ is the length of the subintervals

for an equidistant partition of the interval [s, t] and n∆ the number of these subinter-

vals, i.e., ∆ · n∆ = t− s. Now the problem of interchanging expectation and integral

has been converted into a problem of interchanging expectation and limit. Here the

theorem of bounded convergence comes into play. We have to find an upper bound

with finite expectation for the absolute value of ∆
Pn∆−1

T=0 Hs+T that holds uniformly

for all ∆ small enough. Since the boundedness coefficients a0, . . . , ad and b0, . . . , bd

are nonnegative, Zs,x is nonnegative, too, and has increasing paths. Therefore,°°°°°∆
n∆−1X
T=0

Hs+T

°°°°° = ∆

n∆−1X
T=0

Hs+T

≤ (t− s)

"
ka0ks,t +

dX
k=1

λk kakks,t +
Ã
kb0ks,t +

dX
k=1

λk kbkks,t
!
Zs,x
t

#
,

where, for k = 0, . . . , d, kakks,t := maxs≤τ≤t |ak (τ)| and kbkks,t := maxs≤τ≤t |bk (τ)|.
Thus, since the right-hand side has clearly finite expectation, the theorem of bounded
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convergence allows to interchange expectation and limit, and we obtain

EsZ
s,x
t = kxk+Es lim

∆→0
∆

n∆−1X
T=0

Hs+T

= kxk+ lim
∆→0

∆

n∆−1X
T=0

EsHs+T = kxk+
Z t

s

EsHτdτ.

C Deriving (31) in the proof of corollary 4.3

We show how the theorems of monotone and bounded convergence can be used to

interchange expectation and integral in Es

R∞
s

e−ρs(t)(t−s)Zs,x
t dt. At first, we consider

the expectation of the finite horizon integral
R T
s
e−ρs(t)(t−s)Zs,x

t dt. Here, in analogy to

appendix B and with the upper bound (T − s)Zs,x
T , the theorem of bounded conver-

gence yields together with (30)

Es

Z T

s

e−ρs(t)(t−s)Zs,x
t dt =

Z T

s

e−ρs(t)(t−s)EsZ
s,x
t dt(44)

=

Z T

s

e−[ρs(t)−Ps(t)](t−s) [kxk+Qs (t)] dt.

In the next step, we write
R∞
s

e−ρs(t)(t−s)Zs,x
t dt = limT→∞

R T
s
e−ρs(t)(t−s)Zs,x

t dt. SinceR T
s
e−ρs(t)(t−s)Zs,x

t dt is increasing in T and since according to (44),

sup
T≥s

Es

Z T

s

e−ρs(t)(t−s)Zs,x
t dt =

Z ∞

s

e−[ρs(t)−Ps(t)](t−s) [kxk+Qs (t)] dt

= A (s) +B (s) kxk <∞,

the theorem of monotone convergence tells us that
R∞
s

e−ρs(t)(t−s)Zs,x
t dt possess finite

expectation and that

Es

Z ∞

s

e−ρs(t)(t−s)Zs,x
t dt =

Z ∞

s

e−ρs(t)(t−s)EsZ
s,x
t dt = A (s) +B (s) kxk .

This, together with
°°Xφ,s,x

°° ≤ Zs,x, yields inequality (31).
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