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Abstract

A central limit theorem for the weighted integrated squared error of kernel type estimators
of the first two derivatives of a nonparametric regression function is proved by using results
for martingale differences and U-statistics. The results focus on the setting of the Nadaraya-
Watson estimator but can also be transfered to local polynomial estimates.
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1 Introduction

The asymptotic distribution of integrated squared errors has been analysed for several kinds of kernel
estimators. For example Bickel and Rosenblatt (1973) consider the integrated squared error of a
Rosenblatt-Parzen estimator for the density of an i.i.d. sample X1, . . . , Xn while Hall (1984a) studies
the weighted integrated squared error of multivariate kernel density estimates. The methods used
in those settings can generally be transfered to kernel estimators of regression functions. Konakov
(1978) analyses the asymptotic distribution of a weighted integrated squared error for a regression
estimate of the type ∫

(m̂(x)−m(x))2f̂ 2(x)w(x)dx,

where m̂ is the Nadaraya-Watson estimate and f̂ denotes the kernel density estimate. This is in
fact the integrated squared error of the numerator of the Nadaraya-Watson estimate. Some central
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limit theorems for integrated squared errors of multivariate kernel regression estimates of the type∫
A

(m̂(x)−m(x))2vn(x)dx

as well as ∫
A

(m̂(x)−m(x))2w(x)dx

are given in Hall (1984b) where vn(x) is a random weight function and w(x) is deterministic.
Further consideration of the limiting distribution of the integrated squared error for a random
design is given in Nadaraya (1989). The case of a fixed design is mentioned in Ioannides (1992) and
generally follows the structure of Hall (1984b). Recently Liero (1992) developes asymptotic theory
for the weighted integrated squared errors of regression estimates with data-dependent bandwidths.
In the present paper the asymptotic normality of the weighted integrated squared error of kernel
estimates of derivatives of regression functions is shown which has not been considered yet. This
result has for example an application in testing strict monotonicity of a regression function in a
nonparametric regression model (see Birke and Dette, 2006).

2 Central limit theorem for the integrated squared error

Let A be an interval (also A = IR is possible) and assume that X1, . . . , Xn are i.i.d. on the set
Aδ = {x ∈ IR| infa∈A |x− a| ≤ δ}, δ > 0 with density f . The regression model is given by

Yi = m(Xi) + σ(Xi)εi.

where m and f are four and three times continuously differentiable on A, respectively and σ is
bounded on Aδ. The random variables εi, i = 1, . . . , n are i.i.d. and independent of the sample
X1, . . . , Xn and have finite moments of order four, especially∫

Aδ

µ4(x)f(x)dx < ∞ (1)

with µ4(x) = E[(Yi − m(Xi))
4|Xi]. Further assume that K is a kernel of order 2 with compact

support, say [−λ, λ] which is two times continuously differentiable and K(±λ) = K ′(±λ) = 0. This
for example holds for the biweight kernel K(x) = 15/16 (1− x2)2I[−1,1](x). A common estimator of
the k-th derivative of the regression function is given by

m̂(k)(x) =
∂k

∂xk
m̂(x)

where

m̂(x) =
1

nh

∑n
i=1 K

(
x−Xi

h

)
Yi

1
nh

∑n
i=1 K

(
x−Xi

h

)
denotes the Nadaraya-Watson estimate on the set A with a two times continuously differentiable
kernel K of second order and a bandwidth h.
It is shown in the following that the expression

T (k) =

∫
A

(m̂(k)(x)−m(k)(x))2w(x)dx
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is asymptotically normal for any bounded, continuous and positive weight function w. This state-
ment is easier to see if the following representation is used. With

Sk(x) =
[ 1

nhk+1
r

n∑
i=1

K(k)
r

(x−Xi

hr

)
(Yi −m(Xi)) + ĝ(k)(x)

]
/f̂(x)

the difference m̂(k)(x)−m(k)(x) is for k = 0, 1, 2 a linear combination of Sj(x), j = 0, . . . , k,

m̂(k)(x)−m(k)(x) =
k∑

l=0

ak,l(x)Sl(x),

and the integrated squared error is given by

T (k)
n =

k∑
l=0

∫
A

a2
k,l(x)w(x)S2

l (x)dx + 2
∑
l<m

∫
A

ak,l(x)ak,m(x)w(x)Sl(x)Sm(x)dx (2)

with factors

ak,k(x) = 1, k = 0, 1, 2,

a1,0(x) = −f̂ ′(x)/f̂(x),

a2,1(x) = −2f̂ ′(x)/f̂(x),

a2,0(x) = −(f̂ ′(x)/f̂(x))2 + f̂ ′′(x)/f̂(x)

which converge in probability. In a first step the asymptotic normality of∫
A

w(x)S2
k(x)dx

can be shown which is stated in the following theorem.

Theorem 1 If the conditions stated above are satisfied and the bandwidth fulfills h → 0, nh3/2+k →
∞ and nh2k+5 = O(1) for n →∞ we have for k = 0

(n−2h−1α1,0 + n−1h4α2,0)
−1/2

( ∫
A

S2
0(x)w(x)dx−B

[1]
n,0 −B

[2]
n,0

)
D→ N (0, 1)

and for k = 1, 2

nh2k+1/2α
−1/2
1,k

( ∫
A

S2
k(x)w(x)dx−B

[1]
n,k −B

[2]
n,k

)
D→ N (0, 1)

with

B
[1]
n,k =

1

nh2k+2

∫
A

∫ 1

−1
E

[
K(k)2

(x−X1

h

)
σ2(X1)

]
(f(x))−2w(x)dx
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B
[2]
n,k = h4

∫
A

( E[ĝ(k)(x)])2(f(x))−2w(x)dx

α1,k = 2
( ∫

A

σ4(x)w2(x)f−2(x)dx
)( ∫ ( ∫

K(k)(x)K(k)(x + y)dx
)2

dy
)

α2,0 = 4

∫
A

σ2(x)γ2
0(x)w2(x)f−4(x)dx

γk(x) =
1

2

( ∫ λ

−λ

y2K(y)dy
)(

m(k+2)(x)f(x) + 2m(1)(x)f (k+1)(x)

+
k−1∑
j=0

( k

j + 1

)k + 2 + j

k − j
m(k+2−j)(x)f (j)(x)

)
The below-mentioned corollary follows from Theorem 1.

Corollary 1 Assume that the conditions of Theorem 1 are fulfilled and that h = O(n−1/5). Then
there is for 0 ≤ l < k

nh2k+1/2

∫ 1

0

S2
l (x)w(x)dx = OP (h2(k−l)−1/2

r ).

As a consequence of Theorem 1 and Corollary 1 the asymptotic normality of T (k) is obtained from
(2).

Theorem 2 Under the above conditions, if the bandwidth fulfills h → 0, nh →∞ and nh3/2+k →∞
for n →∞, there is for k = 0

(n−2h−1α1,0 + n−1h4α2,0)
−1/2

( ∫
A

(m̂(x)−m(x))2w(x)dx−B
[1]
n,0 −B

[2]
n,0

)
D→ N (0, 1)

and for k ≥ 1 if h = O(n−1/5)

nh2k+1/2α
−1/2
1,k

( ∫
A

(m̂(k)(x)−m(k)(x))2w(x)dx−B
[1]
n,k

)
D→ N (0, 1)

If the variance function σ2 is not only continuous and bounded but once continuously differentiable
B

[1]
n,k has the representation

B
[1]
n,k =

1

nh2k+2

∫ 1

0

∫ 1

0

σ2(y)f(y)K(k)2
(x− y

h

)
dy(f(x))−2w(x)dx

=
1

nh2k+1

∫ 1

0

σ2(x)w(x)

f(x)
dx

∫ 1

−1

K(k)2(y)dy

+
1

nh2k

∫ 1

−1

∫ 1

0

yK(k)2(y)
σ2′(ξy)f(ξy) + σ2(ξy)f

′(ξy)

(f(x))2
w(x)dxdy

=
1

nh2k+1

∫ 1

0

σ2(x)

f(x)m′6(x)
dx

∫ 1

−1

K(k)2(y)dy + o
( 1

nh2k+1/2

)
.

4



Corollary 2 Under the assumptions of Theorem 2 if σ2 is once continuously differentiable and
k ∈ {1, 2} we have

nh2k+1/2α
−1/2
1,k

( ∫
A

S2
k(x)w(x)dx− B̃

[1]
n,k

)
D→ N (0, 1)

where

B̃
[1]
n,k =

1

nh2k+1

∫
A

σ2(x)w(x)

f(x)
dx

∫ 1

−1

K(k)2(y)dy

The Nadaraya-Watson estimator m̂ can also be replaced by other differentiable estimators of the
regression function, for example local polynomial estimates. A local polynomial estimate has the
representation

m̂p(x) =
1

nh f(x)

n∑
i=1

K∗
(x−Xi

h

)
Yi(1 + oP (1))

with K∗ denoting the corresponding equivalent kernel (see Fan and Gijbels, 1997). Then an analo-
gous assertion as in Theorem 1 holds for the local polynomial estimate, where K has to be replaced
by its equivalent kernel K∗.
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Appendix: Proofs

During this section let EX [Z] and VarX (Z) denote the expectation and variance conditioned on the
sample X1, . . . , Xn of the random variable Z, respectively.

Proof of Theorem 1

The proof of this theorem is adapted to the proof of Hall (1984b), who considered central limit
theorems for the integrated squared error of regression estimators. In a first step an analogous result
to Theorem 1 with a stochastic instead of a deterministic weight function is proved. Therefore
assume, that An,0 is the σ-algebra generated by the sample X1, . . . , Xn. Let vn be a stochastic
function which is measurable with respect to An,0 such that it converges in probability to a bounded,
nonnegative and deterministic function v. The statistic

T̃ (k)
n =

∫
A

S2
k(x)f̂ 2(x)vn(x)dx

has the decomposition
T̃ (k)

n = In1 + 2In2 + 2In3 + In4

with

In1 =
1

n2h2k+2

n∑
i=1

(Yi −m(Xi))
2

∫
A

K(k)2
(x−Xi

h

)
vn(x)dx (3)

In2 =
1

n2h2k+2

∑
i<j

(Yi −m(Xi))(Yj −m(Xj))

∫
A

K(k)
(x−Xi

h

)
K(k)

(x−Xj

h

)
vn(x)dx (4)

In3 =
1

nhk+1

n∑
i=1

(Yi −m(Xi))

∫
A

K(k)
(x−Xi

h

)
ĝ(k)(x)vn(x)dx (5)

In4 =

∫
A

(ĝ(k)(x))2vn(x)dx (6)

and the following theorem holds.

Theorem 3 Under the assumptions of Theorem 1, if vn is a stochastic weight function which
converges in probability to v, there is for k = 0∫

A

S2
0(x)f̂ 2(x)vn(x)dx = EX [In1] + In4 + (n−2h−1α1,0 + h4n−1α2,0)

1/2Zn
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and for k = 1 and 2∫
A

S2
k(x)f̂ 2(x)vn(x)dx = EX [In1] + In4 + (n−2h−1−4kα1,k)

1/2Zn

with an asymptotically standard normal random variable Zn and with constants α1,k and α2,0 defined
in Theorem 1.

The proof of this theorem is the major part of this paragraph. Theorem 1 then follows in the
broadest sense from Theorem 3 by chosing vn(x) = w(x)/f̂(x).

Proof of Theorem 3. For k = 0 the assertion of Theorem 3 is the same as of Theorem 1 in Hall
(1984b) for p = 0. Therefore the proof is only stated for k = 1, 2 and is organized in three parts by
handling the expressions In1, In2 and In3 seperately.
(i) It follows by similar arguments as in the proof of Theorem 1 in Hall (1984b), if (K(k))2 instead
of K2 is used, that

n4h4k+4
EX [(In1 − EX [In1])

2] = OP (nh2)

and therefore

EX [(In1 − EX [In1])
2] = OP

( 1

n3h4k+2

)
.

Applying the markov inequality we get

P
(
|In1 − EX [In1]| >

λn

n3/2h2k+1

∣∣∣X1, . . . , Xn

)
≤ 1

λn

OP (1) −→
n→∞

0

which results in

In1 = EX [In1] + oP

( 1

n3/2h2k+1

)
.

(ii) To show that In2 has a contribution to the asymptotic distribution of T
(k)
n the quantities Wnij

and W̃nij are defined as

Wnij =

∫
A

K(k)
(x−Xi

h

)
K(k)

(x−Xj

h

)
vn(x)dx

W̃nij =

∫
A

K(k)
(x−Xi

h

)
K(k)

(x−Xj

h

)
v(x)dx.

From

Ynj = (Yj −m(Xj))

j−1∑
i=1

(Yi −m(Xi))Wnij

it follows that n2h2k+2In2 =
∑n

j=2 Ynj and E[Ynj|An,j−1] = 0 where An,j denotes the σ-algebra gen-

erated by X1, . . . , Xn and Y1, . . . , Yi. This characterizes the sequence {(Sni =
∑i

j=2 Ynj,An,i), 2 ≤
i ≤ n < ∞} as a martingale difference array. It can be shown that the conditional variance

V 2
n =

n∑
j=2

σ2(Xj)

j−1∑
i=1

(Yi −m(Xi))
2W̃ 2

nij(1 + oP (1))
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converges to α1,k/4 where the quantity α1,k is defined in Theorem 1. In addition, the Lindeberg
condition

n−1h−3

n∑
i=2

EX [Y 2
niI{|Yni| > εnh3/2}] P→ 0

is fulfilled. This can be shown as in Hall (1984b) by considering that K(k) need not be positive
for k > 0 and therefore using |K(k)| in the estimation. Now a central limit theorem for martingale
difference arrays yields that

n−1h−3/2Snn
D→ N

(
0,

1

4
α1,k

)
and therefore 2In2 has the same asymptotic distribution as n−1h−2k−1/2α

1/2
1,k Zn, where Zn is an

asymptotically standard normal distributed random variable. Furthermore In2 is asymptotically
independent of each sequence of events An ∈ An,0 (see Hall, 1984b).

(iii) The third part of the proof for k > 0 differs from that in Hall (1984b). While it is shown there

that In3 contributes to the asymptotic distribution of T
(0)
n , it is proved in this part that for higher

order derivatives of m̂ the quantity In3 is asymptotically negligible.
The representation

In3 = Jn1 + Jn2 (7)

with

Jn1 =
1

nhk+1

n∑
i=1

(Yi −m(Xi))

∫
A

K(k)
(x−Xi

h

)
γn,k(x)vn(x)dx

Jn2 =
1

nhk+1

n∑
i=1

(Yi −m(Xi))

∫
A

K(k)
(x−Xi

h

)
(ĝ(k)(x)− γn,k(x))vn(x)dx

and γn,k(x) = E[ĝ(k)(x)] simplifies the discussion of In3. Define

Yni = (Yi −m(Xi))Z̃ni

with

Z̃ni =

∫
A

K(k)
(x−Xi

h

)
γn,k(x)vn(x)dx

and observe that

Jn1 =
1

nhk+1

n∑
i=1

Yni.

Lemma 1 For k > 0 there is
n∑

i=1

Yni = oP (n1/2h3).
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Proof. It can be shown, that γn,k(x) = h2γk(x) + o(h2). Substituting this into Z̃ni yields

EX

[( n∑
i=1

Yni

)2]
=

n∑
i=1

σ2(Xi)Z̃ni

= h4

n∑
i=1

σ2(Xi)
( ∫

A

K(k)
(x−Xi

h

)
γk(x)v(x)dx

)2

+ oP (nh6)

= h4Mn + oP (nh6).

The expectation of Mn is given by

E[Mn] = nh2

∫
A

∫ λ

−λ

σ2(x− hu))f(x− hu))K(k)(u)

×
∫ λ

−λ

K(k)(v)γk(x + h(v − u))v(x + h(v − u))dvdudx

= o(nh2)

and the variance equals

Var(Mn) = nVar
(
σ2(X1)

(
K(k)

(x−X1

h

)
γk(x)v(x)dx

)2)
≤ nC1

∫
Aε

( ∫
A

K(k)
(x− y

h

)
dx

)4

f(y)dy
)

= nh4C

∫
Aε

( ∫ λ

−λ

K(k)(x)dx
)4

dy = O(nh4) = o(n2h4).

This results in

EX

[( n∑
i=1

Yni

)2]
= h4

E[Mn] + oP (nh6) = oP (nh6),

and therefore
n∑

i=1

Yni = oP (n1/2h3),

which means

Jn1 =
1

nhk+1
oP (n1/2h3) = oP

( 1

nh2k+1/2

)
. (8)

Similar methods as in Hall (1984b) (in principle using |K(k)| instead of K(k), see Birke (2007))
provide

Jn2 = oP

( 1

nh2k+1/2

)
. (9)

Equations (7), (8) and (9) now yield In3 = oP (1/nh2k+1/2) which completes the proof of Theorem 3.2

We still have to find a representation for EX [In1] and In4 so that Theorem 1 follows from Theorem
3. This is done in the following part.
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Lemma 2 If the assumptions of Theorem 3 are fulfilled and the weight function is given by vn(x) =
w(x)/(f̂(x))2, then

EX [In1] =
1

n2h2k+2

n∑
i=1

∫
A

E
[
σ2(Xi)K

(k)2
(x−Xi

h

)]
(f(x))−2w(x)dx + oP (n−1h−2k−1/2)

and

In4 =

∫
A

( E[ĝ(k)(x)])2(f(x))−2w(x)dx + oP (n−1h−2k−1/2).

Proof. The proof uses the following Taylor expansions at several places,

(f̂(x))−2 = (E[f̂(x)])−2 + OP (1)|f̂(x)− E[f̂(x)]| (10)

(f̂(x))−2 = (E[f̂(x)])−2 − 2
(f̂(x)− E[f̂(x)])

(E[f̂(x)])3
+ OP (1)(f̂(x)− E[f̂(x)])2 (11)

(E[f̂(x)])−2 = (f(x))−2 + OP (1)|E[f̂(x)]− f(x)|. (12)

With (11) the conditional expectation of In1 can be written as

EX [In1] =
1

n2h2k+2

n∑
i=1

σ2(Xi)

∫
A

K(k)2
(x−Xi

h

)
(E[f̂(x)])−2w(x)dx

− 2

n2h2k+2

n∑
i=1

σ2(Xi)

∫
A

K(k)2
(x−Xi

h

)
(E[f̂(x)])−3(f̂(x)− E[f̂(x)])w(x)dx

+OP

( 1

n2h2k+2

) n∑
i=1

σ2(Xi)

∫
A

K(k)2
(x−Xi

h

)
(f̂(x)− E[f̂(x)])2w(x)dx

= B1 − 2B2 + B3.

The variance of B1 is of order o(1/n2h4k+1). Therefore a straight forward calculation using (12)
gives for the dominating term B1

B1 = E[B1] + oP (n−1h−2k−1/2)

=
1

n2h2k+2

n∑
i=1

∫
A

E
[
σ2(Xi)K

(k)2
(x−Xi

h

)]
(f(x))−2w(x)dx + oP (n−1h−2k−1/2).

To show that the remaining expressions are of smaller order, note that B2 can be expressed as

B2 =
1

n3h2k+3

∑
i,j

∫
A

E
[
σ2(Xi)K

(k)2
(x−Xi

h

)]
ξn(Xj, x)wn(x)dx

+
1

n3h2k+3

n∑
i=1

∫
A

ζn(Xi, x)ξn(Xi, x)wn(x)dx

+
1

n3h2k+3

∑
i6=j

∫
A

ζn(Xi, x)ξn(Xj, x)wn(x)dx = Ln1 + Ln2 + Ln3

10



with

ξn(Xi, x) = K
(x−Xi

h

)
− E

[
K

(x−Xi

h

)]
ζn(Xi, x) = σ2(Xi)K

(k)2
(x−Xi

h

)
− E

[
σ2(Xi)K

(k)2
(x−Xi

h

)]
wn(x) = w(x)(E[f̂(x)])−3.

It can easily be seen that the expectations of Ln1 and Ln3 are 0 and that the variances of both
terms are of order o(1/n2h4k+1). This yields Lni = oP (1/nh2k+1/2) for i = 1, 3. The expectation of
Ln2 is

E[Ln2] =
1

n3h2k+3

n∑
i=1

∫
A

E[ζn(Xi, x)ξn(Xi, x)]wn(x)dx

=
1

n2h2k+2

∫
Aε

∫ λ

−λ

σ2(y)K(k)2(x)K(x)f(y)wn(y − hx)dxdy + o
( 1

n2h4

)
= O

( 1

n2h2k+2

)
= o

( 1

nh2k+1/2

)
and its variance is again of order o(1/n2h4k+1). This gives

Ln2 = E[Ln2] + oP

( 1

nh2k+1/2

)
= oP

( 1

nh2k+1/2

)
,

and therefore shows that B2 is of the order oP (1/nh2k+1/2). The estimation of

B3 = OP

( log h−1

n2h2k+2

)
= OP

( 1

nh2k+1/2

log h−1

nh3/2

)
= oP

( 1

nh2k+1/2

)
is performed by using the uniformly almost sure convergence rate of f̂ . The first assertion of Lemma
2 now follows by combining the estimates of B1, B2 and B3.

In a second step the stochastic expansion of In4 is developed. If the Taylor expansion (10) is used
we get

In4 =

∫
A

(ĝ(k)(x))2(E[f̂(x)])−2dx + OP (1)

∫
A

(ĝ(k)(x))2|f̂(x)− E[f̂(x)]|dx = I
[1]
n4 + I

[2]
n4 .

The variance of I
[1]
n4 can be divided into

Var(I
[1]
n4) = Var(Ln1 + Ln2) ≤ Var(Ln1) + Var(Ln2)

with

Ln1 =
1

n2h2k+2

n∑
i=1

∫
A

ξ[2]
n (Xi, x)(E[f̂(x)])−2w(x)dx,

Ln2 =
1

n2h2k+2

∑
i6=j

ξ[1]
n (Xi, x)ξ[1]

n (Xj, x)(E[f̂(x)])−2w(x)dx,

ξ[l]
n (Xi, x) = Z l(x, Xi)− E[Z l(x, Xi)],
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and the random variable Z(x, Xi) is defined as

Z(x, X1) = K(k)
(x−X1

h

)
(m(Xl)−m(x))−

k−1∑
j=0

hk−j
(k

j

)
m(k−j)(x)K(j)

(x−X1

h

)
.

The variance of Ln1 is of order

Var(Ln1) =
1

n4h4k+4

n∑
i=1

E
[( ∫

A

ξ[2]
n (X1, x)(E[f̂(x)])−2w(x)dx

)2]
= O

( 1

n3h4k−1

)
= o

( 1

n2h4k+1

)
while the variance of Ln2 can be estimated as

Var(Ln2) = O
( 1

n2h4k+4

) ∫
A

∫
A

E
2[Z(x, Xi)Z(y, Xi)](E[f̂(x)])−2w(x)w(y)dxdy

= O
( 1

n2h4k−4

)
= o

( 1

n2h4k+1

)
.

This yields

I
[1]
n4 = E[I

[1]
n4 ] + oP

( 1

nh2k+1/2

)
=

∫
A

E[(ĝ(k)(x))2](E[f̂(x)])−2w(x)dx + oP

( 1

nh2k+1/2

)
.

A careful inspection shows, that

E[(ĝ(k)(x))2] = E[G[1]
n (x)] +

n− 1

n
(E[G[2]

n (x)])2

with G
[1]
n (x) = Z2(x, X1)/nh2k+2 and G

[2]
n (x) = Z(x, X1)/h

k+1. This gives uniformly on A

E[G[1]
n (x)] =

1

nh2k+1 E[Z2(x, X1)] = O
( 1

nh2k−1

)
= o

( 1

nh2k+1/2

)
,

which means that the first term is asymptotically negligible. The second term is equal to

E[G[2]
n (x)] =

1

hk+1 E[Z(x, X1)] =
1

hk+1
(hk+3γk(x) + o(hk+3)) = O(h2).

Therefore (E[G
[2]
n (x)])2 is not asymptotically negligible under the assumption nh2k+5 = O(1) which

gives

I
[1]
n4 = E[I

[1]
n4 ] + oP

( 1

nh2k+1/2

)
=

∫
A

(E[ĝ(k)(x)])2(E[f̂(x)])−2w(x)dx + oP

( 1

nh2k+1/2

)
.

Now the expectation of f̂(x) has still to be replaced by the true density f . This can be done by
using the expansion (12) and results in

I
[1]
n4 =

∫
A

(E[ĝ(k)(x)])2(f(x))−2w(x)dx + oP

( 1

nh2k+1/2

)
.
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An application of the Cauchy-Schwarz inequality determines the order of I
[2]
n4 ,

I
[2]
n4 ≤ OP (1)

( ∫
A

(ĝ(k)(x))4dx
)1/2( ∫

A

|f̂(x)− E[f̂(x)]|2dx
)1/2

.

The squared second factor is of order OP (1/nh) because the mean squared error of f̂(x) is of order
O(1/nh), while the expectation of the squared first one is∫

A
E[(ĝ(k)(x))4]dx =

1

n4h4k+4

∑
i,j,k,l

∫
A

E[Z(x, Xi)Z(x, Xj)Z(x, Xk)Z(x, Xl)]dx

= O
( 1

n3h4k−1

)
+ O

( 1

n2h4k−2

)
+ O

( 1

nh2k−5

)
+ O(h8).

Altogether we have I
[2]
n4 = oP (1/nh2k+1/2), which completes the proof of Lemma 2. 2

Theorem 1 now follows from Theorem 3 with the weight function vn(x) = w(x)/f̂ 2(x) and Lemma 2.
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