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Abstract

We use recent advances in multiple testing to identify the countries for
which Purchasing Power Parity (PPP) held over the last century. The ap-
proach controls the multiplicity problem inherent in simultaneously testing
for PPP on several time series, thereby avoiding spurious rejections. It has
higher power than traditional multiple testing techniques by exploiting the
dependence structure between the countries with a bootstrap approach. We
use a sieve bootstrap approach to account for nonstationarity under the null
hypothesis. Our empirical results show that, plausibly, controlling for multi-
plicity in this way leads to a number of rejections of the null of no PPP that is
intermediate between that of traditional multiple testing techniques and that
which results if one tests the null on each single time series at some level α.
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1 Introduction

Purchasing Power Parity (PPP) is among the most popular theories to explain the

long run behaviour of exchange rates. Not least because it is ready-made for empir-

ical implementation, it has been investigated by a host of econometric techniques.

So-called “stage-two” tests [Froot and Rogoff, 1995] test the hypothesis that the real

exchange rate follows a random walk. The alternative is that the real exchange rate

is a stationary process, i.e. that PPP holds in the long run. Typically, researchers

would obtain real exchange rate data over a certain time span for several countries

and conduct appropriate unit root tests on each series [see, e.g., Taylor, 2002]. It is

then argued that PPP holds for those countries for which the null is rejected.

Unfortunately, this simple and intuitive way of investigating the validity of PPP

is problematic from a statistical point of view. Effectively, it ignores the issue of

multiple testing. To illustrate the problem, consider the following artificial numerical

example. Suppose one has exchange rate data on a panel of, say, N = 20 countries.

Also assume for simplicity that the the units are independent and that PPP does

not hold for any of the units. When conducting tests on each unit at the α = 0.05

level, one might casually expect the probability to erroneously find evidence in favor

of PPP in at most one case to equal 5%, because 1/20 = 0.05. However, the event

of a rejection is a Bernoulli random variable with “success” probability 0.05. Hence,

Pk, the probability of finding k rejections in N tests, is the probability mass function

of a Binomial random variable,

Pk =

(
N

k

)
αk(1− α)N−k.

Therefore, the probability of (at least) one erroneous rejection, also known as the
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Familywise Error Rate1 (FWER), equals

Pk>1 =
20∑

j=1

(
20

j

)
0.05j(1− 0.05)20−j = 0.6415.

Even if PPP does not hold for any of the countries in the panel, one will falsely

find some evidence of it with a rather high probability. Of course, the problem only

worsens if one adds more units to the panel.

This so-called “multiplicity” problem, while not widely recognized in econometrics

[Savin, 1984], has of course been realized long ago in the statistics literature [see

Lehmann and Romano, 2005]. Several solutions to controlling the FWER at some

specified level α have been suggested. Among the most popular are the Bonferroni

and the the Holm [1979] procedure. These procedures have however been less suc-

cessful in econometric applications because ensuring FWER 6 α typically comes at

the price of reducing the ability to identify false hypotheses. That is, the procedures

are conservative or have low “power.”2 Hence, often quite reasonably, researchers

have tended to ignore the issue of multiplicity.

Recently, panel econometric techniques have become popular to test for PPP. See,

for instance, Wu [1996], Papell and Theodoridis [2001], Papell [2002] or Murray

and Papell [2005]. Typically, these panel unit root tests formulate the null of the

entire panel being nonstationary. The alternative quite often is that of a stationary

panel [see, for instance, Harris and Tzavalis, 1999; Levin et al., 2002; Breitung,

2000]. These panel tests also have power against “mixed” panels, where only some

fraction of the units is actually stationary [see Taylor and Sarno, 1998; Karlsson

and Löthgren, 2000; Boucher Breuer et al., 2001]. Hence, erroneous conclusions on

the number of countries for which PPP holds remain possible. (Concluding from a

1More generally, the j-FWER is defined as Pk>j , the probability of j or more false rejections.
2For a discussion of “power” in a multiple testing framework see Romano and Wolf [2005],

Sec. 2.2.
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rejection of a panel unit test that all units are stationary is closely related to the

erroneous inference that a rejection in an F test of the “significance of a regression”

implies that all coefficients are nonzero.)

As a partial remedy, Maddala and Wu [1999] and Choi [2001] draw on the meta

analytic literature [see Hedges and Olkin, 1985] to provide panel unit root tests

having the more conservative alternative that some nonzero fraction of the panel is

stationary. However, their approach neither allows to identify which nor how many

of the countries in the panel have a stationary real exchange rate.

Recently, there has been substantial research on improving the ability of multiple

testing approaches to detect false hypotheses while still controlling the FWER. No-

tably, Romano and Wolf [2005] have put forward a bootstrap scheme that exploits

the dependence structure of the statistics in order to improve the power of the mul-

tiple test. In the present paper, we propose an adaptation of the Romano and Wolf

[2005] approach to identify those countries of a panel of real exchange rate data for

which the Purchasing Power Parity condition holds.

The plan of the paper is as follows. Section 2 offers a brief statement of the PPP

condition and presents the general multiple testing approach of Romano and Wolf

[2005]. Section 3 discusses the bootstrap approach employed in this paper. The

empirical results are in Section 4. Section 5 concludes.

2 The Multiple Testing Approach

Our goal is to identify those countries of a panel for which the Purchasing Power

Parity (PPP) relation held over the sample period. Let pi,t be the (log) price level

in country i and period t, where i = 1, . . . , N and t = 1, . . . , T , p∗t the “foreign”

(log) price level of the reference country in the panel and si,t the (log) nominal
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exchange rate between the currencies of country i and the reference country. The

real exchange rate is then given by

ri,t = pi,t − p∗t − si,t (i = 1, . . . , N)

Testing the strong PPP hypothesis is naturally formulated [see Rogoff, 1996] as a

unit root test on the real exchange rate. A vast number of unit root tests have been

suggested in the literature [see Phillips and Xiao, 1998, for a survey], many of which

have been applied to the PPP question. We will use the standard augmented Dickey

and Fuller [1979] test [see also Said and Dickey, 1984]. We do so because it is still the

most popular unit root test and, more importantly, the bootstrap versions of the test

required for the multiple testing scheme have desirable properties [Swensen, 2003;

Chang and Park, 2003]. Accordingly, we investigate PPP by testing the individual

hypotheses

Hi : %i = 0 vs. H ′
i : %i < 0 (i = 1, . . . , N) (1)

where

∆ri,t = %iri,t−1 +

Ji∑
j=1

νj∆ri,t−j + εJi,i,t. (2)

The number of lagged differences Ji required to capture serial correlation in ri,t, is

allowed to vary across i. Our test statistic is given by τ̂i = %̂i/s.e.(%̂i), the t-statistic

of %i in (2), where %̂i is the usual OLS estimator and s.e.(%̂i) the associated standard

error.

We aim to determine those countries i ⊂ {1, . . . , N} for which ri,t is a stationary

process. As argued in the Introduction, in order to provide reliable statistical in-

ference in the sense of controlling the FWER, it is important to take into account

the multiplicity inherent in testing in a panel setting. We now present the general

multiple testing framework used here, making suitable adjustments to adapt the

procedure to the PPP testing case.
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First, relabel the test statistics from smallest to largest, such that τ̂r1 6 τ̂r2 6

. . . 6 τ̂rN
. (The smaller a Dickey-Fuller test statistic, the stronger the evidence

in favor of stationarity.) Form a joint rectangular confidence region for the vector

(%r1 , . . . , %rN
)>. The region is of the form

(−∞, %̂r1 + s.e.(%̂r1) · d1]× · · · × (−∞, %̂rN
+ s.e.(%̂rN

) · d1], (3)

where one chooses d1 so as to ensure a joint asymptotic coverage probability 1−α.3

The bootstrap method to appropriately choose d1 in the present problem will be

discussed below. The decision rule is to reject a particular hypothesis Hrn if the

corresponding confidence interval satisfies 0 /∈ (−∞, %̂rn + s.e.(%̂rn) · d1]. Romano

and Wolf [2005] show that if the confidence region (3) has coverage probability 1−α,

then this method asymptotically controls the FWER at level α, limT FWER 6 α.

Crucially, the method does not stop there. In order to improve the ability of the

method to detect false hypotheses, one can construct further confidence regions

after having rejected, say, the first N1 hypotheses. In a second step, one forms a

confidence region for the remaining N − N1 coefficients (%rN1+1
, . . . , %rN

)>. This is

again constructed to have nominal joint coverage probability 1 − α and is of the

form

(−∞, %̂rN1+1
+ s.e.(%̂rN1+1

) · d2]× · · · × (−∞, %̂rN
+ s.e.(%̂rN

) · d2],

potentially leading to the rejection of some further N2 hypotheses. This step-down

process can be repeated until no further hypotheses are rejected. Romano and Wolf

[2005] show that the dj should ideally be chosen as

dj ≡ dj(1− α, P ) = inf

{
x : PrP

[
max

Rj−1+16n6N

(
%̂rn − %rn

s.e.(%̂rn)

)
6 x

]
> 1− α

}
,

where Rj−1 =
∑j−1

k=0 Nk and R0 = 0. In practice, however, P and hence dj are

unknown. Fortunately, Romano and Wolf [2005, Thms. 3.1 and 4.1] show that dj

3As recommended by Romano and Wolf [2005] we use the studentized version of their method.
For a discussion of the “basic” approach, see Sec. 3 of their paper.
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can often be estimated consistently with the bootstrap without affecting asymptotic

control of the FWER.

3 The Bootstrap Algorithm

We now outline the bootstrap approach to obtain an estimator d̂j employed in this

paper.

1. Fit an autoregressive process to ∆ri,t (i = 1, . . . , N ; t = 2, . . . , T ). It is

natural to use the Yule-Walker procedure because it always yields an invertible

representation [Brockwell and Davis, 1991, Secs. 8.1–2]. Letting ∆ri := (Ti −

1)−1
∑Ti

t=2 ∆ri,t, compute the empirical autocovariances of ∆ri,t up to order q,

γ̂i(`) :=
1

Ti − 1− `

Ti−∑̀
t=2

(∆ri,t −∆ri)(∆ri,t+` −∆ri),

where i = 1, . . . , N ; ` = 1, . . . , q.4 Defining

Γ̂i,q :=

 γ̂i(0) · · · γ̂i(q − 1)
...

. . .
...

γ̂i(q − 1) · · · γ̂i(0)


and γ̂i := (γ̂i(1), . . . , γ̂i(q))

>, obtain the AR coefficient vector as

(φ̂q,i,1, . . . , φ̂q,i,q)
> := Γ̂−1

i,q γ̂i. (i = 1, . . . , N)

2. The residuals are, as usual, given by

ε̂q,i,t := ∆ri,t −
q∑

`=1

φ̂q,i,`∆ri,t−`,

for i = 1, . . . , N ; t = q + 2, . . . , T . Following Swensen [2003], center ε̂q,i,t to

obtain

ε̃q,i,t := ε̂q,i,t −
1

Ti − q − 1

Ti∑
g=q+2

ε̂q,i,g

for i = 1, . . . , N ; t = q + 2, . . . , T .

4In practice, q can be chosen with a data-dependent criterion such as Akaike’s.
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3. Resample nonparametrically from ε̃q,i,t to get ε∗q,i,t. To preserve the empirical

cross-sectional dependence structure, jointly resample residual vectors

ε̃q,�,t := (ε̃q,1,t, . . . , ε̃q,N,t). (t = q + 2; . . . , T )

See Hanck [2006] for evidence of the good performance of this step to account

for cross-sectional dependence.

4. Recursively construct the bootstrap samples as5

∆r∗q,i,t =

q∑
`=1

φ̂q,i,`∆r∗q,i,t−` + ε∗q,i,t

for i = 1, . . . , N, t = q + 2, . . . , T .

5. It is necessary to impose the null of a unit root when generating the artificial

data in bootstrap unit root tests to achieve consistency [Basawa et al., 1991].

Accordingly, impose the null of nonstationarity by integrating ∆r∗i,t to obtain

r∗i,t.

6. For each bootstrap sample r∗b :=
(
(r∗b,1,1, . . . , r

∗
b,1,T )>, . . . , (r∗b,N,1, . . . , r

∗
b,N,T )>

)
,

compute the test statistics τ ∗b,rn
, and

max∗b,j := max
Rj−1+16n6N

(τ ∗b,rn
− τ̂rn).

7. Repeat steps 3 to 6 many, say B, times.

8. Compute d̂j as the 1− α quantile of the B values max∗1,j, . . . , max∗B,j.

Chang and Park [2003] and Swensen [2003] show that the above sieve bootstrap

scheme yields asymptotically valid bootstrap ADF tests in the sense that using the

α quantile of the bootstrap distribution of the τ ∗b,rn
as critical value asymptotically

gives a test with size α. By a continuous mapping theorem argument, we expect the

bootstrap to also consistently estimate the distribution of the max∗b,j and hence d̂j.

5We run the recursion for 30 initial observations before using the ∆r∗q,i,t to mitigate the effect
of initial conditions.
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Table I—Empirical Results

country τ̂i p-value Holm criterion
Mexico -4.334 < 0.001 0.0026
Finland -4.136 0.001 0.0028
Argentina -3.632 0.006 0.0029
Italy -3.344 0.015 0.0031
Norway -3.285 0.018 0.0033
Sweden -3.202 0.022 0.0036
UK -2.996 0.038 0.0038
Belgium -2.980 0.040 0.0042
Germany -2.957 0.042 0.0046
France -2.929 0.045 0.0050
Brazil -2.561 0.104 0.0056
Australia -2.544 0.108 0.0063
Netherlands -2.498 0.119 0.0071
Portugal -2.391 0.147 0.0083
Canada -2.202 0.207 0.0100
Spain -2.118 0.238 0.0125
Denmark -2.058 0.262 0.0167
Switzerland -1.349 0.604 0.0250
Japan -1.323 0.617 0.0500

4 Results

We now present the empirical results of an application of the modified Romano and

Wolf [2005] methodology to the PPP condition. We revisit the dataset used by

Taylor [2002], which includes annual data for the nominal exchange rate, CPI and

the GDP deflator. This dataset is particularly useful for our purposes because it

covers a long period, ranging from 1892 through to 1996. The countries contained

in our panel are given in Table I. We use the United States as the reference country

throughout and report results using CPI price series. See Taylor [2002] for further

details on data sources and definitions.

Using standard ADF unit root tests, we find rejections for 9 out of 19 countries at

the 5% critical value -2.94. See the first column of Table I. (The entries are sorted

for later use.) The number of lagged differences Ji in (2) is chosen with the data-
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dependent criterion of Ng and Perron [2001]. The findings of Taylor [2002] are very

similar.6 Evidence in favor of PPP is therefore at best mixed. Taylor [2002] then

argues that it may be possible to find more rejections in favor of PPP by employing

more powerful techniques. Our goal, on the other hand, is to investigate whether

some of the rejections are spurious in the sense that they would not occur when

taking into account the multiplicity of the testing problem.

As a preliminary step, we report results for the more classical techniques to control

the FWER, namely the Bonferroni and the Holm [1979] procedures. Recall that

the former rejects Hi if the p-value p̂i corresponding to the test statistic τ̂i satisfies

p̂i 6 α/N . The Holm [1979] procedure first sorts the p-values from smallest to

largest, p̂r1 6 . . . 6 p̂rN
. Relabel the hypotheses accordingly as Hrn . Then, reject

Hrn at level α if p̂rj
6 α/(N − j + 1) for all rj = 1, . . . , rn.7 The cutoff value for

the first hypothesis is identical for both methods, but unlike the Bonferroni method,

the Holm [1979] procedure uses gradually less challenging criteria for Hr2 , . . . , HrN
.

Nevertheless, it often has low power because it also fails to exploit the dependence

structure between the statistics.

The limit distribution of the ADF test statistics is a functional of Brownian motions

that cannot be evaluated analytically to obtain p-values. We therefore rely on re-

sponse surface regressions suggested by MacKinnon [1994, 1996] to obtain numerical

distribution functions of the test statistics. We report results in columns 2 and 3 of

Table I.

As expected, the number of rejections is now much lower. After controlling for mul-

tiplicity, we only observe rejections for Mexico and Finland for either method. These

6The small differences can be explained by different interpolation schemes for missing wartime
data, other lag selection criteria as well as the fact that we balance our panel.

7See Lehmann and Romano [2005] for a proof that the Bonferroni and the Holm method control
the FWER at level α.
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results indeed suggest that the Bonferroni and Holm procedures are conservative.

We therefore now turn to the results of the Romano and Wolf [2005] approach. The

algorithm presented in Section 2 yields d̂1 = 4.050, leading to a rejection for Mexico

and Finland. In the second round, we obtain d̂2 = 3.429, implying evidence in favor

of PPP for Argentina. Next, we find d̂3 = 3.252 such that we reject for Italy and

Norway. Finally, d̂4 = 3.075 means that we also reject the null in the case of Sweden.

Observe that the number of rejections is intermediate between the results for the

Holm and Bonferroni methods and that of the individual country results. In view

of the above discussion, we find that this result is rather plausible. Furthermore,

the ability of the Romano and Wolf [2005] method to detect several false hypotheses

in a stepwise fashion proved instrumental in improving upon the more traditional

multiple testing methods.

5 Conclusion

We have used recent advances in the multiple testing literature to make an attempt

to identify those countries for which Purchasing Power Parity (PPP) held over the

last century. The approach controls the multiplicity problem inherent in simultane-

ously testing for PPP on several time series, thereby avoiding spurious rejections.

It has higher power than traditional multiple testing techniques by exploiting the

dependence structure between the countries with a bootstrap approach. We use a

sieve bootstrap approach to account for nonstationarity under the null hypothesis.

On the other hand, our empirical results show that, plausibly, controlling for mul-

tiplicity leads to fewer rejections of the null of no PPP than if one tests the null on

each single time series at some level α. Specifically, we find rejections of the null of

no PPP for Mexico, Finland, Argentina, Italy, Norway and Sweden.
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Several open issues remain. Hlouskova and Wagner [2006] point out that bootstrap-

ping in a nonstationary framework is a “delicate issue.” It would therefore be inter-

esting to investigate the performance of other resampling techniques in the present

problem. Consider, for instance, block bootstrapping as in Psaradakis [2006].

Obviously, the present framework is fairly general and could be applied to other

macroeconomic questions such as savings-investment correlation or spot and forward

exchange rates [Mark et al., 2005] that have hitherto been dealt with using panel

techniques. Similarly, it is possible to accommodate problems that imply testing for

cointegration.
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