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Abstract. A major challenge for proxy vector autoregressive analysis is the
construction of a suitable instrument variable for identifying a shock of in-
terest. We propose a simple proxy that can be constructed whenever the
dating and sign of particular shocks are known. It is shown that the proxy
can lead to impulse response estimates of the impact effects of the shock of
interest that are nearly as efficient as or even more efficient than estimators
based on a conventional, more sophisticated proxy.
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1 Introduction

In proxy vector autoregressive (VAR) analysis, an instrument variable is
used to identify the impact effects of a structural shock of interest. The
instrument or proxy has to be relevant for the shock of interest and it has to
be exogenous to all other structural shocks. In other words, the proxy has to
be correlated with the shock of interest and it has to be uncorrelated with
all other structural shocks. Although proxy VAR analysis has become quite
popular lately (e.g., Stock and Watson (2012), Mertens and Ravn (2013),
Gertler and Karadi (2015), Piffer and Podstawski (2018), Caldara and Herbst
(2019), and further references in Kilian and Lütkepohl (2017, Chapter 15)),
the construction of a suitable proxy is often a main challenge because it
requires additional information from other sources than those captured in
the model.

As an alternative to constructing a proxy, one may consider using an
approach that was suggested by Wright (2012). He proposes to identify
a structural shock from the change in its variance due to specific events.
For example, a monetary policy shock may be more volatile at dates of
central bank council meetings. Using the heteroskedasticity for identification,
only the dates of the specific events must be known and there is no need to
construct a proper instrument variable associated with the specific events.

In this study, we propose to construct a dummy variable that assumes
values ±1 if a positive or negative shock occurs at the dates of the special
events, respectively, and that is zero otherwise. Hence, all we need to con-
struct this dummy variable is knowledge of the dates of the special events,
like in Wright’s approach, and the signs of the possible shocks that may have
occurred at the event dates. Such knowledge is available for a number of
shocks that have been used in structural VAR analysis. For example, some
crises in the Middle East are known to have caused disruptions in oil sup-
ply. Such information can be employed to construct a dummy variable for
identifying oil supply shocks. Likewise, there are a number of events such
as the 9/11 attacks on the US that have caused increases in economic un-
certainty and could be used for constructing a sign-based dummy to identify
uncertainty shocks.

Through simulation, we show that such dummy variables, referred to as
sign-proxies in the following, can be used as proxies for identifying structural
shocks and that they may yield estimates of the impact effects of the struc-
tural shocks of interest that are more precise in terms of root mean squared
error (RMSE) than the estimates obtained by Wright’s approach. In fact,
the sign-proxies often provide more precise estimates than conventional, more
sophisticated proxies that are not strongly correlated with the shock of in-
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terest. We use a model from Wright (2012) to illustrate the benefits in terms
of estimation efficiency from using a sign-proxy.

In Wright’s approach and in the standard proxy VAR approach, the im-
pact effects of the shock of interest and, hence, its impulse responses are
typically estimated by the generalized method of moments (GMM). Because
using more moment conditions may lead to more efficient GMM estimators
and since the two approaches for estimating the impact effects of the shock
of interest use different sets of moment conditions, combining the moment
conditions may lead to efficiency gains. Therefore we also consider this com-
bination approach. It turns out, however, that in the present situation, the
combination approach does not lead to uniform improvements of estimation
efficiency for the impulse responses.

The remainder of the paper is structured as follows. In the next section,
the general model setup is presented and the different estimators of the im-
pulse responses are discussed. In Section 3, a Monte Carlo experiment is
conducted to compare the small sample performance of the estimators. In
Section 4, a model due to Wright (2012) is reconsidered and the advantage
of using a sign-proxy is demonstrated. Conclusions are presented in the final
section.

2 The Structural VAR Setup

A K-dimensional reduced-form VAR model

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut (1)

is considered, where ut is a zero mean white noise process with two volatility
regimes associated with covariance matrices Σ0 and Σ1. The matrix Σ0 is the
usual covariance and it changes to Σ1 in M periods, where specific events
occur or announcements are made, i.e., when t ∈ T1 = {ta1 , . . . , taM}. In
other words, E(utu

′
t) = Σ0 for t /∈ T1 and E(utu

′
t) = Σ1 for t ∈ T1. A sample

yt, t ∈ T = {1, . . . , T}, is assumed to be available for inference.
The structural errors, wt = (w1t, . . . , wKt)

′, are obtained from the reduced-
form errors by a linear transformation wt = B−1ut or ut = Bwt such that
the structural matrix B represents the impact effects of the structural shocks
on the variables yt. The structural errors are assumed to be instantaneously
uncorrelated, i.e., wt has a diagonal covariance matrix.

Without loss of generality it is assumed that the first structural shock, w1t,
is the shock of specific interest and it is normalized such that it has a unit
impact effect on the first variable, whereas the other shocks, w2t, . . . , wKt,
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have unit variances. In other words, wt is a white noise process with zero
mean and covariance matrix

Σw
0 =

[
σ2

0 0
0 IK−1

]
for t ∈ T \T1 and Σw

1 =

[
σ2

1 0
0 IK−1

]
for t ∈ T1. (2)

Note that this setup, where only the variance of the first structural shock
changes, is not very common in the structural VAR literature. It is, however,
the basis for Wright’s heteroskedasticity approach to work, as explained later.
In contrast, the proxy VAR approach works under more general assumptions.
We still make the more restrictive assumption here to compare the proxy VAR
approach to Wright’s heteroskedasticity approach.

Denoting by bi the ith column of B, i.e., B = [b1, . . . ,bK ], the relation
ut = Bwt =

∑K
k=1 bkwkt implies under the present assumptions that

Σ0 = σ2
0b1b

′
1 +

K∑
k=2

bkb
′
k and Σ1 = σ2

1b1b
′
1 +

K∑
k=2

bkb
′
k.

Hence,

Σ1 − Σ0 = cWb1b
′
1, (3)

where cW = σ2
1 − σ2

0. The vector b1 contains the structural parameters of
interest. If b1 and the reduced-form VAR parameters from equation (1) are
known, the responses of the variables yt to the first structural shock can be
traced over time using the relations

θh = Φhb1, h = 1, 2, . . . ,

where θh is a (K × 1) vector of structural impulse responses for propagation
horizon h and Φi =

∑i
j=1 Φi−jAj can be obtained recursively for h = 0, 1, . . . ,

from the VAR slope coefficients starting with Φ0 = IK (Lütkepohl, 2005, Sec-
tion 2.1.2). Because estimation of the reduced-form VAR model in expression
(1) is straightforward, the focus of interest in the following is precise estima-
tion of the structural parameters b1.

As mentioned earlier, the first element of b1 is standardized to equal 1.
In other words, the impact effect of the first structural shock on the first
variable is standardized to one. This assumption is just a normalization
and does not entail a loss of generality if the first element of b1 is nonzero.
Denoting the last K − 1 elements of b1 by b12 such that b′1 = (1,b′12), we
focus on estimators of b12 in the following.
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2.1 The Proxy VAR Approach

The fact that the volatility of the first structural shock changes for periods
t ∈ T1 suggests that special shocks w1t occur in event periods. Based on this
observation, it may be possible to find an instrument that can be used for
estimating b12.

Suppose there is an instrumental (proxy) variable zt satisfying

E(w1tzt) = c 6= 0 (relevance), (4)

E(wktzt) = 0, k = 2, . . . , K (exogeneity). (5)

In that case, a multiple of b1 can be estimated by using zt as an instrument
and observing that E(utzt) = cb1. This setup assumes, however, that the
covariance E(utzt) is not affected by the change in the volatility of ut. In that
case, the relations in (4) and (5) provide moment conditions for estimating
a multiple of b1. An estimator for b1 may then be obtained by dividing all
elements of the estimator of cb1 by the first element.

More precisely, a GMM estimator is obtained by estimating the reduced-
form VAR in expression (1) by equation-wise ordinary least squares (OLS)
and using the proxy VAR estimator

b̂P
12 =

(∑T
t=1 û2tzt∑T
t=1 û1tzt

, . . . ,

∑T
t=1 ûKtzt∑T
t=1 û1tzt

)′
(6)

for b12. Here ût = (û1t, . . . , ûKt)
′ are the OLS residuals.

The instrument may be suggested by the subject matter. For exam-
ple, Piffer and Podstawski (2018) use changes in the price of gold to con-
struct an instrument for uncertainty shocks and Cesa-Bianchi, Thwaites and
Vicondoa (2020) construct a time series of intra-day price variation of the
3-month Sterling future contracts around policy decisions of the Monetary
Policy Committee of the Bank of England as a proxy for monetary policy
shocks. However, finding a good proxy that satisfies conditions (4) and (5)
for a shock of interest is not always easy. This problem is reflected in the fact
that, in some studies, the instrument is only available for a shorter period
than the sample period of the other variables in the model (see, e.g., Gertler
and Karadi (2015)).

If only certain dates of announcements or special events are available,
where specific shocks were transmitted, one may construct a simple dummy
variable

st =

{
sgn(w1t) · 1 for t ∈ T1,

0 for t /∈ T1,
(7)
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where sgn(·) denotes the sign function which assigns the sign of its argument.
Thus, st assumes a value of +1 or −1 depending on whether the special event
induces a positive or negative shock. In periods without known special events,
st = 0. Note that, if the shocks w1t, . . . , wKt are stochastically independent,
e.g., if they are Gaussian as sometimes assumed in the literature, st will also
be independent of w2t, . . . , wKt (see, e.g., Mood, Graybill and Boes (1974, p.
151, Theorem 3)). Hence, st qualifies as a proxy.

Constructing the sign-proxy st in this way assumes that the investigator
at least knows whether a positive or negative shock was induced in a specific
period. It may actually not always be clear which shocks are positive and
which ones are negative because the sign of a shock is typically linked to
some economic variable. For example, a positive (expansionary) monetary
policy shock is often associated with a reduction in the policy interest rate.
However, this indicator for monetary policy shocks is not available in times
of zero interest rates. For those periods, some other indicator is needed
to determine whether a policy shock is positive or negative. For example,
expansions in bond purchases may be linked to expansionary monetary policy
shocks. Of course, the sign of the shock may be inferred from a set of
variables. The important precondition for constructing the sign-proxy st
is that the researcher knows the date and the sign of the structural shock on
specific event dates.

It is also important to note that the signs of some proxy zt and a sign-
proxy st for the same shock may differ. As both proxies are correlated with
the first structural shock, w1t, zt and st will also be correlated with each
other. This does not mean, however, that they always assume values of the
same sign. It may be worth noting that constructing the dummy with reverse
signs makes no difference for our purposes. In other words, we may define

st =

{
−sgn(w1t) · 1 for t ∈ T1,

0 for t /∈ T1,

instead of using the st defined in expression (7). The crucial property of st
is that it has to be correlated with w1t. Whether or not the correlation is
positive or negative is not important for its usefulness as an instrument.

In fact, we also consider the situation where a researcher does not know
the sign of the shock for some event dates for sure and, hence, may occa-
sionally assign signs incorrectly. We denote by s

(m)
t a sign-proxy for which m

signs are classified incorrectly. Clearly, misspecifying some signs may under-
mine the correlation between the shock of interest and the sign-proxy and,
hence, it may weaken the proxy as an instrument for the shock.

The sign-proxy in (7) is clearly related to the specific shocks induced by
the special events and, thus, can be used just like a regular proxy to estimate
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the impact effects of the first shock w1t. In other words, the associated
sign-proxy estimator is

b̂SP
12 =

(∑T
t=1 û2tst∑T
t=1 û1tst

, . . . ,

∑T
t=1 ûKtst∑T
t=1 û1tst

)′
. (8)

If st is replaced by s
(m)
t , the corresponding estimator is denoted by b̂

SP (m)
12 .

2.2 Wright’s Heteroskedasticity Approach

Wright (2012) proposes another approach to estimate the impact effects of
the shock of interest. It has the advantage that just the dates of special
events or announcements have to be known. He suggests using the moment
conditions related to the variance change in (3) for GMM estimation. More
precisely, he proposes to minimize a GMM objective function analogous to

JW (b12, cW ) = vech(Σ̂1 − Σ̂0 − cWb1b
′
1)′

(
Ω̂0

T −M
+

Ω̂1

M

)−1

× vech(Σ̂1 − Σ̂0 − cWb1b
′
1),

with respect to the last K − 1 elements of b1 and cW . Here

Ω̂0 =
1

T −M
∑

t∈T \T1

vech
(
ûtû
′
t − ûû′

)
vech

(
ûtû
′
t − ûû′

)′
and

Ω̂1 =
1

M

∑
t∈T1

vech
(
ûtû
′
t − ûû′

)
vech

(
ûtû
′
t − ûû′

)′
.

The resulting estimator of b12 is denoted by b̂W
12 .

It is important to note that, although the moment conditions in equation
(3) and in (4)/(5) both specify a multiple of b1, they may not specify the
same multiple of b1. In other words, c and cW may be distinct.

2.3 Joint GMM

Because more moment conditions may improve the efficiency of GMM esti-
mators, it may make sense to consider the joint moment conditions

m(b12, cW , c) =

[
E(utzt)− cb1

vech(Σ1 − Σ0 − cWb1b
′
1)

]
= 0
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or to consider these moments relying on the sign-proxy and, hence, replacing
E(utzt) in the first block of moments by E(utst). Using

ûz =
1

T

T∑
t=1

ûtzt and ûs =
1

T

T∑
t=1

ûtst

as estimators of E(utzt) and E(utst), respectively, the GMM estimator is
obtained by minimizing the objective function

Jgen(b12, cW , c) = m̂(b12, cW , c)
′Ω̂−1

m m̂(b12, cW , c),

where Ω̂m is an estimator of the covariance matrix of the estimated moment
conditions m̂(b12, cW , c). For example, for the proxy zt, assuming that the
first and second part of the estimated moment conditions are asymptotically
independent, suggests a GMM objective function

J(b12, cW , c) = T
(
ûz − cb1

)′
Ω̂−1

uz

(
ûz − cb1

)
+ JW (b12, cW ), (9)

where

Ω̂uz =
1

T

T∑
t=1

(
ûtzt − ûz

) (
ûtzt − ûz

)′
.

Equivalently, one could minimize the objective function Jgen(b12, cW , c) with
weighting matrix

Ω̂m =

[
Ω̂uz

T
0

0 Ω̂0

T−M + Ω̂1

M

]
.

The resulting estimator is denoted by b̂WP
12 . Likewise, if the proxy zt is

replaced by the sign-proxy st, the corresponding estimator is denoted by
b̂WSP

12 .

In the next section, the estimators b̂P
12, b̂SP

12 , b̂W
12 , b̂WP

12 , and b̂WSP
12 of

the impact effects of the first structural shock are compared in a simulation
study.

3 Monte Carlo Investigation of Estimator Ef-

ficiency

3.1 Monte Carlo Design

For the Monte Carlo experiment, we have used different VAR data gener-
ating processes (DGPs), all giving qualitatively similar results. Therefore,
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we just present representative results for a DGP that is based on the em-
pirical example of Wright (2012). He considers a 6-dimensional VAR(1)
process for six different daily US interest rate variables estimated with data
from November 3, 2008, through September 30, 2011 (for more details see
Section 4). His sample size is T = 730. We use his dataset and model
and we use the estimated parameters for our DGP. The constant term is
ν = (0.156, 0.059, 0.030, 0.128, 0.184, 0.225)′ and the slope coefficient matrix
is

A1 =


1.028 −0.003 0.023 −0.014 0.032 −0.090
0.040 0.947 0.011 −0.008 0.022 −0.058
0.029 −0.041 1.001 −0.003 0.016 −0.039
0.019 0.000 0.006 0.947 −0.002 −0.008
0.008 0.007 0.003 −0.027 0.998 −0.028
0.046 −0.008 0.017 −0.011 0.031 0.886

 .

Its eigenvalues have a maximum modulus of 0.994 and, hence, the DGP is
stable but very persistent with several autoregressive roots very close to the
unit circle. We use samples of different size generated with this VAR(1)
DGP.

The impact effects matrix B is constructed using the Cholesky decomposi-
tion of the estimated residual covariance matrix, T−1

∑T
t=1 ûtû

′
t, and dividing

the first column by the upper left-hand element such that the first column
of B has a first element equal to one, as assumed in Section 2.

Wright (2012, Table 5) also constructs an instrument zt for a monetary
policy shock related to M = 28 event days. He uses the first principal compo-
nent of a set of bond futures traded at the Chicago Mercantile Exchange on
the announcement days and constructs a proxy for monetary policy shocks
on that basis. We construct our proxy such that it has similar properties
using

zt = w1t + vt for t ∈ T1, (10)

where vt is a measurement error that is assumed to be independent of w1t.
This type of proxy is also assumed in other proxy VAR studies (e.g., Caldara
and Herbst (2019), Lütkepohl and Schlaak (2020)). Note that the correlation
between the proxy and the first structural shock, corr(zt, w1t) = σ1/

√
σ2

1 + σ2
v

for t ∈ T1, depends on the variance σ2
v of vt. Hence, the strength of the

instrument will also depend on σ2
v . In the simulations, we use Gaussian

vt, i.e., vt ∼ N (0, σ2
v), and choose values for σ2

v such that the correlation
between zt and w1t is either 0.9 or 0.7 on event dates t ∈ T1. The former
value represents high correlation and is chosen to obtain a strong instrument
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while the second value of 0.7 results in a weaker instrument, as we will see
in the simulations where also tests for strong instruments are reported.

As we suspect that the performance of the different estimators depends
to some extent on the difference between the variances in the two regimes
(σ2

0 and σ2
1) and the number of announcement periods, M , of the sample,

we vary these characteristics of the first structural shock in constructing our
proxy. More precisely, we construct the first shock as

w1t =

{
N (0, σ2

1) for t ∈ T1,
N (0, σ2

0) for t ∈ T \ T1,
(11)

where we set σ2
0 = 1 and assign either the value 4 or the value 10 to σ2

1.
Thus, the standard deviations in the more volatile regimes are 2 and 3.16.
In other words, on event dates the shocks are either twice or about three
times as volatile as in other periods. The other shocks are also Gaussian,
(w2t, . . . , wKt) ∼ N (0, IK−1). The instruments zt and st are constructed
based on these structural shocks as in (10) and (7), respectively. For st we
also allow for the possibility that some shocks are classified incorrectly as
positive or negative. In that case we denote the estimator by b̂

SP (m)
12 , where

m signifies the number of incorrect sign assignments used for the sign-proxy.
The performance criteria for comparing different estimators are linked

to the last K − 1 elements of b1, i.e., to b12. We consider the root mean
squared errors (RMSEs) of the estimators for these elements, b̂SP

12 , b̂
SP (m)
12 ,

b̂W
12 , b̂WP

12 , and b̂WSP
12 , relative to the RMSE of b̂P

12. To compute the relative

RMSE of an estimator such as b̂SP
12 , we divide the RMSE of each element of

b̂SP
12 by the RMSE of the corresponding element of b̂P

12 and then add these

relative RMSEs to get the relative RMSE of the whole estimated vector b̂SP
12 .

Thereby we control for differences in the RMSEs of the individual elements
of a vector. For each simulation design, the experiment is repeated 10,000
times.

3.2 Simulation Results

Before looking at the relative RMSEs of the estimators, it may be worth
assessing the strengths of the different instruments. This should give a first
indication concerning the suitability of the different estimators for empirical
exercises.

3.2.1 Instrument Strength

We report the relative frequencies of heteroskedasticity-robust F -statistics
for weak instruments being smaller than 10 in our simulations (see Stock,
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Wright and Yogo (2002) or Kilian and Lütkepohl (2017, Section 15.2.1)).2 A
threshold value of 10 is typically used in the related literature to classify an
instrument as being sufficiently strong. Since our data are heteroskedastic,
we use a robust F -statistic. In Table 1 the relative frequencies of test values
below 10 are reported for the different proxies.

Table 1: Relative Frequencies of Heteroskedasticity-Robust Weak Instrument
F -test Statistics Smaller than 10 (in %)

Proxy variables

Sample size T M σ2
1 z

(.9)
t z

(.7)
t st s

(1)
t s

(3)
t s

(5)
t

100 10 4 3.4 36.3 4.6 60.6 99.8 100.0
10 0.2 36.2 4.4 60.2 99.8 100.0

20 4 0.1 13.0 0.0 3.5 49.1 93.2
10 0.0 12.9 0.0 3.4 48.7 93.3

250 10 4 3.3 36.0 4.3 61.1 99.8 100.0
10 0.2 35.8 4.3 60.9 99.8 100.0

25 4 0.0 7.2 0.0 0.3 17.9 67.5
10 0.0 7.1 0.0 0.3 17.8 67.5

500 25 4 0.0 7.0 0.0 0.5 17.4 67.1
10 0.0 6.9 0.0 0.5 17.4 67.1

50 4 0.0 0.1 0.0 0.0 0.0 0.0
10 0.0 0.1 0.0 0.0 0.0 0.0

Note: M denotes the number of event dates, σ2
1 the variance of the structural

shock of interest on event dates, z
(.9)
t a proxy with a theoretical correlation of 0.9

with the structural shock of interest on event dates, z
(.7)
t a proxy with a theoretical

correlation of 0.7 with the structural shock on event dates, st the sign-proxy, and

s
(m)
t denotes a sign-proxy with m incorrectly specified signs.

As discussed earlier, the strength of a proxy as an instrument depends
on its correlation with the shock of interest. Therefore, it is not surprising
that z

(.9)
t , which denotes the instrument having correlation 0.9 with the first

shock, produces F -values less frequently below 10 than the corresponding
instrument z

(.7)
t , which has only correlation 0.7 with the first shock. It is also

not surprising that both proxies result in fewer F -values below 10 when they
assume more nonzero values (i.e., the number of event dates, M , is greater),

2The robust F -statistic is the standard heteroskedasticity-robust statistic for testing
the coefficient of zt to be zero in a regression of the first OLS estimated reduced-form
error û1t on a constant and the instrument zt. The statistic corresponds to the effective
F -statistic of Montiel Olea and Pflueger (2013).
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when the sample size increases and when the variance σ2
1 of the first shock

in event periods is larger.
Interestingly, there are fewer F -values below 10 for the sign-proxy, st, than

for the proxy z
(.7)
t in all cases considered in Table 1. Taking into account the

generation mechanism of the proxy variable in equation (10), this outcome
is not implausible because for corr(zt, w1t) = 0.7, the sign of zt differs from
that of w1t in about 25% of the simulated values, whereas the sign of st is
always the same as that of w1t (see equation (7)) and, hence, st becomes a

stronger instrument than z
(.7)
t . Moreover, st has only slightly more F -values

below 10 than the proxy z
(.9)
t . For M = 25 event dates or more, or a sample

size of T = 500, both z
(.9)
t and st never yield F -values below 10. In other

words, in a usual proxy VAR analysis, the sign-proxy would be classified as
a strong instrument more often than the proxy z

(.7)
t and almost as often as

the proxy z
(.9)
t , which is apparently based on more detailed information.

The situation changes if some of the signs are assigned incorrectly, as can
be seen by looking at the frequencies reported for s

(1)
t , s

(3)
t , and s

(5)
t in Table

1. For instance, for T = 250, even the proxy z
(.7)
t produces F -values below

10 in only about 36% of the replications for M = 10 event periods, whereas a
sign-proxy with 3 incorrect signs out of 10, s

(3)
t , results in nearly all F -values

below the threshold of 10. On the other hand, when there are many event
periods with nonzero proxies, the sign-proxy maintains its strong instrument
status even with a few incorrect signs. For example, for T = 250 and M = 25
event dates, s

(3)
t is only classified as a weak instrument by the F -test in about

18% of the replications of our simulations. Not surprisingly, the sign-proxy
is not a useful instrument if half of the signs are incorrectly specified, as can
be seen by looking at the frequencies associated with s

(5)
t when there are only

M = 10 event periods. In that case, the robust F -statistic is always below
10.

In summary, using standard diagnostics, the sign-proxy may well be clas-
sified as a strong instrument as often as a conventional standard proxy even
if the standard proxy has quite high correlation with the shock of interest.
If the proxy is not strongly correlated with the shock, then the sign-proxy
clearly dominates under this criterion. Even if some signs are misspecified,
the F -test may classify the sign-proxy as a strong instrument more often
than the standard proxy if there are sufficiently many event dates. Since
the sign-proxy with correctly specified signs typically does not have a weak
instrument problem, we do not consider weak instrument robust methods,
as discussed by Montiel Olea, Stock and Watson (2020), for any of the esti-
mators for better comparability.
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3.2.2 RMSEs

The absolute RMSEs for the two standard proxy estimators b̂
P (.9)
12 and b̂

P (.7)
12

are presented in Table 2, where it can be seen that the estimation precision
declines substantially (the RMSEs increase), especially for sample sizes T =

100 and 250 if z
(.7)
t is used instead of z

(.9)
t .

Table 2: Absolute RMSEs of Proxy Estimators b̂
P (.9)
12 and b̂

P (.7)
12

absolute RMSEs

Sample size T M σ2
1 b̂

P (.9)
12 b̂

P (.7)
12

100 10 4 0.253 2.468
10 0.153 1.561

20 4 0.160 1.161
10 0.098 0.735

250 10 4 0.281 1.472
10 0.156 0.931

25 4 0.140 0.189
10 0.086 0.120

500 25 4 0.139 0.190
10 0.086 0.120

50 4 0.096 0.124
10 0.060 0.078

Note: M denotes the number of event dates and σ2
1 is the variance of the

structural shock of interest on event dates. The RMSE is calculated as√
1
N

∑N
n=1(b̂

P (.)
12,n − b12)′(b̂

P (.)
12,n − b12), where N denotes the number of Monte

Carlo simulations.

Relative RMSEs of the different estimators for the impact effects of the
shocks are presented in Table 3 for a proxy having a correlation of 0.9 with the
shock. Thus, the results in Table 3 refer to a highly correlated standard proxy,
z

(.9)
t , which is rarely classified as a weak instrument by the F -tests reported

in Table 1. Since the standard proxy uses the most detailed information,
we expect it to provide potentially more precise estimates and, therefore,
we report the other RMSEs relative to the corresponding RMSEs of the
estimator b̂

P (.9)
12 in Table 3.

Indeed, almost all of the relative RMSEs presented in Table 3 are larger
than 1, meaning that the RMSEs are larger than the corresponding ones
of b̂

P (.9)
12 . However, the sign-proxy estimator b̂SP

12 has relative RMSEs very
close to one such that the efficiency loss relative to the standard proxy VAR
estimator is very limited. This holds for all simulation designs considered in
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Table 3: RMSEs of Estimators for Impact Effects of the First Shock Relative
to the Corresponding RMSEs of b̂

P (.9)
12

relative RMSEs

T M σ2
1 b̂SP

12 b̂
SP (1)
12 b̂

SP (3)
12 b̂

SP (5)
12 b̂W

12 b̂WP
12 b̂WSP

12

100 10 4 1.01 1.49 109.45 292.51 71.99 1.43 1.42
10 1.06 1.55 114.45 305.92 22.44 1.71 1.73

20 4 1.08 1.22 1.63 4.34 30.41 1.47 1.41
10 1.11 1.25 1.67 4.46 76.10 1.65 1.49

250 10 4 0.91 1.44 272.10 318.03 20.41 1.32 1.31
10 1.04 1.63 304.39 358.18 8.34 1.75 1.73

25 4 1.09 1.20 1.49 1.99 33.23 1.59 1.11
10 1.12 1.23 1.52 2.04 7.31 1.81 1.58

500 25 4 1.10 1.20 1.49 2.00 50.50 1.89 1.80
10 1.12 1.23 1.52 2.05 325.24 2.35 1.49

50 4 1.11 1.15 1.26 1.39 9.03 1.22 1.23
10 1.13 1.18 1.29 1.42 5.76 1.16 1.13

Note: T signifies the sample size, M denotes the number of event dates and σ2
1 is

the variance of the structural shock of interest on event dates.

Table 3. In fact, in one case, the relative RMSE of the sign-proxy estimator
is even smaller than one. This situation arises for T = 250, σ2

1 = 4, and
M = 10. In other words, it happens for a case where the number of event
periods is very small relative to the sample size and the standard proxy is
occasionally classified as a weak instrument by the F -test in Table 1.

Looking at the columns of b̂
SP (1)
12 , b̂

SP (3)
12 , and b̂

SP (5)
12 in Table 3, it is ap-

parent that, if some of the signs are assigned incorrectly, the efficiency of the
sign-proxy estimator deteriorates, although the increase in relative RMSEs
is rather moderate in some cases if only one sign is incorrect. However, note
that, not surprisingly, the sign-proxy is no longer useful as an instrument if
50%, or even 30%, of the signs are incorrect (see the RMSEs for b̂

SP (3)
12 and

b̂
SP (5)
12 when M = 10). Additionally, the F -tests in Table 1 indicate that

such proxies are not sufficiently strong instruments for proper inference.
Looking at the RMSEs of Wright’s heteroskedasticity estimator b̂W

12 , it
is seen that they are much worse than those of the estimator based on the
standard proxy. In some cases, the deterioration in estimation precision is
rather extreme. For example, for a sample size of T = 500, M = 25 event
periods, and a shock variance in the event periods of σ2

1 = 10, the RMSE of
the Wright heteroskedasticity estimator is more than 300 times the RMSE of
the standard proxy. Generally, for all designs reported in Table 3, the Wright
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estimator is considerably less precise than the standard proxy estimator and
it is also much less efficient than the sign-proxy estimator. In many cases, its
RMSE is even larger than those of the corresponding sign-proxy estimators
with some incorrectly assigned signs.

In our simulations, the Wright heteroskedasticity estimator does not uni-
formly improve with increasing variance σ2

1 of the event dates. In some cases,

a larger σ2
1 results in a substantial reduction of the RMSEs of b̂W

12 (e.g., for

T = 100 and M = 10 in Table 3), whereas in other cases the RMSEs of b̂W
12

increase (e.g., T = 100 and M = 20 in Table 3). The substantial RMSE
increases may well be due to occasional poor estimates implied by difficul-
ties in the numerical computation of the estimates. Recall that computing
Wright’s estimator involves a nonlinear function optimization.

The estimation precision improves substantially, if the moment conditions
of Wright’s heteroskedasticity estimator are combined with the moment con-
ditions of the standard proxy or sign-proxy estimator (see the columns for

b̂WP
12 and b̂WSP

12 in Table 3). However, the resulting RMSEs are clearly larger
than one and, hence, these estimators are less precise than the standard
proxy estimator or the sign-proxy estimator. This outcome may seem some-
what surprising, given that b̂WP

12 and b̂WSP
12 are GMM estimators based on

more moment conditions than b̂P
12 and b̂SP

12 . The reason that b̂WP
12 and b̂WSP

12

are still less precise estimators may be that the GMM objective function for
these estimators is quite nonlinear and difficult to optimize. The optimiza-
tion algorithm may not always find the global minimum. In any case, if the
sign-proxy is available, there is nothing to be gained from also including the
Wright heteroskedasticity moment conditions.

In summary, the results in Table 3 show that, in many scenarios, the
sign-proxy estimator is almost as precise as the standard proxy estimator
even if the standard proxy is highly correlated with the shock of interest.
In contrast, the Wright heteroskedasticity estimator, which uses slightly less
information than the sign-proxy estimator, is much less precise.

Looking at the results in Table 4 for a standard proxy with lower cor-
relation of 0.7 with the shock of interest, it turns out that the sign-proxy
estimator in this case is by far the most precise estimator. For almost all
scenarios presented in Table 4, b̂SP

12 has by far the smallest RMSEs. All its
relative RMSEs are clearly smaller than one and, hence, they are substan-
tially smaller than those of the standard proxy estimator based on z

(.7)
t . Even

if one sign is specified incorrectly, all the relative RMSEs of the correspond-
ing estimator b̂

SP (1)
12 are smaller than one and, hence, the estimator is more

precise than b̂
P (.7)
12 . These results are quite plausible, given the finding in

Table 1 that st and even s
(1)
t is classified as a strong instrument more often
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Table 4: RMSEs of Estimators for Impact Effects of the First Shock Relative
to the Corresponding RMSEs of b̂

P (.7)
12

relative RMSEs

T M σ2
1 b̂SP

12 b̂
SP (1)
12 b̂

SP (3)
12 b̂

SP (5)
12 b̂W

12 b̂WP
12 b̂WSP

12

100 10 4 0.16 0.24 18.25 49.32 12.80 0.23 0.23
10 0.16 0.24 18.25 49.32 3.20 0.27 0.27

20 4 0.22 0.25 0.34 0.91 5.53 0.32 0.29
10 0.22 0.25 0.34 0.91 13.54 0.36 0.30

250 10 4 0.18 0.28 48.54 62.74 4.28 0.27 0.26
10 0.18 0.28 48.54 62.74 1.44 0.31 0.30

25 4 0.81 0.89 1.10 1.48 24.62 1.23 1.11
10 0.81 0.89 1.10 1.48 5.29 1.37 1.14

500 25 4 0.81 0.88 1.09 1.48 37.25 1.43 1.32
10 0.81 0.88 1.09 1.48 233.13 1.75 1.49

50 4 0.86 0.90 0.98 1.08 7.02 1.04 0.95
10 0.86 0.90 0.98 1.08 4.38 0.95 0.86

Note: T signifies the sample size, M denotes the number of event dates and σ2
1 is

the variance of the structural shock of interest on event dates.

than z
(.7)
t for a number of scenarios.

In contrast, the Wright heteroskedasticity estimator still has relative RM-
SEs greater than one for all scenarios. Thus, even a weaker instrument will
typically result in better estimators than the Wright estimator. Again, com-
bining Wright’s moment conditions with those of the proxy or sign-proxy
estimator improves the estimation precision considerably but does not result
in more precise estimators than the sign-proxy estimator.

Overall, the results in Tables 3 and 4 show that the sign-proxy estimator
is very competitive with the standard proxy estimator even though it uses
less detailed information on the shock of interest. If the standard proxy is not
very strong, the sign-proxy estimator provides much more precise estimates
(in terms of RMSE) than the standard proxy estimator. If the standard
proxy estimator is based on a strong instrument, the sign-proxy estimator
is still almost as precise as the standard proxy estimator. Thus, despite its
limited information requirement, it is an excellent choice for applied work.
It is clearly preferable to Wright’s heteroskedasticity estimator if the signs of
the shock are known.
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4 Monetary Policy at the Zero Lower Bound

To illustrate the relevance of our results for empirical work, we consider the
benchmark model of Wright (2012) who investigates the impact of US mon-
etary policy on longer-term interest rates at times when the policy rate is at
the zero lower bound. As mentioned in Section 3, Wright considers a VAR(1)
model. The following six daily US interest rates are included: (1) the 2-year
nominal Treasury zero-coupon yields, (2) 10-year nominal Treasury zero-
coupon yields, (3) five-year Treasury Inflation Protected Securities (TIPS)
break-even rates, (4) 5-10-year TIPS break-even rates, (5) Moody’s index of
AAA corporate bond yields, and (6) Moody’s index of BAA corporate bond
yields. The sample period runs from November 3, 2008, to September 30,
2011, giving a sample of size T = 730.

As mentioned in Section 3, Wright also constructs a proxy variable for
a monetary policy shock related to M = 28 announcement days based on
the first principal component of a set of bond futures traded at the Chicago
Mercantile Exchange (see Wright’s Table 1). We construct a sign-proxy with
values ±1 on event dates using the signs of the Wright-proxy. All other
elements are fixed at 0. In his analysis, Wright also considers the possibil-
ity of using only 13 especially important event dates around new phases of
quantitative easing. Since the number of event dates, M , was found to be
an important determinant of the estimation precision in the simulations, we
also consider a proxy and associated sign-proxy with only the 13 major event
dates written in italics in Wright’s Table 1.

We test the strength of both proxies and corresponding sign-proxies, pre-
senting the robust F -values in Table 5, where it can be seen that all proxies,
apart from the sign-proxy for M = 28, come with robust F -values well above
the threshold of 10. Thus, they would be classified as strong instruments in
a standard proxy VAR analysis. The sign-proxy for M = 28 yields a robust
F -statistic of 9.55, slightly missing the cut-off to be regarded as a strong
instrument. We also present the empirical correlations between the proxies
and the estimated first shocks on event dates in Table 5. Clearly, with −0.54
the correlation between the sign-proxy and the shock of interest is relatively
small for M = 28 event dates. All other proxies have stronger (negative)
correlations with their respective shocks. This result indicates that with
M = 28, we may be in a situation where, based on our simulation results
of Section 3, the corresponding Wright-proxy can be expected to yield more
precise impulse response estimates than the sign-proxy. On the other hand,
with M = 13, where both the Wright-proxy and the sign-proxy are classified
as strong instruments, the relative performance of the estimates b̂P

12 and b̂SP
12

is not clear a priori, although the correlation between the sign-proxy and the
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Table 5: Diagnostics for Proxy Strength

M = 28 event dates M = 13 event dates
Wright-proxy sign-proxy Wright-proxy sign-proxy

Robust F -statistic 49.90 9.55 51.18 19.09
Corr(proxy, shock) −0.89 −0.54 −0.90 −0.74

shock is weaker than the correlation between the Wright-proxy and the shock
which might suggest a superior performance of the Wright-proxy.

We estimate impulse responses of the monetary policy shock and use the
moving-block bootstrap (MBB) of Brüggemann, Jentsch and Trenkler (2016)
and Jentsch and Lunsford (2019) to construct confidence intervals around
the impulse responses estimated with the alternative estimators discussed in
Section 2.3

In Figure 1, we compare pointwise 90% MBB confidence intervals asso-
ciated with the Wright-proxy and the corresponding sign-proxy estimator
for M = 13. The shock is standardized such that it reduces the 10-year
Treasury yields by 25 basis points on impact. In most cases, the two esti-
mators yield very similar point estimates and confidence intervals. In some
cases, the confidence intervals based on the Wright-proxy are slightly smaller
than the corresponding intervals of the sign-proxy (e.g., the short-horizon
responses of the 2-year Treasury rates) and, in other cases, the situation is
reversed (e.g., the longer horizon responses of the 5-year break even rates).
Overall, there is not much to choose between the Wright-proxy and the sign-
proxy estimates. Thus, if there is any additional value from using the more
sophisticated Wright-proxy over the simple sign-proxy, it is very limited.

The impulse responses are also qualitatively the same as in Wright (2012)
(see, e.g., his Figure 1). The monetary policy shock does not have much of
an effect on 5-year break-even rates and lowers BAA and AAA yields by less
than 25 basis points. However, the confidence intervals in Wright’s Figure 1
are partly considerably larger than in our Figure 1. A more systematic com-
parison of Wright’s heteroskedasticity approach and the sign-proxy estimates
is given below.

In Figure 2, we present the impulse response estimates obtained with

3Wright (2012) uses a slightly different bootstrap. We use the MBB because Jentsch
and Lunsford (2019) show that it works under general conditions for inference for impulse
responses in proxy VARs. Our block length is ` = 25, which corresponds roughly to the
rule of thumb of ` = 5.03T 1/4 of Jentsch and Lunsford (2019). The confidence intervals
look very similar for a block length of 50 or using a residual wild bootstrap instead. The
details of our MBB implementation are provided in the Appendix.
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Figure 1: Wright-proxy and sign-proxy estimates of responses to 25 basis
points monetary policy shock with 90% MBB confidence intervals for M = 13
event dates.

proxies based on M = 28 event dates. As expected on the basis of our
simulation results in Section 3 and the F -statistics in Table 5, in this case
the Wright-proxy estimator yields overall smaller confidence intervals than
the sign-proxy estimator. However, in most cases, the conclusions regarding
the responses of the variables are again qualitatively the same. The only
exception is the initial response of the 5-10-year break-even rate, which is
marginally significantly negative if the Wright-proxy estimator is considered
while the sign-proxy confidence interval includes zero. Overall, the impulse
response bands in Figure 2 reflect what we also find in the simulations in
Section 3, namely that the decline in estimation precision can be rather
limited even if a sign-proxy is used instead of a strong conventional proxy,
which is constructed based on additional knowledge of the market structure.

In Figure 3, we show the impulse responses and 90% pointwise confidence
intervals of the Wright heteroskedasticity estimator and the sign-proxy esti-
mator based on M = 28 event dates. For most variables, we qualitatively
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Figure 2: Wright-proxy and sign-proxy estimates of responses to 25 basis
points monetary policy shock with 90% MBB confidence intervals for M = 28
event dates.

obtain the same results from both estimators which are also in line with
the results in Wright (2012). Note, however, that, e.g., for BAA and AAA
yields the sign-proxy intervals for the initial response periods are considerably
smaller than for Wright’s heteroskedasticity estimator. For the 2-year Trea-
sury yields, the sign-proxy also gives much smaller confidence intervals for
the initial response periods than Wright’s estimator, which is only marginally
significant at the 10% level. Instead, the sign-proxy intervals lie clearly away
from the zero line over the initial periods. Although both estimators yield
intervals that include zero for the impact effects on the 5-10-year beak-even
rate, the sign-proxy interval is again smaller than that of Wright’s estimator.
Thus, although the qualitative conclusions of Wright’s study are confirmed,
the precision of the inference can be improved by using the sign-proxy esti-
mator.

In Figure 4, the MBB confidence intervals of the two GMM estimators
b̂WP

12 and b̂WSP
12 which combine the moment conditions of Wright’s proxy
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Figure 3: Sign-proxy and Wright heteroskedasticity estimates of responses to
a 25 basis points monetary policy shock with 90% MBB confidence intervals
for M = 28 event dates.

and the sign-proxy, respectively, with the moment conditions of Wright’s
heteroskedasticity estimator are compared for M = 28 event dates. To com-
pare them to the Wright-proxy, we also show 90% confidence intervals for
the Wright-proxy estimator in Figure 4. Across all estimators the point esti-
mates of the impulse responses are very similar. For lucidity, we omit them in
Figure 4 and focus on the 90% pointwise confidence intervals. The bootstrap
confidence intervals of the two GMM combination estimators are practically
identical and they are also quite similar to the confidence intervals associ-
ated with the Wright-proxy estimator. In line with our simulation results in
Section 3, the intervals of the proxy estimator are slightly smaller in some
cases. Hence, as in our Monte Carlo simulations, judged by the size of the
confidence intervals, the GMM estimation precision of the sign-proxy and the
conventional proxy are practically the same when they are used in combi-
nation with Wright’s heteroskedasticity moment conditions. However, using
the conventional proxy estimator without the additional moment conditions
improves the precision slightly.
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Figure 4: Pointwise 90% MBB confidence intervals of Wright-proxy and
GMM combination estimators of responses to a 25-basis-points monetary
policy shock for M = 28 event dates. (Point estimates are omitted for lucid-
ity. They are all three very similar and well within the confidence intervals.)

Overall, the example reflects what we find in our Monte Carlo simulations
in Section 3. The sign-proxy estimator has considerable merit. It tends to
provide more precise inference than the Wright heteroskedasticity estimator.
It can even be as precise as the conventional proxy estimator, which requires
the construction of a suitable and possibly controversial strong proxy. As the
simulations show, the sign-proxy may even dominate the conventional proxy
estimator if the proxy is a weak instrument. Thus, the sign-proxy estimator
is an attractive choice for empirical structural VAR analyses.

5 Conclusions

This study contributes to the rapidly growing literature on proxy VAR mod-
els by proposing a proxy variable that is often easy to construct. The con-
struction of a suitable instrument for estimating the initial responses of a
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shock of interest is crucial in a proxy VAR analysis. The precision of the
estimates depends on the quality of the proxy, which has to be well corre-
lated with the structural shock and uncorrelated with all other shocks. Such
a proxy variable may be difficult to find in practice. Therefore, we propose
to construct a proxy that assigns ±1 for periods where special events occur
that are associated with a shock. A +1 is assigned for positive shocks and a
−1 is assigned for negative shocks. Thus, to construct the proxy, it is enough
to know the timing and direction of the induced shock.

Through simulation, we demonstrate that such a sign-proxy may produce
estimates of the impact effects of the shock that may be almost as efficient
as the estimator based on a more sophisticated strong proxy that can only
be constructed with substantially more information on the implications of
the special events. It turns out that the sign-proxy can provide a reasonably
precise estimator even if occasional errors are made in assigning the sign of
the shock. Moreover, we point out that the moment conditions implied by
the proxy variable can be supplemented by moment conditions from possible
volatility changes due to the special events. The combined moment condi-
tions can be used for GMM estimation of the impact effects of the shocks.
While this GMM estimator does not improve the estimation precision in some
of our simulations, it may have merit if the resulting GMM objective function
can be minimized with sufficient reliability. In any case, the sign-proxy or
combination estimator can be considerably more precise than an estimator
that is based only on the volatility changes induced by the special events.

We illustrate the benefits of using the sign-proxy by investigating the
impact of US monetary policy shocks on longer-term interest rates in times
of a zero policy interest rate. It is shown that bootstrap confidence intervals of
the impulse responses based on the sign-proxy estimator or the combination
estimator are, in many cases, clearly smaller than competitors based only on
the volatility changes. The sign-proxy can even yield more precise estimates
than a conventional proxy estimator. Thus, the sign-proxy estimator is an
attractive choice in empirical structural VAR analyses because it requires
only very limited information external to the VAR model of interest.

Appendix. Implementation of the Moving-

Block Bootstrap

Bootstrap samples are generated by a moving-block bootstrap (MBB), as in-
Jentsch and Lunsford (2019). In the following, û1, . . . , ûT are the estimated
reduced-form VAR OLS residuals and z1, . . . , zT are the observed proxy val-
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ues.
Let ` < T be the block length for the MBB. Then s = [T/`] is the number

of blocks required for constructing a bootstrap sample of yt. Here [·] denotes
the smallest number greater than or equal to the argument such that `s ≥ T .
Blocks of length ` of residuals are arranged as follows:

(
û1

z1

) (
û2

z2

)
. . .

(
û`
z`

)
(
û2

z2

) (
û3

z3

)
. . .

(
û1+`

z1+`

)
...

...
...(

ûT−`+1

zT−`+1

) (
ûT−`+2

zT−`+2

)
. . .

(
ûT
zT

)


.

Then s of the rows of the matrix are drawn with replacement and these draws
are joined end-to-end and the first T residuals and proxies are retained,(

u∗t
zMBB
t

)
, t = 1, . . . , T.

The u∗t are recentered as

uMBB
j`+i = u∗j`+i −

1

T − `+ 1

T−∑̀
r=0

ûi+r

for i = 1, 2, . . . , ` and j = 0, 1, . . . , s − 1 and the bootstrap residuals and
proxies are obtained as(

uMBB
t

zMBB
t

)
, t = 1, . . . , T.

The bootstrap sample is then sequentially generated as yMBB
t = ν̂+Â1y

MBB
t−1 +

· · · + Âpy
MBB
t−p + uMBB

t , t = 1, . . . , T , starting from p randomly chosen con-
secutive sample values, yMBB

−p+1 , . . . , y
MBB
0 .

When N bootstrap samples y
(n)
−p+1, . . . , y

(n)
0 , y

(n)
1 , . . . , y

(n)
T and z

(n)
1 . . . , z

(n)
T ,

n = 1, . . . , N , are available, then the following steps are used for each sample
n to obtain bootstrap impulse response estimates:

1. A VAR(p) model is fitted to the sample, giving bootstrap estimates
Â(n),

Φ̂
(n)
i =

i∑
j=1

Φ̂
(n)
i−jÂ

(n)
j , i = 1, . . . , H,

and residuals û
(n)
t .
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2. Bootstrap estimates b̂
(n)
1 are computed with all the alternative estima-

tion methods using T1 = {t|zt 6= 0} for the Wright heteroskedasticity
estimator and associated combination estimators.

3. Bootstrap estimates of the impulse responses of interest are computed
as

Θ̂(H)(n) = [b̂
(n)
1 , Φ̂

(n)
1 b̂

(n)
1 , . . . , Φ̂

(n)
H b̂

(n)
1 ]

and stored.

The N bootstrap estimates Θ̂(H)(1), . . . , Θ̂(H)(N) are used to construct
pointwise confidence intervals from the relevant quantiles of the bootstrap
distributions of the individual elements.
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