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Abstract

In current power markets, the bulk of electricity is sold wholesale and transported

to consumers via long-distance transmission lines. Recently, decentralized local power

markets have evolved, often as isolated networks based on solar generation. We ana-

lyze strategic pricing, investment, and welfare in local power markets. We show that

local power markets with peer-to-peer trading are competitive and provide efficient in-

vestment incentives, even for a small number of participating households. We identify

positive network externalities that make larger markets more attractive but lead to in-

efficiencies where networks compete. Collectively, our results present a set of positive

efficiency results for peer-to-peer electricity markets.
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1 Introduction

Electricity access for all has become a major topic for international energy, climate, and

regulatory policy. Especially in developing economies, micro-grids based on solar genera-

tion increasingly provide rural areas with electricity. Local peer-to-peer markets, eventually

separated from large scale power grids, have however also been field-tested in established

electricity systems, that traditionally consisted of complex vertical and sequential market

arrangements (Wilson, 2002).

In this article, we provide a model for studying electricity provision through peer-to-

peer trading in local power markets. The model allows to analyze pricing behavior and

investment incentives in local power markets, and to compare welfare implications that

arise from network externalities and different market outcomes in the upstream market for

generation and network technologies.

The results that we derive are substantially different from equilibrium models that seek to

describe traditional power market architectures, composed of top-down vertical generation,

transmission, and retail supply chains. For example, we show that local power markets

yield competitive market prices. Importantly, this result holds for a small number of market

participants (i.e., households) and despite strategic pricing behavior by all participating

households. Furthermore, we find that positive network externalities arise and make larger

markets relatively more attractive.

Next to the efficiency of decentralized planning and trading, paramount questions sur-

rounding the design and regulation of local power markets pertain to the use of different

and incompatible technology standards. Networks in rural areas have often started at low

levels of power and quality, typically using simple and easily accessible direct current (DC)

technology. With increasing demands and capital costs, alternating current (AC) network

standards become feasible, allowing for higher voltage levels and higher peak and average
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consumption. Because we identify positive network effects in local power markets, different

technology standards can separate markets and attenuate welfare.

In the environment that we study, households can decide to participate in a local market

for electricity. Households participate by demanding electricity from the local network or

by investing in generating plants, here solar plants, that add supply to the local network.

Households that have invested in generation capacity can be net-selling or net-buying from

the market, depending on whether their generation covers more or less than their consump-

tion. Given aggregate household demand and aggregate solar supply, the market constitutes

an equilibrium price for electricity. We model market clearing using a demand function

approach. Having characterized pricing and investment equilibria in local power markets,

we subsequently analyze implications that arise from two competing networks that operate

with different technologies. Finally, as an extension, we model storage devices, that typically

accompany local networks with the aim to arbitrage.

Our findings constitute a set of positive efficiency results for local power markets. We

find that the equilibrium price for electricity in the local market is perfectly competitive.

While both net-buying and net-selling households exercise strategic pricing, their strategies

cancel out and the market price is competitive even with only a few participating households.

In essence, households engage in demand reduction in a similar fashion as in Ausubel et al.

(2014). Where households have invested in production plants and are net-sellers to the

market, they however inflate their demand to push up market prices. Because we show

that strategies are symmetric, demand reduction and demand inflation cancel out, insuring

efficient pricing and allocation.

Furthermore, because equilibrium prices are competitive, households’ investment incen-

tives are efficient and yield aggregate market investment that maximizes welfare — if only one

network exists. Conversely, if networks compete, network externalities can lead to inefficien-

cies. This is because households do not account for their positive externality on neighboring
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households, causing inefficient entry decisions into competing networks and deteriorating the

efficiency of local power markets.

Our work contributes to several strands of research. First, our findings contribute to the

large literature on electricity market architecture. Beginning with the deregulation of this

sector, this literature has paid significant attention to the various levels of the traditional

supply chain, such as on wholesale markets (Newbery, 1998; Wolfram, 1999; Borenstein et al.,

2000; Fabra et al., 2006; Bushnell et al., 2008; Reguant, 2014; Schwenen, 2015; Holmberg and

Wolak, 2018), retail markets and consumer behavior (Joskow and Tirole, 2006; Allcott, 2011;

Allcott and Rogers, 2014; Giulietti et al., 2014), network regulation (Joskow, 2008; Tanger̊as,

2012), and, more recently, distributed generation (Brown and Sappington, 2017). We add to

this literature by providing a model on the efficiency of local power markets, where strategic

households simultaneously act as producers, consumers, and traders, and where we abstract

from the canonical producer to consumer, wholesale to retail market architecture.

We also relate to the recent literature on the electrification of rural areas. Dinkelman

(2011) finds positive effects on employment of a large grid connection plan in South Africa

in the 1990’s. Lee et al. (2020) provide experimental evidence on the effect of electrification

in rural Kenya, and identify scale economies of connecting households to the power grid. Re-

porting evidence from rural India, Aklin et al. (2016) find that only a few hours of additional

electricity supply increases household satisfaction substantially. We add with a theoretical

study to this growing empirical literature on electrification. To our knowledge, no analytical

model has so far been developed to understand efficiency and regulatory requirements for

the electrification through local power markets.

Last, our model adds to the literature on bidding strategies in markets that follow double

auction formats. Beginning with Wilson (1979) and Klemperer and Meyer (1989), this liter-

ature has started analyzing market interaction via demand and supply function equilibria.

In many cases, the supply function framework has been used to study wholesale power mar-

4



kets (Green and Newbery, 1992; Baldick et al., 2004; Hortacsu and Puller, 2008; Hortaçsu

et al., 2019). Recently, demand function equilibria have been used to model strategies of

traders in sequential double auctions (Du and Zhu, 2017). While our model draws from

the demand function equilibrium approach, we amend this framework to study peer-to-peer

markets, which have previously been researched in the context of internet-based platforms

such as Uber, eBay, and Airbnb (Einav et al., 2016).

The remainder is organized as follows. Section two presents a model for local power

markets. In section three, we study competition in the upstream market for solar modules

and network technologies. Section four presents extensions. Section five concludes with

policy implications.

2 A model of local power markets

Market participants and technology. Figure 1 shows the basic market environment: We

study a local power market with n households. Each household has demand for electricity

and can invest in generation assets (here solar plants) to generate and consume electricity. In

case of excess electricity, each household can sell to all n− 1 neighbors via a common micro-

grid. Vice versa, when own generation capabilities are exhausted, each household can buy

electricity from its neighbors. Depending on the amount of installed solar plants relative to

aggregate demand, local power trade establishes an equilibrium price for electricity. Finally,

one or several storage units can operate in the local market. Storage units buy and sell

electricity with the aim to profit from arbitrage. In the following, we first focus on the

interaction between households in this peer-to-peer market and introduce storage further

below.

In expectation of the equilibrium price and resulting consumption utility and costs (profit)

from buying (selling) electricity, households decide on their optimal amount of plants to be
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installed and connected to the local grid. We model the outside option from not buying

plants as the costs of purchasing electricity from the local market. Hence, the outside option

is endogenous to the investment and consumption choices of all neighbors.

Figure 1: Schematic representation of local power market with solar plants and storage.

The utility of each household i is denoted as Ui(xi, εi) and increases in power consumption

xi. In addition, utility depends on the realization of an idiosyncratic error term, εi, known

only to household i. For this reason, the demand of neighboring households is unknown and

the equilibrium power price is uncertain.

Local consumption and trade. We consider a market where households announce their

demand for electricity, while supply is determined by all generating resources that are con-

nected to the local grid. Hence, all production units are pooled, produce at full output, and

cannot be used strategically. Finally, aggregate demand and supply determine the price for

electricity, equilibrium consumption, and net-selling (buying) positions of each household.1

Households simultaneously decide on their consumption schedule Xi(p, εi) that specifies

their demand from the local grid at each price p. In equilibrium, each household consumes

Xi(p
∗, εi) where p∗ is the equilibrium price that equates supply and demand. Formally, the

1Detailed parameters for announcing demand may vary in practice. Households may submit time-variant
demand functions or condition demand on other variables than price. We abstract from multi-dimensional
demand schedules and focus on the standard case of price-quantity demand functions.
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equilibrium price is given by

p∗ :
∑

Xi(p, εi) =
∑

qi, (1)

with qi being the installed generation capacity of household i. A household’s profit from

trading electricity becomes p(qi − Xi(p, εi)). Consequently, the quasi-linear utility from

consumption and trade is

Ui (Xi(p, εi), εi) + p(qi −Xi(p, εi)). (2)

Suppose that the idiosyncratic consumption shock εi is drawn from a distribution F prior

to submitting demand schedules. The support of εi is equal for all households, finite with

εi ∈ [−εo, εo], and symmetric around E[εi] = 0. Because the type of each neighboring

household (i.e., their realized demand) and therefore the clearing price is unknown prior to

announcing demand, strategies must be Bayesian-Nash optimal. Households must maximize

expected utility and, before deciding on Xi(p, εi), form an expectation on aggregate demand

and the equilibrium price.

To capture the uncertainty in price, conditional on household i’s demand function, we

draw from the auction literature (Wilson, 1979; Hortacsu and Puller, 2008) and use the mar-

ket clearing condition in equation (1) to map randomness from demand to price. Specifically,

the distribution function of the equilibrium electricity price p∗, given household i’s demand

Xi at price p, becomes

Hi(p,Xi(p, εi)) = Pr (p∗ ≤ p | Xi)

= Pr

(∑
j 6=i

Xj(p, εj) +Xi ≤
∑

qi

∣∣∣∣ Xi

)
, (3)

where j indexes all households except household i. The distribution function Hi states

the probability that p∗ ≤ p, this is, the probability that supply is larger than demand at
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this price. The support of Hi on [p, p̄] depends on the support of all idiosyncratic demand

shocks.

Using this probability measure, the expected utility of household i can be written as

EUi =

∫ p

p

[Ui (Xi(p, εi), εi) + p(qi −Xi(p, εi))] dHi(p,Xi(p, εi)). (4)

Households maximize expected utility by specifying optimal demand over the range of possi-

ble prices. In optimum, a household is indifferent between shifting demand from one possible

price level to another. Formally, optimality is given by the Euler-Lagrange first order con-

dition, which after rearranging yields:

∂Ui(Xi(p, εi), εi)

∂Xi

− p = (qi −Xi(p, εi))
HXi

(p,Xi(p, εi))

Hp(p,Xi(p, εi))
, (5)

where HXi
and Hp are the derivatives of Hi with respect to Xi and p.2 To interpret the

optimality condition in equation (5), note that Hp is the probability density function of

price and must be positive. In contrast, HXi
must be negative, because additional demand

decreases the likelihood that the price is below any given value. Consequently,
HXi

Hp
< 0, and

equation (5) shows that in equilibrium households that are net-sellers to the local market

must have marginal utility from consumption below the market price. We summarize this

finding in the following Proposition.

Proposition 1. Households that are net-sellers to the local market mark-up sales above

their marginal utility of consumption. Households that are net-buyers from the local market

mark-down demand below their marginal utility of consumption, i.e.,

∂Ui(Xi(p, εi), εi)

∂Xi

< p ⇐⇒ qi > Xi(p, εi)

2We implicitly assume that for all qi and εi we have Xi > 0 and p ≥ 0.
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∂Ui(Xi(p, εi), εi)

∂Xi

> p ⇐⇒ qi < Xi(p, εi).

Proof. The result follows from equation (5). A detailed proof is shown in Appendix A.

The optimality condition suffices for computing the equilibrium demand strategies, given

model primitives for household utility on the left hand side of equation (5). Notice that in

addition the derivatives of Hi on the right hand side of equation (5) depend on the functional

form of utility and its corresponding demand function. For this reason, equation (5) can only

in few cases be evaluated analytically (Hortaçsu, 2011).

In proceeding, we assume utility that exhibits saturation and results in linear demand.

We view linear demand schedules to be a good approximation for consumers that stick

to simple rather than more complex, nonlinear demand heuristics when submitting their

willingness to pay to the market.3 Specifically, we assume utility of

Ui (xi, εi) = (θi + εi)xi −
1

2
x2
i , (6)

with ∂Ui(xi,εi)
∂xi

= θi + εi − xi. The parameter θi represents a household’s maximal willingness

to pay (for εi = E[εi] = 0) and can be viewed as a parameter that specifies household size.

We rank households sizes as θ1 > θ2 > ... > θn.

Given true willingness to pay of θi + εi − xi as indicated above, we allow each household

to shade its demand and announce a linear demand function of the form

Xi(p, εi) = αi + βiεi − γip, (7)

where αi, βi, and γi are choice variables for each household. Put differently, households

can hide their reservation value by announcing αi instead of θi and can shade their sensitivity

3Linear bid functions are in line with solutions proposed by Baldick et al. (2004) on supply function
equilibria. Also Du and Zhu (2017) focus on linear demand equilibria when analyzing traders who operate
in sequential double auctions.
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to the error term and price by choosing βi and γi.

Recalling equation (5), the probability of affecting the market price by announcing higher

or lower demand can now be written as HXi
= −1. In addition, the density function of price

yields Hp =
∑
γ−i with

∑
γ−i =

∑
j 6=i γj. We provide detailed derivations in Appendix A.

Substituting
HXi

Hp
and equation (7) into the first order condition in (5) yields

θi + εi − (αi + βiεi − γip)− p = (qi − (αi + βiεi − γip))
−1∑
γ−i

. (8)

As shown in Appendix B, for n ≥ 3 coefficient matching yields equilibrium demand functions

X∗i (p, εi) with

αi =
qi + θi

∑
γ−i

1 +
∑
γ−i

and βi = γi =

∑
γ−i

1 +
∑
γ−i

. (9)

This equilibrium is in stark contrast to truthful demand of αi = θi and βi = γi = 1. As

can be seen, bid shading for the reservation value, αi, depends on the household’s amount

of solar plants. Moreover, the steepness of household i’s demand function, γi, depends on

the slope of other households’ demand functions. This is intuitive because in equilibrium

each household optimizes its demand schedule vis-à-vis the slope of its residual supply, which

in turn is determined by the demand functions of its neighbors. This equilibrium feature

reveals the complementarity in demand strategies: The more price-sensitive the demand

of household i’s neighbors becomes (the more
∑
γ−i in equation (8) increases), the less can

household i impact the market price and thus has little incentives to deviate from announcing

true marginal utility. As stated in the following Proposition, this complementarity results

in symmetric equilibrium demand.

Proposition 2. In equilibrium, households submit symmetric demand functions, conditional

on their size θi and installed generation capacity qi. In markets with n ≥ 3, the equilibrium

demand function parameters are
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(1) γ∗i = n−2
n−1

(2) β∗i = n−2
n−1

(3) α∗i = qi+θi(n−2)
n−1

.

With n < 3, no trade occurs in the local market and each household consumes its own

electricity.

Proof. First, we show in Appendix B that trade ceases for n < 3. For n ≥ 3 and given

symmetry, rearrange γi from equation (9) to γi =
∑
γ−i

1+
∑
γ−i

= (n−1)γi
1+(n−1)γi

∀ i. Solving for γi

yields γ∗i = n−2
n−1

. The equilibrium parameters α∗i and β∗i follow immediately. In Appendix C,

we show that asymmetric strategies cannot exist if γi > 0.

How does the magnitude of demand reduction change in market size, this is, as the number

of households increases? From Proposition 2 it follows that lim
n→∞

α∗i = θi and lim
n→∞

β∗i =

lim
n→∞

γ∗i = 1. Hence strategic demand shading ceases for a large number of neighbors. Notice

that βi and γi approach 1 from below. In addition, for any qi ∈ [0, θi] (as reasonable to

assume), αi approaches θi from below.

Figure 2 illustrates equilibrium demand functions for three households so that βi = γi =

1
2
. Panel (a) depicts true demand (solid line) and strategic demand (dashed line) for a

representative household with θi = 4, εi = 1, and qi = 0. Panel (b) shows true demand

(solid line), strategic demand (dashed line), and solar capacity (dotted horizontal line) for a

household with θi = 4, εi = 1, and qi = 1.

As can be seen in panel (a), households that do not produce electricity strategically

announce lower demand at any price. This strategy is similar to standard demand reduction

equilibria (e.g., Ausubel et al., 2014), where bids for the first unit are equal to marginal

utility and demand is more understated for each additional unit. As apparent in panel (b),

also the household with qi = 1 strategically reduces demand. However, as compared to the
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Figure 2: Demand functions for a local market with three households.

(a) θi = 4, εi = 1, qi = 0 (b) θi = 4, εi = 1, qi = 1

demand curve of its neighbors with no solar output, this household shifts demand upward in

a parallel fashion, thereby increasing the market price to its favor. For all Xi(p, εi) > qi = 1

this household demands electricity at prices lower than marginal utility, while for Xi(p, εi) <

qi = 1 it is willing to sell electricity at a mark-up on marginal utility.4

Using Proposition 2 and equation (7), the equilibrium demand schedule becomes

X∗i (p, εi) =
n− 2

n− 1
(θi + εi − p) +

1

n− 1
qi, (10)

and the market clearing condition in (1) yields

n∑
i

(
n− 2

n− 1
(θi + εi − p) +

1

n− 1
qi

)
=

n∑
i

qi. (11)

The equilibrium price is

p∗ =
1

n

n∑
i=1

(θi + εi − qi). (12)

4Figure 2 in addition shows that for trade to take place, the market price must be above the price at
which at least for one household Xi(p, εi) < qi holds. In turn, buying households must have marginal utility
higher than this price.
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and depends only on market fundamentals. We summarize this finding in the next corollary.

Corollary 1. The equilibrium market price is independent of demand reduction strategies

and only depends on market fundamentals for demand, θi and εi, and supply, qi of all house-

holds i = 1, .., n. Demand functions determine market shares in consumption at the compet-

itive market price.

The equilibrium price is independent of bid shading, because strategies of net-buying

and net-selling households cancel out. To see this, consider the case where n− 1 households

have zero supply and only one household i generates electricity. In equilibrium, the market

supply from household i of qi−Xi(p, εi) must equal demand of the n− 1 buying households,∑
X−i(p, ε−i). The demand reduction of the buying households will be exactly offset by the

selling household. This requires that the selling household reduces its supply by announcing

higher demand and consuming more electricity. The household consumes more electricity,

because the cost of consumption declines when at the same time the price of its supply

increases.

Finally, the expected power price follows from equation (12) and when recalling that

E[εi] = 0. Whereas the expected power price is always competitive, investment still matters

for households, because the distribution of generation assets among households determines

their consumption shares.

Investment incentives and network effects. Next, we derive investment incentives

and investigate whether network externalities arise in local power markets. We consider

investment to take place prior to market clearing and prior to announcing demand. At the

investment stage, households consequently do not know their realized demand shock εi. In

addition, households have to form a prior on the demand shock of their neighbors.

To separate out the different demand shocks, define
∑

j 6=i εj := Ψi with gi(Ψi) being

the density function of Ψi. Recalling that εi ∈ [−εo, εo], g must be distributed in [−(n −
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1)εo, (n − 1)εo]. Using this definition, the equilibrium price in (12) can be rewritten as

p∗ = 1
n

[Ψi + εi +
∑

i (θi − qi)]. Household i finds its optimal investment by maximizing

expected utility in (4) net of investment costs, weighted over all possible demand shocks:

E[EUi] =

∫ εo

−εo

∫ (n−1)εo

−(n−1)εo

[Ui(Xi(p
∗, εi), εi) + p∗(qi −Xi(p

∗, εi))] g(Ψi)dΨif(εi)dεi − psqi (13)

where ps is the market price for solar units. The first order condition for household i’s

optimal investment choice becomes5

qi = θi − (n− 1)ps −
n− 2

n

∑
i

(qi − θi) . (14)

Equation (14) shows that individual investment in solar plants is a strategic substitute to

aggregate market investment. Summing up the optimality condition over all n households,

we obtain
∑
qi =

∑
θi − n

(
(n− 1)ps − n−2

n

∑
(qi − θi)

)
. Solving this expression for

∑
qi

yields aggregate equilibrium investment of

∑
i

q∗i =
∑
i

θi − nps. (15)

Last, when substituting the aggregate equilibrium investment in (15) into the expression

for optimal investment of household i in (14), rearranging yields q∗i = θi−ps. This solution is

straightforward: each household only invests in solar plants as long as its maximum valuation

for electricity, θi, is above the price of solar plants. We summarize this finding in the next

Proposition.

Proposition 3. Household i’s equilibrium investment in generation assets is qi = θi − ps.

Proof. The result follows from equation (15) and is derived in full in Appendix D.

5We focus on interior solutions.
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It follows that larger households contribute with relatively more supply to the local

market.

Corollary 2. Individually optimal investment maximizes welfare.

Corollary 2 follows from evaluating
∑

i E[EUi]

∂qi
= 0, which parallels the solution in equation

(15). We formally proof this result in Appendix D.

Using Proposition 3 and equation (12), the equilibrium power price —given optimal

investment— eventually becomes p∗ = 1
n

∑
i(εi + ps). With E[εi] = 0, the expected power

price of the local market simply is

E[p∗] = ps, (16)

implying that, for optimal investment levels, the expected electricity price in local power

markets equals the costs of generation assets.

Finally, substituting the equilibrium investment into equation (13), we obtain the ex-

pected utility of household i as

E[EU∗i ] =
1

2

(
(θi − ps)2 +

n− 2

n− 1
σ

)
, (17)

where σ denotes the variance of the demand shock, E[ε2
i ]. The first expression represents

consumer surplus, while the second expression signals positive network effects.6 Network

effects exist, because the expected utility depends positively on the total number of market

participants.

Corollary 3. Positive network externalities exist in local power markets. A household’s

utility increases the more households participate in the local market.

As a result, positive network externalities make larger networks relatively more attractive

to consumers, and competing networks can harm welfare if technologies are not compatible.

6For instance, with εi being uniformly distributed and Ψi following an Irwin-Hall distribution, expected
utility equals 1

2 (θi − ps)2 + n−2
6(n−1)ε

2
0.
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We explore the welfare implications of suppliers with different network technologies in the

next section.

3 Competition among network suppliers

We use this section to show how differentiated products in the upstream market for solar

modules can deteriorate the positive efficiency results we have obtained so far. As argued,

technologies can follow alternating current (AC) or direct current (DC) standards. On the

one hand, the provision of solar plants connected to high-quality AC grids can increase wel-

fare. On the other hand, a separated market where some households remain in DC networks

while others opt into separate AC networks can downsize positive network externalities. In

what follows, we investigate this welfare trade-off and explore conditions that yield optimal

welfare when networks with different technologies compete.

To fix ideas, assume that there exists a high-quality technology (e.g. solar plants and

grid equipment that use AC technology) and a less expensive but inferior technology (e.g.

solar plants and grid equipment that use DC technology). The two technologies are not

compatible so that the market may potentially separate. We introduce the difference in

quality by stating

θi ≡

 θi if using high-quality technology

ωθi if using low-quality technology
(18)

with 0 < ω < 1. The high-quality technology is available at price pHs while the low-quality

technology costs pLs per module. Prices are competitive and each local market is a price-

taker. Furthermore, we assume that the choice between either technology in a local market

does not change the “global” relative prices for each technology.
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Participation incentives. Denote the number of households in the high-quality network

as m. From equation (17), the expected utility of household i in the high-quality network

becomes

E[EUH
i ] =

1

2

((
θi − pHs

)2
+
m− 2

m− 1
σ

)
. (19)

The competing low-quality network hence consists of n − m households and the expected

utility of household i when being part of the low-quality network becomes

E[EUL
i ] =

1

2

(
(ωθi − pLs )2 +

n−m− 2

n−m− 1
σ

)
. (20)

To identify market shares and resulting network externalities, we first characterize the

participation constraint of the pivotal household m. The ranking of household sizes θ1 >

θ2 > ... > θn implies that if household m is the smallest household in the high-quality

network, then all larger households with θi ≥ θm must prefer the high-quality network, while

all smaller households with θi < θm prefer the less expensive low-quality supply.

If household m joins the high-quality network, it has expected utility of

E[EUH(θm)] =
1

2

((
θm − pHs

)2
+
m− 2

m− 1
σ

)
. (21)

Conversely, if the same household m switches and joins the competing network with inferior

technology, it expects utility of

E[EUL(θm)] =
1

2

(
(ωθm − pLs )2 +

n− (m− 1)− 2

n− (m− 1)− 1
σ

)
. (22)

Notice that the above accounts for household m switching networks as, upon the change of

household m, the low-cost network has n− (m− 1) participants.

The participation constraint (PC) for household m to choose the high-quality network

17



must therefore satisfy E[EUH(θm)]− E[EUL(θm)] ≥ 0 or written in full notation

PC(m) ≡ 1

2

((
θm − pHs

)2 − (ωθm − pLs )2 +
n+ 1− 2m

(m− 1)(m− n)
σ

)
≥ 0. (23)

Welfare. To characterize efficient and inefficient market outcomes, we compare the partic-

ipation incentives of each household with aggregate welfare across all households. Welfare

can be written as the sum of utilities, including network effects, for all households in each

network. In defining welfare we again use that household m is the household that joins the

high-quality network “at the margin”. This is, welfare equals

W (m) =
1

2

(
m∑
i=1

[
(θi − pHs )2 +

m− 2

m− 1
σ

]
+

n∑
i=m+1

[
(ωθi − pLs )2 +

n−m− 2

n−m− 1
σ

])
. (24)

Because the number of households in each network is discrete, we compute the optimality

condition for welfare by taking first differences: Welfare when household m − 1 instead of

household m is marginal becomes

W (m− 1) =
1

2

(
m−1∑
i=1

[
(θi − pHs )2 +

m− 3

m− 2
σ

]
+

n∑
i=m

[
(ωθi − pLs )2 +

n−m− 1

n−m
σ

])
(25)

and subtracting (25) from (24) yields the discrete welfare derivative

∆W

∆m
=

1

2

(
(θm − pHs )2 − (ωθm − pLs )2 +

(n− 2)(1− 2m+ n)

(m− 2)(m− 1)(m−m)(1 +m− n)
σ

)
. (26)

The first two terms represent the change in utility for household m. The last term rep-

resents the change in relative network effects caused by household m, i.e., the difference

between network externalities that the high-quality network gains and the low-quality net-

work loses as m switches sides.

Note that the above two welfare expressions in (24) and (25) consider cases where both
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markets always co-exist. Recalling Proposition 2, this is true where each market consists of

at least three participants so that trade never ceases, neither for W (m) nor for W (m − 1),

and network externalities always realize. We provide welfare analyses for the extreme cases

where the change of household m to another network ends trade in household m’s former

network in Appendix E.

Finally, we illustrate the inefficient misalignment between market outcomes and welfare

by subtracting the participation constraint in (23) from the welfare derivative above in

equation (26) and arrive at

∆W

∆m
− PC(m) =

2m− n− 1

2(m− 2)(1 +m− n)
σ


< 0 if m > n+1

2
∧ σ 6= 0

= 0 if m = n+1
2
∨ σ = 0

> 0 if m < n+1
2
∧ σ 6= 0.

(27)

As apparent, if ∆W
∆m
− PC(m) < 0, the incentives for household m to switch to the

high-quality network are larger than the resulting welfare gains, because household m does

not account for the foregone positive network effects when departing from the low-quality

network. This is the case when m > n+1
2

, so when the high-quality network is relatively

larger.7 In contrast, if ∆W
∆m
− PC(m) > 0, household m’s incentives to switch to the high-

quality network are less than the overall welfare gain. Taken together, equation (27) implies

that larger networks are too large and smaller network are too small. Finally, if networks are

of equal size and household m is the median household, losses and gains from externalities

cancel out at the margin for m = n+1
2

. We summarize these results in the next Proposition.

Proposition 4. Local power markets with competing networks

(1) maximize welfare if no network externalities exist or networks are of equal size

(2) fail to internalize network externalities if networks are of different size; the larger

7This result is due to declining marginal network externalities,
∂2 m−2

m−1σ

∂m2 = − 2
(m−1)3σ < 0, so that incre-

mental losses from a small network are larger than incremental gains to a bigger network.
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network is too large

(3) maximize positive externalities if only one network type exists.

Proof. The first two statements follow from equation (27). The third statement follows

immediately when markets do not separate. Results for the extreme cases where networks

cease to exist are presented in Appendix E.

Another implication of Proposition 4 is that while positive externalities are maximized

for m = 0 and m = n, welfare can decline temporarily as networks grow towards either

corner solution, because households in shrinking networks suffer relatively large losses in

utility. Furthermore, for statement (3) of Proposition 4, notice that the type of network

that prevails in equilibrium, i.e., m = 0 or m = n, will generally depend on the expectations

of households (Katz and Shapiro, 1985). However, it is straightforward to show that if

households are all relatively large, the high-quality network must prevail and expectations

are irrelevant. Too see this, consider the case of σ = 0, where household i’s decision between

the networks reduces to comparing utilities of 1
2
(θi−pHs )2 ≷ 1

2
(ωθi−pLs )2. Rearranging yields

(1 − ω)θi ≷ pHs − pLs , so that for sufficiently high θi the gain in utility outweighs the price

difference, and household i prefers the high-quality network. A similar condition is easily

obtained for σ > 0, where critically large households prefer the high-quality network, while

households that are sufficiently small opt into the low-quality network.

Corollary 4. Local power markets that consist of sufficiently small (large) households are

efficient as only one low-quality (high-quality) network exists.

In sum, the results of this section illustrate that the efficiency of local power markets

can deteriorate when market participants are too heterogeneous and networks with different

technology standards co-exist.
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4 Storage

In closing, we extend the model and introduce storage capacities. Storage capacities allow

for buying production during low price realizations and selling stored generation in times

of high demand. Especially where generation stems from fluctuating solar plants, storage

typically accompanies the architecture of local power markets.

Our main result of this section is that storage does not change our positive efficiency

results. Instead, storing devices cushion demand shocks and reduce price volatility. To

incorporate storage activity, we model market participants whose sole intention is arbitrage.

A storage participant bids into the market at the same time as households do, demanding

power whenever the clearing price is below the expected market price, and supplying power

to the grid whenever the realized price is above its expectation. Formally, the supply function

of storage can be written as

Xs(p) = s(p− E[p]). (28)

Notice that storage as additional buyer (seller) in the market only impacts the expected

utility of households via the equilibrium market price p∗ and its distribution function H. In

detail, the distribution of the clearing price with storage is

H(p,Xi(p, εi)) = Pr (p∗ ≤ p | Xi)

= Pr

(∑
j 6=i

Xj(p, εj) +Xi(p, εi)−Xs(p) ≤
∑

qi

∣∣∣∣ Xi

)
. (29)

Using this price distribution, the equilibrium strategy of household i for buying or selling

on the local market (see Proposition 2) changes to

αi =
qi + θi

∑
(s+ γ−i)

1 + s+
∑
γ−i

and βi = γi =
s+

∑
γ−i

1 + s+
∑
γ−i

. (30)
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Importantly, strategies remain symmetric and the resulting equilibrium price remains a

function of market fundamentals, which now relate to demand, supply, and storage capacity.

However, storage changes the distribution of realized equilibrium prices. In Appendix F, we

show that the realized equilibrium power price with storage becomes

p∗ =
n∑
i=1

(
1

n
(θi − qi) + τεi

)
(31)

with

τ =
2 + n+ s−

√
(n− 2)2 + 2ns+ s2

2(2n+ s)
<

1

n
. (32)

Because τ < 1
n
, price shocks in either direction caused by net positive or net negative

aggregate demand shocks are cushioned as compared to the no-storage equilibrium price

of
∑n

i=1
1
n

(θi − qi + εi). The expected equilibrium price does not change with storage and

remains p∗ =
∑n

i=1
1
n
(θi − qi). This is because in expectation storage does not operate, and

only buys (sells) if realized prices are below (above) expectation. As a result, with unchanged

expected power prices it follows that storage does not change optimal investment incentives.

5 Conclusion

The provision of electricity is increasingly organized in local power markets. In this article,

we have provided a model to study pricing behavior, investment incentives, and welfare in

local power markets.

We have derived a set of positive efficiency results. First, local power markets can pro-

vide electricity at competitive prices. Importantly, this result holds for a small number of

participating households and despite strategic demand reduction. Furthermore, combining

generation and trading possibilities in local peer-to-peer markets yields efficient investment

incentives. Each household’s optimal investment guarantees that total welfare is maximized.
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However, we show that these positive efficiency results can deteriorate due to network ex-

ternalities that, with heterogeneous households, can lead to inefficient entry into competing

networks.

The results of this article point to the efficiency of local power markets, and underscore

the importance of monitoring the upstream market for generation and network technologies

to make households benefit from the shift towards local generation and peer-to-peer trading

in electricity markets.
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Appendix

A Equilibrium demand functions

Integrating (4) by parts yields

EUi =

∫ p

p

[Ui (Xi(p, εi), εi) + p(qi −Xi(p, εi))] dH(p,Xi(p, εi))dp

= [Ui (Xi(p, εi), εi) + p(qi −Xi(p, εi))]H(p,Xi(p, εi))|pp

−
∫ p

p

d

dp
[Ui (Xi(p, εi), εi) + p(qi −Xi(p, εi))]H(p,Xi(p, εi))dp.

Because H(p) = 0 and H(p̄) = 1 we obtain

EUi = Ui (Xi(p, εi), εi) + p(qi −Xi(p, εi))

−
∫ p

p

[(
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)
X ′i(p, εi) + qi −Xi(p, εi)

]
H(p,Xi(p, εi))dp.

Therefore households maximize

max
Xi(p,εi)

[
Ui (Xi(p, εi), εi) + p(qi −Xi(p, εi))−

∫ p

p

L(p,Xi(p, εi), X
′
i(p))dp

]

with

L(p,X(p), X ′i(p)) :=

[(
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)
X ′i(p) + qi −Xi(p, εi)

]
H(p,Xi(p, εi)).

With free salvage value (Kamien and Schwartz, 2012), the first order condition for an un-

specified Xi(p, εi) becomes
d

dp
LX′ = LX

with (
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)
− LX′ = 0 for p = p.

Computing the derivatives yields

LX′ =

(
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)
H(p,Xi(p, εi))
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LX = HXi

[(
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)
X ′i(p, εi) + qi −Xi(p, εi)

]
+

[
∂2Ui(Xi(p, εi), εi)

∂X2
i

X ′i(p, εi)− 1

]
H(p,Xi(p, εi))

and

d

dp
LX′ = (Hp(p,Xi(p, εi)) +HXi

(p,Xi(p, εi))X
′
i(p, εi))

(
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)

+

(
∂2Ui(Xi(p, εi), εi)

∂X2
i

X ′i(p)− 1

)
H(p,Xi(p, εi)).

Using the above and rearranging d
dp
LX′ = LX yields equation (5) in the main text

∂Ui(Xi(p, εi), εi)

∂Xi

− p = (qi −Xi(p, εi))
HXi

(p,Xi(p, εi))

Hp(p,Xi(p, εi))
.

For p = p it must hold that(
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)
− LX′ =

(
∂Ui(Xi(p̄, εi), εi)

∂Xi

− p
)
−
(
∂Ui(Xi(p, εi), εi)

∂Xi

− p
)

= 0.

Finally, to obtain the derivatives of the price distribution Hi, use the demand function

Xi(p, εi) = αi + βiεi − γip and rearrange equation (3) in the main text as

Hi(p,Xi(p)) = Pr (p∗ ≤ p | Xi)

= Pr

(∑
j 6=i

Xj(p, εj) +Xi ≤
∑

qi

∣∣∣∣ Xi

)

= Pr

(∑
j 6=i

(αj + βjεj − γjp) +Xi ≤
∑

qi

∣∣∣∣ Xi

)

= Pr

(∑
j 6=i

βjεj ≤
∑

qi −
∑
j 6=i

(αj − γjp)−Xi

∣∣∣∣ Xi

)
.

Differentiating with respect to Xi yields -1 and differentiating with respect to p gives∑
j 6=i γj =

∑
γ−i. When using these derivatives for equation (5) we obtain equation (8)

in the main text

θi + εi − (αi + βiεi − γip)− p = (qi − (αi + βiεi − γip))
−1∑
γ−i

.
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B Coefficient matching

Applying coefficient matching to solve

θi + εi − (αi + βiεi − γip)− p = (qi − (αi + βiεi − γip))
−1∑
γ−i

yields the conditions

0 = εj − εjβj −
εjβj∑
γ−i

0 = −p+ pγj +
pγj∑
γ−i

0 = −αj + θj +
qj − αj∑

γ−i
.

with solutions as in Proposition 2. The solution for n < 3 is trivial with αi = qi and

βi = γi = 0. To see this solution, multiply both sides of the optimality condition by
∑
γ−i

and plug in (αi, βi, γi) = (qi, 0, 0). For n < 3, this is the only equilibrium candidate that

survives. In this equilibrium, all trade breaks down and each household consumes its own

production. In this case the stand-alone utility of household i is straightforward to calculate

as

EUi =

∫ εo

−εo

[
(θi + εi)qi −

1

2
q2
i

]
f(εi)dεi − psqi = θiqi −

1

2
q2
i − psqi

which is maximized at q∗i = θi − ps, providing utility of 1
2
(θi − ps)2.

C Symmetry

We show that only symmetric strategies exist for all positive γi. We proceed by induction

arguments. Consider two households i and j, plus the remaining (n − 2) households with

(ex-ante possibly distinct) γk. From the derivation of bidding strategies we know that γi =∑
γ−i

1+
∑
γ−i

. Hence, we can write the optimality conditions for each household in equation (9) as

0 = γi −
γj +

∑n−2
−i,−j γk

1 + γj +
∑n−2
−i,−j γk

0 = γj −
γi +

∑n−2
−i,−j γk

1 + γi +
∑n−2
−i,−j γk
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and solve for γi and γj. The only solution with positive γi is for γi = γj. Hence s = 2

households (i and j) exist with symmetric strategies γi = γj. Now taking one additional

household l out of
∑n−2
−i,−j γk we can write

0 = γi −
(s− 1)γi + γl +

∑n−3
−i,−l γk

1 + (s− 1)γi + γl +
∑n−3
−i,−l γk

0 = γl −
sγi +

∑n−3
−i,−l γk

1 + sγi +
∑n−3
−i,−l γk

with s = 2. We again solve for γi and γl and again find only one solution with positive

parameters, which is the symmetric solution. Continuing with γi = γj = γl and s = 3 yields

one additional symmetric household. Continue until s = n − 1 for which all households’ γi

are symmetric.

D Equilibrium investment

Starting from expected utility

E[EUi] =

∫ εo

−εo

∫ (n−1)εo

−(n−1)εo

[Ui(Xi(p
∗), εi) + p∗(qi −Xi(p

∗))] g(Ψi)dΨif(εi)dεi − psqi

we take the first order condition and arrive at∫ εo

−εo

∫ (n−1)εo

−(n−1)εo

[
2(n− 1)(θi + εi − qi) + (n− 2) (

∑
θ−i + Ψi −

∑
q−i)

n(n− 1)

]
g(Ψi)dΨif(εi)dεi = ps

We then solve the inner integral by parts using that G(−(n − 1)εo) = 0 and G((n −
1)εo) = 1. Further, we use that for a symmetric PDF g with a mean of zero, the anti-

derivative of its CDF, G(Ψi) =
∫
G(Ψi)dΨi, evaluated at the bound of the support yields

G((n−1)εo) =
∫ (n−1)εo
−(n−1)εo

G(Ψi)dΨi = ΨiG(Ψi)|(n−1)εo
−(n−1)εo

−
∫ (n−1)εo
−(n−1)εo

Ψig(Ψi)dΨi = (n−1)εo and

G(−(n − 1)εo) = 0. Using a corresponding procedure for the outer integral yields equation

(14) in the main text.

To find investment that maximizes welfare we evaluate
∑

i E[EUi]

∂qi
= 0 and obtain

qi = θi − (n− 1)2ps − (n− 2)
∑
i

(qi − θi).
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Note that this expression differs from the optimal investment that maximizes only household

i’s expected utility. Summing over all households we obtain the aggregate investment

∑
qi = n

(
θi − (n− 1)2ps − (n− 2)

∑
i

(qi − θi)

)
.

When solving for
∑
qi we again obtain∑

i

qi =
∑
i

θi − nps,

as for the case when household i instead maximizes its own expected utility rather than

welfare.

E Welfare with separated networks

Welfare results in Proposition 4 are for markets with at least three participants in either

network. Below, we show that the result that larger markets are inefficiently large extends

to the case where large markets entirely crowd out trade in smaller markets. To begin,

consider the case where the high-quality market grows from n−m = 3 to n−m = 2, ending

trade in the low-quality network. Welfare for n−m = 2 is

W (n−m = 2) =
1

2

(
m∑
i=1

[
(θi − pHs )2 +

m− 2

m− 1
σ

]
+

n∑
i=m+1

(ωθi − pLs )2

)
.

For n− (m− 1) = 3 instead the two networks still co-exist and welfare becomes

W (n−(m−1) = 3) =
1

2

(
m−1∑
i=1

[
(θi − pHs )2 +

m− 3

m− 2
σ

]
+

n∑
i=m

[
(ωθi − pLs )2 +

n−m− 1

n−m
σ

])
.

Differencing yields the welfare gain for moving from n−m = 3 to n−m = 2 of

∆W

∆m
=

1

2

(
(θm − pHs )2 − (ωθm − pLs )2 +

(
1 +m− n+

1

1−m
+

1

m− 2
+

1

n−m

)
σ

)
.

The participation constraint for household m at n−m = 3 to join the high-quality network

instead of remaining the the low-quality network is the same as in the main text. Finally,
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∆W
∆m
−PC(m = 3) = 2n−1+m2−m(1+n)

2(m−2)
σ < 0 ∀ m ∈ [3, n− 2], implying that the larger network

entirely crowds out the smaller network, where all trade ends. The marginal household does

not internalize this effect when moving to the larger network. The same argument applies

when the low-quality network entirely crowds out the high-quality network, so for moving

from m = 3 to m = 2.

F Demand functions with storage

Starting from the equilibrium strategies in equation (30), one easily obtains the equilibrium

aggregate market demand
∑

iXi(p, s, εi) analogous to the left hand side of equation (11)

for the case without storage. First note that the expected market demand is
∑

iXi(p, s, 0).

When solving the market clearing condition
∑

iXi(p, s, 0)−Xs(p) =
∑

i qi for the equilibrium

price, we obtain the expected market price with storage as E[p∗] =
∑

i
1
n
(θi−qi), i.e., storage

does not operate in expectation. Using the expected price in the storage supply function in

equation (28) in the main text yields Xs(p) = s(p−E[p]) = s(p−
∑

i
1
n
(θi−qi)). In turn, this

allows to solve for the realized price
∑

iXi(p, s, εi) − Xs(p) =
∑

i qi which yields equation

(31) in the main text.

32


	Introduction
	A model of local power markets
	Competition among network suppliers
	Storage
	Conclusion
	Equilibrium demand functions
	Coefficient matching
	Symmetry
	Equilibrium investment
	Welfare with separated networks
	Demand functions with storage
	Introduction
	A model of local power markets
	Competition among network suppliers
	Storage
	Conclusion
	Equilibrium demand functions
	Coefficient matching
	Symmetry
	Equilibrium investment
	Welfare with separated networks
	Demand functions with storage

