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Increasing shares of intermittent renewable energies challenge the dominant way to 
trade electricity ex-ante in forward, day-ahead, and intraday markets: Coal power 
plants and consumers cannot react to the stochastic element of renewables, whereas 

gas turbines can. We use a theoretical model to analyze consumer behavior and 
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under ex-ante pricing. Curtailed consumers need to get subsidized in high of their 
disruption cost. Coal power firms recover cost. Renewables and gas turbine firms fail 

to do so. We identify imperfections that arise from the delay in price setting and 
market clearing. Do real-time prices induce an efficient outcome? Consumers need 
to get taxed in high of rationing cost. Support is redundant for gas turbine firms, but 
renewables firms still fail to recover cost because they cannot ensure against their 

price risk. 
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1 Introduction

A resolute decarbonization of the global economies is crucial to limit the probability of global
warming above 2°C and avoid dangerous climate tipping. Countries started with decarbonizing
the power sector, because renewable energies easily substitute for carbon-intensive technologies,
and electrification allows one to decarbonize other sectors (e.g., transport, heat, heavy industry via
green hydrogen). This article studies consumer behavior and investment incentives of different
types of technologies (e.g., coal power, wind power, and gas turbines) under ex-ante (e.g., forward,
day-ahead, intraday) and real-time pricing to detect and resolve market imperfections that arise
from the delay in price setting (ex-ante) and market clearing (real time), as well as from the
stochastic nature of renewable energies. The social planner solution serves as a benchmark to
analyze the consumption of non-reactive consumers and investment behavior of perfectly competitive
firms. We derive compensation payments when consumption is inefficient and technology-specific
support mechanisms to incentivize the efficient outcome when firms fail to recover cost or do not
install first-best capacities.

Coal and nuclear power plants must be scheduled ahead of actual production because ramping
up and down takes a long time or is too costly. Intermittent renewables randomly fluctuate at zero
marginal cost, and require gas turbines to balance these fluctuations due to the lack of demand
response in electricity markets.1 The key challenge in transitioning from a fossil-fuel dominated
to a renewables dominated power system is to ensure resource adequacy, meaning that installed
capacities are sufficient to supply the electricity demanded by consumers at all times—which
is a private good.2 In fossil-fuel dominated power systems, forward markets ensure generators
against demand risks, day-ahead markets address the limited dispatchability of nuclear and coal
power plants, intraday trading accounts for the declining level of demand uncertainty, and markets
for imbalance energy or real-time wholesale markets, respectively, settle the remaining deviation
between supply and demand. Additionally, reserve markets or markets for ancillary services ensure
security of services, meaning the physical integrity of the system—which is a public good.

Higher shares of renewable energies lead to extended periods of zero prices and narrow the
business case of coal and nuclear power due to ramping constraints and related cost. The final
uncertainty about the amount of wind and solar power in the system realizes in real time, which

1 Most electricity markets face low demand flexibility (Joskow and Tirole, 2006, 2007), in particular, in real time
(Joskow, 2011). Bejan et al. (2019) found that consumers suffer utility losses from reacting to real-time prices. There
is another factor that drives inelasticities: retail prices and wholesale prices are hugely disconnected because the
price that consumers face is largely based on taxes, levies, and network fees. Moreover, retail prices are additionally
distorted by the fact that they do not reflect fluctuating demand (and supply) within a day (Borenstein and Bushnell,
2018).

2 Other commodity markets delay the timing between production and delivery by using (producer and consumer)
storage, but electricity storage is yet economically not beneficial (e.g., batteries or power-to-gas) or scarce regarding
suitable sites (e.g., pumped hydro).
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increases the demand for generator flexibility and the related price uncertainty. These factors
diminish the capability of dispatchable generators to recover cost (so called “missing money”),
and challenge whether or not current market design can deal with fluctuating renewables and
provide resource adequacy (e.g., Newbery et al., 2018; Joskow, 2019). Additionally, the settlement
volume of reserve markets or markets for ancillary services increased as a consequence of rising
shares of intermittent renewables, leading to an implicit subsidization of fluctuating renewables or
inflexible generators, respectively. In response, countries started to implement additional capacity
mechanisms, but whether or not this is the first-best solution remains unclear.

Our model introduces three types of technologies to reflect that supply of renewables (wind,
solar) is stochastic, steam power (e.g., nuclear and coal power plants) cannot react to the stochastic
fluctuations of renewables, whereas gas power (e.g., gas turbines and combined-cycle power
plants) can. Demand is steady due to contractual fixed consumer prices or the lack of real-time
demand response, respectively. Long-term capacity decisions are made years ahead of actual
delivery. Demand is fixed at least some hours ahead of actual delivery. Production of steam
power must be scheduled some hours ahead of actual production as well. The supply of renewable
energies realizes in real time, and renewables and gas power are dispatched. Finally, consumers
are curtailed and suffer disruption cost when production is not sufficient to meet demand.3

Our results are threefold. First, under ex-ante pricing, steam power firms recover cost, whereas
gas power firms fail. We identify inadequately priced balancing as the inefficiency caused by the
temporal deviation between price setting and market clearing. Steam power does not contribute
to balance stochastic variations in renewable’s supply due to ramping constraints. Gas power
adjusts production according to renewables feed-in, that is, gas power faces an output risk that
is not reflected in the price. A combination of capacity payments and payments for the energy
supplied (so called flat feed-in tariffs) addresses generator flexibility of gas power. Payments that
are conditional on the realization of wind and solar availability (so called state-contingent feed-in
tariffs) even avoid capacity payments.

Second, real-time pricing instantly resolves the problem of pricing gas power’s ability to adjust
production. Gas power still faces an output risk but this risk is adequately reflected in real-time
prices that rise above the value of lost load (VOLL) in lost load events. In contrast, renewables
recover cost and provide first-best capacities when and only when random output from generating
units is perfectly correlated. Under such a setup, renewables firms can perfectly ensure against their
price risk. When outputs are not perfectly correlated or even independent, markets are incomplete
because renewables firms cannot ensure against their price risk. There is no spatiality in the
theoretical model, but we can interpret a perfect correlation as follows: Each wind turbine and

3 If demand would be sufficiently responsive, the market would always clear, and consumers would never suffer
involuntary curtailment (Cramton et al., 2013).

3



each solar PV panel in the system faces the same weather conditions no matter what location. This
assumption is unrealistic, and the result that the stochastic nature of renewable energies causes
inefficiencies is robust. However, there is no inefficiency on the balancing side of the market (that
is, for flexible generators). Additional capacity mechanisms or the usage of reserve or ancillary
service markets (against their original intention) to improve resource adequacy are superfluous
under real-time pricing.

Third, turning to consumer behavior, ex-ante pricing requires to subsidize curtailed consumers
in high of disruption cost. Similar as gas power does, consumers offer system flexibility and
need compensation. Under real-time pricing, efficient consumption demands for taxing curtailed
consumers in high of rationing cost.4 In contrast to gas power, consumers do not reduce the overall
burden of rationing cost. Additionally, efficient prices rise (by rationing cost) above the value of
lost load (VOLL) of the last curtailed consumer in lost load events. Consumers with a VOLL
below the resulting price and above the VOLL of the last curtailed consumer would be better of
in reducing their demand below the efficient level. The tax thus imposes opportunity cost of not
demanding electricity.

Section 2 provides a review of the related literature. We then introduce the basic model in
Section 3. Section 4 describes the social planner solution, which serves as a benchmark for the
following analysis of efficient pricing. Section 5 shows how cost recovery can be achieved under
ex-ante pricing by support mechanisms. Section 6 analyzes cost recovery under real-time pricing
and provides robustness of results in a multi-period framework. Section 7 shows the behavior of
consumers under ex-ante and real-time pricing. Section 8 describes market designs to archive real-
time pricing without touching the constraint that consumer prices are contractual-fixed in advance
of actual delivery. Section 9 concludes.

2 Related Literature

Recent studies discuss the need of capacity mechanisms due to the increasing shares of randomly
fluctuating renewables and the problems of dispatchable generators such as gas and steam power
to keep profitable. The core idea of capacity mechanisms—incentivizing capacity investments
to obtain efficient system reliability and consumer rationing—is born from the peak-load pricing
literature.5 The innovation was also to charge consumers based on capacity cost. Deterministic
models provide sufficient rules for efficient pricing (e.g., Houthakker, 1951; Hirshleifer, 1958;
Williamson, 1966; Turvey, 1968). The literature tends to focus on different rationing schemes as
soon as demand uncertainty enters the picture. Brown and Johnson (1969) assume that consumers

4 Rationing cost are cost of the system operator to curtail those consumers with the lowest marginal utility
5 The peak-load pricing literature was developed by Bye (1926, 1929); Boiteux (1949); Steiner (1957). Crew et al.

(1995) provide an excellent survey.
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are served regarding their willingness-to-pay (perfect load shedding), whereas Crew and Kleindorfer
(1976) assume that perfect load shedding causes rationing cost. Visscher (1973) describes two
alternative approaches. Either consumers are served randomly, or consumers with the lowest
willingness-to-pay (WTP) are served first. Turvey and Anderson (1977) implement constant marginal
cost of lost load (also excess demand in the economic literature) and abstract from surplus losses
due to lost load. Chao (1983) chooses the same setup, but he additionally assumes that generating
units are subject to random failures that are stochastically independent of one another. Kleindorfer
and Fernando (1993) model supply uncertainty in the same way, but they additionally account
for surplus losses from lost load and distinguish between rationing and disruption cost.6 As we
do, Eisenack and Mier (2019) choose the same specification of supply uncertainty by additionally
considering the case of perfectly correlated generating units. They opt for Chao’s rationing approach,
whereas we use the Kleindorfer and Fernando formulation.

Whether these efficient pricing rules lead to cost recovery has not been much studied to date. In
all deterministic setups, firms recover cost, but for the stochastic models, the outcome is diverse.
Perfect load shedding with zero rationing cost (Brown and Johnson, 1969), as well as random
rationing with additive demand uncertainty (Visscher, 1973), lead to prices below long-run marginal
cost (LRMC)—so that cost recovery is not possible. Carlton (1977) shows that random rationing
with multiplicative demand uncertainty would permit cost recovery. Serving consumers with the
lowest WTP first would even lead to prices above LRMC and strictly positive profits are possible.
Chao (1983) distinguishes between two polar cases: marginal demand that is independent from
total demand and marginal demand that is perfectly correlated to demand. Prices are too low to
recover cost for the independence case. Results are inconclusive for the correlation case. The most
comprehensive analysis is by Kleindorfer and Fernando (1993). Additive demand uncertainty will
lead to a price weakly below LRMC, whereas multiplicative demand uncertainty might lead to a
price above LRMC. It is difficult to conclude whether or not cost recovery is possible.

How to actually implement these rules, for example, by market design and support mechanisms,
is not touched upon in the peak-load pricing literature. The standard theory suggests that varying
prices for electricity on the basis of short-run marginal cost (SRMC) with a price cap at the
average value of lost load (VOLL) provide sufficient incentives for capacity investments (e.g.,
Bushnell et al., 2017).7 However, power systems are subject to many possible market failures.
Distribution and transmission of electricity are natural monopolies, so grids are regulated in most
power systems, whereas power generation and retail supply are organized in an energy-only market.
Joskow and Tirole (2007) point to the problem of pricing security of service, the ability of the

6 Rationing cost are dedicated to the system operator to obtain perfect load shedding, and disruption cost are direct
cost to consumers.

7 The VOLL are the social cost of electricity shortages and entail surplus losses due to unconsumed electricity as
well as disruption cost, reflecting the willingness-to-accept curtailment.
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system to withstand sudden disturbances (Antweiler, 2017). Security of service is a public good
and private provision would lead to undersupply. System operators use markets for ancillary
services to ensure security of service. These cost are often not internalized in the final price
for consumers but are contained in network fees, which are often averaged across consumers.8

Thus, consumers with higher preferences for security are free-riding on the consumers with lower
ones. This is related to imperfections that might arise from asymmetric information, for example,
about the preference for security of service and the VOLL. Risk-averse policy makers tend to
overestimate the VOLL and provide inefficiently high back-up capacity (Crampes and Salant,
2018); and risk-averse investors underinvest due to incomplete markets (e.g., Neuhoff and De Vries,
2004). To prevent the abuse of market power in scarcity events, price caps below the average VOLL
lead to missing money.9 Finally, environmental externalities should be addressed by a Pigouvian
tax, and positive externalities from induced technological change require subsidization.

The author is not aware of a theoretical model that covers all these market failures. Existing
studies always focus on one or two of them. We use a reference model that abstracts from the
imperfections discussed and focuses on the general issue that an energy-only market (as in our
model) could lead to missing money and under-procurement of capacity, for example, due to
insufficiently priced balancing and flexibility (Newbery, 2016). Thus, the article contributes to
the discussion on whether or not capacity mechanisms—as lately implemented by, for example,
Great Britain, France, and Australia—are necessary (e.g., Keppler, 2017; Milstein and Tishler,
2019; Bublitz et al., 2019).

Similar to the focus of the article, Chao (2011) derives efficient pricing and capacity rules
under ex-ante and real-time pricing with a dynamic demand response. He considers a renewables
technology, whose (uncertain) supply is inversely correlated with demand, which is a key difference
from our article regarding theoretical modeling.10 He considers surplus losses and rationing/disruption
cost in the theoretical part of his work, but abstracts from them to derive results using a numerical
simulation with wind power, gas turbines, and combined-cycle power plants. Chao’s model is
more comprehensive than ours with regard to demand modeling; our model captures the fact that
technologies differ in dispatchability. Moreover, he has to rely on the numerical simulation to
obtain interpretable results, whereas we can derive the necessary design of support mechanisms

8 We understand ancillary services as the quality of service at a particular location to meet physical network
requirements. Note that nodal pricing of electricity would allow the market to internalize at least cost from transmission
and related ancillary services.

9 A price cap suppresses prices and thus leads to excess demand by consumers (Leautier, 2018; Helm and Mier,
2019). See Bulow and Klemperer (2012) for a broader view on price caps, Joskow and Tirole (2007) for positive effects
and Hogan (2005) for negative effects, as well as Fabra et al. (2011); Zöttl (2011); Schwenen (2014) for electricity
market applications. More recently, Fabra (2018) suggests a price cap to avoid the development of market power and a
capacity payment as a contrary instrument. Bajo-Buenestado (2017) finds that price caps lead to an inefficient market
outcome in a perfectly competitive market, which could turn under market power.

10 See Pinho et al. (2018) for another stylistic model with an uncertain supply of renewable energies.
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and markets directly from the theoretical model.
One of our core findings is that, under real-time pricing, support mechanisms are needed only

for renewable energies (and consumers). Most literature had focused on a combination of feed-in
tariffs and capacity payments for renewable energies (e.g., Lesser and Su, 2008). Model-wise,
most closely related to that skein of literature is Antweiler (2017). He derives optimal pricing
instruments by taking into account the correlation between renewables sources and between these
sources and demand. The main difference from our approach is that we account for the correlation
in the availability of single solar PV panels or wind turbines due to weather conditions. We can
confirm his finding that capacity payments or flat feed-in tariffs alone do not provide optimal
investment incentives, but additionally suggest state-contingent feed-in tariffs that would make
combined instruments for energy and capacity obsolete.

Other related articles are Ambec and Crampes (2012) and Helm and Mier (2019). Ambec and
Crampes (2012) provide a model with a fossil and a renewables technology, whose deterministic
availability is either 0 or 1. An ex-ante price for non-reactive consumers leads to overinvestment
and no profit in the fossil technology, but underinvestment and profit in the renewables technology,
whereas the technology we investigate that is most similar to their fossil one cannot recover cost.
The issue of cost recovery could be solved by structural integration of different technologies within
a single company. They do not contribute to the debate over capacity mechanisms because, in
contrast to our article, they assume that reliable capacity must be sufficient to meet demand. The
same assumption is made by Helm and Mier (2019), who allow the renewables technology to take
any value between a minimum value and 1. They combine reactive consumers that are subject
to dynamic pricing and non-reactive consumers that face an ex-ante price. In their model, the
efficient solution could be decentralized. In particular, they identified a capacity premium for
fossil generators provided through the market. However, their focus is on the efficient diffusion
pattern of renewable energies and policies are considered only in the case of a price cap. because
dynamic pricing is possible in their setup, they abstract from the core issues of this article: how to
avoid capacity mechanisms by market design and pricing schemes.

None of the articles just discussed, with the exception of Eisenack and Mier (2019), account
for different levels of dispatchability. The topic is only addressed by engineering dispatch (e.g.,
Kumano, 2011) and empirical models (e.g., Novan, 2015), although it is highly relevant for the
integration of large shares of renewables (see Schill et al., 2017 for start-up cost of thermal power
plants). Perhaps the theoretical model that comes closest to this topic is that of Green and Léautier
(2017) who study inflexibilities—modeled by minimum production levels—of renewables and of
conventional capacity. In a numerical simulation they find that higher wind turbine capacities
squeeze out the inflexible more quickly than do flexible nuclear generators. Another theoretical
model by Crampes and Renault (2019) uses ramping rates to model the adaptation speed of technologies.

7



3 Model

Consider three types of technologies: j = r,s,g. r are renewables technologies like wind turbines
and solar PV with random supply; s are steam power technologies, which are limitedly dispatchable.
Scheduling steam power requires planning a certain time ahead of actual production; g are gas
power technologies, which are perfectly dispatchable because they can adjust production instantly.

We consider an investment cycle with one period of production and consumption. We could
easily extend the one-period model by considering multiple periods of production and consumption,
but the notational overhead comes at enormous expense for the same insight. However, we perform
that task in Section 6 to show the feasibility and possible generalization of the model.

Capacity is Q j, production is Y j, and Q̃r is the random available capacity of renewables. It is
convenient to denote aggregate production by Y = ∑ j Y j. Production is restricted by (available)
capacity, i.e., Ys ≤ Qs,Yg ≤ Qg,Yr ≤ Q̃r. Demand is D, and Dl = max{D−Y,0} is lost load (or
excess demand), so that X = min{D,Y} is final consumption. Consumers obtain utility U from
consumption. Utility is concave, i.e., U

′
> 0, U

′′
< 0, and fulfills Inada conditions.

In case of lost load, consumers suffer utility losses and additionally disruption cost.11 The
system operator curtails the consumption with the lowest marginal utility at the burden of rationing

cost.12 Thus, the utility loss from lost load is given by the difference between utility from scheduled
demand and utility from final consumption, i.e., U (D)−U (X) ≥ 0. We assume that marginal
disruption cost cl and marginal rationing cost δ are constant. The underlying assumption is that all
(curtailed) consumers are homogeneous with regard to disruption cost and the effort to curtail those
with the lowest marginal utility first, otherwise the assumption of constant cl,δ is not credible.13

Wind turbines and solar PV panels are the most promising renewable energy source to decarbonize
economies. Their joint features are a small unit size, random availability, and spatial distribution.
We thus construct available capacity of renewables as a boundedly integrable random variable and
define it as Q̃r :=

� Qr
0 ω (z)dz; i.e., Q̃r is conceived as a continuum of marginal generating units z

with random availabilities ω (z)∈ [0,1]. Generation units z are stochastically identically distributed
random variables, meaning that all marginal generating units face the same climate. However,
actual weather conditions might differ due to the spatial distribution of, e.g., wind turbines and
solar PV. The correlation between those units covers varying weather conditions due to spatial
distribution. We consider two extreme cases. The independence case is when the availabilities
of marginal generating units realize stochastically independently, which we denote ind. In the

11 For example, in food industries lost utility reflects the value of food that cannot be produced due to lost load.
However, electricity shortages might even destroy food that is already produced due to a disruption of the cooling
chain.

12 See Crew and Kleindorfer (1976) for the seminal contribution and Kleindorfer and Fernando (1993) for a
discussion of rationing, disruption, and utility losses by curtailment.

13 Consumers could still be heterogeneous with regard to their obtained utility.
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Fig. 1: Multi-stage decision structure

perfect correlation case, denoted corr, the availabilities of marginal generating units are perfectly
correlated. The intuition is as follows: When weather conditions are the same for each generating
unit, we are in the case of perfect correlation. When weather conditions are independent from each
other, we are in the case of independence. Of course, these cases are extremes and the reality is
inbetween. However, considering these two extreme cases allows us to derive results applicable to
more realistic settings that are neither ind nor corr.14

Short-run marginal production cost (SRMC) c j and marginal capacity cost b j are constant.
Renewables have the lowest or even zero SRMC, whereas gas power has the highest, i.e., 0≤ cr <

cs < cg. We further assume that the long-run marginal cost (LRMC) of gas power are the highest.
Otherwise, it might be beneficial to use gas power only. Producing one unit with gas power is
cheaper than accepting one unit of lost load, i.e., bg + cg < cl . Otherwise, lost load dominates
gas power production. Nevertheless, the choice between accepting lost load and providing (often
unused) back-up capacities is the outcome from maximizing the difference between surplus from
consumption, U (X)− (cl +δ )Dl , and cost, ∑ j

(
b jQ j + c jYj

)
.

The timing of decisions is shown in Figure 1. The essential assumption is that capacities are
fixed in the short-run, and demand must be decided before production decisions are made under
technological restrictions. Thus, in Stage 1, a social planner selects capacities Q j, j = r,s,g and
in Stage 2, demand D. Steam power production Ys ≤ Qs needs to be specified before the random
availability of renewables Q̃r realizes and cannot be changed later (Stage 3). This places steam
power earliest in dispatch timing. To assure that this placement is credible, we assume that the cost
of ramping down steam power is higher than the benefits of replacing steam power with renewables
production.15 Similarly, ramp-ups are technologically not possible in the necessary time frame.
After demand and steam power production is fixed, renewables availability realizes, and in Stage
4, production of renewables Yr ≤ Q̃r must be decided. If the actual availability of renewables is
insufficient to meet demand, gas power must be employed (Stage 5), or lost load Dl ≥ 0 occurs
and leads to a cost when it is strictly positive.

14 It is possible to implement a correlation measure as done in Chao (1983) for the correlation of marginal demand
with total demand. The outcome would be a weighted average of correlated and uncorrelated results. Thus, the
additional insight for this analysis from such a correlation measure is limited without knowing real-world correlation
and conducting numerical simulations.

15 This mechanism reflects the often observed behavior of steam power plants to bid negative prices to avoid ramping
down (due to ramping cost).
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4 Social Planner Solution

Economic theory suggests to set prices equal to marginal utility. We are going to follow this
principle in Sections 5 and 6 where we determine the market equilibrium, but need to determine
efficient production Y ∗j , demand D∗, and capacities Q∗j first (asterisks denote efficient outcomes).
The efficient outcome serves as benchmark to evaluate the market equilibrium, and follows from
maximizing welfare,

W = U (X)− (cl +δ )Dl−∑
j

(
b jQ j + c jY j

)
, (1)

within the constraints of the decision structure shown in Figure 1. We consider only cases where
Q∗r > 0 to focus on the most interesting cases.16

Start with some preparatory notation. Assume that a = E
[
Q̃r
]
/Qr ∈ (0,1) is the average

availability of renewables capacity, where E is the expectation operator. E
[
Q̃r
]
= aQr is expected

available capacity of renewables. Ω= [0,Qr] is the sample space of Q̃r and f
(
Q̃r,Qr

)
its probability

density function. For any interval of events Ωc ⊆ Ω, the events Q̃r ∈ Ωc realize with probability
Prc :=

�
Ωc

f (x,Qr)dx. Call ac = E
[
Q̃r|Ωc

]
/Qr the conditional availability, where E

[
Q̃r|Ωc

]
is

expected availability of renewables capacity on the condition that Ωc realizes. Here, E
[
Q̃r|Ωc

]
is used as a shortcut to indicate E

[
Q̃r|Q̃r ∈Ωc

]
. To avoid having to show each equation for both

extreme cases ind and corr, we use the dummy

ac :=

a for ind,

ac for corr.
(2)

Production. We now derive production decisions from Stages 3 to 5. Steam power decides
production before the random availability of renewables realizes. Production should be increased
under the given constraints so that Ys = Qs, as excess capacity of steam power carries no benefit
in later stages.17 Renewables have the lowest SRMC. Thus, renewables should meet as much
remaining demand, D−Qs, as possible after steam power production is fixed and the realization
Q̃r is known. Renewables are not fully needed as long as the remaining demand is below the
availability of renewables capacity. However, as soon as the available capacity of renewables is
no longer sufficient to meet the remaining demand, gas power should be used to avoid lost load

16 If Qr = 0, then LRMC of steam power are lower than those of gas power. Given the fixed demand assumption,
this would lead to an outcome of steam power only; at least in the one period model described here.

17 Note that capacity is costly and a planner does not install capacity that lies idle for all possible Q̃r. In particular,
Qs > D cannot be optimal.
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Fig. 2: Illustration of the interval of events

because producing with gas power is cheaper than accepting lost load. Gas power is dispatched
when the total gas power capacity is not needed to meet remaining demand, which is D−Qs− Q̃r.
The total capacity of gas power would be employed if and only if production of all technologies is
not sufficient to satisfy demand.

Depending on the realization of the random variable Q̃r, we distinguish between three intervals
of events. Excess capacity of renewables occurs for all Q̃r ∈ Ω1 = [D−Qs,Qr].18 Gas power

dispatched realizes for all Q̃r ∈ Ω2 = [D−Qs−Qg,D−Qs), and lost load when Q̃r ∈ Ω3 =

[0,D−Qs−Qg). The union of the two intervals Ω1 and Ω2 is given by Ω12 = [D−Qs−Qg,Qr]

and realizes with probability Pr12. Figure 2 illustrates the interval of events by using a stylistic
probability density function of the random variable. The area under the density function is the
probability that a certain interval realizes and can be calculated by using the table below the graph.

Using the definition of the intervals of events Ωc, we can summarize efficient production in
Lemma 1. Appendix A contains a comprehensive proof.

Lemma 1. Suppose that Q∗r > 0. Efficient production is given by Y ∗s = Qs,

E [Y ∗r ] = E
[
Q̃r|Ω3

]
Pr 3 +E

[
Q̃r|Ω2

]
Pr 2 +(D−Qs)Pr 1,

E
[
Y ∗g
]

= Qg Pr 3 +E
[
D−Qs− Q̃r|Ω2

]
Pr 2.

18 Note that this interval occurs with positive probability if and only if Qr > D−Qs.
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Demand. In Stage 2, the social planner decides demand. We obtain the result in Lemma 2 (see
Appendix B for a proof) from differentiating welfare with respect to demand.

Lemma 2. Suppose that Q∗r > 0. Efficient demand follows from U
′
(D∗) = cr Pr1+cg Pr2+cv Pr3

with cv := cl +δ +U
′
(D∗).

Marginal utility at efficient demand, U
′
(D∗), has both production and consumption components.

The production component is given by cr Pr1 and cg Pr2, that is, the short-run marginal cost of
technologies weighted by the respective probabilities that they will be used as marginal technology.
Renewables are the marginal technology if Ω1 realizes, and gas power in the gas power dispatched
events (Ω2). The consumption component considers curtailment cost cv in lost load events (Ω3).
Curtailment cost comprise that consumers suffer the (marginal) value of lost load (VOLL), cl +

U
′
(D)—which is the sum of disruption cost and utility losses—and the system operator carries the

burden of (marginal) rationing cost, δ , for each unit of lost load.

Capacities. Now consider capacity decisions at Stage 1. We maximize welfare (1) w.r.t. Qs,Qg,Qr

by using the expectations. The fact that the random variable is boundedly integrable allows to
interchange differentiation and expectation (see Chao, 1983, 2011; Eisenack and Mier, 2019).
Taking expectations, yields first-order conditions:

∂E [W ]

∂Qs
= cr Pr 1 + cg Pr 2 + cv Pr 3−bs− cs ≤ 0 [= 0 if Q∗s > 0] , (3)

∂E [W ]

∂Qg
= cv Pr 3−bg− cg Pr 3 ≤ 0

[
= 0 if Q∗g > 0

]
, (4)

∂E [W ]

∂Qr
= (cg− cr)a2 Pr 2 +(cv− cr)a3 Pr 3−br = 0. (5)

Steam power can substitute for renewables in Ω1 and for gas power in Ω2 (see first-order
condition (3)). Steam power is fully reliable (no stochastic supply) and avoids lost load, i.e., cv Pr3

shows benefits from preventing lost load. The sum of these three terms is total benefits and is equal
to marginal utility at efficient demand U

′
(D∗) (see Lemma 2). The last two terms are the LRMC.

Thus, a positive level of steam power capacity requires or leads to bs + cs =U
′
(D∗), respectively.

Gas power capacity is not fully used in the gas power dispatched events (Ω2) and, thus, gas
power capacity is beneficial only in lost load events (Ω3). The last two terms in the first-order
condition (4) are cost. For renewables, benefits and cost are mixed in the first two terms of the
first-order condition (5). cg,cv indicate benefits from substituting gas power production in Ω2 or
preventing lost load in Ω3, respectively, where cr are related production cost. Whether or not steam
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and gas power complements renewables depends on the relative cost. Lemma 3 distinguishes the
two possible outcomes (see Appendix 3 for a proof).

Lemma 3. Suppose that Q∗r > 0. First-order conditions (3) to (5) define efficient capacities of

steam power, gas power, and renewables.

1. Suppose that Q∗g > 0 (condition (4) is binding). Efficient capacities of renewables and gas

power follow from Pr∗3 =
bg

cv−cg
and Pr∗2 =

br−(cv−cr)a3 Pr∗3
(cg−cr)a2

.

2. Suppose that Q∗g = 0 (condition (4) is not binding). Efficient capacity of renewables follows

from Pr∗3 =
br

(cv−cr)a3
.

We neglected the resulting level of steam power in Lemma 3, but provide some intuition. It
is efficient to install a positive level of steam power when U

′
(D∗) = bs + cs. When a system

with renewables provides U
′
(D∗) > bs + cs, we would have Q∗s = D∗s and Q∗r = 0. Since we only

concentrate on cases with a positive level of renewables, we focus on U
′
(D∗) ≤ bs + cs in the

following. When a system with renewables leads to U
′
(D∗) = bs + cs, every level Qs ∈ [0,D∗] is

efficient, whereas U
′
(D∗)< bs + cs leads to Q∗s = 0.

5 Ex-Ante Pricing

The classical way to trade electricity was ex-ante in day-ahead markets with intraday trading.
Generators bid their short-run marginal cost (SRMC) and a price cap at the average (marginal)
value of lost load (VOLL) provides scarcity rents to recoup investment cost. Such a market design
reflected the inability of conventional power plants to adjust production according to demand
fluctuations. Intraday trading accounted for the declining level of demand uncertainty or unplanned
power plant outages. The final uncertainty and the volume of imbalance energy markets was small,
and inefficiencies from the remaining deviation between supply and demand were negligible.
Nowadays, higher shares of randomly fluctuating renewables increase the need for balancing and
the related inefficiency losses, in particular, the ability of firms to recover cost.

We consider a perfectly competitive market with the same timing described in Figure 1. Firms
invest in capacities. The ex-ante price p (and demand D) follows from the intersection of inverse
demand (i.e., marginal utility at efficient demand) and inverse supply, i.e.,19

p = U
′
(D∗) = cr Pr 1 + cg Pr 2 + cv Pr 3. (6)

19 There is ex-ante demand response, determined by U
′
> 0 with U

′′
< 0, but no real-time demand response. Note

that ex-ante demand response reflects consumer’s reaction to contractual fixed electricity prices or varying day-ahead
prices.
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The ex-ante price is a weighted average of the SRMC of the last “technology” used to meet
demand. Observe that in lost load events (Ω3) consumers are the marginal “technology” and the
related cost (cv = cl +U

′
(D)+δ ) are above the VOLL, cl +U

′
(D), by rationing cost, δ .

A benevolent planner enforces efficient production. Consumers need to pay the resulting price;
firms are obligated to deliver the sold amount of electricity. Remember that we use upper-case
letters for aggregate values. For firms we use lower-case letters: y j is production, q j capacity,
and q̃r is the realization of the randomly available renewable capacity of a representative firm
using the renewable technology. Note that firms have the same expectations of q̃r, but the final
realizations might differ. We assume that there is a continuum of n firms that can decide to enter
the market (with technology j) and install q j or produce y j, respectively, i.e.,

�
n y j (n)dn = Yj,�

n q j (n)dn = Q j, and
�

n q̃r (n)dn = Q̃r. We further assume that firms do not consider how either
their own production or their own capacity influence total production, total capacity, or prices.
Thus, for firms the occurrence of events Ωc and the related probabilities Prc are given.

5.1 Cost recovery

The decision problem for each firm is to maximize expected profits w.r.t. q j, measured as the
difference between revenues and cost, i.e.,

E
[
π j
]

=
(

p− c j
)

E
[
y j
]
−b jq j. (7)

Efficiency of a decentralized solution requires that two additional conditions be met. First,
profit-maximizing firms must provide efficient capacity levels, which requires that each firm’s
first-order condition,

∂E
[
π j
]

∂q j
=

(
p− c j

) ∂E
[
y j
]

∂q j
−b j ≤ 0

[
= 0 if q j > 0

]
, (8)

is equivalent to the respective first-order conditions (3) to (5).20 Second, each firm’s expected profit
must be zero (zero-profit condition); otherwise efficient capacity decisions are not an equilibrium
outcome due to exit or entry.

First, suppose that qs > 0. The planner enforces ys = qs. From (8), we obtain p−bs− cs = 0.
Substituting in (7) yields πs = (bs + cs− cs)qs−bsqs = 0. Remember from Section 4 that a positive
level of steam power capacity in the social planner solution requires that bs+cs =U

′
(D∗). A price

20 For differentiation, we use the fact that randomly available renewable capacity is assumed to be boundedly
integrable, which allows us to interchange differentiation and expectation, as done in Section 4.
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above LRMC of steam power leads to entry of steam power firms until the price drops to bs + cs.
Thus, a system with steam power only would lead to p = bs+cs and is the benchmark price to beat
for a system with renewables (and probably gas power). A price strictly below bs +cs leads to exit
and qs = 0, which is the efficient solution given that p =U

′
(D∗)< bs + cs.

Next, suppose that qg > 0. The planner enforces yg = 0 in Ω1, yg ∈ (0,qg) so that Yg =D−Qs−
Q̃r in Ω2, and yg = qg in Ω3. From (7), it follows that E [πg] = (p− cg)E [yg]−bgqg < 0 because
p≤ bs+cs < bg+cg and E [yg]< qg. An efficient solution that contains gas power capacity cannot
be decentralized by ex-ante pricing. The existence of steam power keeps prices below bs + cs and,
thus, prevents gas power from recovering fixed cost. However, an efficient solution with prices
(weakly) below the LRMC of steam power and no gas power capacity might still be decentralized
by competitive markets. Proposition 1 shows that this is not the case. For proof see Appendix D.

Proposition 1. Suppose that Q∗r > 0, the ex-ante price follows from (6), and a social planner

enforces efficient production as specified in Lemma 1, i.e.,
�

n y j (n)dn = Y ∗j .

• Steam power firms make zero-profits and provide the efficient capacity, i.e.,
�

n qs (n)dn ∈
[0,D∗] for p =U

′
(D∗) = bs + cs and qs = 0 for p < bs + cs.

• Gas power firms would suffer losses when entering the market and provide no capacity, i.e.,

qg = 0.

• Given that Q∗g = 0, renewables firms provide inefficiently low capacity when entering the

market, i.e.,
�

n qr (n)dn < Q∗r . For ind, renewables firms make zero-profits for the boundary

case of E [yr] = E [q̃r]Pr3, profits when E [yr]> E [q̃r]Pr3, and losses when E [yr]< E [q̃r]Pr3.

For corr, renewables firms make profits.

The ex-ante price is a weighted average of the SRMC of the marginal technology (renewables
or gas power) and the marginal cost of curtailment (a combination of consumers and the system
operator as marginal technology). Each firm receives the same price no matter what event materializes,
that is, there is no price risk. In contrast, the market value of electricity generation is low when
renewables supply plenty, that is, in the events of excess capacity of renewables. The market value
is high when renewables produce little, that is, in the events of lost load.

Steam power firms schedule production before the uncertainty of renewable energies realizes
and cannot adjust their schedule according to the final realization, that is, steam power firms
do not face any output risk. The value of the electricity produced is equal to the ex-ante price.
Accordingly, steam power recovers cost (and provides efficient capacities). Gas power firms
always adjust their production in response to the stochastic supply of renewable energies and
thus face an output risk. In particular, gas power is only fully used in lost load events , where
electricity supply is most valuable. The value of produced electricity is above the ex-ante price.
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In fact, gas power firms require a price above their own LRMC to recover cost, but the actual
price is weakly below the LRMC of steam power due to the (potential) presence of steam power
in the capacity mix. Thus, gas power cannot exist in a market with ex-ante pricing. Results are
ambiguous for renewables, at least for the independence case. For perfectly correlated generating
units, the resulting price even leads to profits. Note that positive profits are not an equilibrium
outcome, because perfectly competitive firms would enter the market. How to address this issue is
subject of the next subsection.

5.2 Support Mechanisms

The obvious way to determine optimal support mechanisms is to maximize welfare from a planner’s
perspective by taking into account the decisions of firms. It is impossible to obtain an analytical
tractable solution and interpret the results due to the amount of possible subsidies and taxes.
Instead, we simplify the analysis and just aim to decentralize capacity decisions, such that the
first-order conditions of profit maximization are equivalent to the first-order conditions of welfare
maximization (efficiency condition), and firms obtain zero profits to avoid exit and entry (zero-

profit condition).
The overall goal is to determine support mechanisms that lead to efficient capacity choices.

So, we do not use asterisks in the following because all variables refer to the efficient outcome.
For parsimony, we concentrate on the more interesting situation with positive levels of gas power
as efficient solution. Note that steam power firms always provide efficient capacities and exactly
recover cost. We thus neglect mechanisms for steam power firms in the following.

At this point, our multi-stage decision process changes. Before firms choose capacities in
Stage 1, a planner imposes a support mechanism. We consider payments for capacity, σ , and
energy supplied (feed-in tariffs), τ . Positive payments are a subsidy and negative payments a tax.
Subscript j denotes a technology-specific payment and subscript c= 1,2,3, a state-contingent feed-

in tariff, e.g., τr,2 is the feed-in tariff for renewables firms conditional that the interval of events Ω2

realizes. We have a flat feed-in tariff when τ j,c = τ j for all intervals of events.
The expected profits of a representative firm are:

E
[
π j
]

= ∑
c

(
p+ τ j,c− c j

)
E
[
y j|Ωc

]
Pr c−

(
b j−σ j

)
q j, (9)

where p+ τ j,c− c j are marginal production profits and b j−σ j are marginal capacity cost under
the chosen support mechanism.
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σ j τ j,1 τ j,2 τ j,3 Additional feed-in tariffs
b j c j− p None

None cr− p cg− p cv− p τ
+
r,1 =

a2qr
E[yr|Ω1]Pr1

γ

σg = 0, σr =
aa2

a−a3
γ cr− p cg− p cv− p τ

+
r,3 =−

a2
(a−a3)Pr3

γ

γ = 0 for corr and γ = a−a2
a2

br
a + a2−a3

a2
(cv− cr)Pr3 for ind

Tab. 1: Examples for optimal support mechanisms

Gas power firms. The production schedule for gas power firms is described in the prior subsection.
Taking expectations yields

E [yg] = qg Pr 3 +E [yg|Ω2]Pr 2 < qg. (10)

We use this to maximize profits w.r.t. qg. The efficiency condition of gas power firms is given
by

∂E [πg]

∂qg
= 0 ⇔ bg−σg =

(
p+ τg,3− cg

)
Pr 3, (11)

that is, marginal capacity cost must be equal to expected marginal production profits when lost
load (Ω3) realizes. We use this to obtain the zero-profit condition of gas power firms,

E [πg] = 0 ⇔ 0 =
(

p+ τg,2− cg
)

E [yg|Ω2]Pr 2, (12)

which is fulfilled if and only if τg,2 = cg− p. Efficiency requires that Pr3 = Pr∗3 (see Lemma 3). One
obvious solution is no subsidization of gas power capacity, σg = 0, and a state-contingent feed-in
tariff for lost load events equal to the difference of the marginal VOLL and the price (τg,3 = cv− p,
see the second row in Table 1 and note that gas power is not used in Ω1). Interestingly, the payments
necessary to fulfill the efficiency condition (σg,τg,3) are independent from those used to fulfill the
zero-profit condition (τg,2 = cg− p). However, the efficiency condition (11) allows for infinite
possibilities. For example, the planner can increase the capacity subsidy and simultaneously reduce
τg,3. This could end up in a situation where capacity is fully subsidized (σg = bg) and the feed-in
tariff is flat (τg = cg− p, see the first row in Table 1).

Renewables firms. Suppose that a support mechanisms is in place such that gas power firms
install efficient capacities. We use efficient production of renewables as described in Section 5.1
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and additionally account for production in Ω2 to obtain

E [yr] = E [q̃r|Ω3]Pr 3 +E [q̃r|Ω2]Pr 2 +E [yr|Ω1]Pr 1 < E [qr] . (13)

We use this to maximize profits w.r.t. qr and obtain the efficiency condition of renewables
firms,

∂E [πr]

∂qr
= 0 ⇔ br−σr = (p+ τr,2− cr)a2 Pr 2 +(p+ τr,3− cr)a3 Pr 3. (14)

Similar to the situation for gas power firms, marginal capacity cost must be equal to the
expected marginal production profits in the events of full capacity usage (Ω2,Ω3). Note that
efficiency requires that support mechanisms must be chosen so that Pr2 = Pr∗2 and Pr3 = Pr∗3 (see
Lemma 3). We use (14) and obtain the zero-profit condition for renewables firms,

E [πr] = 0⇔ 0 = (p+ τr,1− cr)E [yr|Ω1]Pr 1 +

(p+ τr,2− cr)(a2−a2)qr Pr 2 +(p+ τr,3− cr)(a3−a3)qr Pr 3. (15)

Capacity must be fully subsidized (σr = br) if the planner chooses a flat feed-in tariff (τr =

cr− p), just as was the case for gas power firms (see the first row in Table 1). State-contingent
feed-in tariffs fully avoid capacity subsidies, at least for the correlation case. For corr, we have
ac = ac so that the second line in (15) vanishes, and payments to fulfill the efficiency condition
are independent from those that fulfill the zero-profit condition. The second row in Table 1 shows
an obvious solution, which can be proved in a straightforward manner by inserting the supposed
payments and tariffs in (14). Appendix E provides additional computations.

For ind, in contrast, efficiency and zero-profit conditions are related (see a2,a3 = a in (15)).
Consider the same payments as for the correlation case (see second row in Table 1). The payments
fulfill the efficiency condition (14), but we obtain E [πr] =−a2qrγ when substituting the payments
into a renewables firm’s profit function. The implementation of an additional feed-in tariff conditional
to Ω1, denoted by τ

+
r,1, resolves the problem. τ

+
r,1 needs to be chosen so that τ

+
r,1E [yr|Ω1]Pr1 = a2qrγ

(see the last row of the second line in Table 1). Such a payment does not affect the capacity
decision of firms, because the capacity constraint does not bind in events of excess capacity (Ω1).
Other state-contingent tariffs distort the efficiency condition and require additional support for
capacity. For example, an additional feed-in tariff conditional to Ω3, denoted by τ

+
r,3, needs to be
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complemented by a capacity payment as shown in the third row in Table 1.21

We summarize the results in Proposition 2.

Proposition 2. Suppose that Q∗r ,Q
∗
g > 0, the ex-ante price follows from (6), and a social planner

enforces efficient production as specified in Lemma 1, i.e.,
�

n y j (n)dn = Y ∗j . Conditions (11) to

(15) define optimal support mechanisms for renewables and gas power firms such that firms make

zero profits and provide efficient capacities, i.e.,
�

n q j (n) = Q∗j .

Obviously, gas power and renewables firms recover cost when total capacity expenses are
subsidized and all production profits or losses, respectively, are eliminated by taxing (see the
first row in Table 1).22 Such a support mechanism no longer needs a market and cannot be the
target of the social planner. Capacity payments can be reduced when and only when feed-in tariffs
become state-contingent, meaning that tariffs vary according to renewables feed-in. A planner can
even fully avoid capacity payments by using payments as indicated in the second row in Table
1. Interestingly, these payments are the same for gas power and renewables firms, at least in the
perfect correlation case. Such a setup allows firms to perfectly ensure against their output risk by
receiving higher revenues when supply of renewables is scarce (and gas power production high).
As soon as generating units of renewables are not perfectly correlated, which is the real-world case,
additional payments are needed. A renewables firm now faces uncertain revenues because their
own output does not perfectly mirror the output of all renewables firms anymore. For example,
a technology-specific additional feed-in tariff (τ+r,1) or a combination of capacity payments and
technology-specific feed-in tariffs (σ+

r ,τ+r,3) restore efficient capacity choices and zero-profits for
renewables firms.

Price decomposition. Why does renewables firms do not recover cost for state-contingent
subsidies without the additional payments as soon as marginal generating units are uncorrelated?
The difference in the need for additional payments between ind and corr is primarily founded in
the price. We thus decompose the price and explain the origin of γ . First of all, observe that the
expected price after accounting for state-contingent feed-in tariffs as described in Table 1 is equal
to the ex-ante price, i.e., cr Pr1+cg Pr2+cv Pr3 = p.23

Start with the case of perfect correlation. Using Pr∗2 from Lemma 3, we obtain pcorr = br
a +cr+

γ . The ex-ante price (or the price after state-contingent feed-in tariffs) is equal to the LRMC of
renewables plus the mark-up γ . Using pcorr and the first-order conditions (3) to (5), yields expected
welfare of E [W corr] = E [U (X)]− pcorrE [Y ]. Expected welfare is given by the difference between

21 Note that σr and τ
+
r,3 vary in signs.

22 Capacity auctions could prevent over-investment when capacity expenses are fully subsidized.
23 The expected price that firms receive is different, e.g., (cgE [yg|Ω2]Pr2+cvE [qg|Ω3]Pr3)/E [yr] > p is the

expected price for gas power firms and sufficient to recover cost of gas power firms.

19



expected utility from consumption and firms revenues. Note that the zero-profit conditions of firms
are fulfilled and, thus, the revenues are equal to the cost.

For the independence case, we obtain a price without mark-up, i.e., pind = br
a +cr, but expected

welfare contains the mark-up, i.e.,

E
[
W ind

]
= E [U (X)]− pindE [Y ]− γE

[
Q̃r|Ω2

]
. (16)

For corr, the mark-up is part of the price. Note that pcorrE [Y ] =
(

br
a + cr

)
E [Y ]+ γE [Y ], that

is, the mark-up refers to expected production. For ind, the mark-up is included in expected welfare
and refers to expected production of renewables in gas power dispatched events (i.e., E

[
Q̃r|Ω2

]
).

For corr, the price is thus completely sufficient to cover all cost, because the output risk is
reflected by the mark-up γ . For ind, the output risk is not included in the price and thus renewables
firms need the additional payments as specified above.24

Illustrative example with discrete firms. We now have a more intuitive view on the results.
Consider a medium sized electricity market with cost for renewables, gas power, and curtailment
as follows: cr = 0, cg = 50, and cv = 500 C/MWh. Assume that demand is 75 GW and 50 GW
of gas power is installed. Now consider two renewable firms, each of them owning a wind farm,
consisting of 50,000 wind turbines of equal size each (say 1 MW each). The wind farms are
either fully available (1), half available (0.5) or not at all available (0). Each of the three events
realizes with equal probability, meaning that the expected output of a wind turbine is E

[
yr
qr

]
=

1
3 (1+0.5+0) = 0.5 MWh. Expected output of both wind farms is 50 GWh, whereas maximum
output is 100 GWh (and minimum is 0 GWh); meaning that for output greater than 75 GWh we
have excess capacity of renewables (Ω1), output below 25 GWh leads to loss load (Ω3), and output
between 25 and 75 GWh constitutes gas power dispatched events (Ω2). For parsimony, we assume
that wind turbines within a wind farm are located next to each other and always produce the same
(they always face the same weather conditions). However, whether or not both wind farms produce
the same depends on the respective case, ind or corr.

For the correlation case, we obtain three events: 1/1 (wind farms produce 100 GWh in total),
0.5/0.5 (50 GWh), and 0/0 (0 GWh), i.e., Ω1 = {1/1}, Ω2 = {0.5/0.5}, and Ω3 = {0/0} with
Pr1 = Pr2 = Pr3 = 1

3 . The probabilities are optimal when capacity cost are bg = 90 and br =

8.33 C/MWh.25 The ex-ante price is p = 1
3 (0+50+500) ≈ 183.33 C/MWh, and optimal state-

24 Note that the only difference in the size of γ is that the endogenous variables a2,a3,Pr3 refer to the respective
extreme cases ind and corr. However, without placing more structure in the probability density function of Q̃r, we
cannot determine whether E [X ] ≷ E

[
Q̃r|Ω2

]
nor γ ≷ 0. For example, γ is strictly positive when Q̃r is uniformly

distributed.
25 bg,cr are the cost of providing a unit of capacity for an hour. We thus abstract from lifetime issues for parsimony.
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contingent feed-in tariffs are τ1≈−183.33, τ2≈−133.33, and τ3≈ 316.67 C/MWh.26 Renewables
firms receive revenues only in gas power dispatched events, i.e., E

[
πr
qr

]
= 1

3 · 0.5 · 50 = 8.33
C/MWh are the revenues per wind turbine. Note that the revenues per wind turbine exactly cover
the capacity cost of renewables.

For the independence case, we obtain nine events and three intervals with Pr1 = Pr3 =
1
9 and

Pr2 = 7
9 .27 The probabilities are optimal when bg = 50 and br = 47.22 C/MWh. The resulting

ex-ante price is p = 50 · 7
9 +500 · 1

9 ≈ 94.44 C/MWh. Given state-contingent feed-in tariffs of τ1 ≈
−94.44, τ2 ≈−44.44, and τ3 ≈ 405.56 C/MWh, renewables firms receive revenues per turbine of
E
[

πr
qr

]
= 7

9 · 0.5 · 50 ≈ 19.44 C/MWh.28 The revenues are not sufficient to recover capacity cost.
The difference must be filled up by additional payments (as specified in Table 1).

Now suppose that a third firm is willing to enter the market to obtain intuition for the different
specifications of welfare (see (16)).29 For the correlation case, the social benefit of adding a
turbine is equal to the revenues of already existing firms, because the expected production is
0.5 MWh in gas power dispatched events, but 0 MWh during lost load. No additional payments
are necessary. For the independence case, an added turbine would produce independently of the
two wind farms, that is, with a probability of 1

3 also during lost load events. The social benefit
is 1

3 · 1 ·
(7

9 ·50+ 1
9 ·500

)
+ 1

3 · 0.5 ·
(7

9 ·50+ 1
9 ·500

)
= 47.22 C/MWh—that is, higher than the

revenues per turbine—and covers capacity cost exactly. We conclude that, as soon as generating
units are (partly) uncorrelated, the social benefit of adding a turbine is higher than the revenues
the market supplies because renewables firms cannot ensure against output risks. This effect
constitutes the additional payments for renewables firms.

6 Real-Time Pricing

Up to this point, the analysis has revealed that an ex-ante price will not lead to efficient capacities.
Previously, we neglected the possibility that prices adapt after the random variable realizes. Now,
we abandon the idea of ex-ante pricing and allow price adjustments in real-time. The aim of the
analysis is to investigate whether or not the market could be designed in such a way that support
mechanisms are unnecessary. Note that we still not allow for demand adaptation in real-time
(dynamic pricing), that is, the assumption that demand is fixed after Stage 2 remains active.

Denote by ρ the real-time price and by ρc the price that occurs conditional on the interval
of events Ωc that might realize. We define ρc as the marginal production cost of the last (and

26 Observe that the mark-up is γ = p− br
a − cr ≈ 183.33− 8.33

0.5 ≈ 166.67 C/MWh.
27 Intervals are Ω1 = {1/1}, Ω2 = {1/0.5,0.5/1,1/0,0/1,0.5/0.5,0.5/0,0/0.5}, and Ω3 = {0/0}.
28 Note that expected revenues without subsidies are E

[
πr
qr

]
≈ 91.67 C for the correlation case and E

[
πr
qr

]
≈ 47.22

C for the independence case.
29 Remember that firms do not consider their effect on aggregate quantities and prices.
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most expensive) technology used to serve demand (also marginal technology). Recall that steam
power will never be the marginal generating technology because steam power production cannot
be reduced (or only at very high cost) or increased after the random variable realizes. So, we need
to distinguish between three intervals of events: Ω1,Ω2,Ω3. In Ω1, renewables are the marginal
technology because of excess capacity. Therefore, the price equals their SRMC cr. In Ω2, gas
power is the marginal technology. In Ω3, a combination of consumers and the system operator acts
as marginal technology.30 We obtain

ρ =


cv for Q̃r ∈Ω3,

cg for Q̃r ∈Ω2,

cr for Q̃r ∈Ω1,

(17)

where E [ρ] = cr Pr1+cg Pr2+cv Pr3. Given efficient capacities, production, and demand levels,
we obtain E [ρ] = p = U

′
(D∗). Note that in such a market, the planner no longer needs to

enforce production decisions. For example, in Ω1, the price equals renewable’s SRMC and, thus,
renewables firms have no incentive to produce more than actually needed. The same applies in
Ω2 for gas power firms. Moreover, in Ω3, the price equals the marginal cost of curtailment, i.e.,
cv = cl +δ +U

′
(D)> cg > cr, which incentivizes production with full capacity by both renewables

and gas power firms.
Now turn to investment behavior of firms. Consider the following timing: After capacity

decisions of firms in Stage 1, consumers decide on demand in Stage 2. Firms decide production
in Stages 3 to 5 and after Stage 5, a price obtains from the intersection of total production and
demand. Expected profits of firms are given by

E
[
π j
]

= ∑
c

(
ρc− c j

)
E
[
y j|Ωc

]
Pr c−b jq j. (18)

Observe that the real-time price (17) could also be implemented by a support mechanism as
described in the second row of Table 1 (without the additional feed-in tariff τ

+
r,1). Thus, investment

behavior under real-time pricing is the same as under ex-ante pricing, with the following support
mechanisms: τ1 = cr− p, τ2 = cg− p, and τ3 = cv− p. We summarize in Proposition 3.

Proposition 3. Suppose that Q∗r ,Q
∗
g > 0 and consumers buy electricity from firms at the real-time

price ρ as specified in (17). Firms decide for efficient production. Steam and gas power firms

decide in favor of efficient capacities, but renewables firms only for the case of perfect correlation

30 Observe that efficient prices are above the (marginal) VOLL.
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(corr).

The output risk of gas power firms is resolved by real-time prices that reflect the market value
of electricity produced. The proposition further shows that real-time pricing leads to the efficient
outcome only under the assumption that marginal generating units of technologies are perfectly
correlated. Remember that renewables and gas power firms face an output risk because realized
output might be below expected output (e.g., yr < E [q̃r] or yg < E [qg]). Renewables firms do not
face an price risk under perfect correlation: The realized state of the world perfectly mirrors the
own output because all renewables firms produce the same (i.e., nq̃r = Q̃r). Thus, renewables firms
can perfectly ensure against the price risk. When outputs are not perfectly correlated, renewables
firms still face the same output risk but the price risk is differently: The realized state of the world
is not perfectly correlated to own output (e.g., q̃r = 0 but Q̃r =

�
n q̃r > D). Thus, renewables firms

cannot (perfectly) ensure against the price risk anymore.

Multi-period model. We used a stylized one-period model to show that real-time pricing alone
does not lead to efficient capacity choices of (perfectly competitive) firms due to the correlation of
randomly available marginal generating units. Now, we show that this finding is robust in a setting
with periodic demand and intermittent renewables. Changing utility leads to periodic demand and
a varying average availability reflects the predictable part of intermittency. Additionally, we keep
our assumption of the random renewables supply. Proposition 4 shows that the main finding from
the one-period model is robust with respect to multiple periods. Appendix F contains the proof.

Proposition 4. In a setting with real-time pricing, periodic demand, predictable intermittency, and

stochastic intermittency, renewables firms decide for efficient capacities when and only when the

availabilities of their marginal generating units are perfectly correlated (corr).

The proposition underlines that the correlation of marginal generating units of renewables is
crucial for future market design not only in a stylized one-period model, but also with respect to
closer real-world settings.

7 Consumer Behavior

In the analysis thus, we have ignored consumers’ incentives to actually decide for efficient demand.
Suppose that a consumer decides for demand ∆. y≤ ∆ is the served demand, so that x = min{∆,y}
is final consumption. A consumer obtains utility u from consumption with u

′
> 0, u

′′
< 0. We

assume that there is a continuum of m heterogeneous consumers so that
�

m ∆(m)dm=D,
�

m y(m)dm=

Y , and
�

m u(m,∆(m))dm = U (D). We further assume that consumers do not consider how their
own decisions for ∆ influences total demand, prices, or the occurrence of events Ωc and the related
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probabilities Prc. It is straightforward to show that maximizing welfare requires that each consumer
schedules demand until u

′
(∆) = cr Pr1+cg Pr2+cv Pr3. Thus, marginal utility and also marginal

cost of curtailment are the same for each consumer. In particular, we have u
′
(∆) = U

′
(D) and

cv = cl +δ +u
′
(∆) = cl +δ +U

′
(D) (see Lemma 2).

Suppose that a support mechanism is in place that leads to efficient capacity choices of firms
(in Stage 1). In case of lost load, the planner curtails consumers with the lowest willingness-to-
pay and pays compensation τl for each unit of lost load. Note that not all consumers get curtailed
in case of lost load, and the curtailed ones not necessarily consume zero electricity. Prl ∈ [0,1]
denotes the individual probability of each consumer of getting curtailed in case of lost load.

7.1 Consumers Pay Ex-Ante Prices

Presume that the ex-ante price follows from the intersection of inverse demand and supply, i.e.,
p = u

′
(∆) = cr Pr1+cg Pr2+cv Pr3, in Stage 2. In Stages 3 to 5, the planner enforces efficient

production. Demand ∆ follows from maximizing (expected) consumer surplus, which is given by

E [cs] = (u(∆)− p∆)Pr 12

+[(u(∆)− p∆)(1−Pr l)+(u(y)− py− (cl− τl)(∆− y))Pr l]Pr 3. (19)

The first line in (22) represents consumer surplus when there is no lost load. The second
line shows consumer surplus in case of lost load. Non-curtailed consumers consume ∆, whereas
curtailed ones consume y < ∆. From differentiating E [cs] w.r.t. ∆, we obtain:

∂E [cs]
∂∆

=
(

u
′
(∆)− p

)
Pr 12

+
[(

u
′
(∆)− p

)
(1−Pr l)− (cl− τl)Pr l

]
Pr 3 ≤ 0 [= 0 if ∆ > 0] . (20)

From the binding first-order condition (20), it follows that

u
′
(∆) = p+(cl− τl)

Pr l Pr 3

Pr 12 +(1−Pr l)Pr 3
. (21)

Observe that consumers with Prl > 0 would not decide for efficient demand. A compensation
of τl = cl corrects this market failure. The planner needs to account for disruption cost that arise
from lost load, because these cost are not fully internalized in the price for curtailed consumers.
We summarize in Proposition 5.
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Proposition 5. Suppose that Q∗r ,Q
∗
g > 0, consumers buy electricity at the ex-ante price price p

as specified by (6), a social planner enforces efficient production as specified in Lemma 1, and

implements support mechanisms for renewables and gas power firms as defined by conditions (11)

to (15). Consumers decide for the efficient demand, i.e.,
�

m ∆(m)dm = D∗, when they receive

compensation of cl for each unit of lost load.

Consumers do consider utility losses from lost load but not the disruption cost. Intuitively, the
ability to curtail consumers when production capability is not sufficient to cover the whole demand
is similar to an additional production technology. Offering system flexibility requires—in the same
way as does gas power—compensation or, more precise, a subsidy. However, the subsidy paid to
consumers does not contain marginal rationing cost. Consumers do not prevent curtailment and
the occurrence of related rationing cost, whereas firms do.31

7.2 Consumers Pay Real-Time prices

Recall from Propositions 2 and 3 that generation and investment behavior of firms is the same under
ex-ante pricing with a specific support mechanism (τ1 = cr− p, τ2 = cg− p, and τ3 = cv− p) and
real-time pricing. However, consumer behavior changes fundamentally under real-time pricing.
Suppose that τ

rt p
l is the compensation for curtailed consumers in case of lost load. The expected

consumer surplus changes to

E [cs] = (u(∆)− cr∆)Pr 1 +(u(∆)− cg∆)Pr 2

+
[
(u(∆)− cv∆)(1−Pr l)+

(
u(y)− cvy−

(
cl− τ

rt p
l

)
(∆− y)

)
Pr l
]

Pr 3. (22)

Note that real-time prices are now changing with the realization of Ω1, Ω2, or Ω3, respectively.
From differentiating E [cs] w.r.t. ∆ and solving the binding first-order condition for u

′
(∆), we

obtain:

u
′
(∆) = E [ρ]−

(
δ + τ

rt p
l

)
Pr l Pr 3, (23)

where E [ρ] = cr Pr 1 + cg Pr 2 + cv Pr 3. Surprisingly, the compensation for lost load (to constitute
efficient demand) is indeed a tax, i.e., τ

rt p
l = −δ . Consumers do not need compensation for

disruption cost, because disruption cost are already fully internalized in the price (which is cv

31 An reactive consumer who reduces its demand in response to lost load events prevents rationing cost and must
receive the same payments as the firms.
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in Ω3). In turn, curtailed consumers need to pay for rationing cost. We summarize in Proposition
6.

Proposition 6. Suppose that Q∗r ,Q
∗
g > 0, consumers buy electricity at the real-time price ρ as

specified by (17), and a social planner imposes a state-contingent feed-in tariff of τ
+
r,1 as specified

by Table 1. Consumers decide for the efficient demand, i.e.,
�

m ∆(m)dm = D∗, when they get taxed

at δ for each unit of lost load.

Proposition 3 shows a counter-intuitive pricing structure for consumers under real-time pricing.
The price in lost load events is equal to the cost of curtailment, that is, the sum of disruption
cost, rationing cost, and utility losses from curtailment. However, the marginal consumer (the last
consumer served) is willing to pay for disruption cost and utility losses only, i.e., cl + u

′
(∆) <

cv. The social planner needs to impose opportunity cost of not consuming electricity by taxing
curtailed consumers at rationing cost δ to incentivize efficient demand.

8 Market Design

Most consumers do not pay real-time prices, but they do pay contractual (ex-ante) fixed prices.
Thus, we next examine two market designs that account for this technological constraint and still
provide a real-time price signal for firms with the implications summarized in Proposition 3.

8.1 Retail Market with Real-Time Wholesale Market

Consider a (perfectly competitive) retail market in which firms no longer supply consumers directly.
Ahead of actual consumption (ex-ante), a representative retailer R sells a fixed amount of demand
∆R at the ex-ante price p to consumers and buys generation yR from the wholesale market at the
real-time price ρ . We assume that there is a continuum of i retailers that can decide to enter the
retail market, so that

�
i ∆R (i)do = D and

�
i yR (i)di = Y . We assume that retailers do not account

for their influence on prices and events that might materialize (as firms). In the events of excess
capacity of renewables (Ω1) and gas power dispatched (Ω2), the electricity produced is sufficient
to serve the whole demand so that ∆R = yR. In case of lost load (Ω3), some retailers cannot buy
enough electricity on the wholesale market so that yR < ∆R. Thus, the consumers with the lowest
willingness-to-pay need to get curtailed (at the burden of rationing cost δ ) and compensated at τl .
Expected profits are

E [πR] = p(∆R Pr 12 +E [yR|Ω3]Pr 3)

−(cr∆R Pr 1 + cg∆R Pr 2 + cvE [yR|Ω3]Pr 3)− (τl +δ )E [∆R− yR|Ω3]Pr 3. (24)
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Retailers earn money from selling ∆R or yR, respectively (first line). The second line documents
cost from buying electricity on the wholesale market, the compensation for involuntary curtailment
of consumers, and the burden of rationing cost. Profit maximization (via differentiation of E [πR]

w.r.t. ∆) yields the first-order condition

∂E [πR]

∂∆R
= pPr 12− cr Pr 1− cg Pr 2− (τl +δ )Pr 3 ≤ 0 [= 0 if ∆R > 0] . (25)

Using the marginal cost of curtailment cv and a compensation of τl = cl (see Proposition 5),
the resulting retail price is p =U

′
(D∗) = cr Pr1+cg Pr2+cv Pr3. Profits of a retailer simplify to

E [πR] = ∆R (p− cr Pr 1− cg Pr 2− cv Pr 3) . (26)

It is straightforward to show that the zero-profit condition for retailers is fulfilled. The resulting
retail price is equivalent to the (efficient) ex-ante price as specified in Section 5. Thus, without
alleviating the technological constraint of contractual fixed consumer prices, as done in Subsection
***, demand and production decisions can be decentralized and no longer need to be enforced by
a planner (at least for the case of perfectly correlation). We summarize:

Proposition 7. Suppose that Q∗r ,Q
∗
g > 0, retailers sign contracts with consumers to deliver ∆R

at the retail price p, buy electricity at the real-time price ρ as specified by (17) on a wholesale

market, and carry the burden of rationing cost δ .

• The resulting retail price is the ex-ante price p as specified by (6).

• Firms decide for efficient production. Steam and gas power firms decide in favor of efficient

capacities, but renewables firms only for the case of perfect correlation (corr).

• Consumers decide for the efficient demand, when they receive compensation of cl for each

unit of lost load.

8.2 Market for Imbalance Energy

In the next scenario, there is no retail market, and, once again, firms supply consumers directly, e.g.,
in a day-ahead market or over-the-counter. A representative firm signs contracts with consumers of
∆ j at the contracted price p̂ in advance of actual delivery. Firms purchase imbalance energy—offered
by other firms—or curtail consumers for compensation τl if they are not able (or not willing) to
produce ∆ j on their own. Conversely, firms offer imbalance energy in the case they experience
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excess capacity. y j,im > 0 is imbalance energy sold to other firms, where y j,im < 0 is purchased
imbalance energy.

Renewables and gas power firms offer imbalance energy in total when there is excess capacity
of renewables (Ω1). Renewables are the marginal technology, and the price for imbalance energy is
cr. Note that firms not need to be symmetric with regard to the availability of renewable capacity.
For example, some renewable firms might experience excess capacity and offer imbalance energy,
whereas other renewable firms demand imbalance energy. What matters here is solely that

�
n q̃r (n)dn=

Q̃r ∈Ω1. Also in gas power dispatched events (Ω2), renewables and gas power firms offer imbalance
energy, but the offering from renewables firms is fully used so that gas power is the marginal
technology. The resulting imbalance energy price is cg. In case of lost load (Ω3), there is not
enough imbalance energy to serve demand and firms need to decide to curtail some consumers.
Note that curtailment of consumers demands for compensation and firms need to carry the burden
of rationing cost. Additionally accounting for utility losses of lost load, the marginal cost of
curtailment cv is the price for imbalance energy in Ω3. The result is the real-time price ρ as
described by (17). Then, profits of a representative firm using technology j are

E
[
π j
]

= p̂
(
∆ j Pr 12 +E

[
y j− y j,im|Ω3

]
Pr 3
)
+∑

c
ρcE

[
y j,im|Ωc

]
Pr c

−(τl +δ )E
[
∆ j− y j + y j,im|Ω3

]
Pr 3−b jk j− c jE

[
y j
]
. (27)

Firms earn money from selling to consumers (first term in the first line of (27)). In Ω1,Ω2, firms
are definitely able to sell the contracted amount ∆ j. In Ω3, they curtail consumers if y j−y j,im < y j.
Moreover, firms sell (buy) imbalance energy y j,im to (from) other firms (second term in the first
line). Additional cost occur from the compensation of curtailed consumers, rationing cost, capacity
investments, and production.

In Ω1 and Ω2, total production is sufficient to serve demand so that y j,im = y j−∆ j. Using this,
we can differentiate (27) w.r.t. ∆ j to obtain the first-order condition of a firm’s profit maximization
problem:

∂E
[
π j
]

∂∆ j
= p̂Pr 12− cr Pr 1− cg Pr 2− (τl +δ )Pr 3 ≤ 0

[
= 0 if d j > 0

]
. (28)

As in the prior subsection, we obtain p̂=U
′
(D∗)= cr Pr1+cg Pr2+cv Pr3. Again, it is straightforward

to show that firms’ incentives are the same as in the prior subsection (see Proposition 3). Proposition
8 summarizes the results.
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Proposition 8. Suppose that Q∗r ,Q
∗
g > 0, firms sign contracts with consumers to deliver ∆ j at the

contracted price p̂, and trade electricity in a market for imbalance energy.

• The resulting price for imbalance energy is the real-time price ρ as specified by (17).

• Steam and gas power firms decide in favor of efficient capacities, but renewables firms only

for the case of perfect correlation (corr).

• Consumers decide for the efficient demand, when they receive compensation of cl for each

unit of lost load.

9 Concluding Remarks

Designing power markets is complicated, and often done suboptimal due to many possible and
even overlapping market failures. Economic issues (e.g., market power, security of service as a
public good, environmental externalities), behavior (e.g., asymmetric information, risk-aversion,
demand response), institutional design (e.g., contractual fixed consumer prices), and technological
limitations (e.g., ramping constraints, generator flexibility, stochastic supply) cause these failures.
We shed new light on these issues by addressing the role of ramping constraints (e.g., coal and
nuclear power plants cannot react to changing supply in real-time), generator flexibility (e.g., gas
power can react instantly), stochastic supply of intermittent renewable energies, the lack of demand

response, and possible curtailment of consumers. The overall goal is to identify how electricity is
priced efficiently.

We model ramping constraints and generator flexibility by introducing a sequential dispatch
decision model. Steam power production needs to be scheduled ahead of the realization of the
random supply of intermittent renewables and cannot be changed later on, whereas gas power is
able to react instantly. We detect that ramping constraints do not lead to inefficiencies, whereas
generator flexibilities do so under ex-ante pricing. Firms using technologies with ramping constraints
(such as steam power) provide efficient capacities and recover cost (no market failure), because
those technologies are dispatched ex-ante (no output risk) and, thus, both ex-ante and real-time
prices reflect the value of electricity produced. Firms using flexible generators (such as gas
power) cannot recover cost and provide no capacity at all (market failure) under ex-ante pricing,
because the adjustment of production in response to fluctuating supply of renewables (output
risk) is inadequately priced. Additionally, the existence of a cheaper conventional technology
with ramping constraints (i.e., steam power) keeps prices below the necessary threshold for cost
recovery. Support mechanisms resolve the failure, but capacity payments alone are never sufficient
to do so. One might argue that the underlying market failure is caused by the technologies with
ramping constraints, but it is indeed a pricing issue. Real-time pricing addresses the problem by
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pricing the possible curtailment of consumers. Now, gas power firms recover cost and provide
sufficient capacities for resource adequacy.

We model stochastic supply of intermittent renewables by reflecting the spatial distribution of
generating units and their correlation. Even real-time pricing does not provide optimal long-run
incentives for renewable firms due to the stochastic nature of intermittent renewables (combination
of output and price risks). The availability of wind turbines and solar PV panels are weather-
dependent. Weather conditions are spatially correlated, but never perfectly, which would be necessary
to arrive at the efficient outcome.

The sequential decision structure of the model also reflects the lack of demand response and
possible curtailment of consumers. Socially optimized systems balance the possibility of a shortage
of supply and the holding of (often unused) back-up capacity. As back-up capacity does, consumers
offer system flexibility in means of curtailment and, thus, need appropriate compensation for
curtailment. Under ex-ante pricing, a subsidy in the height of disruption cost compensates curtailed
consumers and turn them indifferent to getting curtailed or not. This result underlines the importance
of an institutionalized compensation mechanism for consumers, for example, in terms of an undersupply
penalty.32 The outcome turns under real-time pricing. In lost load events, the efficient real-time
price rises above the VOLL by rationing costs , so that the real-time price is higher than the
opportunity cost of not consuming electricity. Additionally, non-reactive consumers do not reduce
the overall burden of rationing cost, whereas back-up capacity does so. As a consequence, the
planner needs to impose a tax in height of rationing cost to enforce efficient demand.33

The paper closes by showing how the problems are actually resolved by market designs that
offer real-time prices for generators and ex-ante prices for consumers. The only missing piece for
efficiency are missing incentives for intermittent renewables when supply of spatially distributed
generating units is not perfectly correlated.

The paper shows the trade-off between ex-ante and real-time pricing for both generators and
consumers, and draws three main recommendations for electricity market design. First, additional
capacity mechanisms (besides already existing ones to safeguard the public good security of services)
could be justified for gas power—but never steam power—technologies given the necessary and
potentially unpopular taxation of curtailed consumers under real-time pricing. However, capacity
payments alone never resolve the problem of providing the private good resource adequacy. They
must be complemented by feed-in tariffs that are even conditional on the amount of wind and solar
power in the system. Second, renewables such as wind and solar power are subject to a price risk

32 See Sunar and Birge (2018) for equilibrium strategies of firms under a regulatory mechanism with an undersupply
penalty in a day-ahead electricity market.

33 Remember that curtailment of consumers is socially optimal as soon as intermittent renewables (that are subject
to stochastic supply) are competitive. It is a mixture of engineering and behavioral studies to determine the VOLL and
a following economic optimization problem to find the socially optimal probability of curtailment.

30



under real-time pricing. Firms can perfectly ensure against this risk and markets are complete
when and only when all renewables generators face the same weather conditions, which does not
hold true. As a consequence, renewables technologies require additional subsidization to overcome
incompleteness of markets. Ex-ante pricing demands for other solution strategies. Beside many
possible (and complicated) support mechanisms, renewables and gas power generators could be
integrated within one firm so that losses of the one technology are balanced by profits of the
other technology. Third, price caps under real-time pricing at the (marginal) VOLL are inefficient
when the system operators seeks to curtail—at the burden of rationing cost—only those consumers
with the lowest marginal utility. Rationing cost should be reflected by prices in those rare lost
load events, opening the case for taxing curtailed consumers and intensifying the discussion for
including cost of (transmission and distribution) system operators in wholesale market prices.

There are a few limitations in our analysis. For example, we consider just the two extreme
cases of correlation. Following Chao (1983), one might implement a correlation measure—as he
does for demand—on the supply side. Note that this would not change our main finding that a real-
time price is not sufficient for renewables firms to recover cost, because they cannot ensure against
their price risk.34 The main restriction is the assumption of very strict dispatchability levels. For
example, support mechanisms under ex-ante pricing focus on consumers and flexible generators.
In reality, steam power is at least partially able to react instantly to stochastic fluctuations in the
supply of renewables, albeit at a higher cost. Indeed, modern steam power has higher ramp-up
and ramp-down possibilities and lower cost than was formerly the case. This partial flexibility
opens the case for participation of nuclear and coal power plants in capacity mechanisms. The
analysis further neglects the potential impact of storage to balance stochastic supply of renewable
energies.35 Investigating the effect of flexible steam power in a dynamic investment setup with
inflexible steam power, renewables, gas power, and storage options would be an interesting and
useful topic for future work.

Finally, classic peak-load pricing (see Crew et al., 1995) suggest technology composites of
baseload (mainly steam power) and peakload power plants (mainly gas power) to balance demand
fluctuations. We neglect periodic demand in our basic model and, thus, some of our findings refer
only to gas power dedicated to balance renewables output. However, our findings still allow to
draw recommendations for real-world power markets with periodic demand, because we show that
the main finding, that is, markets are incomplete for renewables firms under real-time pricing, still

34 Moreover, correlation in the supply of generating units is a predominant problem for intermittent renewable
energies. However, steam power plants also face such correlations. For example, nearby located steam power
plants have to shut down when their cooling river gets too warm. Using a similar model, we could deduct that even
dispatchable generators need additional payments under real-time pricing.

35 Recent studies (e.g., Helm and Mier, 2020; Schmalensee, 2019) show—in models that neglect sequential dispatch
decisions and different pricing schemes—that storage does not induce inefficiencies.
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hold true under periodic demand and real-time pricing.
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Appendix

A Proof of Lemma 1

We can solve the problem by using Kuhn-Tucker conditions. To keep it brief, we do it in more
intuitive way. We know that lost load occurs when production is insufficient to meet load. Thus,
lost load is given by

Dl =

D−Ys−Yg−Yr for Ys +Yr +Yg < D,

0 else.
(29)

In Stage 5, D,Ys,Yr are given. We can leave out expectations and maximize welfare w.r.t. Yg.
We obtain

∂W
∂Yg

=

−cg + cl +δ +U
′
(Y ) > 0 for Ys +Yr +Yg < D,

−cg < 0 else.
(30)

Note that marginal utility in (30) is evaluated at aggregate production Y = Ys +Yr +Yg. Gas power
produces to avoid lost load. The optimal production schedule is

Yg =


Qg for Ys +Yr +Yg < D,

D−Ys−Yr for Ys +Yr < D < Ys +Yr +Yg,

0 else.

(31)

For renewables production, we know that lost load occurs if Yr < D−Ys −Qg, where we
anticipated that Yg = Qg. Moreover, D,Ys are given at Stage 4 so that we can leave out expectations
again and maximize welfare w.r.t. Yr to obtain

∂W
∂Yr

=


−cr + cg + cu +U

′
(Y ) > 0 for Yr < D−Ys−Qg,

−cr + cg > 0 for D−Ys−Qg ≤ Yr < D−Ys,

−cr < 0 else.

(32)

Renewables produce to avoid gas turbine production. The optimal production schedule is
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Yr =


Q̃r for Q̃r < D−Ys−Yg,

Q̃r for X−Ys−Yg ≤ Q̃r < D−Ys,

D−Ys else.

(33)

From (31) and (33), we obtain the interval of events Ω1 = [D−Qs,Qr], Ω2 = [D−Qs−Qg,D−Qs),
and Ω3 = [0,D−Qs−Qg). For example, Ys+Yr+Yg <D is equivalent to Ω3. Using these intervals
and (33), (31), and (29), we obtain:

Y ∗r =

Q̃r for Q̃r ∈Ω3,

D−Qs else,
(34)

Y ∗g =


Qg for Q̃r ∈Ω3,

D−Qs− Q̃r for Q̃r ∈Ω2,

0 else,

(35)

Dl =

D−Qs−Qg−Qr for Q̃r ∈Ω3,

0 else.
(36)

Note that Dl is not a decision and thus cannot be optimized (no asterisk applies here).
Turning to Stage 3 and using the fact that Q̃r is boundedly integrable, we can interchange

differentiation and expectation (see Chao, 1983, 2011; Eisenack and Mier, 2019). Using (34) to
(36), we differentiate (1) conditional to the realized interval of events. Taking expectations yields

∂E [W ]

∂Ys
= cr Pr 1 + cg Pr 2 +

(
cl +δ +U

′
(Y )
)

Pr 3− cs. (37)

Suppose that ∂E[W ]
∂Ys

< 0 so that Ys < Qs. Then, in Stage 1, maximization of welfare w.r.t. Qs (we

need to apply the same steps as for (37)) yields ∂E[W ]
∂Qs

= −bs < 0. It follows that Ys = Qs = 0, a

contradiction to Ys < Qs. We conclude that ∂E[W ]
∂Ys

> 0 so that Ys = Qs.

B Proof of Lemma 2

From (36), we know that X = Y for Q̃r ∈Ω3 and X = D for Q̃r ∈ 12. We obtain:
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U (X) =

U (Y ) for Q̃r ∈Ω3,

U (D) else,
(38)

where Y = Qs + Q̃r +Qg. As in Appendix A, we use the fact that Q̃r is boundedly integrable and,
thus, interchange the order of differentiation and expectations to maximize welfare with regard to
demand. We differentiate (1) conditional to the respective interval Ωc, thereby using Ys = Qs and
(34) to (36),

∂W
∂D

=


U
′
(D)− cr for Q̃r ∈Ω1,

U
′
(D)− cg for Q̃r ∈Ω2,

−(cl +δ ) else.

Taking expectations yields the first-order condition:

∂E [W ]

∂D
= U

′
(D)Pr 12− cr Pr 1− cg Pr 2− (cl +δ )Pr 3 ≤ 0 [= 0 if D∗ > 0] . (39)

In the model setup, we assumed that the Inada conditions are fulfilled, that is, the first-order
condition of demand (39) must bind for at least some D > 0. Using U

′
(D)Pr12 = U

′
(D)−

U
′
(D)Pr3 to solve the binding condition for U

′
, enables us to find the marginal utility to maximize

welfare with regard to demand as shown in Lemma 2.

C Proof of Lemma 3

Start with Q∗g > 0. From (4) and (5), we obtain:

Pr∗3 =
bg

cv− cg
, (40)

Pr∗2 =
br− (cv− cr)a3 Pr∗3

(cg− cr)a2
. (41)

Next, suppose that Q∗g = 0. (4) is not binding and thus Pr∗2 = 0. From (5), we obtain:
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Pr∗3 =
br

(cv− cr)a3
. (42)

D Proof of Proposition 1

Suppose that qr > 0, Q∗g = 0⇔ Pr∗2 = 0, and U
′
(D∗) ≤ bs + cs. The planner enforces yr < q̃r

so that Yr = D−Qs < Q̃r in Ω1 and yr = q̃r so that in Ω3. Expected production is E [yr] =

E [q̃r|Ω3]Pr3+E [yr|Ω1]Pr1. From (8), we obtain ∂E[πr]
∂qr

= (p− cr)a3 Pr 3− br = 0. Substituting
p = cr +(cv− cr)Pr3 (by using cr Pr1 = cr− cr Pr3) yields

0 = (cr +(cv− cr)Pr 3− cr)a3 Pr 3−brqr

= (cv− cr)a3 (Pr 3)
2−br.

Noting that Pr3 cannot be negative, we can solve this for Pr3 =
√

Pr∗3 (see Lemma 3). Note that
p≤ bs+cs due to the existence of steam power. Pr3 = 1 would lead to p= cv > bg+cg > bs+cs and
violate p≤ bs+cs. It follows that 1 > Pr3 =

√
br

(cv−cr)a3
> Pr∗3. The equilibrium probability of lost

load is higher than the efficient probability, because renewable capacity is below its efficient level.
This also yields to higher prices since p = cr Pr1+cv Pr3 = cr +(cv− cr)Pr3 > cr +(cv− cr)Pr∗3.

Turn to profits. Substituting p and do some rearrangering, yields

E [πr] = (cr +(cv− cr)Pr 3− cr)E [yr]−brqr

= (cv− cr)

(
Pr 3E [yr]−

br

(cv− cr)a3
a3qr

)
= (cv− cr)

(
Pr 3E [yr]− (Pr 3)

2 a3qr

)
.

For corr, we know that E [yr] = E [q̃r|Ω3]Pr3+E [yr|Ω1]Pr1 and a3qr Pr 3 = E [q̃r|Ω3]Pr3. It
follows that E [πr] = (cv− cr)Pr3 E [yr|Ω1]Pr1 > 0. Note that production of firms is perfectly
correlated and all firms produce the same for each event. Thus, zero profits only occur if Pr1 =

E [yr|Ω1] = 0 and Pr3 = 1, which violates p≤ bs+cs as argued above. We conclude that E [yr|Ω1]>

0 and profits are positive.
For ind, we have a3qr = aqr =E [q̃r] and it follows that E [πr] = (cv− cr)Pr3 (E [yr]−E [q̃r]Pr3).
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E Calculations for Table 1

We now demonstrate how to calculate E [πr] =−a2qrγ . Suppose that τ1 = cr− p, τ2 = cg− p, and
τ3 = cv− p. From (15), profits of renewables firms are

E [πr] = (cg− cr)E [q̃r|Ω2]Pr 2 +(cv− cr)E [q̃r|Ω3]Pr 3− (br−σr)qr. (43)

Note that in Ω1 marginal production profits are zero due to τ1 = cr− p. The efficiency condition
in (14) becomes

br−σr = (cg− cr)aPr 2 +(cv− cr)aPr 3,

where we have used that ac = a for ind. Substituting marginal capacity cost after transfers in (43),
we obtain expected profits of

E [πr] = − [(a−a2)(cg− cr)Pr 2 +(a−a3)(cv− cr)Pr 3]qr (44)

where we have used that E [q̃r|Ω2] = a2qr and E [q̃r|Ω3] = a3qr. We use (41) and—after some
rearranging—obtain E [πr] =−a2qrγ .

We now turn to the third line in Table 1. Accounting for τ
+
r,3, expected profits change from (43)

to

E [πr] = (cg− cr)E [q̃r|Ω2]Pr 2 +
(

cv− cr + τ
+
r,3

)
E [q̃r|Ω3]Pr 3− (br−σr)qr.

The new efficiency condition becomes

br−σr = (cg− cr)aPr 2 +
(

cv− cr + τ
+
r,3

)
aPr 3 (45)

and new expected profits are

E [πr] = −(cg− cr)(a−a2)qr Pr 2−
(

cv− cr + τ
+
r,3

)
(a−a3)qr Pr 3

= −a2qrγ−qrτ
+
r,3 (a−a3)Pr 3.
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This can be solved to obtain the value for τ
x+
r,3 in Table 1. Rearranging the new efficiency

condition of (45) yields

σr = br− (cg− cr)aPr 2− (cv− cr)aPr 3− τ
+
r,3aPr 3

=
aa2

a−a3
γ.

F Proof of Proposition 4

Subscript t denotes variables and parameters referring to period t, e.g., at is the average availability
of renewables. Suppose that pt = cr Pr 1t +cg Pr 2t +cv Pr 3t is the ex-ante price in period t. Expected
profits of firms are given by

E [πs] = ∑
t
(cr Pr 1t + cg Pr 2t + cv Pr 3t− cs)yst−bsqs

E [πg] = ∑
t
(cv− cg)qg Pr 3t−bgqg

E [πr] = ∑
t
(cg− cr)E

[
q̃ jt |Ω2t

]
Pr 2t +∑

t
(cv− cr)E

[
q̃ jt |Ω3t

]
Pr 3t−brqr

Production decisions in Stages 4 and 5 are straightforward to production decisions in the one
period setup. However, production decisions of steam power firms in Stage 3 requires modification.
Differentiation of E [πs] w.r.t. yst yields

∂E [πs]

∂yst
= cr Pr 1t + cg Pr 2t + cv Pr 3t− cs.

The level of the first-order condition defines the subsets of periods H,L,N. For all t ∈ H,
production is highest due to ∂E[πs]

∂yst
> 0 so that steam power firms use their whole capacity, yst = qs.

If ∂E[πs]
∂yst

= 0 for all t ∈ L, then production is lower. Every production decision between zero and full
capacity is optimal, yst ∈ (0,qs). Finally, for all t ∈ N, steam power firms decide for no production
due to ∂E[πs]

∂yst
< 0. Note that N and L might be empty but H never. Steam power capacity is costly

and installing never used capacity cannot be optimal. Note that this specification is one crucial
difference to the one-period setup. We derive the first-order conditions of firms by differentiating
profits w.r.t. q j for j = s,g,r:
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∂E [πs]

∂qs
= ∑

t∈H
(cr Pr 1t + cg Pr 2t + cv Pr 3t− cs)−bs,

∂E [πg]

∂qg
= ∑

t
(cv− cg)Pr 3t−bg,

∂E [πr]

∂qr
= ∑

t
((cg− cr)a2t Pr 2t +(cv− cr)a3t Pr 3t)−br.

Remember that steam power firms do not produce in periods t ∈ N and face zero marginal
production profits for all t ∈ L. We can use this and substitute the first-order condition of steam
power firms to obtain

E [πs] = ∑
t∈H

(cr Pr 1t + cg Pr 2t + cv Pr 3t− cs)ys−bsqs = 0.

It is straightforward to show that gas power firms also make zero profits. We just need to
substitute the first-order condition of gas power into the respective profits function to obtain E [πg] =

0. Profits of renewables firms are more complex to determine. We can substitute the first-order
condition into the profits function to obtain

E [πr] =

[
∑
t
(cg− cr)a2t Pr 2t +∑

t
(cv− cr)a3t Pr 3t−br

]
qr

=

[
∑
t
(cg− cr)a2t Pr 2t +∑

t
(cv− cr)a3t Pr 3t−∑

t
(cg− cr)a2t Pr 2t +∑

t
(cv− cr)a3t Pr 3t

]
qr

=

[
∑
t
(cg− cr)(a2t−a2t)Pr 2t +∑

t
(cv− cr)(a3t−a3t)Pr 3t

]
qr.

For corr, we have act = act so that E [πr] = 0, as found in the one period setup. For ind, it is
more complicated.

Define ∑t a2t Pr2t
∑t Pr2t

=: α2, ∑t a3t Pr3t
∑t Pr3t

:= α3, and

Γ :=

0 for corr,
a−α2

α2

br
a + α2−α3

α2
(cv− cr)∑t Pr 3t for ind.

From the first-order condition of renewables firms, we obtain optimal probabilities of gas power
dispatched (Ω2t) for the respective cases,
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∑
t

Pr 2t =


br−(cv−cr)α3 ∑t Pr3t

(cg−cr)α2
for corr,

br−(cv−cr)a∑t Pr3t

(cg−cr)a
for ind.

Using this and α2,α3 in renewables firm’s profit function yields

E [πr] =

[
∑
t
(cg− cr)(a2t−a)Pr 2t +∑

t
(cv− cr)(a3t−a)Pr 3t

]
qr

= −α2qrΓ. (46)
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