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Abstract

The Zernike polynomials arise in several applications such as optical metrology or image

analysis on a circular domain. In the present paper we determine optimal designs for

regression models which are represented by expansions in terms of Zernike polynomials.

We consider two estimation methods for the coefficients in these models and determine

the corresponding optimal designs. The first one is the classical least squares method and

Φp-optimal designs in the sense of Kiefer (1974) are derived, which minimize an appropriate

functional of the covariance matrix of the least squares estimator. It is demonstrated that

optimal designs with respect to Kiefer’s Φp-criteria (p > −∞) are essentially unique and

concentrate observations on certain circles in the experimental domain. E-optimal designs

have the same structure but it is shown in several examples that these optimal designs are

not necessarily uniquely determined. The second method is based on the direct estimation

of the Fourier coefficients in the expansion of the expected response in terms of Zernike

polynomials and optimal designs minimizing the trace of the covariance matrix of the

corresponding estimator are determined. The designs are also compared with the uniform

designs on a grid, which is commonly used in this context.

AMS Subject Classification: 62K05

Keywords and Phrases: Optimal design, Zernike polynomials, image analysis, D-optimality,

E-optimality

1 Introduction

Consider a function f defined on the unit disc

D = {(x, y) ∈ R
2 | x2 + y2 ≤ 1},

which belongs to the space L2(D) and the problem of estimating this function from the experi-

mental data

Zij = f(xi, yj) + εij (1 ≤ i ≤ m; 1 ≤ j ≤ n)(1.1)

where (xi, yj) ∈ D are the experimental conditions and the random variables εij are uncorrelated

with zero mean and common variance. The problem of recovering the function f from the data

(Zij)1≤j≤m on a circular domain arises in a wide range of applications including the diffraction

theory of optical aberrations [see Born and Wolf (1975) or Wyant and Kreath (1992)], pattern

recognition [see e.g. Abu-Mostafa and Psaltis (1984)], image analysis [see e.g. Kim and Kim
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(1999) or Liao and Pawlak (1996)] and statistical models for circular data [see Fisher (1993)].

Numerous authors propose to expand the function f in (1.1) in terms of Zernike polynomials (or

Zernike moments) and to estimate the coefficients in this expansion from the experimental data

[see e.g. Liao and Pawlak (1998), Pawlak and Liao (2002), Hse and Newton (2004) among many

others]. On the one hand the estimated coefficients of this expansion are used for reconstructing

the unknown function [see e.g. Liao and Pawlak (1998)] and on the other hand these coefficients

are also used for classification by the commonly used techniques as support vector machines,

minimum distance or nearest neighbour classification [see e.g. Hse and Newton (2004)].

In the present paper we study the effect of the design [i.e. the choice of the location of the

points (xi, yj) in the disc D] on the quality of the estimates for the coefficients in the expansion

of the function f in terms of Zernike polynomials. In Section 2 we state some basic facts

about these polynomials and explain very briefly how these functions are used in the disciplines

mentioned in the previous paragraph. We consider two methods for estimating the coefficients in

a truncated expansion of the regression function in terms of Zernike polynomials. The first one

is the classical least squares method. In Section 3 we determine optimal designs with respect to

Kiefer’s Φp-criteria, which minimize a p-mean of the eigenvalues of the covariance matrix of the

least squares estimate. It is shown that an optimal allocation of the explanatory variables (xi, yj)

uses certain circles in the experimental domain D, and the number of circles increases with the

degree in the expansion of f. We present several examples and compare the Φp-optimal designs

with the uniform design, which is commonly used in these problems. In Section 4 we determine

optimal designs if the coefficients in the truncated expansion in terms of Zernike polynomials

are estimated directly by replacing the theoretical Fourier coefficients by a weighted mean of the

observations. In this case the design appears nonlinearly in the (asymptotic) covariance matrix

of the corresponding estimator and Φp-optimal designs have to be determined numerically in

most cases. However, for the A-optimality criterion (corresponding to the case p = −1) the

optimal designs can be found explicitly and are also compared with the uniform design.

2 Zernike moments

Zernike polynomials were first proposed by Zernike (1934) and are defined by

Z−m
n (ρ, ϕ) = Nm

n Rm
n (ρ) sin(mϕ), Zm

n (ρ, ϕ) = Nm
n Rm

n (ρ) cos(mϕ),(2.1)

3



where the function Rm
n (ρ) is called radial function and defi ned for n, m ∈ N0 with n ≥ m ≥ 0

by

Rm
n (ρ) = (−1)(n−m)/2ρmP

(m,0)
(n−m)/2(1 − 2ρ2)(2.2)

=

⎧⎪⎪⎨
⎪⎪⎩

(n−m)/2∑
l=0

(−1)l(n − l)!

l!((n + m)/2 − l)!((n − m)/2 − l)!
ρn−2l for n − m even

0 for n − m odd

and P
(α,β)
k (x) denotes the k-th Jacobi polynomial orthogonal with respect to the measure (1 −

x)α(1 + x)βI[−1,1](x) dx [see Szegö (1975)]. In formula (2.1) the quantity

Nm
n =

√
2(n + 1)

1 + δm,0
,(2.3)

is a normalizing constant such that

1

π

∫ 2π

0

∫ 1

0

Zm2
n1

(ρ, ϕ)Zm1
n2

(ρ, ϕ)ρ dρ dϕ = δn1,n2δm1,m2(2.4)

for all n1, n2 ∈ N0, 1 ≤ |mj | ≤ nj (j = 1, 2), where nj − mj is even (j = 1, 2). Here and

throughout this paper δi,j denotes Kronecker’s symbol. Note also that the orthogonality relation

for the polynomials Rm
n (ρ) is given by∫ 1

0

ρRm
n1

(ρ)Rm
n2

(ρ) dρ =
δn1,n2

2(n1 + 1)
(2.5)

[see Szegö (1975)]. A function f ∈ L2(D) admits the expansion

f(ρ, ϕ) =
∞∑

k=0

k∑
i=−k

k−|i|even

θ(k,i)Z
i
k(ρ, ϕ), ρ ∈ [0, 1], ϕ ∈ [0, 2π),(2.6)

where the quantities θ(k,i) are the usual Fourier coefficients given by

θ(k,i) =
1

π

∫ 2π

0

∫ 1

0

f(ρ, ϕ)Z i
k(ρ, ϕ)ρ dρ dϕ if k − |i| is even(2.7)

Assume that data according to the model (1.1) is available, where the explanatory variables

(xi, yj) are represented in terms of polar coordinates (ρi, ϕj). Usually a truncated expansion

of (2.6) up to a given order, say d ∈ N, is used as an approximation of the function f and
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one way to estimate the coefficients in this expansion (and as a by-product the approxima-

tion of the function f) is the least squares method, which determines the parameter θ =

(θ(0,0), θ(1,−1), θ(1,1), . . . , θ(d,−d), . . . , θ(d,d))
T ∈ R

(d+1)(d+2)/2 such that

m∑
i=1

n∑
j=1

(
Zij −

d∑
k=0

k∑
�=−k

k−|�| even

θ(k,�)Z
�
k(ρi, ϕj)

)2

(2.8)

becomes minimal. A second method of estimating the coefficients in the truncated expansion

uses the direct estimation of the Fourier coefficients (2.7), that is

θ̃(k,�) =
1

π

m∑
i=1

n∑
j=1

Z�
k(ρi, ϕj)ρi(ρi − ρi−1)(ϕj − ϕj−1)Zij(2.9)

(� = 0, . . . d; |k| ≤ �, � − |k| even), see Pawlak and Liao (2002), for example. The estimated

coefficients in this expansion are finally used for several purposes, such as estimation of function

f in the context of image reconstruction [see e.g. Pawlak and Liao (2002)] or symbol recognition

by support vector machines, minimum mean distance or nearest neighbour methods [see Hse and

Newton (2004)]. A common design in this context is to observe the data on a grid in the disc D

[see Pawlak and Liao (2002)]. In the present paper we consider the problem of finding optimal

designs for the estimation of the parameters in a truncated Fourier expansion of order d ∈ N

derived from the infinite series (2.6). We first state some results for least squares estimation in

Section 3 and consider afterwards the problem of finding efficient designs for the direct estimation

of the Fourier coefficients in Section 4.

3 Optimal designs for least squares estimation in Zernike

regression models

Consider the regression model corresponding to the least squares problem (2.8)

E[Y | ρ, ϕ] = θT fd(ρ, ϕ); Var[Y | ρ, ϕ] = σ2 > 0,(3.1)

where

fd(ρ, ϕ) =
(
Z0

0(ρ, ϕ), Z−1
1 (ρ, ϕ), Z1

1(ρ, ϕ), . . . , Z−d
d (ρ, ϕ), . . . , Zd

d(ρ, ϕ)
)T

∈ R
(d+1)(d+2)/2(3.2)

is the vector of Zernike polynomials of order d and

θ = (θ(0,0), θ(1,−1), θ(1,1), θ(2,−2), θ(2,0), θ(2,2), . . . , θ(d,−d), . . . θ(d,d))
T ∈ R

(d+1)(d+2)/2
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the corresponding vector of parameters. Note that there appear (d+1)(d+2)/2 Zernike polyno-

mials in the regression model (3.1). In the present section an approximate design is a probability

measure, say ξ, on the set [0, 1] × [0, 2π] (note that we will present the design in polar coordi-

nates). This concept is due to Kiefer (1974) and appropriate for least squares estimation. In the

following Section 4 we will consider a slightly different definition of a design which is more appro-

priate for the purpose of direct estimation of the Fourier coefficients. For a probability measure

with finite support the support points, say (ρi, ϕj), determine the points where observations are

taken and the corresponding weights, say wi,j, give the relative proportion of total observations,

taken at the point (ρi, ϕj). For a given design ξ with finite support the covariance matrix of the

least squares estimate for the vector θ is proportional to the inverse of the information matrix

M(ξ) =

∫ 2π

0

∫ 1

0

f(ρ, ϕ)fT (ρ, ϕ) dξ(ρ, ϕ),(3.3)

and an optimal approximate design maximizes an appropriate function of this matrix. There

are numerous criteria proposed in the literature, which can be used to discriminate between

competing designs [see Silvey (1980) or Pukelsheim (1993)], and in this paper we will restrict

ourselves to the famous family of Φp-criteria introduced by Kiefer (1974). Let −∞ ≤ p < 1;

following Kiefer (1974) we call the design ξ∗p Φp-optimal for estimating the parameter θ in the

regression model (3.1) if ξ∗p maximizes the expression

Φp(ξ) =
( 2

(d + 1)(d + 2)
tr(Mp(ξ))

) 1
p

(3.4)

among all designs with non-singular information matrix. Note that the cases p = 0 and p = −∞
correspond to the frequently used D- and E-optimality criterion, that is

Φ0(ξ) = |M(ξ)|2/(d+1)(d+2),

Φ−∞(ξ) = λmin(M(ξ)),

respectively, where λmin(B) denotes the minimum eigenvalue of the matrix B. Our main result

of this section describes the structure of Φp-optimal designs for the least squares estimation of

the coefficients in the regression model (3.1) with Zernike polynomials as regression functions.

For this define for 0 ≤ r ≤ 1 the measure U(r) as the uniform distribution on the circle with

radius r and center 0, that is

U(r) ∼ U({(ρ, ϕ) ∈ D | ρ = r}).

The following result shows that Φp-optimal designs are specific convex combinations of designs

of this type.
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Theorem 3.1. There exist radii 0 ≤ r1 < r2 < . . . < r�d/2�+1 = 1 and positive weights

w1, . . . , w�d/2�+1 with
∑�d/2�+1

i=1 wi = 1, such that any Φp-optimal design ξ∗p in the regression model

(3.1) is of the form

ξ∗p =

�d/2�+1∑
i=1

wiU(ri).

If d is even, we have r1 = 0, (in other words: observations have to be taken at the center), while

r1 > 0 if d is odd. Moreover, if p > −∞ the radii ri and weights wi are uniquely determined.

Proof. Note that the design problem is rotation invariant. In other words: Let ξ denote a

Φp-optimal design on the disc D with support points (ρi, ϕj), weights wij, and assume that ξ̃ is

obtained from ξ by rotating all support points of ξ with an angle of size α, then it follows for

the vector of regression functions

f(ρ, ϕ + α) = Tf(ρ, ϕ)(3.5)

where the matrix T is given by

T = diag (T0, T1, . . . , Td) ∈ R
(d+1)(d+2)/2×(d+1)(d+2)/2(3.6)

with blocks Tj ∈ R
(j+1)×(j+1) defined by

T2i+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(2i + 1)α 0 0 . . . 0 0 . . . 0 − sin(2i + 1)α

0 cos(2i − 1)α 0 . . . 0 0 . . . sin(2i − 1)α 0
...

...
...

...
...

...
...

0 0 0 . . . cos α − sin α . . . 0 0

0 0 0 . . . sin α cos α . . . 0 0
...

...
...

...
...

...
...

0 sin(2i − 1)α 0 . . . 0 0 . . . cos(2i − 1)α 0

sin(2i + 1)α 0 0 . . . 0 0 . . . 0 cos(2i + 1)α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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T2i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos 2iα 0 0 . . . 0 0 0 . . . 0 − sin 2iα

0 cos(2i − 2)α 0 . . . 0 0 0 . . . sin(2i − 2)α 0
...

...
...

...
...

...
...

...

0 0 0 . . . cos 2α 0 − sin 2α . . . 0 0

0 0 0 . . . 0 1 0 . . . 0 0

0 0 0 . . . sin 2α 0 cos 2α . . . 0 0
...

...
...

...
...

...
...

...

0 sin(2i − 2)α 0 . . . 0 0 0 . . . cos(2i − 2)α 0

sin 2iα 0 0 . . . 0 0 0 . . . 0 cos 2iα

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to see that the matrix T is orthogonal and from (3.5) it follows that

M(ξ̃) = TM(ξ)T T .

Consequently, the matrix M(ξ̃) has the same eigenvalues as M(ξ) and ξ̃ is also Φp-optimal. We

finally note that the group of matrices of the form (3.6) is a subgroup of the orthogonal group

acting on R
(d+1)(d+2)/2.

A straightforward calculation shows that the vector of regression function can be written as

f(ρ, ϕ) = K−1g(x1, x2) = K−1g(x)(3.7)

where g is the vector of
(

d+2
2

)
monomials of the form xαi

i x
αj

j (i, j ∈ {1, 2}; α1, α2 ∈ N0; α1 +α2 ≤
2), x1 = ρ cos ϕ, x2 = ρ sin ϕ and K ∈ R

(d+1)(d+2)/2×(d+1)(d+2)/2 is a suitable matrix which does not

depend on the explanatory variable (x1, x2) ∈ D. Therefore the problem of finding a Φp-optimal

design for the Zernike regression model (3.1) is equivalent to the problem of finding a Φp-optimal

design for the parameter KT θ in the two dimensional polynomial regression model

y = θT g(x) + ε(3.8)

on the “2-dimensional ball” D, which has been studied by numerous authors [see Box and Hunter

(1957), Kiefer (1961), Galil and Kiefer (1977) among many others]. By the previous paragraph

there exists a rotatable Φp-optimal design, say η∗
p, for this problem and by the general equivalence

theorem for Φp-optimality [see Pukelsheim (1993), p. 180] it follows for p > −∞ that a design

η∗
p is Φp-optimal if and only if the inequality

d(x, η∗
p) = gT (x)M̄−1(η∗

p)K(KT M̄−1(η∗
p)K)−p−1KT M̄−1(η∗

p)g(x) ≤ tr(KT M̄−1(η∗
p)K)−p(3.9)
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holds for all x ∈ D, where M̄(η) is the information matrix of the design η in the model (3.8). In

the remaining case p = −∞ the characterization of the Φ−∞-optimal designs is slightly different.

Here the E-optimality of the design η∗
−∞ is equivalent to the existence of a matrix E with tr E = 1

such that the inequality

gT (x)M̄−1(η∗
−∞)K(KT M̄−1(η∗

−∞)K)−1E(KT M̄−1(η∗
−∞)K)−1KT M̄−1(η∗

−∞)g(x)(3.10)

≤ λmin((K
T M̄−1(η∗

−∞)K)−1)

holds for all x ∈ D [see Pukelsheim (1993), p. 182]. We can now adapt the arguments of the proof

of Theorem 3.2.1 in Kiefer (1961) to the present situation. Note that Kiefer (1961) considered

the D-optimality criterion (p = 0) and the case K = I(d+1)(d+2)/2, for which the inequality in

(3.9) reduces to

gT (x)M̄−1(η∗
0)g(x) ≤

(
d + 2

2

)
,

but the arguments can be directly transferred to the function d(x, η∗
p) in (3.9) and (3.10). For

example, it is easy to see that for a rotatable design η∗
p the function d(x, η∗

p) depends only on the

radius ρ =
√

x2
1 + x2

2 and is a polynomial of degree 2d with positive coefficient of ρ2d, which is

equal to the constant tr(KT M̄−1(η∗
p)K)−p (if p > −∞) or λmin((K

T M̄−1(η∗
p)K)−1) (if p = −∞)

at the support points of η∗
p.. A careful counting of the roots of this polynomial (including their

multiplicities) now shows that an invariant Φp-optimal design concentrates masses at exactly

�d
2
� + 1 radii 0 ≤ r1 ≤ . . . ≤ r� d

2
�+1 ≤ 1. The remaining statements of Theorem 3.1 follow

similarly as in Kiefer (1961) and their proof is omitted for the sake of brevity.

�

Remark 3.2. Note that the uniform distribution U(r) on a circle with radius r ∈ [0, 1] and origin

(0, 0) is not directly implementable. However, it is easy to see that each uniform distribution

U(rk) in Theorem 3.1 can be replaced by a discrete uniform measure with masses 1/m at m ≥ d

points

{(r cos
2πk

m
, r sin

2πk

m
) | k = 0, . . . , m − 1}.

In general the determination of Φp-optimal designs for the Zernike-regression model (3.1) has to

be performed numerically. In the following discussion we present some explicit examples for the

D- (p = 0) and E-optimality criterion (p = −∞).
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3.1 D-optimal designs for least squares estimation

Recall the definition of the vector of regression functions f(ρ, ϕ) in (3.2) and let U(r) denote a

uniform distribution on the circle with radius r and center (0, 0). It is easy to see that the matrix

I = I(ρ) =

∫
f(ρ, ϕ)fT (ρ, ϕ)dU(r)(ρ, ϕ)

depends only on the squared radius r2 and that there exists a permutation matrix, say P, such

that this matrix can be represented as

PIP T = diag{B−d, . . . , B−1, B0, B1, . . . , Bd},
where the blocks Bi are defined by

Bi = Bi(r) =

∫
hi(ρ, ϕ)hT

i (ρ, ϕ)dU(r)(ρ, ϕ) ∈ R
�(d−|i|)/2�×�(d−|i|)/2�

with

hi(ρ, ϕ) =
(
R̃i

|i|(ρ, ϕ), R̃i
|i|+2(ρ, ϕ), . . . , R̃i

|i|+2�(d−|i|)/2�(ρ, ϕ)
)T

∈ R
�(d−|i|)/2�

(i = −d,−d + 1, . . . , d) and R̃j
i (ρ, ϕ) = N j

i Rj
i (ρ, ϕ). Therefore we obtain for the design ξ =∑�d/2�+1

k=1 wkU(rk)

PM(ξ)P = diag
(�d/2�+1∑

k=1

wkBi(ri)
)d

i=−d
,

and observing the relation B−i(r) = Bi(r) it follows for the determinant of the information

matrix

det M(ξ) = det
(�d/2�+1∑

k=1

wkB0(rk)
) d∏

i=1

(
det
(�d/2�+1∑

k=1

wkBi(rk)
))2

.(3.11)

With this representation the D-optimal designs for least squares estimation in the Zernike re-

gression model can be calculated by standard software such as Mathematica or Matlab and some

D-optimal designs are given in Table 1.

It is of interest to compare the performance of the commonly used uniform design on the disc D

with the D-optimal designs determined in this section. For this purpose we present in the last

column of Table 1 the D-efficiencies

effD(ξuni) =
( |M(ξuni)|
|M(ξ∗0)|

)2/(d+1)(d+2)

of the uniform design ξuni. We observe a remarkable improvement by using D-optimal designs.

Thus the application of these designs will yield a substantiable more accurate estimation of the

parameters in the regression model (3.1).
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Table 1: D-optimal designs for the Zernike regression model (3.1). The D-optimal design ξ∗0 is of

the form
∑�d/2�+1

k=1 wkU(rk), where U(rk) is the uniform distribution on a circle with center (0, 0),

radius rk and the quantities wk, rk are given in the Table. The table also shows the D-efficiencies

of the uniform design (right column).

d ξ∗0 effD(ξuni)

1 rk 1

wk 1 0.6300

2 rk 0 1

wk 1/6 5/6 0.5707

3 rk 0.5155 1

wk 0.3077 0.6923 0.5785

4 rk 0 0.6784 1

wk 0.0667 0.3439 0.5894 0.5801

5 rk 0.3522 0.7739 1

wk 0.1534 0.3354 0.5112 0.5910

3.2 E-optimal designs for least squares estimation

For the E-optimality criterion the situation is slightly more complicated because the E-optimal

design is not necessarily unique. The following result characterizes an important class of E-

optimal designs.

Theorem 3.3. If ξ∗ denotes a design such that its information matrix (3.3) in the Zernike

regression model (3.1) is given by the identity matrix I(d+1)(d+2)/2, then ξ∗ is E-optimal. In

particular the following two designs are E-optimal for the Zernike regression model

(a) The uniform distribution on the disc D

(b) Any design of the form

ξ∗ =
n∑

i=1

wiU(ri),(3.12)

such that the radii r1, . . . , rn and weights w1, . . . , wn define a quadrature formula, which

integrates polynomials up to the degree 2d with respect to the measure xdx on the interval

11



[0, 1] exactly, i.e.

n∑
i=1

wir
k
i =

∫ 1

0

xkx dx =
1

k + 2
, k = 0, . . . , 2d.

Proof. By the equivalence theorem for E-optimality [see Pukelsheim (1993), p. 182] it follows

that a design ξ∗ is E-optimal in the Zernike regression model (3.1), if and only if there exists a

matrix E with trace E = 1 such that the inequality

fT (ρ, ϕ)Ef(ρ, ϕ) ≤ λmin(M(ξ∗)) = 1(3.13)

holds for all (ρ, ϕ) ∈ [0, 1]×[0, 2π] (note that M(ξ∗) = I(d+1)(d+2)/2 by assumption). Now it is easy

to see that the inequality (3.13) holds with E = e1e
T
1 , where e1 = (1, 0, . . . , 0)T ∈ R

(d+1)(d+2)/2

denotes the first unit vector, and consequently any design with information matrix equal to

I(d+1)(d+2)/2 is E-optimal for Zernike regression model (3.1). This proves the first assertion.

Observing the orthonormality relations in (2.4) it is easy to see that the uniform distribution on

the disc D has this property, which proves part (a) of the second assertion. Finally, if ξ denotes

a design as described in part (b) of Theorem 3.3, then it follows from (2.5) that the measure µ

with masses wi at the points ri (i = 1, . . . , n) satisfies

n∑
i=1

wiriR
m
n1

(ri)R
m
n2

(ri) =

∫ 1

0

ρRm
n1

(ρ)Rm
n2

(ρ) dρ =
δn1n2

2(n1 + 1)
.

Now a straightforward calculation shows that the information matrix of the corresponding design

ξ∗ in (3.12) is also given by the identity matrix, which proves the remaining statement of the

theorem.

�

Example 3.4. It is worthwhile to mention that in general the information matrix of an E-

optimal design for the Zernike regression model (3.1) is not uniquely determined. In other words

it can be shown numerically that there exist E-optimal designs whose information matrices are

not equal to the identity matrix.

Consider for example the case d = 1, then

f1(ρ, ϕ) = (1, 2ρ sinϕ, 2ρ cos ϕ)T

12



and note that the uniform measure U(r) on a circle with radius r ∈ (0, 1] has information matrix

M(U(r)) = I(r) =

⎛
⎜⎝

1 0 0

0 2r2 0

0 0 2r2

⎞
⎟⎠

Consequently, any design U(r) with r ≥ 1/
√

2 is E-optimal. Similarly, if d = 2 we have

fT
2 (ρ, ϕ) = (1, 2ρ sin(ϕ), 2ρ sin(ϕ),

√
3(2ρ2 − 1),

√
6ρ2 sin(2ϕ),

√
6ρ2 cos(2ϕ))T ,

and the design

ξw,r1,r2 = wU(r1) + (1 − w)U(r2)

has information matrix

M(ξw,r1,r2) = P

(
wB0(r1) + (1 − w)B0(r2) 0

0 wB1(r1) + (1 − w)B1(r2)

)
P,

where the matrices Bi(r) (i = 1, 2) are defined by

B0(r) =

(
1

√
3(2r2 − 1)√

3(2r2 − 1) 3(2r2 − 1)2

)
,

B1(r) = diag{2r2, 2r2, 3r4, 3r4},

and P is an appropriate permutation matrix. If (2r2
1 − 1)w + (2r2

2 − 1)(1 − w) = 0, and the

conditions

2r2
1w + 2r2

2(1 − w) = 1,

3(2r2
1 − 1)2w + 3(2r2

2 − 1)2(1 − w) ≥ 1,(3.14)

3r4
1w + 3r4

2(1 − w) ≥ 1,

are satisfied, then it follows that the minimum eigenvalue of the matrix M(ξw,r1,r2) is 1 with

multiplicity 3. Therefore the design ξw,r1,r2 is E-optimal in this case.

In general the class of all E-optimal designs is difficult to describe, because relations of the

type (3.14) become intractable for the case d ≥ 3. Therefore we conclude this section with some

numerical results which give the E-optimal designs with maximal determinant, that is

ξ∗DE = argmax{|M(ξ)| | ξ is a design with λmin(M(ξ)) = argminηλmin(M(η))}(3.15)

= argmax{|M(ξ)| | ξ is a design with λmin(M(ξ)) = 1}
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Some results for this type of design are given in Table 2. Note that these designs differ sub-

stantially from the D-optimal designs listed in Table 1. The E-optimal designs with maximal

determinant put more mass in the central region of the disc.

Table 2: E-optimal designs for the Zernike regression model with maximal determinant [see

equation (3.15) for their definition].

d ξ∗DE

1 rk 1

wk 1

2 rk 0 1

wk 1/2 1/2

3 rk 0.577 1

wk 0.749 0.251

4 rk 0.0944 0.7098 1

wk 0.1738 0.6606 0.1656

5 rk 0.3890 0.7987 1

wk 0.3688 0.5165 0.1147

4 Optimal designs for direct estimation of Fourier coeffi-

cients

Although least squares estimation is optimal with respect to minimizing the covariance matrix in

the class of all unbiased (linear) estimators of the parameter θ, it could be numerically unstable

because it relies on an inversion of a matrix of size (d + 1)(d + 2)/2× (d + 1)(d + 2)/2. In some

applications as image analysis [see Pawlak and Liao (2002)] or symbol recognition [see Hse and

Newton (2004)] the dimension in the truncated Fourier expansion could be rather large and

therefore many authors propose to estimate the coefficients in this expansion (2.6) more directly

using the definition of the Fourier coefficients θ(i,k) in (2.7). In order to consider optimal design

problems for this alternative estimation method we consider a slightly different notation of an
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approximate design, based on a concept introduced by Sacks and Ylvisaker (1970). In contrast

to the previous section, where the design induced by these points was characterized by a uniform

distribution on the set {(ρi, ϕj) | 1 ≤ i ≤ m; 1 ≤ j ≤ n} we now characterize the design by a

positive density h. To be precise let (ρi, ϕj)
j=1,...,n
i=1,...,m in [0, 1]× [0, 2π] denote the polar coordinates

of the design points, where observations are taken and assume that

ij

mn
=

∫ ρi

0

∫ ϕj

0

h(ρ, ϕ) dρ dϕ(4.1)

for a positive density h on [0, 1] × [0, 2π]. The function h is called design density and describes

the optimal design. The coefficient θ(�,k) in the expansion (2.6) is estimated by (ρ0 = 0, ϕ0 = 0)

θ̃(�,k) =
1

π

m∑
i=1

n∑
j=1

Zk
� (ρi, ϕj)ρi(ρi − ρi−1)(ϕj − ϕj−1)Zij(4.2)

(� = 0, . . . , d; |k| ≤ �; � − |k| even). Note that Pawlak and Liao (2002) used a slightly different

estimator. In the following we consider the problem of determining an optimal design, that is a

design density h minimizing a certain functional of the covariance matrix of the estimator θ̃ =

(θ̃(0,0), θ̃(1,−1), θ̃(1,1), . . . , θ̃(d,−d), . . . , θ̃(d,d))
T for the parameter θ in the truncated Fourier expansion

(3.1). For this we note that asymptotically the covariance matrix of this estimator is given by

Cov(θ̃) =
σ2

nmπ2
N(h),(4.3)

where the matrix N(h) depends on the design density h and is defined as

N(h) =
(∫ 1

0

∫ 2π

0

fi(ρ, ϕ)fj(ρ, ϕ)ρ2

h1(ρ)h2(ϕ)
d(ρ, ϕ)

)(d+1)(d+2)/2

i,j=0
,

f(ρ, ϕ) = (f0(ρ, ϕ), . . . , f(d+1)(d+2)/2(ρ, ϕ))T is the vector of Zernike polynomials of order d, and

h1 and h2 denote the marginal distributions of the design density h, that is

h1(ρ) =

∫ 2π

0

h(ρ, ϕ) dϕ, h2(ϕ) =

∫ 1

0

h(ρ, ϕ) dρ.

An optimal design for the direct estimation of the Fourier coefficients (specified by the density

h) maximizes an appropriate (convex) function of the matrix N−1(h), which is (asymptotically)

proportional to the inverse of the covariance matrix of the estimator

θ̃ = (θ̃(0,0), θ̃(1,−1), θ̃(1,1), . . . , θ̃(d,−d), . . . , θ̃(d,d))
T ).

Note that the design density h appears nonlinearly in the (asymptotic) covariance matrix of the

estimator θ̃, and therefore Φp-optimal designs for the direct estimation of the Fourier coefficients
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have to be found numerically in most cases of practical interest. However, for the A-optimality

criterion (p = −1) an explicit solution of the optimal design problem is possible.

Theorem 4.1. The A-optimal design for the direct estimation of the Fourier coefficients in the

Zernike model (3.2) minimizes tr N(h) with respect to the density h on [0, 1]× [0, 2π] and is given

by any design h∗ with marginal densities h∗
1(ρ) and h∗

2(ϕ), where h2 is the density of the uniform

distribution on the interval [0, 2π],

h∗
1(ρ) =

ρ
√

Θd(ρ)∫ 1

0
ρ
√

Θd(ρ) dρ
,

the function Θd is defined by

Θd(ρ) = 4

d∑
k=0

(�d−k
2
�+1)(�d−k

2
�+k+1)

(2�d−k
2
�+k+2)

ρ2k

×
(
P

(k,0)

� d−k
2

�(x)
d

dx
P

(k,0)

� d−k
2

�+1
(x)−P

(k,0)

� d−k
2

�+1
(x)

d

dx
P

(k,0)

� d−k
2

�(x)
)∣∣∣

x=1−2ρ2

and P (α,β)(x) denotes the k-th Jacobi polynomial orthogonal on the interval with respect to the

measure (1 − x)α(1 + x)βdx.

Proof. From the definition of the regression functions in the Zernike regression model (3.1) it

follows that

d∑
�=0

�∑
k=−�

(Zk
� (ρ, ϕ))2 =

d∑
�=0

�∑
k=0

(Nk
� Rk

� (ρ))2 =
d∑

�=0

�∑
k=0

�−|k| even

(Nk
� )2ρ2k

(
P

(k,0)
�−k
2

(1 − 2ρ2)
)2

=

d∑
k=0

2ρ2k

� d−k
2

�∑
m=0

2m + k + 1

1 + δk,0

(
P (k,0)

m (1 − 2ρ2)
)2

= 4
d∑

k=0

(�d−k
2
� + 1)(�d−k

2
� + k + 1)

(2�d−k
2
� + k + 2)

ρ2k

×
{ d

dx
P

(k,0)

� d−k
2

�+1
(x)P

(k,0)

� d−k
2

�(x) − P
(k,0)

� d−k
2

�+1
(x)

d

dx
P

(k,0)

� d−k
2

�(x)
}

x=1−2ρ2

= Θd(ρ),
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where Θd(ρ) is defined in Theorem 4.1 and we have used the Christoffel-Darboux formula for the

Jacobi polynomials [see Szegö (1975) p. 71)]. Therefore we obtain

tr (N(h)) =

(d+1)(d+2)/2∑
i=0

∫ 1

0

∫ 2π

0

f 2
i (ρ, ϕ)ρ2

h1(ρ)h2(ϕ)
d(ρ, ϕ)

=

∫ 1

0

∫ 2π

0

ρ2Θd(ρ)

h1(ρ)h2(ϕ)
d(ρ, ϕ) =

∫ 1

0

ρ2Θd(ρ)

h1(ρ)
dρ

∫ 2π

0

dϕ

h2(ϕ)

and by Cauchy’s inequality it follows that

tr (N(h)) ≥
(∫ 1

0

ρ
√

Θd(ρ) dϕ
)2

(2π)2

with equality if and only if

h1(ρ) =
ρ
√

Θd(ρ)∫ 1

0
ρ
√

Θd(ρ) dρ
= h∗

1(ρ)

and

h2(ϕ) =
1

2π
I[0,2π](ϕ)

�

Note that the optimal density h∗ in Theorem 4.1 is only specified by its marginal distributions.

If a product design with marginals h∗
1 and h∗

2 is used, it is invariant with respect to rotations.

In Figure 1 we show the function h∗
2 for d = 30. We observe numerically that a limiting density

exists, which can be used to construct optimal designs for the direct estimation of the Fourier

coefficients in the Zernike regression model (3.1) with a very large degree.

In practice the degree d of the expansion in (3.1) and the number of total observations for

estimating the regression function f, say nm, will be fixed. In this case we obtain from the

assumption (4.1) and the optimal design density h∗ a concrete design (ρi, ϕj)
j=1,...,m
i=1,...,n as follows.

Because the second component of the optimal design is a uniform distribution on the disc we use

a discrete uniform distribution, say ϕj = 2πj
m

(j = 1, . . . , m), for the angle ϕ. Finally the values

i

n
=

∫ ρi

0

h∗
1(ρ) dρ i = 1, . . . , n

are used for the radii ρ1, . . . , ρn. This implementation of the A-optimal design for the direct

estimation of the coefficients in the Zernike regression model is also concentrated on centered

circles in the disc D. In Table 3 and 4 we show the optimal radii for n = 5 and n = 10 and

various values of d.
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Figure 1: The optimal design density hd defined in Theorem 4.1 for d = 30.

d n r1 r2 r3 r4 r5

5 5 0.5088 0.7046 0.8412 0.9412 1

15 5 0.5078 0.7036 0.8408 0.9406 1

30 5 0.5076 0.7032 0.8402 0.9400 1

Table 3. Optimal designs for direct estimation of the Fourier coefficients for n = 10 and various

values of d.

d n r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

5 10 0.3614 0.5088 0.6188 0.7046 0.7768 0.8412 0.8972 0.9412 0.9744 1

15 10 0.3624 0.5078 0.6162 0.7036 0.7774 0.8408 0.8946 0.9406 0.9770 1

30 10 0.3622 0.5076 0.6156 0.7032 0.7770 0.8402 0.8944 0.9400 0.9768 1

Table 4. Optimal designs for direct estimation of the Fourier coefficients for n = 5 and various

values of d.

Note that the A-optimal designs require a relatively large number of different radii in order to

take observations close to the center of the disc D. For example, if n = 10 the minimal radius

is given by r1 = 0.3614 and no observations would be taken in the interior of the disc with this

radius. In applications as image analysis or classification n can usually be chosen rather large
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such that this restriction causes no problems. It is also of interest to compare the A-optimal

designs with the uniform design on the disc by its efficiency

effA(h) =
(tr(h∗)

tr(h)

)−1

(here h∗ denotes an A-optimal design for the direct estimation of the Fourier coefficients). For

the Zernike regression model of order d = 5, 10, 15 this efficiency is given by 0.912, 0.895, 0.892,

respectively. This indicates that the uniform design is rather efficient for the direct estimation

of the Fourier coefficients.
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