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In this paper we explore the relationship between innovative firms that patent tech-

nology related to Industry 4.0 and their economic performance. By applying the new

patent cartography developed by the EPO that identifies firm’s 4.0 patents, this is

one of the first large-scale, systematic studies on the impact of 4.0 technologies. Since

4.0 patents are more likely to be general purpose technologies, firms with 4.0 patents

should be in a better position to increase their sales as 4.0 technology has on average

a wider industrial applicability. Results of our Fixed Effects Least Squares regressions

and Dynamic Panel Model suggest that 4.0 patent stock is positively associated to

sales and that this effect is significantly larger than the effect of Non-4.0 patent stock.

These effects are found to be decreasing with firm size.
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1 Introduction

On-going advancements in artificial intelligence, digitalization, connectivity, smart ma-

chines and the internet of things (IoT) are expected to bring forth a digital transforma-

tion that will mark a new era of technological development; the 4th Industrial Revolution

(also known as Industry 4.0). It is expected to completely revolutionise production and

operation procedures, boosting productivity and growth not just at the firm-level, but for

the economy as a whole.

The benefits of the Industry 4.0 are expected to range from predicting and preventing

major epidemics, to minimising waste, better forecasting of the supply chain and being able

to deliver customised products on demand.1 At the same time, concerns are being raised

about job replacement, data security and the ethics of privacy (Arntz et al., 2017; Agrawal

et al., 2018). The opportunities and threats of the digital transformation have made In-

dustry 4.0 a topic high on the agenda of businesses and policy-makers alike (OECD, 2018).

Yet the influence that Industry 4.0 will have is not well understood. Little economic

research on the topic exists and we often have to rely on the evidence at hand from the

literature on IT. When looking at its impact on firm performance, this strand of literature

tends to focus on very specific contexts of a 4.0 related technology that is adopted or

implemented at one production plant. This makes them neither representative of all 4.0

technologies, nor does it facilitate extrapolation of their results. The most challenging

obstacle for economists has been the lack of consensus as to what should be considered as

4.0-related and how to measure it.

This dissertation chapter is the first large-scale, systematic analysis on the impact of in-

venting 4.0 technology on firm performance. Using the newly developed (all-encompassing)

4.0 patent cartography of the EPO we are able to investigate all German firms that are

patenting in 4.0 technology.2 A comparison to other innovative German firms that are

1See Appendix A of the discussion paper by (McKinsey, 2017) for an elaborate description of five case
studies on the application and benefits of artificial intelligence. The paper also reports the results of
what is the most extensive firm survey that exists on AI.

2Henceforth, we will use the acronym ’4.0’ to either refer to Industry 4.0 or ’4.0 technology’ and ’4.0
patents’ to refer to technology and patents that are 4.0 related. It should also be noted that the EPO
refers to the 4th Industrial Revolution, but Industry 4.0 is becoming a more widely accepted term, now
also in the English language.
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patenting but not in 4.0, allows us to quantify the additionality effect of 4.0 inventions. In-

novative firms have a competitive advantage that enables them to survive and grow (Doms

et al., 1995; Aghion et al., 2001) and patenting these inventions per definition offers them

monopoly power via the right to exclude.

Diverging from the common approach in the literature, we study the impact of 4.0

technology on sales turnover, rather than productivity as the performance measure. Our

main motivation for this is that the firms in our sample are developers of 4.0 technology

rather than adopters, which means that they may not have large scale production plants

to realise productivity gains. The sale of products or software solutions encompassing

their 4.0 technology however, is a channel through which we can capture the economic

gains that 4.0 developers might experience. This applies equally to licensing royalties. In

fact, a firm’s capability to produce general purpose technologies (GPTs) is an important

determinant of licensing (Gambardella and Giarratana, 2013).3 Strong arguments have

been put forth that 4.0 technologies are general purpose technologies (GPTs), which is

characterised by pervasive use in a wide range of sectors and has far reaching industrial

applicability (Agrawal et al., 2018; Cockburn et al., 2018; Bresnahan and Trajtenberg,

1995). We therefore expect it to be easier for firms to generate sales turnover from 4.0

patents than from Non-4.0 patents.

The rest of the paper is structured as follows. We first describe the channels through

which 4.0 patenting is expected to lead to higher sales turnover in section 2, give a short

overview of the existing literature on the the relationship between ICT and patents on

firm performance in the section 3. section 4 focuses on the data we use for our analysis,

followed by the description of the econometric methodology in section 5 and the estimation

results in section 6, before we draw our conclusions in section 7.

2 Channels of 4.0 Patenting to Higher Sales

The concept of Industry 4.0 is the application of modern information and communication

technologies (ICT) in production facilities. 4.0 inventions are very closely related to ICT,

3Small firms license out 26% of their patents and leave 18% unused, while large firms license out only
10% and leave 40% of their patents unused Giuri et al. (2007).
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with the addition of connectivity. It is a relatively recent term often used in the context

of the productivity paradox, since ICT lead to a wave of productivity increases (Bryn-

jolfsson and Hitt, 2003; Bloom et al., 2012; Hubbard, 2003; Bartel et al., 2007), which is

not yet observed for the 4th Industrial Revolution (i.e. Industry 4.0). Sensors and the

use of internet connection allow machines to communicate and exchange data with each

other and with humans. These smart machines and smart production plants (also knows

as cyber physical systems or more generally IoT; the internet of things), enable greater

flexibility in production processes to react and adjust according to capacity constraints

or specific demands of customers. A study that nicely shows how ICT-enhanced equip-

ment allows for greater flexibility is one by Bartel et al. (2007). In the context of valve

manufacturing, production plants that adopt new ICT-enhanced equipment are capable

of producing more customised products. The introduction of the technology Bartel et al.

look at - computer numeric controlled machines (CNC) - is in fact an early example of 4.0

technology, even though the authors do not define it as such. CNCs allow for more flexible

production, improved quality control and reduced set up times.4 Logic follows that these

kind of efficiency gains can be expected for adopters of 4.0 technology.

The firms in our sample are not strictly speaking 4.0 adopters however. Our sample

consists of the firms that file patent applications to protect the 4.0 technologies invented

by them. In other words, our sample consists of 4.0 developers who do not necessarily

implement the 4.0 technology in their own production facilities. Being an adopter is not

mutually exclusive from being a 4.0 developer. Besides equipping machines with sensors

and other components that allow transmission of data, these 4.0 developers write soft-

ware solutions to assist production and the logistical system of their customers. They

may not necessarily experience efficiency gains in their own production process, but may

achieve higher sales either through licensing royalties, or by selling products encompass-

ing 4.0 technologies, for which they will be able to attract a more diverse customer base,

since 4.0 technologies - as general purpose technologies - can be applied to a broader

range of industries. Since we cannot be sure that the 4.0 inventing firms of our sample

are adopers, but we can be sure that they are developers, we decided to diverge from the

4An example of a CNC is the 5 axis multi-purpose milling, drilling, and boring machine T-30 manufactured
by Cincinnati Milacron. The technology to this machine was patented in 1992 by General Electric Co
(EP0545658A2) at the EPO. It’s CPC class G05B 19 (now G05B 15) was classified by EPO’s new
patent cartography as being a 4.0 relevant technology.
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traditional approach that looks at ICT on productivity, and instead look at sales turnover.

A study conducted on German firms by Saam et al. (2016) found that the motives

for firms to adopt 4.0 technology was predominantly to increase efficiency or to achieve

greater customisation, while 4.0 developers predominantly focus on product innovation

that are software compatible. These software compatible products can in turn increase

sales turnover as a result of higher demand for more flexible solutions. What is suggestive

of this being a promising avenue is that after the introduction of software patents in the US

firms in all ICT sectors invested in these patents (Hall and MacGarvie, 2010). In Europe,

software patents are also experiencing steady growth.5 In the last three years, the rate of

growth for 4.0 patent applications was 54%. This far outpaces the overall growth of patent

applications in the last three years of 7.65% (EPO, 2017). If we want our patent system

to remain an effective institution that encourages innovation in a digital era, then we have

to better understand the underlying mechanisms of software patents versus non-software

patents, or 4.0 patents versus Non-4.0 patents.

There are some noteworthy underlying differences between 4.0 (or software) patents and

more traditional patents. Software patents often protect parts of a process, for which it

is harder to detect infringement.6 Based on a small sample of software start-ups, Mann

(2005) finds that it is relatively easy to invent around software patents, which might be

why not many software firms acquire patents (Mann and Sager, 2007). Still, the firms in

our sample do file software patents. The benefits are likely to lie in one of the following

two reasons. One, is that the firm is indeed a 4.0 developer and adopter simultaneously

and therefore seeks to commercialise it by selling products encompassing the 4.0 technol-

ogy. The second reason is that the firm primarily wants to sell or license the intellectual

property. Otherwise, secrecy would be a viable option.

5It is a common misconception that software cannot be patented in Europe. To make sure that software
patents can be filed at the EPO, we got in contact with the examiner at the EPO who developed the
4.0 cartography. He told us that all 4.0 patents are software patents, practically by default because
connectivity and data exchange is a prerequisite. They are however not termed as software patents,
but instead are referred to as computer implemented inventions because they have to operate a device
(though not necessarily a product).

6Increasing litigation of software patents has sparked a debate on the quality and uncertainty of software
patents (Lerner, 2010). Given the willingness of the patent holder to initiate litigation procedures, the
patents should be strong, enforceable patents. Yet Allison et al. (2011) finds that conditional on going
to trial, software patents only win 13% of the cases.
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3 Literature

In essence, this study is positioned in the strand of literature that attempts to quantify the

private value of patents as well as the more recent literature on software patents, which is

yet again closely related to prior literature on the returns to information technology (IT).

The existing literature on the private returns of patents (to the firm) can be categorized

into studies that look at three outcome variables; market value (sometimes measures as

Tobin’s Q), sales turnover and productivity. Towards the end of this section we will make a

stronger link between the more recent literature on software patents and our 4.0 patenting

firms, which is yet again closely related to prior literature on the returns to information

technology (IT).

The first systematic assessment of the monetary private economic value of patents is

that of Gambardella et al. (2008). They make use of a unique large-scale dataset (PatVal-

EU) designed to represent the universe of European Patents in six EU countries. This

European survey asked individual (EP) patent holders about the minimum price for which

they would sell their patent. The mean value is estimated to be larger than 3 million euro.

The median however, lies at around one-tenth of that, supporting prior findings on the

skewness of the patent value distribution. Scherer (1998) and Silverberg and Verspagen

(2007), find a similar skewed value distribution by looking at patent licensing royalties,

patent profits (according to survey evidence), and a number of other measures of returns

to innovation.7 Hall et al. (2013) investigated whether patents have a positive effect on

innovation-related turnover, conditional on the firm stating that it had introduced a prod-

uct and/or process innovation. Using Community Innovation Survey data for the United

Kingdom, their results suggest that patented innovations are more successful at generating

sales.

Bloom et al. (2002) look at the impact of patents on two measures of company perfor-

mance; productivity and market value. They find that citation weighted patent stock has

an economically and statistically significant impact on firm-level productivity and market

value. A doubling of the citation-weighted patent stock increases total factor productivity

7Successfully licensing a patent is facilitated if the patent has received many citations (Sampat and
Ziedonis, 2005). However, citations were not good at predicting the amount of licensing revenue earned.
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by 3%. While it takes time to have an affect on productivity, the effect is immediate upon

market values. Patent citations are found to be more informative than the simple patent

counts that have been used previously in the literature. This is in agreement with the

pioneering study by Trajtenberg (1990), who was really the first to identify the importance

of patent citations as a value measure. He exclusively examines one particular innovation

- computed tomograbeen takephy scanners - and finds that patent citations are related to

private value as well as social value. A few years later, Trajtenberg coauthored a paper,

see Hall et al. (2005), that uses three variations of an explanatory variable of interest -

citations to patents, patents to R&D and R&D to assets stocks - and find that each of

these ratios significantly increases the firms’ market value (measured as Tobin’s Q). More

concretely, one extra citation per patent is estimated to increases market value by 3% .

To a considerable extent, the literature on ICT is relevant for us due to the similarity

of the arguments of how ICT impacts the firm and the impacts we expect 4.0 technology

to have. Similar to the adoption of new IT, 4.0 technology can improve firm performance

through the channels of higher flexibility (in the production process) and improved product

quality or customization. Brynjolfsson and Hitt (1996) for example estimate a produc-

tion function for large US firms over the period 1987 to 1991 including IT-capital as an

input. They then test whether the contribution of IT-capital to output (sales) is positive

and significantly different from zero using the output elasticity of IT-capital. The results

show, that the output elasticity is indeed significantly positive.

The main way in which our approach diverges from the literature on IT is that we

are not exclusively looking at adopters of 4.0 technology. We are looking at the devel-

opers of 4.0, who may or may not adopt these technologies at their own production plants.

A lack of evidence on the effects of patents/innovations on firm sales ceases to exist.

This may be because the average firm only experiences very modest growth in sales. This

point was made by Coad and Rao (2008) who therefore argue that it is not so interesting to

look at regression techniques that focus on the average effects of the average firm. Rather,

they perform quantile regressions focusing on incumbent US firms (from Compustat) in

four commonly studied high-tech sectors. Indeed they find that the effects of innovation
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on growth are modest, on average, but that for the fast-growth firms at the upper quan-

tiles, the coefficient on innovation rises sharply. In the lowest quantile, the effect is even

negative but only significant for one of the four sectors.

4 Data and Descriptive Statistics

We use information from two different datasets for our analysis. The first, the Mannheim

Enterprise Panel (MUP) is a dataset maintained by ZEW since 1992 in cooperation with

Creditreform. It is the most extensive firm-level panel dataset for Germany (outside of

official government statistics). Representing almost the entire German firm population, it

contains information on the number of employees, sales, address, five-digit industry sector

code (NACE rev. 2), date of foundation, date of closure, data of insolvency procedures,

and shareholder structure. The second dataset we make use of is the worldwide patent

statistical database (PATSTAT). This dataset contains rich information on all patents filed

worldwide. We merge detailed information on the patent portfolios (from PATSTAT) to

the firms in our MUP data. Using the patent cartography that the EPO produced, we

classify these patents into 4.0 related or not. We restrict the patents considered in this

study to patents filed at the European Patent Office because the 4.0 patent cartography

is only available for these patents.

Patent stocks were calculated using the perpetual inventory method as in the following

equation Kt = It + (1 − δ)Kt−1, where Kt stands for the patent stock, It is the number

of patent applications in year t and δ notes the depreciation rate, which we chose to be

15%, as established in the literature (Hall et al.).

Using all years available in the panel (1993-2017), our sample consists of 1,453 firms that

hold at least one 4.0 patent and 17,759 firms that do not (see Figure 3 in the appendix).

This is much lower than the total population of German firms because we only consider

patenting firms, in order to rule out self selection into patenting. We also drop firms that

are only observed once, as these cannot contribute to the estimation using panel data

methods. We have a total number of 193,199 observations, meaning that we observe each
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firm for 10 years on average. The panel is unbalanced however, for years in which data

on sales and employees was not available. We removed outliers by dropping the top one

percentile of Log(Sales) and TotalPatStock (which is the sum of 4.0 and Non-4.0 patent

stock) to ensure that our results are not driven by single outlier observations.

Table 1: Firm-Level Descriptive Statistics.

(1) (2) (3)
Non-4.0 4.0 Mean Differences

mean sd mean sd p

Firm Age 32.2234 (34.04) 23.0100 (26.54) 0.000
Sales (Mil.) 21.3818 (74.58) 34.1262 (108.00) 0.000
Log(Sales) 15.3889 (1.82) 15.6925 (1.96) 0.000
Employees 82.7679 (636.16) 117.1966 (345.96) 0.000
Total PatStock 0.9997 (2.36) 2.6200 (5.76) 0.000
4.0 PatStock 0.0000 (0.00) 0.5303 (1.00) 0.000
Non-4.0 PatStock 0.9997 (2.36) 2.0897 (5.48) 0.000
Sqr(4.0 PatStock) 0.0000 (0.00) 1.2799 (13.05) 0.000
Sqr(Non-4.0 PatStock) 6.5471 (62.22) 34.4262 (187.73) 0.000

Observations 176918 16281 193199

Table 1 presents firm-level summary statistics of the mean, standard deviation and the

p-value on the test of differences in the means of 4.0 and Non-4.0 patenting firms. Ger-

man firms that file patents related to 4.0 are on average younger than Non-4.0 patenting

firms; 23 years of age compared to 32, respectively. 4.0 firms have a sales turnover of 34

million Euros on average, compared to 21 million Euros for Non-4.0 firms. The density

distribution of the log-transformation of sales is depicted in Figure 1.8 Comparing the

sales distributions of Non-4.0 firms to 4.0 firms before they filed a 4.0 patent (”Pre-4.0”)

indicates that the values of Log(Sales) were somewhat more volatile for 4.0 firms, as seen

by the flatter and wider distribution. After filing a 4.0 patent (”Post-4.0”) firms appear

to experience higher sales, as observed by the clear shift to the right of the distribution.

Despite 4.0 firms being younger, they are significantly larger with 117 employees on

average, compared to 83 employees for Non-4.0 firms. Our main variables of interest

measures 4.0 and Non-4.0 patent stock of each firm each year. The logic for using stock

8Note that for the figure, sales values were deflated to account for inflation. Deflator values were obtained
from The World Bank. Deflating the values is not necessary in the regressions as this is captured by
the year fixed effects.
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Figure 1: Kernal Density Distributions of Log(Sales).

measures rather than counting the number of patent application filed each year is that

the benefits of patents are likely to persist into the following years. Following convention,

we depreciate all our patent stock measures by 15% per annum. Treated firms have an

average TotalPatStock of 2.6 patents and control firms just under 1. For 4.0 patenting

firms, one fifth of the patent stock is 4.0 related; a 4.0PatStock of 0.5 on average. For

control firms, 4.0PatStock is by definition zero.

The impact patenting has for both groups can be clearly observed in Figure 2, where

we plot the yearly averages of Log(Sales) for 10 years before and after filing the first

patent. In Figure 2 we exclude firms whose first patent was not a 4.0 patent to make

a comparison between the firms fair.9 Both groups reveal a rather flat trend in average

Log(Sales) before filing their first patent, with 4.0 firms having lower and more volatile

average values. After filing their first patent average sales for both groups substantially

increase. 4.0 patenting firms however seem to benefit more because their average sales

values lie for the subsequent years strictly above the average of the Non-4.0 patenting

9The first patent filed was also a 4.0 patent for about 81% of 4.0 firms.
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firms.

Figure 2: Average Log(Sales) Before and After Patent Filing. Excluding 4.0 Firms whose
first patent was not 4.0.

To make sure that the trend we observe for the 4.0 firms is not driven by the sample

selection that we make, we plot the same graph for all 4.0 firms (including those whose

first patent is not necessarily a 4.0 patent), to be found in the appendix; Figure 4.

5 Econometric Methodology

The choice to engage in 4.0 innovation, and to patent these innovations is left to the

firm, which raises concern of selection bias. Another concern is that firms might differ

systematically from one another in unobservable ways that affect the outcome of interest.

Confounding factors like these, influencing both the dependent and independent variable

cause a spurious and unidentified relationship between the two. An example of a con-

founding factor in our case may be a firms’ absorptive capacity. Absorptive capacity is

likely to affect both the likelihood of a firm to engage in 4.0 innovation (and to patent it),
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but also its ability to commercialise it and generate sales from it (Cohen and Levinthal,

1990). When panel data is available, fixed effects are frequently used to limit selection bias.

By using only the within-firm variation, the Fixed Effects Least Squares model reduces

selection bias by eliminating these time-invariant confounding factors. Another channel of

endogeneity may arise because the past performance of a firm (or even anticipated growth)

may enable it to better commit resources to subsequent sales. Dynamic models that in-

clude a lagged dependent regressor on the right hand side at least partially alleviates this

problem and controls for the potentially confounding effects of time-invariant effects. We

perform both, Fixed Effects Least Squares and a Dynamic Fixed Effects Panel Model.

Our econometric approach will be described in this section, along with the advantages

and disadvantages of both methodologies.

5.1 Fixed Effects Least Squares

To analyze whether 4.0 patenting firms achieve higher sales, we first estimate a fixed-effects

model using the following specification:

Log(Sales)it = α+ β1 4.0 PatStockit + β2 Non 4.0 PatStockit

+β3 FirmAgeit + τt + µi + νit

(1)

where our dependent variable is the log-transformed sales recorded for firm i at time t.

β1 is our main coefficient of interest and measures the effect of 4.0 PatStockit on sales.

Due to its cumulative nature of counting patents (depreciated at a yearly rate of 15%), it

allows patents filed in previous periods to effect sales in the current period. In order to see

whether the effect is due to 4.0 patents rather than patents more generally speaking, we

need to somehow account for the Non-4.0 patents filed by the firm. Calculated using the

same perpetual inventory method as for 4.0 patent stock, we include Non 4.0 PatStockit

in the model. This enables us to make a direct comparison between the two to test whether

4.0 patents have a stronger or weaker impact on sales compared to Non-4.0 patents. τt

are time invariant and unit invariant regressors that reflect changing intercepts due to

macroeconomic conditions common to all firms. They enter the regression via 24 time

dummies for each survey year. τ1993 is dropped from the regression and is in essence the
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”baseline” intercept.

µi + νit combined is the error term, where the first component, µi is the firm specific

error term at time t and is the firm fixed effect of the equation. The remainder of the

disturbance, νit is assumed to be stochastic and iid. Patent stock and firm age is assumed

to be independent of νit for all i and t. α (a scalar) and µi are not estimable separately

and together capture the unobserved firm-specific effects. These could be things such as

the firms absorptive capacity and general ability to bargain in licensing agreements or to

commercialise 4.0 inventions.

What the FE Least Squares approach does is to eliminate unobserved firm-specific

heterogeneity by demeaning Equation 1, as follows

Log(Sales)it − Log(Sales)i = τt + β (Xit −Xi) + (νit − νi) (2)

Here the three regressors 4.0 PatStock, Non 4.0 PatStock and FirmAge are summarised

into one X vector for simplicity. This is the model that corresponds to our regression

results in Table 2, which will be interpreted in the next section. This FE Least Squares

model allows for arbitrary dependence and heterogeneity across t within a given firm i.

Since the error terms for firm i may still be correlated to the error terms of the same firm

in any other period, we cluster our standard errors at the firm level.

5.2 Dynamic Panel Model

Since the firms’ current sales may be explained by sales of the previous period (presence

of state dependence) we would want to run a regression that allows sales to be dynamic in

nature. There are two types of state dependence: true state dependence and spurious state

dependence. In the former, one would include the lagged dependent variable for its own

sake. An example of this may be salary, which is determined by the previous salary with

an adjustment. In spurious state dependence, the lagged dependent variable is not just

included for its own sake but also to account for unobservables µi or νi,t−1, which is our
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motivation for its inclusion. One can exploit panel data to better understand this dynamic

relationship between sales. This is typically done by including a lagged dependent variable

as a regressor on the right hand side of the equation, as follows:

Log(Sales)it = γ Log(Sales)i,t−1 + β1 4.0 PatStockit

+β2 Non 4.0 PatStockit + β3 FirmAgeit + τt + εit

(3)

Assuming a one-way error component model, εit = µi + νit, where µi and νit are both iid

and independent of each other. γ is a scalar and the lagged dependent variable encom-

passes the effects of the entire time path of the independent variable(s). When we use

Log(Sales)i,t−1 as a regressor on the right hand side, the interpretation of the coefficients

changes, where the γ now measures the effect of a change in Log(Sales) of the previous

period on the change in Log(Sales) of the current period.

However, there are some limitations to this dynamic approach. Since Log(Sales)it is a

function of µi, it immediately follows that the lagged response variable Log(Sales)i,t−1 is

also a function of µi, and therefore endogenous, rendering the OLS estimator biased and

inconsistent even if the νit are not serially correlated. In the FE Least Squares model,

the µi is eliminated as a result of demeaning all regressors on a firm level (the within

transformation). However, the fixed effects approach still does not lead to consistent

estimates here because Log(Sales)i,t−1 will still be correlated with (νit − νi) because

Log(Sales)i,t−1 is correlated with νi by construction.10 As discussed in Baltagi (2005),

Arellano and Bond (1991) propose a generalized method of moments (GMM) procedure

in which firm specific effects are eliminated by first differencing Equation 3 to get:

Log(Sales)it − Log(Sales)i,t−1 = γ
[
Log(Sales)i,t−1 − Log(Sales)i,t−2

]
+τt + β (Xit −Xi,t−1) + (εit − εi,t−1)

(4)

Then using lagged regressors as instruments leads to consistent estimates of the beta

10The consistency of the within estimator will depend on the T being large (Nickell, 1981). It is also worth
noting that the inclusion of a lagged regressor increases model fitness (higher R2) and tends to result
in error terms with little serial correlation. This is because Log(Sales)i,t−1 contributes the most to R2.
Furthermore, including a lagged response variable makes most time-invariant regressors useless, but as
we are not interested in these regressors, it does not pose a limitation for us.

13



parameters. The three regressors 4.0 PatStock, Non 4.0 PatStock and FirmAge are

again summarised into one X vector for simplicity. An important part of the model

specification is the assumptions we make about the correlation between the the regres-

sors X and the error term ε. We assume that E(PatStockitεis) = 0, ∀s ≥ t and

E(PatStockitεis) 6= 0, ∀s < t, for both 4.0 and Non-4.0 patent stock, which means that X

can be correlated with past error terms but not with contemporary or future error terms.

Assuming a predetermined relationship for patent stock makes sense, as the cumulative

nature of patent stock at any given time t will depend on past patent stock (except in the

t where the first ever (4.0) patent is filed). We implement this estimation as a two-step

GMM regression as this is asymptotically efficient when errors are heteroskedastic.

6 Results

Results to the FE Least Squares model are presented in Table 2. Since our dependent

variable is log-transformed, coefficients on patent stock are to be interpreted as semi-

elasticities. Column (1) corresponds to results on the complete sample of all firm sizes

and indicates that one more 4.0 patent in a given period (which can also result from

several discounted 4.0 patents of previous periods) is associated with a 8.3% increase in

sales. The coefficient on Non − 4.0PatStock is also positive and statistically significant

at the 1% level, yet it is comparatively lower with an estimated increase in sales of 3.0%.

The difference between the two coefficients, β1 and β2 is statistically significant (p-value

of 0.009) and supports our hypothesis that the benefits (increased sales) of commercial-

ising 4.0 patents are greater than for Non-4.0 patents, believed to be due to the greater

industrial applicability of these inventions, allowing firms to target a larger market and

more heterogeneous customers.

Columns (2)-(4) present the regression results according to firm size, in ascending or-

der. Sales of small firms (1-10 employees) increase even more on average than the total

population average, for both 4.0 and Non-4.0 patents. As firms get larger, the effect of

4.0 patent stock decreases; from 10.5% for small firms, to 6.6% for medium sized firms

(11-50 employees), to 5.5% for large firms (51-250 employees). Results become a little

14



Table 2: Fixed Effects Least Squares Regression Results.

(1) (2) (3) (4)
Log(Sales)

Total
Log(Sales)

Small
Log(Sales)
Medium

Log(Sales)
Large

4.0 PatStock 0.0831∗∗∗ 0.108∗∗∗ 0.0660∗∗ 0.0551∗∗

(4.30) (2.92) (2.25) (2.33)
Non-4.0 PatStock 0.0296∗∗∗ 0.0482∗∗∗ 0.0268∗∗∗ 0.0149∗∗∗

(6.74) (5.32) (3.92) (4.06)
Log(Age) 0.552∗∗∗ 0.643∗∗∗ 0.393∗∗∗ 0.139∗∗∗

(33.24) (25.05) (13.33) (5.80)
Constant 13.51∗∗∗ 12.57∗∗∗ 14.02∗∗∗ 15.79∗∗∗

(276.56) (160.38) (164.49) (204.91)

Within R2 0.149 0.144 0.227 0.229
Firm FE X X X X
Year FE X X X X
Observations 193199 97460 47298 48441

t statistics in parentheses

Notes: Each column gives the results of a linear fixed effects regression where the

dependent variable is Log(Sales). Column 1 estimates the model for the full sample and

columns 2-4 include the results for the sample of small, medium and large firms

respectively.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

more uncertain for medium and large firms as the significance level drops to 5%, despite

the within R2 increasing to above 22%. The coefficient estimates on Log(Age) tells us

that sales also increase with firm age but deteriorating with firm size.

We also ran a nonlinear version of this regression, in which we include squared patent

stock regressors, as shown in Table 3. Including nonlinear parameters of patent stock

does not increase the within R2 but the coefficients on the Non − 4.0 PatStock roughly

double in magnitude compared to the linear model in Table 2. Across all firm size cate-

gories, Non− 4.0 PatStock reveals a concave relationship with sales, meaning that after

a certain stock size is reached further increases do not contribute to an increase in sales.

This turning point for small firms for instance, is 0.0838
2×0.00122 = 34.3. Therefore, once a

small firm accumulates a Non− 4.0 PatStock of 34.3 patents, additional Non-4.0 patents

will not further increase sales, on average.11 4.0 PatStock remains positive across all firm

size categories, statistical significance decreases with firm size. Interestingly, the nonlinear

11The maximum Non− 4.0 PatStock for small firms was 55.6 patents.
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relationship in column (4) shows no evidence of 4.0 PatStock reaching a turning point,

rather it is increasing, but insignificant.

Table 3: Nonlinear Fixed Effects Least Squares Regression Results.

(1) (2) (3) (4)
Log(Sales)

Total
Log(Sales)

Small
Log(Sales)
Medium

Log(Sales)
Large

4.0 PatStock 0.107∗∗∗ 0.163∗∗∗ 0.0799∗ 0.0464
(4.55) (3.99) (1.83) (1.49)

4.0 PatStock2 -0.00289∗∗∗ -0.00514∗∗∗ -0.00215 0.00121
(-2.70) (-3.37) (-0.38) (0.33)

Non-4.0 PatStock 0.0546∗∗∗ 0.0838∗∗∗ 0.0589∗∗∗ 0.0285∗∗∗

(9.26) (6.68) (6.07) (6.50)
Non-4.0 PatStock2 -0.000868∗∗∗ -0.00122∗∗∗ -0.00120∗∗∗ -0.000459∗∗∗

(-5.12) (-3.53) (-5.63) (-2.98)
Log(Age) 0.544∗∗∗ 0.630∗∗∗ 0.381∗∗∗ 0.135∗∗∗

(32.71) (24.37) (12.96) (5.66)
Constant 13.51∗∗∗ 12.58∗∗∗ 14.03∗∗∗ 15.79∗∗∗

(277.16) (160.52) (165.74) (205.60)

Within R2 0.150 0.145 0.229 0.231
Firm FE X X X X
Year FE X X X X
Observations 193199 97460 47298 48441

t statistics in parentheses

Notes: Each column gives the results of a linear fixed effects regression where the

dependent variable is Log(Sales). This model includes a quadratic term of both 4.0 and

Non-4.0 patent stock. Column 1 estimates the model for the full sample and columns 2-4

include the results for the sample of small, medium and large firms respectively.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

We now turn to the results from the Dynamic Panel Model, first the results that corre-

spond to Equation 3 as shown in columns (2)-(5) of Table 4 and afterwards we turn to the

Two-Step GMM regression results. Naturally, the number of observations drops as the

earliest observation of each firm cannot enter the regression as a result of using the lagged

dependent variable as a regressor.12 For this reason, we also report the Fixed Effects Least

Squares estimates in column (1) using the smaller sample to ensure that results still hold,

and indeed they are unmistakably similar to column (1) of Table 2. The magnitudes of

the patent stock variables are lower in the dynamic panel model, but the overall finding

12Observations actually drop by more than the total number of firms (19,212) because of the restriction
that the lagged regressor has to be observed in t−1 and since we have an unbalanced panel, some firms
sales are not observed in t− 1.
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that the effect of patent stock decreases with firm size, and that 4.0 patent stock has a

larger effect than Non-4.0 patent stock holds.

Table 4: Dynamic Panel Model Regression Results.

(1) (2) (3) (4) (5)
Log(Sales)

Total
Log(Sales)

Total
Log(Sales)

Small
Log(Sales)
Medium

Log(Sales)
Large

4.0 PatStock 0.0845∗∗∗ 0.0401∗∗∗ 0.0578∗∗∗ 0.0411∗∗∗ 0.0183
(4.24) (3.75) (2.83) (2.64) (1.28)

Non-4.0 PatStock 0.0288∗∗∗ 0.0101∗∗∗ 0.0160∗∗∗ 0.00749∗∗ 0.00449∗∗

(6.23) (5.03) (3.61) (2.38) (2.50)
Log(Age) 0.552∗∗∗ 0.0249∗∗ 0.0906∗∗∗ 0.0292∗ -0.0334∗∗

(22.93) (1.98) (4.01) (1.66) (-2.16)
L.Log(Sales) 0.638∗∗∗ 0.630∗∗∗ 0.697∗∗∗ 0.647∗∗∗

(104.27) (87.14) (55.58) (44.51)
Constant 13.73∗∗∗ 5.458∗∗∗ 5.261∗∗∗ 4.591∗∗∗ 5.848∗∗∗

(226.53) (61.79) (50.13) (26.26) (25.37)

Within R2 0.124 0.518 0.501 0.616 0.573
Firm FE X X X X X
Year FE X X X X X
Clustered SE X X X X X
Observations 138454 138454 63311 36820 38323

t statistics in parentheses

Notes: This table gives the results of the dynamic panel model where the dependent variable

is Log(Sales). Column 1 restates the results from the linear fixed effects model on the

new sample. Column 2 estimates the model for the full sample and columns 3-5 include the

results for the sample of small, medium and large firms respectively. Standard errors are

clustered at the firm level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The Two-Step GMM regression results are presented in Table 5. Finding valid instru-

ments though was quite challenging partly because of the long time series dimension of the

data. But after restricting the number of potential instruments and playing with the as-

sumption on the correlation between the explanatory variables and the idiosyncratic error

term, we find a set of valid instruments for all three firm sizes, albeit only marginally sig-

nificant for small firms as indicated by the p-value of the Hansen test. For small and large

firms, we even get a statistically significant effect; a one unit increase in 4.0 PatStock

is associated with a 4.29% growth for small and 1.98% growth for large firms’ sales in

the short-run, significant at the 5% and 10% level respectively, ceteris paribus. The es-

timated effect of Non − 4.0 PatStock is a sales growth of 3.48% for small, and around

0.8% for medium and large firm. Somewhat surprising is the negative and significant effect
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of Log(Age), but as the coefficient is to be interpreted as an elasticity, the magnitude is

small; a 1% increase in firm age is associated with a 0.0669% reduction in sales (column 1).

Table 5: Two-Step GMM Regression Results.

(1) (2) (3) (4)
Log(Sales)

Total
Log(Sales)

Small
Log(Sales)
Medium

Log(Sales)
Large

4IR PatStock 0.0256∗∗ 0.0429∗∗ 0.0111 0.0198∗

(2.53) (2.06) (0.90) (1.84)
Non-4IR PatStock 0.0183∗∗∗ 0.0348∗∗∗ 0.00740∗∗ 0.00855∗∗∗

(5.38) (5.54) (2.46) (3.98)
Log(Age) -0.00669 -0.0249∗∗ -0.0361∗∗∗ -0.0180∗∗∗

(-0.56) (-2.00) (-10.21) (-6.34)
L.Log(Sales) 0.893∗∗∗ 0.794∗∗∗ 0.925∗∗∗ 0.896∗∗∗

(39.97) (20.61) (28.28) (28.25)
Constant 1.757∗∗∗ 3.244∗∗∗ 1.347∗∗ 1.904∗∗∗

(5.63) (5.93) (2.56) (3.44)

Firm FE X X X X
Year FE X X X X
Observations 138454 63311 36820 38323
Nr. of Groups 17796 10214 3782 3800
Nr. of Instruments 201 201 195 200
Hansen P-Value 0.0972 0.0905 0.668 0.388
AR(2) P-Value 0.00103 0.0736 0.00120 0.00227

t statistics in parentheses

Notes: This table gives the results of the dynamic panel model where the dependent

variable is Log(Sales). These models were estimated using a 2-step GMM approach.

Instruments used: 4IR PatStock and Non− 4IR PatStock as predetermined, and

Log(Age) and year dummies as strictly exogenous, all with three lags from t− 1 to t− 3.

Column 1 estimates the model for the full sample and columns 2-4 include the results

for the sample of small, medium and large firms respectively. P-values for the Hansen

test on overidentifying restrictions reports the validity of the instruments.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Comparing the magnitude of the coefficients on both patent stocks in column (2)

and (4) again confirms all our previous results that the benefit from patent stock de-

creases with firm size, and that 4.0 PatStock provides a greater advantage compared to

Non− 4.0 PatStock. The lagged dependent regressor L.Log(Sales) is informative of the

persistence of sales turnover. The coefficient on the total sample for instance, was esti-

mated to be 0.89, which indicates that even when a firm has zero patent stock, one can

expect the sales in year t to be 89% of the size of sales in the previous period, t− 1.
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7 Conclusion

The 4th Industrial Revolution has the potential to completely revolutionize the function-

ing of our economy. Its impacts are not yet well understood however, as little economic

research on this topic exists due to a lack of consensus as to what should be considered

as 4.0-related and how to measure it. Using a newly developed cartography by the EPO,

this study is one of the first large-scale, systematic analysis on all European 4.0 Patents

filed by German firms.

We focus on developers (or inventors) of 4.0-related technology (rather than adopters)

and investigate the effect that 4.0 patents have on the economic performance of the in-

novating firm. We outline two channels of (sales) growth based on the findings of the

closely related literature on ICT, patents and firm performance. A 4.0 developing firm

can boost sales turnover through (1) selling products encompassing their 4.0 technology,

and/or (2) licensing royalties or sale of the patent itself. As a general purpose technology

(GPT), 4.0 technology has wider industrial applicability, which allows 4.0 firms to boost

sales turnover more so than their Non-4.0 counterparts.

To empirically examine if patenting in 4.0 technology has the awaited positive effect

on the firm’s economic performance we conducted a treatment effects analysis using both

linear fixed effects regressions and a dynamic panel approach. The results of our fixed

effects models of 4.0 patent stock on the development of sales suggest that innovating in

the area of Industry 4.0 affects the firm’s sales positively. This effect is estimated to be

higher than for Non-4.0 technology. However, the importance of holding these patents

diminishes with firm size. Suspecting sales to have a dynamic effect, we additionally esti-

mated models including sales of the previous period. The results of these models differ in

size and significance but not in the qualitative interpretation of the effect.

Hence, the main conclusion of our analysis is that innovating in 4.0 technology effects

the firms’ sales positively and that it does so to a larger extent than innovating in other
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technology fields.
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Appendix

Figure 3: Firm Observations by Size.

Figure 4: Average Log(Sales) Before and After 4.0 Patent Filing (Only 4.0 Firms)
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Table A.1: Patent-Level Descriptive Statistics.

(1) (2) (3)
Non-4.0 4.0 Mean Differences

mean sd mean sd p

Number of Applicants 1.0963 (0.37) 1.1573 (1.86) 0.061
Number of Inventors 2.0665 (1.44) 2.2271 (2.35) 0.000
Geographical Coverage 4.8355 (3.48) 3.8457 (2.51) 0.000
Claims 7.5862 (7.89) 6.3456 (7.61) 0.000
Patent Scope 1.7570 (1.07) 1.9247 (1.15) 0.000

Observations 86959 3293 90252
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