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Abstract. Recent analysis in chatter modelling of BTA deep-hole drilling
consisted in phenomenological modelisation of relationships between the ob-
served time series and appearance of chatter during the process. Using the
newly developed MEWMA control chart [4, 5], it has even been possible to
predict the occurence of chatter about 30 to 50 mm in advance (i.e. up to
one minute before the chatter starts).

Unfortunately, no relationships between the machine and model param-
eters have been detected. Therefore, in this paper a physical model of the
boring bar is taken into account. Simulation studies of the regenerative pro-
cess are performed. These simulated time series show the same characteristics
as the data recorded during the drilling process and thus support the validity
of our model. By running such simulations, we intend to find strategies for
chatter prevention in future work.
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1 Introduction

1.1 Deep-Hole Drilling

In metal cutting one speaks of deep-hole drilling, when for the proportion of
length l to diameter D of the hole to be machined, l/D ≥ 3 holds. When
the diameter D exceeds 20mm typically the BTA deep-hole drilling process
is applied. BTA stands for ‘Boring and Trepaning Association’. This refers
to the design of the tool which is shown in Figure 1. The special construction
of this tool leads to long holes with very smooth walls and a high degree of
straightness. In many cases the BTA deep-hole drilling process is the final
step in the production of expensive workpieces. For example axial bores in
turbines or compressor shafts are produced with this process. It is extremely
important to avoid dynamic disturbances in the process because such distur-
bances can mean high financial losses.

The machine tool used in the experiments, its components, and the pro-
cess parameters are described in the next subsections. In the following sub-
section the tool and the general principal of BTA deep-hole drilling are de-
scribed.

1.2 The Machine Tool

The machine tool has six main components: two drive units for the rotary
motion of the workpiece and the rotary and translation motion of the tool,
the machine bed, the oil supply device containing the starting bush, the
damper, and the tool – boring bar assembly.

A peculiarity of the BTA deep-hole drilling process is that the the tool
and the workpiece may be driven. This means that drilling can be performed
in three different ways:

1. Turning tool and standing workpiece;

2. Standing tool and turning workpiece;

3. Turning tool and workpiece in opposite directions.

The following parameters can be influenced on the machine:

• The axial feed f in mm/rev
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• The cutting velocity (cutting speed) vc in m/min

• The flow rate of the oil V̇ in l/min

• The position of the damper

• The operating pressure of the damper

The cutting velocity is automatically controlled and therefore is not ex-
actly on target in the modelling process. It is taken into account by measuring
the true number of revolutions per second which then allows the effect of the
variation in this parameter to be inferred.

The axial feed influences the speed of the boring substantially, since it
determines the thickness of the chips which are removed by the cutting edge.

The flow rate of the oil determines the speed of transportation of the
chips from the cutting edge and the cooling and lubrication of the process.
It also influences the damping properties of the whole assembly.

The damper serves to prevent dynamic disturbances (see section 1.4) and
to this aim it can be positioned along the boring bar. Its position can be
fixed on the machine bed or relative to the drive unit of the tool. The
pressure, with which the damper is clamped to the boring bar, is determined
by the machine operator. If the operator detects a disturbance (by sound
or vibrations felt on the boring bar) he/she can vary the position and the
pressure until the disturbance disappears.

1.3 Principle of the BTA Deep-Hole Drilling

The BTA tool has only one cutting edge and two or three guiding pads. This
is illustrated in Figure 1. The chips are transported away by the cutting fluid
via the chip mouth and through the boring bar. The asymmetrical geometry
of the tool leads to forces pushing outwards against the walls of the hole.
These forces are counteracted by reactive forces at the guiding pads. The
tool is thereby guided in the machined hole and at the same time the bored
hole walls are smoothened. Since the chips are transported within the boring
bar they cannot damage the hole surface, and hence a high quality of the
holes can be achieved.
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Figure 1: Boring tool and details of the working principle.

1.4 Chatter Vibrations

The main aim of the project is to find a way to deal with two dynamic dis-
turbances (chatter vibration and spiralling, see Figure 2) and more precisely,
to predict their occurence and prevent them by appropriate controls.

Figure 2: Radial chatter marks on the bottom of the bore hole (left) and
effects of spiralling on the bore hole wall (right).

In this paper, a model is proposed to simulate the phenomenon of chatter
during the process. Therefore this phenomenon is briefly decribed here. As
the name suggests, this disturbance is audible. The acoustic effect that
accompanies chatter vibration can best be described as a high-pitched tone
which occurs during the process. The tone suggests regularly interrupted
cutting. A sawtooth pattern is produced at the bottom of the hole (Figure 2,
on the left). Chatter leads to significantly increased wear of the cutting
edges and in more extreme cases it leaves so-called chatter marks on the hole
surface.
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Figure 3: Exemplary time series of the drilling torque with occurence of
chatter.

Having observed out-of-phase torsional and longitudinal vibration dur-
ing chatter, Thai (1983) traced this type of behavior of the BTA deep-hole
drilling process back to the principle of coupled states. Furthermore, from
the high dynamic content of the process torque, he inferred that the cut-
ting parts periodically disengage from the workpiece when there is chatter
vibration.
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2 Background for regenerative chatter anal-

ysis

Chatter in turning or cutting is usually assumed to be a regenerative process
(there exist also other explanations like thermoplastic changes in the mate-
rial). Because of external perturbation, tool starts an oscillation relative to
workpiece, producing a wavy surface. Therefore, the chip thickness that has
to be cut in the next round will also vary. Since cutting force depends on the
area of the chip (F = f(A)) and therefore on its thickness Δh (breadth is
usually constant), cutting force is a function of the current and by one round
delayed relative positions of tool and workpiece. Consequently, cutting force
also varies.

In processes like cutting and turning the vibrations that produce the
varying cutting force are orthogonal to the rotation. There need to be no
oscillations in the direction of rotation to generate chatter. Therefore the
delay can be assumed to be the constant rotation time T of the process.

For the drilling process this is not the case, which can be seen as follows.
The chip thickness of the process is the offset of the tool between two rotations
in axial direction. We do not assume axial vibrations of the workpiece or tool
(it is the best assumption due to high stiffness). Also the feed rate is constant.
Therefore the relative displacement after T is also constant, consequently
also the cutting force (F = f(Δh)), and there can be no regenerative effect
producing chatter. This holds if we assume that F �= f(φ̇), which is the usual
assumption.

However, chatter can be explained if we take into account the varying
rotation time T = T0 + δt. The varying T results directly from the assumed
rotational vibrations. For an increased T (thus a slower roation speed), the
tool has moved a bigger Δh since the last rotation, leading to a bigger cutting
force (and corresponding moment). This will slow down the tool even more,
until the restoring forces within the bar become too strong. The argument
works the same for a decreased T , and so we get a self-exciting vibration.
Usually this process will be damped at some point through higher order
terms, otherwise it would lead to resonance catastrophe.

So with the assumptions taken above, chatter can only be explained if
the varying rotation time is explicitly taken into account. The classic ana-
lytical papers like [1] with DDE methods applied, are therefore not directly
applicable for us. Since we cannot simply use a delay differential equation
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with constant delay δt, analysis becomes harder. To calculate chip thickness
we have to use

Δh(t) = z(t) − z(t(Φ(t) − 2π)). (1)

Here Δh(t) is the variyng chip thickness, z(t) is the coordinate in the boring
direction and Φ(t) is the total rotation angle of the tool from the beginning
of the process. The (1) can only be written in closed form, if we define the
inverse function

f(φ, t) = maxτ{τ : τ < t, Φ(τ) = φ}. (2)

Then
Δh(t) = z(t) − z(f(Φ(t), t)). (3)

The maximum operator is only necessary if we assume that the tool can
vibratre so stronly that it leaves the work piece. Due to difficulties in ana-
lytical predictions for the system with varying delay, analysis by simulation
experiments was held.

A good introduction to the subject may be found in [9]. More advanced
analytical considerations are developed in [1] and [8].

3 Deriving motion equations for a bar as a

multibody system

Initially the bar (parametrized by its axial coordinate z) is assumed to be
a continuous body, whose dynamics is determined by the moments which
act on the bar. Moments are the sum of external moments (motor forces
and friction) and internal moments from the neighboring infinitesimal bar
elements. Let φ(z, t) describe the angular deviation of the bar from its resting
position. The theory of torsional deformations gives the equation of motion

ρJp
∂2

∂t2
φ(z, t) =

∑ ∂

∂z
M(z, t) =

∑ ∂

∂z
(MT (z, t) + MF (z, t) + Mext(z, t)),

(4)

where all the moments are in radial direction and MT , MF denote the mo-
ments caused by the torsion of the bar and friction, respectively. Mext stands
for the moment caused by the drill-workpiece interaction which is defined by
the trespanning force model, described in the section 5.
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In particular, friction is assumed to be viscose, i.e. proportional to the
angular velocity: MF = F(z, t)φ̇(z, t). The density of the boring bar and
its moment of inertia per unit area perpendicular to its axis are denoted by
ρ and Jp. We use dots to indicate time derivatives and primes to indicate
space derivatives.

Replacing the torsional moment by Hooke’s law, we obtain MT = GJT φ′(z, t).
G is the shear modulus of the bar and JT its torsional moment of inertia.
This gives us the following equation of motion for the torsional moments
alone:

φ̈(z, t) = c2φ′′(z, t), (5)

c2 =
GJT

μJp
.

For a circular bar as considered here, it can be shown that Jp = JT which
simplifies the preceding equation. Inserting all this into equation (4), we
obtain

μJpφ̈ = GJT φ′′(z, t) + F ′(z, t)φ̇(z, t) + M ′
ext(z, t). (6)

To run a simulation, this equation has to be discretized in space. The bar
is discretized into K pieces with the behaviour of the pieces determined by
their equations of motion. The leftmost piece (containing the drill head) is
assigned the index 0, whereas the rightmost piece has index K − 1. We thus
assume a bar consisting of K pieces of length Δz. φ(z, t) becomes a vector
�φ(t) containing the angle positions of the K pieces. Thus we have a system
of K differential equations. By discretizing the spatial derivatives, we find

μJpφ̈i =
GJT

(Δz)2
[(φi+1(t) − φi(t)) + φi−1(t) − φi(t)]+

+ F ′
i(t)φ̇i(t) + M ′

ext,i(t) =

=
GJT

(Δz)2
[φi+1(t) + φi−1(t) − 2φi(t)] +

fi(t)

Δz
φ̇i(t) +

mext,i

Δz
(t). (7)

The discretized external moment �Mext acts on the leftmost element only:
when using a backward derivative approximation, only the last element of
mext contains a nonzero value. Due to the complicated nature of frictional
interactions, an intuitive and simple expression for �F (t) cannot be given.
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Instead, a pragmatic approach is used. Having so far simplified the equations
of motions to

M�̈φ(t) = P �φ(t) + F �̇φ + �mext(t), (8)

where M, P and F are called the mass, stiffness and friction matrices, re-
specively, we suppose F = αM +βC +γP . Since all discretized bar elements
have the same moment of inertia in our model, M = μJpIK×K . C represents
the friction caused by the stuffing box: C = diag(0, . . . , 1, 0, . . . ). Thus the
diagonal of C has a nonzero element at the bar element(s) having contact
with the stuffing box. For practical reasons, C is interpolated: if only one
bar element has contact with the stuffing box, the unit value is ”distributed”
over adjacent bar elements. The values of α, β and γ are determined from
fitting this model to experimental data. Experiments have shown that γ is
close to zero. It is therefore disregarded in the following considerations.

Boundary conditions must be taken into account: the left end of the
boring bar is free, therefore interaction with the next discretized element
does not exist; equally, the right end of the bar is fixed, therefore φ and all
its derivatives are zero. Here, the K × K-matrices F and P are defined as

F = − 1

Δz
diag(α, α, . . . , α + β, α, . . . ), (9)

P = − GJT

(Δz)2

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1 0 . . . 0

1 −2 1 . . .
...

0
. . .

. . .
. . . 0

... 0 1 −2 1
0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (10)

For reasons of computational efficiency it makes sense to rewrite equation
(8) in a form using the new variable

�x =

(
�φ

�̇φ

)
, (11)

where �φ = (φ1, ..., φK)T , �̇φ = (φ̇1, ..., φ̇K)T .
Thus, after trivial transformations, the model can be written as follows:

�̇x =

(
A11 A12

A21 A22

)
�x +

(
0

�Mext

)
=

(
0 IK

P F

)
�x +

mext

μJpΔz

(
0
�e0

)
. (12)
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Here the conditions A12 + A22 − Ik = F and A11 + A21 = P must hold if
the new equations of motion are to be equivalent to (8). IK×K denotes a
unit matrix of dimension K, �ei is the i-th unit vector of dimension K with
elements eij = δij . The boundary conditions are taken into accout in the
matrix P: We assume the right end to be fixed, so the first and the second

derivatives are 0 there and thus the Kth row of P is filled with zeros. On
the left side of the instrument we have an open end, so no influence from an
element to the left occurs here, which is considered in the first row of the
matrix P.

We get a contribution from the cutting force mext exerted by the drill-
workpiece interaction on the left side of the instrument. The details of this
interaction are subject of the trepanning force model and described in section
5. The upper part of the external moment term in the right-hand side of
equation (12) is zero because a moment can only be coupled to the second

derivatives of �φ.
Additive noise enters via the trepanning force model. Thus, (12) repre-

sents a coupled system of 2K time differential equations that we can simulate.

4 Integration methods

A fourth order Runge-Kutta method is used for the simulation of the coupled
system (12). For details of the algorithm, please see [7]. The simulation is
computationally expensive, a run of 300 simulated seconds takes about 10
minutes of processing time on a 3Ghz machine.

Integrating stochastic processes correctly is non-trivial (see, e.g. [2]). In
[6], a second order method is proposed which works as follows (not consider-
ing the noise terms). Assuming

k1 = f(y, t),

the difference Δy is calculated as

Δy =
h

2
(k1 + f(y + hk1, t + h)).

The classical RK method suggests:

Δy = hf(y +
h

2
k1, t +

h

2
).
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Experiments showed that the method from [6] performed poorer than Runge-
Kutta methods (from the point of view of accuracy and numerical stability).
Since we do not simulate a clearly defined stochastic process anyway, the
following method was employed for dealing with random noise using the
Runge-Kutta method. Noise is added after each integration step, not after
every interpolation point. Noise is scaled with

√
h. Furthermore, noise is

only added to the acceleration of the bar, not its velocity. It must be also
taken care not to add noise to the right-hand end of the bar which should
stay fixed.

5 Modeling of the regenerative process

Based on experiments, a working point momentbe of 400Nm is assumed.
To this, a term linear in the deviation of the chip size is added. A purely
linear function of chip thickness mext = k ∗ Δh is not sufficient, but if the
deviational moment factor kd is about 2 orders of magnitude bigger than the
proportional factor k0 leading to the working point moment, this can lead to
regenerative chatter. This is a plausible assumption since in the literature
the deviational influences are usually assumed to be of higher order (see [9],
p.742).

This purely linear deviational term leads to resonance catastrophe. By
restricting the magnitude of this term from above, we can get a self-stabilized
chatter process. Therefore, in the current form the model is determined by
two parameters: the slope of the linear term k and the upper bound b on the
linear model.

The onset of chatter is very sensitive to initial conditions. Since we want
to study how chatter develops in the running process operating at working
point, we need to make sure that the process is in the working point state
from the beginning. This can either be done by starting it with x0 = 0 and
Mwp = 0, or by setting x0 equals the working point value of a given Mwp. In
the first case, chatter does not start so easily. Using the same parameters as
usual, it will start later.
Acknowledgment. This work has been supported by the Collaborative
Research Center ‘Reduction of Complexity in Multivariate Data Structures’
(SFB 475) of the German Research Foundation (DFG).
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Figure 4: Simulated process with chatter.
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