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Zusammenfassung

In diesem Artikel schlagen wir die Verwendung eines genetischen Algorithmus (GA) zur Kalibrierung eines
Stochastischen Prozesses an eine empirische Dichte von Aktienrenditen vor. Anhand des Heston Models
zeigen wir wie eine solche Kalibrierung durchgefiihrt werden kann. Neben des Pseudocodes fiir einen
einfachen aber leistungsfahigen GA prasentieren wir zudem auch Kalibrierungsergebnisse fiir den DAX und
den S&P 500.

Abstract

In this paper we propose the use of genetic algorithms when fitting a stochastic process to the empirical
density of stock returns. Using the Heston Model as an example, we show how such a calibration can be
carried out. We also present an easy to implement genetic algorithm and provide calibration results for the
daily stock returns of the DAX and the S&P 500.
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Abstract

In this paper we propose the use of genetic algorithms when fitting
a stochastic process to the empirical density of stock returns. Using the
Heston Model as an example we show how such a calibration can be carried
out. We also present an easy to implement genetic algorithm and provide
calibration results for the daily stock returns of the DAX and the S&P
500.

1 The Heston Model and it’s transition density

The Heston Model (HM) suggested by Heston (1993) is often seen as the first
logical extension of the widely known Black and Scholes (BS) approach. It uses
a stochastic volatility instead of the flat one suggested by it’s less sophisticated
counterpart.

Several empirical studies have shown already that the constant-volatility-
assumption contradicts market realities (see e.g. Cont (2001), Guillaume et al.
(1997) ) The most salient drawback of the B&S-model is often considered to
be it’s inability to replicate the long tails which are observable in daily stock-
returns. These however can be captured quite well by Heston’s approach. (see
Silva and Yakovenko (2003), Daniel (2003))

The model’s dynamics are characterized by the following three equations

S, = pS,dt + /oS, dWw, (1)
dvy = —(vy — 0)dt + rr/ordW (2)
dW® = pdw Y + /1= p2dz, (3)

Here Z; is a Wiener process independent of Wt(l).Deﬁning r+ by 7 = In(S¢/So),
applying Ito’s Formula and setting x; = r; — ut one arrives at

dzy = —0.5v,dt + /o dW,” (4)



A transition density P;(x,v|v;) for the joint realization of z; and v at time
t given an initial log-return x = 0 and variance v; at ¢ = 0 was constructed
by Dragulescu and Yakovenko (2002). However, because the variance is not a
directly observable market quantity P;(x, v|v;) is not suitable for the calibration
of the Heston Model to empirical data.

Fortunately Dragulescu and Yakovenko (2002) also introduce reduced den-
sities by integrating out the variance.

+oo
Py(zlvo) = /0 Py, vlug)do (5)

This is the density of having log-return x at time ¢ given a variance vg at time
t = 0. If we wanted to specify a starting variance the function above might be
the correct choice. However deciding upon such a value can be quite arbitrary
for variance can not be directly observed. To circumvent this uncertainty Drag-
ulescu and Yakovenko (2002) use the stationary density of (2) which is given
by
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(6)

Inserting (6) into (5) and integrating over vy they eventually arrive at the fol-
lowing result:

1 +oo tFu(pe)
P, = — 1Pz t\Pz) ] -
() o [m e ) (7)
with
pL 270 Qt P -T24290 . Ot

F(t7p$) = ?Ft - ? In |:COSh 7 =+ T sinh 7 (8)

I' =~ +ipkpy 9)

Q= T2+ r2(p? — ipa) (10)

2 Empirical density function and fitting

Let a series of log-normal stock returns be given by & (At) = {x1,...,2z,}. Here
At denotes the time-step. Thus in the case of 21 trading days per month and
At = 1/252, x(1/252) will be a series of daily returns. To make the data
compatible with process (4) we also shift every return by pAt = % S
and thus reset

x(At) = {z1 — pAt, ..., x, — pAt} (11)

Furthermore we set i, = min@(At), Tme, = maxx(At) and introduce
the bin-size Ax. The number of bins is then given by M = ceil (W)



We then simply determine the relative probabilities p; for each bin by weighting
the number of returns in that bin by the total number of observations.

For a bin with boundaries [a,b) we also introduce the bin representative
Z; = a+ 1(b—a). Using the M representatives {Z1 ...,Za} we can now define
the function

Pemp () = Zpi% () (12)

After the initial empirical function has been constructed one can get rid of
outliers by determining the a and 1 — a quantiles. Using these values to reset
Timin and T,q. one then proceeds to derive a new empirical density (without
the outliers).

To underline that the shape of the analytical density depends on the choice
of (v,6,k, p), we set P(x) = p(t,xz,7,0,k, p) The distance function between the
empirical distribution and the analytical one is then given by

f(2,0,5,p) Z Pemp(Z) — p(AL, Z,7,0, 5, p)))? (13)
1=1

To conclude the fitting procedure we have to minimize f with respect to
(7,6, k, p). Note that f as defined in (13) is just one choice of a distance function.
Alternatives might be the the root-mean-squared error or the absolute distance.

3 The genetic algorithm approach

3.1 Motivation

In this section we assume our cost function to be f : R® — R and our goal
will be to minimize f. The function’s input is thus a vector of the form
7 = (z1,...,7,) € R and an input-solution-pair is a tuple (Z, f(Z)) € R**L.
Furthermore we restrict the search-space of our algorithm by limiting it to the
hypercube

H(@,b) = {Z € R, a; <z; < b,V e{l,...n}} (14)

However, if f is set to equal (13) it’s calculation must be carried out via
numerical integration and the integral might not be well-behaved for every choice
of (v,60,k,p). This can lead to the crash of most conventional optimization
routines.

In the case of the Heston Model f is known explicitly. However, for many
stochastic processes the transition density itself is often not known and has to be
estimated numerically. Pedersen (1995) and Brandt and Santa-Clara (2001) for
example suggest the use of Monte Carlo coupled with a Maximum-Likelihood
estimator in oder to construct the transition density. In such a case approaches
like Levenberg-Marquard or steepest descent (see Kelley (1999)) would be com-
putationally expensive, for f’ will have to be determined numerically. It would
be best to use an optimization routine which:



e does not depend on the form of f,

e doesn’t necessitate the computation of f’,
e works reliably for larger n,

e is able to disregard local optima

e and is inherently parallel which will allow to exploit modern multi-core
Processors.

All of the criteria above are met by genetic algorithms (GA). For an intro-
duction to GA see e.g. Sivanandam and Deepa (2007) or Gen (1997). Despite
being considered heuristics they have been repeatedly shown to perform well
with complex problems (see e.g. De Jong (1975) , Marco-Blaszka and Desideri
(1999)). In the next section we are going to introduce a simple GA containing
all the necessary buildings blocks which are inherent to this type of optimization
procedure.

3.2 The Algorithm

The general structure of most genetic algorithms is quite simple. One first cre-
ates an initial population by randomly sampling from the search space. After-
wards the population members are selected and exchange information in order
to produce new, fitter solutions. The population is then sorted according to
the fitness level and the worst solutions are killed off. The members of this new
population are again selected for ”mating” and the entire procedure is repeated.

To embed our optimization problem into the GA-framework we must intro-
duce some definitions first. From here on & will be called a chromosome and the
tuple (%, f(%)) € R a member of the population P which is simply a set of
such tuples. To make the notation more compact we will refer to a population
member via m , it’s chromosome via m(1) and it’s cost via m(2) . In this context
P, will be the i-th population member. Here we also access the chromosome via
Pi(1) € R™ and the cost via P;(2) € R.

To initialize a GA one first has to generate an initial population by randomly

-,

sampling N;,; points from the space H(d,b) (see Algorithm 1)



input : The dimension of the objective function’s input n , the size
of the initial population N;,;, an empty container P,,.; and
the vectors d, beR"

output: The container ]Sim- filled with N;,; elements

local :Ze¢R"

for i =1 to N;,; do
fori=1to n do
‘ x; = drawUniformRandom [a;, b;];
end
end

Algorithm 1: Creating an initial population

The next step consists of deciding which members of the population should
mate. Here the best solution should also have the best chances of passing on it’s
information. To achieve that we use a cost-weighted-selection approach. Thus
the lower the cost of a given population member the higher it’s probability to be
selected for mating. Assuming that the current population P is already sorted
so that P(2) < Pi(2) VP, € P the selection probabilities are given by

b | P = Px(2)
LN (P2 - Pa(2)

Using this probabilities one than constructs a discrete probability distribution
with P(X = i) = p; and uses it to draw members from P. The number of
mating-pair selections is regulated by the variable n € [0, 1] specifying the frac-
tion of the population that will mate (see Algorithm 2) Note that algorithm 2
allows self-pairing. Thus a member can be paired with itself.

Vie{l,... n} (15)




input : The current populationj5 and it’s size N and n € R
output: A list of mating-pairs M

local :peRN  m; e Ry € R
P=sortPopulation (P) ; // so that Py(2) < Pi(2) VP, e P
for i =1 to N do

pi = | PPy (@)
i V(P (2)—Px(2))

end

for i =1 to [0.5Nn| do

M1 =drawMemberFromPopulation (p);
My =drawMemberFromPopulation (p);
Add (7, M) to M;

end

Algorithm 2: Selecting members for mating

Now that we have selected the mating pairs, we proceed to introduce another
crucial genetic operator - the crossover. The crossover constitutes the step
where the exchange of information between the different solutions present in
the population takes place. The key idea is to combine data of two members (to
"mate” them) in order to produce two fitter members. How this is accomplished
varies depending on the concrete problem. The approach used here is described
in Algorithm 3. Using the mating pairs obtained via Algorithm 2 one goes on
to combine the genetic data of the two members to produce two new ones. The
new members inherit most of their parent’s data but one randomly selected
gene. We collect this results in a container P.; and set P = P U P,,. To avoid
an exponential population growth we introduce the variable Ny,qz, sort P so
that }51(2) < ]%(2) VP, € P and remove all P; with ¢ > N,,a. This way the
population size is kept constant to reduce computational overhead.

Like many optimization routines the GA-approach might also suffer from
premature convergence. Thus it finds one local minimum and converges to it
neglecting the better optimal solutions within the search-space. In the context
of the GA this is often caused by the genetic-drift. This happens when the
population P contains one member 7ipes; which is significantly fitter than the
others. Mypese Will thus be frequently selected for mating and will end up dom-
inating the ”gene-pool”. After several iterations the entire population might
end up converging to mypest - LThe usual approach to remedy this situation is
to introduce a steady flow of new and unbiased genetic information to the pop-
ulation. This can be achieved by randomly sampling points from the search
space and adding them to P. Thus one runs Algorithm 1 to produce a specified
number of new members N,,,; and adds them to the current population. This



is also often referred to as introducing mutation.

Here it is important to note that this new members will be added to P after
it has been truncated to Ny,q.. This way they will have a chance to mate in
the next run.

input : A set of mating pairs MN, their number Ny, factor S € [0, 1],
the current population P and Npaq
output: An updated population P

local :7; € R™! 1y, e R [ ae N, Z,7€R?, 21,20 € R,
31a22 eR” ) Nnew

for i =1 to N; do
(1, 1mg) = M;;
a=drawInteger ({1,...,n});

// Uniform random draw of an integer from {1,...,n}
Z=mi1(1) ={x1,...,Ta,... Tp} ;
g=ma(1) ={y1,. -, ¥Yas---Yn};

21 =24 — B(ZTa — Ya);

22 :ya'f'ﬁ(xa _ya)§

Z1={x1,...,Ta1,21,Tat1 - Tn} ;

Z={y1, -, Ya-1,21,Ya+1---Yn} ;

ml = (Zlvf(gl)) 'I'hQ = (227 f(22))
Add mq and ms to 150;1;

end

P=PUP,;
P:sortPopulation

(P); // so that P(2) < P(2) VP eP
Nyew=getPopSize (P);

P =P\{PNppuitse s Pryi};
Algorithm 3: Mating/crossover and regulating population size

Finally we have to define a stopping-criteria for the algorithm. The most
straight-forward approach and the one we use here, is to stop when the fittest
population member P; hasn’t changed K-times in a row.



input : The cost function f: R* - R , n €N, ;
a, beR® ;

Nim’a Nmaxa Nmut7K eN 5

n, B € (0,1},

output: Myes € R7T!

. P M. P ~old = ne
local : P,M,Ppyu, k€N, m)S, mysy

P:createPopulation (Nini);

while k£ < K do

g, =D;

M=selectForMating (7);
P=mateAndTruncate (M, Nyaq);
P, ,;=createPopulation (Npu);
P=PUP,u;

snew __ P, .
mbest _Pl’

// Check if the best member has changed
if e(2) > g, (2) then

| k=0

else

| k=k+1

end

end

P=sortPopulation (P) ; // so that Py(2) < Pi(2) VP, eP

Algorithm 4: The Genetic Algorithm

4 Numerical Results

To arrive at the numerical results presented in this section the following inputs

have been used:

Empirical data: Daily returns of the DAX for the time period 26.11.1990-

15.08.2014

Genetic Algorithm parameters: n = 4, N;,,; = 200, Nipazr = 100, Ny =

50, p= 0.5, 8= 0.5, K = 10

First we run a calibration on an empirical density created for Az = 0.001. The
resulting analytical density exhibits a very good fit to the empirical data and

captures both the curtosis and the tails (see figure 1)




— empirical density

—— analytic heston 0.001

—0.04 —0.02 0.02
Empirical Distribution of log-Returns vs. actual Heston transition density

Figure 1: Heston analytical density plot for At = 1/252,v = 4.75,0 = 0.04,x =
0.5, p = —0.78. Empirical density of DAX’ daily returns with bin size 0.001

It is important to note that the evaluation speed of f as defined in (13) strongly
depends on the number of bins M, for it equals the number of times we have to
calculate the complex analytical Heston-Density P;(x). Thus while calibrating
the model we ask ourselves whether the bin-size Az has any significant effect
on the parameters output by the algorithm.

For f as in equation (13) and for bin-sizes Az = 0.001, Az = 0.0025, Az = 0.005
the algorithm outputs the following set of parameters:

Aaj‘ y 0 K 1)

0,001 | 475 0.04 0.5 -0.78
0,0025 | 441 0.043 052 -1.0
0,005 | 5.64 0.041 0.55 -1.0

Table 1: DAX calibration results for different bin-sizes

Table 1 shows that 6,k are relatively stable, whereas v, p seem to have a
non-negligible dependence on the bin-size Ax. However, if we plot the transition
density (7) for this three sets of parameters (see figure 2), we see that the overall
shape of the distribution is almost identical. The calibration quality thus does
not seem to depend on the bin-size Azx.

This is a very helpful result, for it allows us to decrease the computation time
of f making the entire algorithm significantly more efficient as shown by table
2. In our implementation we did not use parallelization, which would decrease
the run-time even more.



—— empirical density
— analytic heston 0.001
—— analytic heston 0.0025
—— analytic heston 0.005

Empirical Distribution of log-Returns wvs. actual Heston transition density

Figure 2: Heston analytical density plots with parameter sets as shown in table 1 for
the DAX. Empirical density for Az = 0,001

Az | 0.001  0.0025 0.005
Run-time | 970 sec 560 sec 175 sec

Table 2: Run-time of the algorithm for different bin sizes

Besides the shape of P;(z) the density II.(v) (see equation (6)) is also of
interest. When running a Monte Carlo simulation one would sample from II, (v)
to get an initial variance for each path. Thus it is interesting to see whether the
parameters shown in table 1 produce different shapes of II,.(v).

— analytic heston 0.0025
— analytic heston 0.001
—— analytic heston 0.005

0.010 0.015 0.020 0.025 0.030 0.035

Figure 3: II(v) for the different parameter sets as shown in table 1 for the DAX.
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Figure 3 shows that the three sets produce similar but still different densities
IT.(v). Whether this effect can be ignored depends on the problem at hand. In
case of derivatives pricing this might not be the case but could be tolerated in
a risk-management context. However, the computational speed advantage of
using a sparser empirical density derived using Az = 0.005 bins is significant
and should be factored in as well.

The performance of our optimization routine could be improved even further
by reducing the number of parameters. In their empirical tests Dragulescu and
Yakovenko (2002) disregard the correlation p by fixing it at zero. We tested
whether the quality of the fit is affected by this approach. The calibration
results for a set-up with p = 0 are presented in table 3. The newly calibrated
parameters differ from the previous ones. However, figure 4 shows that the
fitting quality is only marginally affected.

Ax‘ 5y 0 K p

0,001 | 2.70 0.038 0.35 0.00
0,0025 | 2.64 0.044 0.405 0.00
0,005 | 4.19 0.041 046 0.00

Table 3: DAX calibration results for different bin-sizes with p =0

— empirical density

— analytic heston 0.001 rho=—0.78
—— analytic heston 0.001 rho=0

—— analytic heston 0.005 rho=-1
— analytic heston 0.005 rho=0

-0.04 -0.02 0.02

Empirical Distribution of log-Returns vs. actual Heston transition density

Figure 4: Heston analytical density plots for the DAX. Empirical density for Az =
0,001. Comparison of calibration results ”with and without p”

To see whether the results would also hold for a different time series we
also run the algorithm (with p = 0) on the daily returns of the S&P 500 index
(10.10.1990 - 10.10.2014). The results are illustrated in Figure 5 and table 4.
Once again the bin size only has a marginal effect on the fitting result. Like we
have already observed for the DAX, 6 is again stable for different choices of Ax.
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— empirical density

—— analytic heston 0.001
—— analytic heston 0.0025
—— analytic heston 0.005

-0.03 -0.02 -0.01 0.01 002 0.03

Figure 5: Heston analytical density plots with parameter sets as shown in table 4 for
S&P 500. Empirical density for Az = 0,001

Aa:| 5y 0 K p

0,001 | 3.04 0.022 0.28 0.00
0,0025 | 2.85 0.020 0.26 0.00
0,005 | 543 0.021 0.30 0.00

Table 4: Calibration results for different bin-sizes for the S& P 500

12



5 Conclusion

The goal of this paper was to calibrate Heston’s stochastic volatility model to
an empirical density. After introducing the process and the density derived by
Dragulescu and Yakovenko (2002) in section 1 we proceeded to shown how to
construct an empirical density function from a given set of daily returns.

Seeing how the evaluation of P;(x) necessitates numerical integration, we
looked for a stable optimization routine which can be used on numerical cost
functions. Our solution was to apply a simple genetic algorithm which we
described in detail in section 3. Using this algorithm we fitted the reduced
transition density (7) to an empirical-density constructed using the daily-return
data of the DAX. As shown in figure 1 we were able to achieve a very good fit
in terms of both kurtosis and tails. The fitting quality was also only marginally
affected if p was fixed at 0 which noticeably improved the computation time
and stability of the optimization routine. We then applied our approach to a
different time series (S&P 500) and were able to replicate the good fitting results
obtained for the DAX (cf. figure 5)

To improve the computational efficiency an analysis of the impact of the
empirical density’s granularity on the calibration result has been carried out in
section 4. Interestingly the bin-size Ax does not seem to affect the shape of
the resulting density (cf. figure 2). However, the different parameterizations
do affect the shape of II(v). Still, whether this deviations have any significant
repercussions will depend on the problem at hand and must be analyzed in
the respective context. The computational advantage of using a larger Ax is
bolstered by table 2.

Despite our main focus being the calibration of Heston’s volatility model, we
have also shown that genetic algorithms can be applied in this context. Further
research will have to show whether this result also holds for more complex
numerical and empirical densities.
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