
Scholz, Martin; Klinkenberg, Ralf

Working Paper

Boosting Classifiers for Drifting Concepts

Technical Report, No. 2006,06

Provided in Cooperation with:
Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475),
University of Dortmund

Suggested Citation: Scholz, Martin; Klinkenberg, Ralf (2006) : Boosting Classifiers for Drifting
Concepts, Technical Report, No. 2006,06, Universität Dortmund, Sonderforschungsbereich 475 -
Komplexitätsreduktion in Multivariaten Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/22652

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/22652
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Boosting Classifiers for Drifting

Concepts

Martin Scholz and Ralf Klinkenberg

Artificial Intelligence Group, University of Dortmund, 44221 Dortmund, Germany,
{scholz,klinkenberg}@ls8.cs.uni-dortmund.de,
http://www-ai.cs.uni-dortmund.de/

Abstract. This paper proposes a boosting-like method to train a classifier ensem-
ble from data streams. It naturally adapts to concept drift and allows to quantify
the drift in terms of its base learners. The algorithm is empirically shown to out-
perform learning algorithms that ignore concept drift. It performs no worse than
advanced adaptive time window and example selection strategies that store all the
data and are thus not suited for mining massive streams.

1 Introduction

Machine learning methods are often applied to problems, where
data is collected over an extended period of time. In many real-
world applications this introduces the problem that the distribu-
tion underlying the data is likely to change over time. Knowledge
discovery and data mining from time-changing data streams and
concept drift handling on data streams have become important
topics in the machine learning community and have gained in-
creased attention recently as illustrated by numerous conference
tracks and workshops on these topics as well as specially dedicated
journal issues (see e.g. [38,30,1,15,3,2]).

For example, companies collect an increasing amount of data
like sales figures and customer data to find patterns in the cus-
tomer behavior and to predict future sales. As the customer be-
havior tends to change over time, the model underlying success-
ful predictions should be adapted accordingly. The same problem
occurs in information filtering, i.e. the adaptive classification of
documents with respect to a particular user interest. With the
amount of online information and communication growing rapidly,
there is an increasing need for automatic information filtering. In-
formation filtering techniques are used e.g. to build personalized

1

news filters, which learn about the news-reading preferences of a
user [33,53], to filter e-mail [9], or to guide a user’s search on the
World Wide Web [21]. The interest of the user, i.e. the concept
underlying the classification of the texts, changes over time. A
filtering system should be able to adapt to such concept changes.
Machine learning approaches handling this type of concept drift
have been shown to outperform more static approaches ignoring
it [26].

After formalizing the concept drift problem in Sec. 2.1, pre-
vious approaches handling it are reviewed in Sec. 2.2. Sec. 3 dis-
cusses related work on ensemble methods for data streams and
introduces a boosting-like algorithm for data streams that natu-
rally adapts to concept drift1. In Sec. 4 the approach is evaluated
on two real-world datasets with different simulated concept drift
scenarios, and on one economic dataset exhibiting real concept
drift. Sec. 5 summarizes the results and provides an outlook on
future work.

2 Concept Drift

2.1 Problem Definition

Throughout this paper, we study the problem of concept drift
for the pattern recognition problem in the following framework
[26,28,24,25]. Each example z = (x, y) consists of a feature vec-
tor x ∈ X and a label y ∈ {−1, +1} indicating its classification.
Data arrives over time in batches. Without loss of generality these
batches are assumed to be of equal size, each containing m exam-
ples.

z(1,1), ..., z(1,m)
︸ ︷︷ ︸

batch 1

, z(2,1), ..., z(2,m)
︸ ︷︷ ︸

batch 2

, · · · , z(t,1), ..., z(t,m)
︸ ︷︷ ︸

batch t

, z(t+1,1), ..., z(t+1,m)
︸ ︷︷ ︸

batch t+1

z(i,j) denotes the j-th example of batch i. For each batch i the data
is independently identically distributed with respect to a distribu-
tion Pi(x, y). Depending on the amount and type of concept drift,

1 A preliminary short version of this paper was presented at the ECML/PKDD-
2005 Workshop on Knowledge Discovery from Data Streams [47].

2

Fig. 1. Example of a sliding time window on a stream of text documents: The texts
to be classified are assumed to arrive in batches. At time point t, a classification
model is learned from the data in a window consisting of the h most recent batches.
Its performance is estimated on the last available batch only.

the example distribution Pi(x, y) and Pi+1(x, y) between batches
will differ. The learner aims to sequentially predict the labels of
the next batch and to minimize the cumulated number of predic-
tion errors. E.g., after batch t the learner can use any subset of
the training examples from batches 1 to t to predict the labels of
batch t + 1.

Fig. 1 illustrates this for the example application of infor-
mation filtering, were incoming text documents form a stream
of documents have to be classified, e.g. into interesting or non-
interesting with regard to the interest of a particular user. The
documents are assumed to arrive in batches and the correct clas-
sification labels for the documents in the batches 1 to t are known
to the system. Here a sliding time window consisting of the last
h batches, i.e. the batches t−h to t, are used to train a classifier,
which is then applied to classify the documents in the newly ar-
rived batch t + 1, whose labels are not known to the system yet.
The most recently received labeled data, batch t, is assumed to
most closely resemble the current true concept. Hence adaptive

3

time window approaches automatically optimizing the size h of
the sliding time window dependent on the current amount of drift
and other model selection approaches adaptive to the amount of
drift use this last labeled batch t for estimating the performance
(prediction error) of their learned models on newly received data
(see Sec. 2.3 and Sec. 2.4 for more details.).

2.2 Related Work on Concept Drift

In machine learning, changing or drifting concepts are often han-
dled by time windows of fixed or adaptive size on the training data
[36,55,34,23,27,19] or by weighting data or parts of the hypothe-
sis according to their age and/or utility for the classification task
[32,50]. The latter approach of weighting examples has already
been used for information filtering in the incremental relevance
feedback approaches of [4] and [5].

For windows of fixed size, the choice of a “good” window size
is a compromise between fast adaptability (small window) and
good generalization in phases without concept change (large win-
dow). A fixed window size makes strong assumptions about how
quickly the concept changes. The basic idea of adaptive window
management is to adjust the window size to the current extent of
concept drift. While heuristics can adapt to different speed and
amount of drift, they involve many parameters that are difficult
to tune.

The task of learning drifting or time-varying concepts has also
been studied in computational learning theory. Learning a chang-
ing concept is infeasible, if no restrictions are imposed on the type
of admissible concept changes2, but drifting concepts are provably
efficiently learnable (at least for certain concept classes), if the
rate or the extent of drift is limited in particular ways.

Helmbold and Long [17,18] assume a possibly permanent but
slow concept drift and define the extent of drift as the probabil-
ity that two subsequent concepts disagree on a randomly drawn
example. Their results include an upper bound for the extend

2 E.g. a function randomly jumping between the values one and zero cannot be
predicted by any learner with more than 50% accuracy.

4

of drift maximally tolerable by any learner and algorithms that
can learn concepts that do not drift more than a certain constant
extent of drift. Furthermore they show that it is sufficient for a
learner to see a fixed number of the most recent examples. Hence
a window of a certain minimal fixed size allows to learn concepts
for which the extent of drift is appropriately limited.

While Helmbold and Long restrict the extend of drift, Kuh,
Petsche, and Rivest [31] determine a maximal rate of drift that is
acceptable by any learner, i.e. a maximally acceptable frequency
of concept changes, which implies a lower bound for the size of a
fixed window for a time-varying concept to be learnable, which is
similar to the lower bound of Helmbold and Long.

In practice, however, it usually cannot be guaranteed that the
application at hand obeys these restrictions, e.g. a reader of elec-
tronic news may change his interests (almost) arbitrarily often
and radically. Furthermore the large time window sizes, for which
the theoretical results hold, would be impractical. Hence more ap-
plication oriented approaches rely on far smaller windows of fixed
size or on window adjustment heuristics that allow far smaller
window sizes and usually perform better than fixed and/or larger
windows (see e.g. [55,34,27]). While these heuristics are intuitive
and work well in their particular application domain, they usu-
ally require tuning their parameters, are often not transferable to
other domains, and lack a proper theoretical foundation.

Drifting concepts can also be learned effectively and efficiently
with little parameterization by an error minimization framework
for adaptive time windows [26] and example weighting or selection
[28,25]. This framework makes use of support vector machines
(SVMs) and their special properties, which allow an efficient and
reliable error estimation after a single training run [20].

The methods of the framework either maintain an adaptive
time window on the training data [26], select representative train-
ing examples, or weight the training examples [28,25]. The key
idea is to automatically adjust the window size, the example se-
lection, and the example weighting, respectively, so that the esti-
mated generalization error is minimized. These approaches do not
require complicated parameterization and are both, theoretically

5

well-founded as well as effective and efficient in practice. They are
described in more detail in Sec. 2.3 and Sec. 2.4 and used in the
experiment reported in this paper for comparative purposes. Fur-
ther related work on concept drift, i.e. approaches using ensemble
learners, are described in Sec. 3.1.

2.3 Adaptive Time Windows

The adaptive time window approach [26,25] used in the experi-
ments reported in this paper as state-of-the-art method for com-
parisons automatically adjusts the window size to the current ex-
tent of concept drift by selecting the window size that minimizes
the expected classification error on new examples. This approach
follows the idea shown in Fig. 1 in Sec. 2.1. A sliding time win-
dow consisting of the last h batches is used to train a classifier
for newly arriving unclassified examples. For each point in time
(new batch of examples) t + 1, the best window size h is deter-
mined and a new classifier is learned from the examples in that
window. Among all candidate time window sizes h = 1 . . . t, the
one minimizing the expected error is chosen by training a classi-
fier for each candidate window size and estimating the error rate
of the resulting classifiers on most recently received labeled data,
i.e. the examples of the last batch t, which is assumed to most
closely resemble the current true concept.

For a simple concept drift scenario with a single abrupt con-
cept shift (at batch t1), Fig. 2 illustrates the selected best expected
window size at each point in time (current batch) t. First, as long
as the concept remains stable (from batch t0 to batch t1), the
time window grows. When the drift occurs at batch t1, the old
data no longer representative for the new concept is dropped and
the window size reduced to one batch only. Afterwards the target
concept remains stable again (after t1) and hence the time win-
dow keeps on growing. Since the window adjustments are only
based on the error estimation and minimization, no complicated
or domain-dependent parameter tuning is necessary.

6

Fig. 2. Adaptive Time Window: The sliding time window grows in phases with a
stable target concept (batches t0 to t1 and after t1) and is cut off at an abrupt
concept shift (at batch t1).

2.4 Batch Selection

While the previously described adaptive time window approach
can only select a set of connected, i.e. consecutive batches as train-
ing set at each point in time, the batch selection strategy [28,25]
selects all batches sufficiently matching the most recent labeled
batch individually and hence is more flexible. At each point in
time (batch) t + 1, this second state-of-the-art method for hand-
ling concept drift used for comparisons in the experiment section
of this paper first trains a classifier on batch t only, i.e. on the
newest labeled data available, and applies this classifier to the
data in each previous batch 1 . . . t − 1. Each batch, where this
classifier produces an error δ times as high as or higher than that
produced by this classifier on its training batch t, is discarded
from the training set, because its data is considered to be not
close enough to the current target concept. All other batches to-
gether with the batch t form the final training set, based on which
the final classifier for the new batch t + 1 is learned.

Fig. 3 shows the batches selected for training the final classifier
for each point in time (current batch) for a drift scenario, where
the target concept starts as one concept c1, then abruptly shifts to
another concept c2 at batch t1, and later at batch t2 abruptly shifts
back to concept c1 again. The illustration demonstrates that the
batch selection strategy selects and discards batches not fitting to
the current target concept individually and can for example re-

7

Fig. 3. Batch Selection: All batches fitting to the current target concept can be
selected individually.

use old data from the time before the concept change in t1 after
the second change in t2, where the current target concept is the
same as before the first change.

Like the adaptive time window approach, the batch selection
strategy is based on error minimization only and not on domain-
dependent heuristics. For all experiments reported here and in
previous work, the factor δ for the acceptable error range was
simply set to 2, and no optimization of this parameter was per-
formed on any of the data sets used.

For the results for the adaptive time window and batch selec-
tion approaches reported in this paper, SVMs were used as base
learner in these frameworks, because of their good performance
and the availability of efficient error estimators [20,26]. But since
the performance of any classification learner can be estimated
by e.g. cross-validation or leave-one-out error estimation, these
frameworks are not restricted to the use of SVMs as base learner,
but can be applied with any other classification learner.

3 Adapting Ensemble Methods to Drifting

Streams

This section presents a novel ensemble method for data streams,
which has some appealing properties in the presence of concept
drift. Subsection 3.1 motivates the use of ensembles methods for
streaming data, and it briefly reviews existing approaches. The

8

idea behind the ensemble method presented here is sketched in
subsection 3.2. In 3.3 the ensemble algorithm is adapted to a
streaming scenario with concept drift.

3.1 Ensemble Methods for Data Stream Mining

In the recent years many algorithms specifically tailored towards
mining from data streams have been proposed. The goals of the
algorithms vary, depending on the assumed scenarios. Apart from
being able to cope with concept drift, scalability is one of the most
important issues. For very large datasets, the induction of classi-
fiers like decision trees is very efficiently possible: Using a sampling
strategy based on Hoeffding bounds, the VFDT algorithm effi-
ciently induces a decision tree in constant time [10]. An extended
version of this algorithm updates the tree based on a time window
of fixed length, which allows to compensate concept drift up to a
certain degree [19]. By combining several trees to an ensemble of
classifiers, techniques like bagging [7] and boosting [13] have been
shown to significantly improve predictions for many datasets. For
some of these ensemble algorithms corresponding online variants
for data streams have been suggested, see e.g. [39,35].

The SEA algorithm [49] induces an ensemble of decision trees
from data streams and explicitly addresses concept drift. It splits
the data into batches and fits one decision tree per batch. To
predict a label, the base models are combined by an unweighted
majority-vote, similar to bagging. As soon as the number of base
models exceeds a user specified constant, models are discarded
using a heuristic approach. The authors do not report an increase
in classification performance compared to a single decision tree
learner, but state that the ensemble recovers from concept drifts.
The recovery time of this approach seems unnecessarily long, as it
only exchanges one model in each iteration and uses no confidence
weights.

Another interesting approach [11] is based on unweighted base
learners similar to Random Forests [8]. It exploits example selec-
tion to include only useful older data into the training set. Exam-
ples from earlier batches are only included if predicted correctly

9

by both, the latest model and a recent (assumed optimal) one.
Cross-validation experiments may still cause the learner to dis-
card all old examples and to rely on a new model that has been
learned from scratch. This allows to adapt more quickly to sud-
den drift than possible with SEA. However, as the author points
out, it is a heuristic selection strategy. Further disadvantages are
the required assumption of a fixed marginal distribution, that is
a fixed probability to observe a specific instance, regardless of its
label, and high computational costs if a different base learner is
used.

A recent theoretical analysis suggests, that weighted base lear-
ners are a preferable alternative in domains with concept drift [29].
The analyzed AddExp algorithm steadily updates the weights of
experts (base models in an ensemble), and adds a new expert
each time the ensemble misclassifies an example. The new ex-
perts start to learn from scratch, using a weight that reflects the
loss suffered by the ensemble for the current example. All experts
are continuously trained on all new examples. The main results
reported for AddExp are more of theoretical interest, because
the original version requires to maintain an unreasonably large
number of experts, and more efficient variants rely on heuristics.

More practically oriented work that addresses learning from
data streams in a similar fashion is described in [48] and [54]. The
former of these approaches trains a weighted fixed-size committee
of incremental decision trees, all of which are updated whenever
a new example arrives. At each point in time the performance
of all base models is estimated based on a window of fixed size.
Poorly performing models are discarded and replaced by a new
decision tree, trained from all subsequently read examples. A dis-
advantage of this fixed number of base classifier approach is that
it does not induce ensembles of diverse base models, like boost-
ing algorithms do by appropriately re-weighting examples. The
approach rather leads to redundant ensembles, because the ex-
amples are not weighted individually for different base learners,
and the most recent parts of the training sets are identical. Up-
dating all incremental decision trees simultaneously may turn out
to be expensive during concept drifts. It still cannot be expected

10

to outperform adapting time window approaches, as it implicitly
maintains heuristically derived weights for the most recent exam-
ples.

The approach presented in [54] reads training data in batches,
and it trains one classifier per batch. Even during stationary
phases without drift, no classifier is ever trained from more than
a single batch. Consequently, large batch sizes are required. The
performance of each classifier is estimated based on just the most
recent classified batch in each iteration, and the inverse (esti-
mated) error rate is used to weight the model. The authors prove
that – given that the estimates are precise – this weighting scheme
outperforms a single classifier trained from all the data during
concept drift. This result is not surprising, especially if compared
to boosting, where an improvement in accuracy is expected for
each additional base model, given that exact estimates are pro-
vided. However, the presented approach does not weight examples
as done by boosting procedures. As a consequence, introducing
diversity into ensembles is possible only by applying heuristics
during a pruning procedure, an aspect that is similar to SEA.

Sec. 3.3 extends the efficient boosting procedure presented in
Sec. 3.2 to streams. It trades off predictive performance versus
scalability. To this end, the online algorithm reads examples ag-
gregated to batches and decides for each batch, whether to add
a new expert to the ensemble or not. Unlike in SEA and simi-
lar algorithms, the base models of the ensemble are combined by
a weighted majority vote. Subsequent models are trained after
re-weighting the examples of the new batch, and each new base
classifier model is assigned a weight that depends on both, its
own performance and the performance of the remaining ensemble.
Adaptation to concept drift works by continuously re-estimating
the weights of all ensemble members, similar to the procedure
presented in [54], but with each weight fit to the residuals of the
(already) weighted ensemble of previous base models. This last
aspect is very similar to logistic regression, with the predictions
of the base models acting as constructed features.

11

3.2 Ensemble Generation by Knowledge-Based

Sampling

As a motivation for the subsequently presented knowledge-based
sampling (or example weighting) technique, Fig. 4 illustrates the
main idea for a simplified concept drift scenario. The underly-
ing assumption is, that during a concept drift all examples are
sampled from a mixture distribution, which can be thought of as
a weighted combination of two pure distributions characterizing
the target concepts before and after the drift. In the figure the
initial target concept is simply referred to as Concept 1. Exam-
ples are sampled from a corresponding stationary distribution up
to the first dotted vertical line. A learning algorithm may simply
induce a model from all the data, which will predict Concept 1.
Now, as the drift starts and a Concept 2 overlaps Concept 1, this
model will show a decreasing accuracy. Please note, that in the
intermediate batches the label can best be described as a prob-
abilistic combination of different concepts. Even if for the pure
concepts the label depends on the features deterministically, the
perfect model in between the two concepts can only be derived in
terms of Bayes’ optimal decision rule. For simplicity we assume
diametral concepts in the figure, and a correctly trained model
for Concept 1 when the drift starts. In this situation there is a
point in time (a batch), up to which the Bayes’ optimal classi-
fier predicts Concept 1. This can be concluded from the assumed
generative model, because whenever there is a conflict between
both concepts, then Concept 1 is more likely to be correct. The
point up to which knowing about Concept 2 is useless for making
predictions is shown as a thick dotted vertical line in Fig. 4. After
that point it is optimal to purely predict Concept 2. However,
it just is not clear how to induce an appropriate model without
seeing a few batches sampled from a pure corresponding distri-
bution. Such batches are available to the learner only after the
last dotted vertical line, but between the second and last line we
would already like to predict Concept 2.

One of the main motivations for the boosting-like algorithm
presented in this work is that, given an accurate model for Con-

12

Fig. 4. Continuous concept drift, starting with a pure Concept 1 and ending with
a pure Concept 2. In between, the target distribution is a probabilistic mixture. It
is optimal to predict Concept 1 before the dotted line, and Concept 2, afterwards.

cept 1, it allows to decompose the mixture distribution during
the concept drift. Thus, it is possible to construct a sample with
respect to Concept 2 as soon as the drift starts (first dotted
line). This look-ahead strategy is inherently different from all ap-
proaches discussed in Sec. 3.1, and it allows to adapt to drift very
quickly. The main reason is that it exploits more of the informa-
tion encoded in the stream. Please note, that even between the
thick and the final dotted lines the model for Concept 1 is not
useless, because it still helps to “purify” subsequent batches by
subtracting the deprecated Concept 1. The resulting model is a
probabilistic ensemble classifier, for which Bayes’ optimal decision
rule can explicitly be applied when crisp predictions are required.

The algorithm introduced in this paper is based on the sam-
pling strategy suggested in [45]. Patterns are discovered itera-
tively. A pattern that is found in one iteration extends the user’s
prior knowledge in the next one. In each iteration the sampling
procedure produces training sets that are “orthogonal” to the
combined probability estimate corresponding to the prior know-
ledge. This aspect is very close to boosting classifiers. The idea

13

of removing prior knowledge by biased sampling is formulated in
terms of constraints. Formally, this step defines a new distribu-
tion, as close to the original function as possible, but orthogonal to
the estimates produced by available prior knowledge. Technically
this step can be realized by introducing example weights. As a
result of switching distributions, the evaluation metrics for model
candidates – when applied to these kinds of training sets – are
“blinded” regarding the parts of the data that can be concluded
from prior knowledge. All that is accounted for in the next itera-
tion is the unexpected component of each model. In the scope of
this paper the only kind of “prior” knowledge are the base models
yielded by preceding iterations.

For a given instance space X and nominal class attribute Y
examples are expected to be sampled i.i.d. from an initial distri-
bution D : X ,Y → IR+. Let h : X → Y denote a base model from
hypothesis space H, predicting a class.

As a first constraint, the new distribution D′ to be constructed
should no longer support the knowledge encoded in the hypothesis
h. This means that, with respect to D′, the observation of any
fixed label y∗ should be independent of all possible predictions
h(x) = y′:

(∀y∗, y′ ∈ Y) : Px,y∼D′ [y = y∗ | h(x) = y′] = Px,y∼D′ [y = y∗] (1)

If eq. (1) did not hold, then the same hypothesis would allow
to derive further information about the true label’s conditional
distribution given the prediction of h.

As a second constraint, the probability of observing a specific
class y∗ ∈ Y and the probability of a specific prediction y′ ∈
Y should not change from D to D′; it is sufficient and possible
to remove only the correlation between the true label and the
predicted label:

(∀y∗ ∈ Y) : Px,y∼D′ [y = y∗] = Px,y∼D [y = y∗] (2)

(∀y′ ∈ Y) : Px,y∼D′ [h(x) = y′] = Px,y∼D [h(x) = y′] (3)

Eq. (2) ensures that the class skew does not change, which would
result in an implicitly altered cost model for misclassifying exam-

14

ples [14]. Eq. (3) avoids to skew the marginal distribution unne-
cessarily.

Finally, within each partition sharing the same predicted label
y′ and true class y∗, the new distribution is defined proportionally
to the initial one; having a hypothesis h as prior knowledge, all
instances within such a partition are indistinguishable. Changes
to the conditional probabilities within one partition prefer some
instance over the others, despite their equivalence with respect to
the available prior knowledge. This translates into the following
constraint:

(∀x, x′ ∈ X)(∀y∗, y′ ∈ Y) : Px,y∼D′(x = x′ | h(x) = y′, y = y∗)

= Px,y∼D(x = x′ | h(x) = y′, y = y∗) (4)

Constraints (1)-(4) induce a unique target distribution. The fol-
lowing definition eases notation.

Definition 1. The Lift for a given hypothesis h : X → Y, pre-
dicted class y′ ∈ Y, and true class label y∗ ∈ Y is defined as

Lift
(h)
D (y′ → y∗) :=

Px,y∼D [h(x) = y′, y = y∗]

Px,y∼D [h(x) = y′] · Px,y∼D [y = y∗]

Similar to precision, Lift measures the correlation between a spe-
cific prediction and a specified true label. A value larger than 1
indicates a positive correlation.

Theorem 1. For any initial distribution D and hypothesis h ∈
H, constraints (1)-(4) are equivalent to

∀〈x, y〉 ∈ X × Y : PD′(x, y) = PD(x, y) ·
(

Lift
(h)
D (h(x) → y)

)−1

.

A proof is given in [45]. Theorem 1 defines a new distribution to
sample from, given a hypothesis h as prior knowledge. Assuming
a single hypothesis is not very restrictive, since it is possible to
directly incorporate each new base model into a single ensemble
classifier. In a classical learning scenario without concept drift, the

15

1. Initialize D1 with the uniform distribution over the example set
E = 〈x1, y1〉, . . . , 〈xm, ym〉.

2. For i = 1 to n do // n: user given number of iterations
(a) Call BaseLearner(Di, E) to find an accurate model hi : X → Y.

(b) Compute Lift
(hi)
Di

(y′ → y∗) applying definition 1.

(c) Di+1(xj , yj)← Di(xj , yj) ·
“

Lift
(hi)
Di

(h(xj)→ yj)
”−1

for all 〈xj , yj〉 ∈ E .

3. Output {h1, . . . , hn} and the Lift values. Predict P (y | x) with eq. (5).

Fig. 5. Algorithm KBS (Knowledge-Based Sampling)

theorem can directly be applied iteratively [46,44]: Base model hi

is selected based on distribution Di. Distribution Di+1 is defined
by applying theorem 1 to Di and hi. A corresponding knowledge-
based sampling algorithm (KBS) which is not tailored towards
learning from streams is depicted in Fig. 5. It boosts weak base
learners and has empirically been shown to be competitive to
AdaBoost and LogitBoost [44].

The inverse of the re-weighting strategy allows to approxi-
mately reconstruct the original distribution D1 as a combination
of the single hypotheses. The following formula estimates the odds
β(x) based on {h1, . . . , hn}, a sequence of n hypotheses, each of
which is the result of a separate iteration of learning:

β(x) :=
P (y = +1)

P (y = −1)
·

n∏

i=1

Lift
(hi)
Di

(hi(x) → y = +1)

Lift
(hi)
Di

(hi(x) → y = −1)
(5)

This allows to compute estimates of the conditional probabilities
as

P (y = +1 | x) ≈
β(x)

1 + β(x)
. (6)

The re-weighting scheme used by KBS makes base classifiers
rank models according to their contribution to the overall accu-
racy: After KBS “samples out” a model h, the accuracy of all
overlapping (correlated) models with respect to the new distri-
bution is reduced according to the degree of overlap. Because of
constraint (1), the Lift of the subset with a common prediction

16

h(x) is 1. For a given model h : X → Y predictive accuracy (Acc)
can be rewritten as

Acc(h) =
∑

y∗∈Y

P (h(x) = y∗)P (y = y∗)Lift
(h)(h(x) → y∗), (7)

which is a linear combination of the corresponding Lift values
of the covered subsets. Using examples that were re-weighted
with respect to a given model h, the base classifier favors mo-
dels according to their independent contributions [14,46]. Similar
to other boosting approaches, the example weights anticipate the
expectation given the previously trained models. As motivated be-
fore, this is especially useful for handling smooth concept drifts.
While sudden drifts require a quick detection and a way to rapidly
adjust the working hypothesis, for smooth drifts it is better to col-
lect information on the new target concept over a period of time.
Especially if the preceding concept has been identified accurately
at the point in time when a drift starts, removing the knowledge
about the current concept from the data allows to decompose
mixture distributions as required.

3.3 A KBS-strategy to learn drifting concepts from

data streams

The original KBS-algorithm (Fig. 5) assumes that the complete
training set is available in main memory. The first step to adopt
to data streams is to read and classify examples iteratively. For
subsequent learning steps the re-weighting strategy of KBS allows
to compute example weights very efficiently. The data is assumed
to arrive in batches, each large enough to train an initial version
of a base classifier.

The sizes of the training sets that are effectively used for each
model are determined dynamically by the algorithm. Processing a
new batch yields two ensemble variants. The first variant appends
the current batch to the cache used for training in the last itera-
tion, and it refines the latest base model accordingly. The second
variant adds a new model, which is trained using the latest batch,
only. Only the ensemble variant performing better on the next
batch is kept.

17

Initialize empty ensemble M := ∅.
While not end of stream, do

1. Read next batch Ek in iteration k.
2. Predict P (y | x) for all x ∈ Ek with current ensemble M (eq. (5)).
3. Read true labels of Ek.
4. If alternative ensemble M∗ exists:

(a) Compare accuracy of M and M∗ wrt. Ek.
(b) M← better ensemble, discard worse ensemble.
(c) If M∗ is discarded: E∗ ← Ek−1 (shrink cache to one batch).

5. Initialize D1: Uniform distribution over Ek.
6. For i ∈ {1, . . . , |M|}, do:

(a) Apply hi to make predictions for Ek.

(b) Recompute Lift
(hi)
Di

(y′ → y∗) based on Ek (Def. 1).
(c) Update the Lifts of hi in M.

(d) Di+1(xj , yj)← Di(xj , yj) ·
“

Lift
(hi)
Di

(h(xj)→ yj)
”−1

for all 〈xj , yj〉 ∈ Ek.

7. Call BaseLearner(D|M|+1, Ek), get new model h|M|+1 : X → Y.

8. Compute Lift
(h|M|+1)

D|M|+1
(y′ → y∗) (Def. 1).

9. Add model h|M|+1 (and its Lifts) to ensemble M.
10. If this is the first batch, then E∗ = Ek (no alternative ensemble).
11. Else

(a) E∗ ← E∗ ∪ Ek, (extend cache by last batch)
(b) M∗ ← clone(M)
(c) discard last base model of M∗

(d) repeat steps 5-9 for E∗ and M∗ instead of for Ek and M

Fig. 6. Algorithm KBS-Stream

The strategy serves two purposes. First, for stationary distri-
butions a new model is trained only, if there is empirical evidence
that this increases the accuracy of the resulting ensemble. This
will generally happen if the learning curve of the latest model
has leveled off, see e.g. [22], and the data set is well suited for
boosting. Second, if sudden concept drift (concept shift) occurs,
the same estimation procedure instantly suggests to add a new
model, which will help to overcome the drift.

The second step of adopting KBS to data streams is to fore-
see a re-computation phase in which base model performances are
updated with respect to the current distribution. In fact, we be-
lieve that this is a main advantage of using weighted ensembles in
a concept drift scenario. For stationary distributions the weights

18

vary marginally, while for smoothly drifting scenarios they are sys-
tematically shifted and even allow to quantify and interpret the
drift in terms of previously found patterns or models. This will be
discussed in Sec. 3.4. Even sudden drifts do not pose a problem, as
they automatically result in radically reduced weights of previous-
ly trained models, and in high weights of subsequently trained
models, if these parameters are re-estimated from new data. The
response time to drifts is very short. Since the streaming variant of
KBS is closely coupled to the accurate KBS boosting algorithm,
the predictive performance is expected to outperform those of
single base models for many datasets. Pruning of ensembles can
efficiently be addressed during weight re-computation; whenever
a model does not reach a fixed minimum advantage over random
guessing on the latest batch, it is discarded. This is a natural and
common pruning strategy for boosting algorithms, e.g. also found
in the Weka implementation [56] of AdaBoost [13].

The algorithm is depicted in Fig. 6. It loops until the stream
ends. Lines 1-2 apply the current ensemble to the new batch with-
out knowing the correct labels. Lines 3-4 check whether continuing
the training of the latest model with the latest batch outperforms
adding a new model trained on that batch3. Only the better of
these two ensembles is kept. Lines 5 and 6 recompute the Lift pa-
rameters of all base models. To this end, the models are iteratively
applied to the new batch, and the weights are adjusted similarly
to the learning phase. Finally, lines 8-11 train two variants of the
ensemble again, M∗ being the one extending the cache and up-
dating the newest model appropriately, and M being the one that
adds a new model, which is trained using only the newest data.

One degree of freedom is left in line 2: The algorithm may
use M or M∗ to classify the new batch, as the performance of
both is unknown at that time. For the experiments two variants
have been implemented. The first one (KBSstream) always uses
ensemble M∗, since models trained from larger batches are gene-
rally more reliable. The second variant (KBShold out) uses a hold
out set of 30% from the last batch to decide which ensemble to

3 The pseudocode does not assume an incremental base learner, but trains new
models on cached data. For incremental base learners no cache is required.

19

use. Alternatively, one could perform more reliable (but also more
costly) cross-validation experiments, or apply the ξα-estimator for
support vector machines [26], which is as efficient as the valida-
tion approach suggested in [11]. However, in our experiments we
found errors due to the hold-out estimation negligible4 compared
to the systematic one-batch-delay between the distributions for
training and application. For this reason we currently do not fur-
ther address this kind of validation.

If incremental base learners are used, then only the latest batch
needs to be stored. The runtime is dominated by adjusting the
most recent model to this data, and by applying all base models
to it. This avoids the combinatorial explosion and memory re-
quirements of advanced time windowing and batch selection tech-
niques, respectively (see Sec. 4.1). Incremental variants exist for
many popular learning algorithms, in particular for decision trees
[52] and support vector machines [42].

3.4 Quantifying Concept Drift

An appropriate combination of several base classifiers often allows
to increase predictive accuracy over that achieved by an average
single classifier. As a disadvantage, the results lose interpretability
to a certain extent. In principle a similar argument also applies in
the context of concept drift, but it is interesting to see, that the
proposed technique allows to extract a different kind of informa-
tion in this setting: It allows to track the kind of drift underlying
the data stream by analyzing the weights of individual base learn-
ers.

Please recall, that unlike methods that continuously retrain
all models [48,29], the KBS algorithm “freezes” all models but
the latest one. The weights of all frozen models are re-estimated
continuously, by applying them in chronological order to the cur-
rent batch, weighting examples accordingly, and by estimating
the Lift values of all models based on these weighted examples.
This is exactly the same procedure as during the training phase,

4 There is one exception that will be reported in Sec. 4.4. It is an extreme case in
which the batch size has been chosen much too small for the algorithm.

20

so any significant deviation from the initial model weights indi-
cates a corresponding change of the underlying distribution. An
advantage of using the Lifts as performance estimates is that the
corresponding weight vectors have a clear semantics at different
points in time, and are thus comparable without any additional
artificial normalization. Only the weight of the latest model is
not yet comparable between different iterations, because it is still
continuously refined by the boosting procedure. As model weights
are re-estimated in chronological order, this has no effects on the
remaining ensemble.

The idea of drift quantification is illustrated for the scenario
sketched in Fig. 4, which was discussed in Sec. 3.2 as a moti-
vation for the knowledge-based sampling approach to overcome
concept drift. For simplicity we assume a base learner like a sup-
port vector machine, that continuously improves with additional
training data and does not benefit much from boosting. During
the stationary distribution before the drift, the KBS algorithm
fits a single model to the training data. Let this model capture
the deterministic relation between features and label well. It may
perform differently well when predicting a positive or a negative
label, but the Lifts will vary just marginally from batch to batch,
since the underlying distribution does not change. When the drift
starts, a significant change in the distribution makes the model
perform worse, and the Lift ratios (positive to negative) slowly
approach 1. More interestingly, the re-weighted batch suddenly al-
lows to fit a separate model, which, together with the first model,
has a higher estimated accuracy. The first model is frozen, but
its estimates are continuously updated. The drift takes several
batches, so the new model will first reflect minor effects on the
data. The small Lifts of the second model – estimated on the
re-weighted batch – cause an unbalanced ensemble of these two
models, with the first one having a much higher overall impact.
The second model is now refined throughout the drift and reflects
an increasingly important aspect of the data, while the first model
loses accuracy from batch to batch. Consequently, the Lift ra-
tios and hence the importance of the first model are decreased by
the KBS algorithm, in favor of the second one. If the first model

21

Concept Drift

Weight model 1

Weight model 2

Fig. 7. An idealistic change of model weights over time. The solid line depicts a
drift from an initial to a new target concept. The dotted lines show how the base
learner weights reflect the presence of their represented target concepts.

has become useless after the drift, it has no significant advantage
over random guessing (Lift ≈ 1), so it is discarded automatically.
This is not always the case, because different target concepts often
overlap.

Fig. 7 depicts an ideal change of ensemble weights over time
for the described scenario. Until the drift starts, the first base
model is the only one, assumed to be accurate, and it consequently
receives a high weight. This weight is continuously changed based
on estimates of the current accuracy. As this weight decreases,
the importance and weight of model two increases. In this ideal
situation the accuracy is reflected by the maximum of the two
dotted lines, which is optimal with respect to Bayes’ rule. Sec. 4.4
reports corresponding results of experiments with real-world data.

4 Experiments

4.1 Experimental Setup and Evaluation Scheme

In order to evaluate the KBS learning approach for drifting con-
cepts, it is compared to the adaptive time window approach, to
the batch selection strategy, and to three simple non-adaptive
data management approaches.

22

Full Memory: The learner generates its classification model from
all previously seen examples, i.e. it cannot “forget” old exam-
ples.

No Memory: The learner induces its hypothesis only from the
most recent batch. This corresponds to using a window of the
fixed size of one batch.

Window of “Fixed Size”: A time window of a fixed size of n =
3 batches is used on the training data.

Adaptive Window: A window adjustment algorithm adapts the
window size to the current concept drift situation (see Sec. 2.3
and [26,25]).

Batch Selection: Batches producing an error less than twice the
estimated error of the newest batch, when applied to a model
learned on the newest batch only, are selected for the final
training set. All other examples are deselected (see Sec. 2.4
and [28,25]).

The performance of the classifiers is measured by prediction er-
ror. All results reported in Sec. 4.2 and 4.3 using three simulated
concept drift scenarios on real-world data are averaged over four
runs, each based on a different random ordering of the examples
into a stream. The results reported in Sec. 4.4 are from a single
run only, because the examples are taken in their real order and
no artificial concept drift is simulated or imposed, but there is a
real concept drift inheret to this real-world data set. The expe-
riments were conducted with the machine learning environment
Yale [12,40], the SVM implementation mySVM [41], and two
learners from the Weka toolbox [56], namely a support vector
machine (SMO-SVM) and a decision tree learner (J48), as well as
the meta-learner AdaBoost provided by Weka.

4.2 Evaluation on Simulated Concept Drifts with

TREC Data

The first set of experiments is performed in an information fil-
tering domain, a typical application area for machine learning me-
thods able to handle drifting concepts [23,27,26]. Text documents
are represented as attribute-value vectors (bag of words model),

23

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18

R
el

ev
an

ce
 o

f T
op

ic
 1

Batch No.

Scenario A
Scenario B
Scenario C

Fig. 8. Relevance of the first topic/concept over time in the concept change scena-
rios A, B, and C, respectively. The relevance of the second relevant topic/concept
is 1.0 - relevance of topic 1.

where each distinct word corresponds to a feature whose value
is the “ltc”-TF/IDF-weight [43] of that word in that document.
The experiments use a subset of 2608 documents of the data set
of the Text REtrieval Conference (TREC). Each of the real-world
business news texts is assigned to one or several categories, five
of which are considered here.

Three concept change scenarios are simulated following the
experimental set-up in [26,28,25]. The texts are randomly ordered
into a stream and split into 20 batches of equal size containing
130 documents each. In all scenarios, a document is considered
relevant at a certain point in time, if it matches the interest of
the simulated user at that time. The user interest changes between
two of the topics, while documents of the remaining three topics
are never relevant. Fig. 8 shows the probability of being relevant
for a document of the first category at each batch for each of
the three scenarios; this also implies the probability of the second
(sometimes) relevant topic. Scenario A is an abrupt concept shift
from the first to the second topic in batch 10. In Scenario B the

24

Full No Fixed Adaptive Batch KBS KBS

Memory Memory Size Size Selection stream hold out

Scen. A 21.11% 11.16% 9.03% 6.65% 6.15% 6.89% 5.88%

Scen. B 21.30% 12.64% 9.76% 9.06% 9.33% 8.64% 9.50%

Scen. C 8.60% 12.73% 11.19% 8.56% 7.55% 10.11% 8.27%

Table 1. Error of all time window and example selection methods vs. KBS.

user interest changes slowly from batch 8 to batch 12. Scenario
C simulates an abrupt concept shift in the user interest from
the first to the second topic in batch 9 and back to the first in
batch 11. Tab. 1 compares the results of all static and adaptive
time window and batch selection approaches on all scenarios in
terms of prediction error [26,28,25] to the two variants of KBS.
The results are averaged over four runs with different random
orderings of the examples. In all cases the learning algorithm was
a support vector machine (SVM) with linear kernel.

The KBS algorithm manages well to adapt to all three kinds of
concept drift. Tracking the ensembles revealed, that during stati-
tionary distributions the current model was continuously refined.
After a concept shift (scenario A) a new model was trained, and
the old model received a significantly lower weight. It was not dis-
carded, however, since it still helped to identify the three topics
which are always irrelevant. The hold out set helped to identify
the better of the two ensembles reliably at classification time.
In scenario B five or more models were trained. The ensemble
accurately adopted to the drift, but at classification time the sys-
tematic one-batch-delay of the hold out estimate was sometimes
misleading. In scenario C the full memory approach is already
competitive to all but the batch selection scenario. Without the
hold out set KBS applies the depreciated model one iteration too
long for each concept shift. This delay increases the error rate
by about 2%. This problem is circumvented by using a hold out
set. In essence the KBS algorithm performed very well on this
domain, and it even outperformed computationally more expen-
sive approaches. Only in scenario C the batch selection method
is clearly superior, probably because it is the only method able to

25

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 4 6 8 10 12 14 16 18 19

E
rr

or
 R

at
e

Batch

Adaptive Window
No Memory
Fixed Size

Full Memory

Fig. 9. TREC data, scenario A: Error rate over time for the non-adaptive methods
versus the adaptive time window approach.

concatenate the data before the first and after the second concept
shift to a single training set.

While Tab. 1 lists the error rates of the different learning
strategies averaged over time, i.e. over all batches, and over all
four repeated runs of the experiments, figures 9 to 12 show the
error rates of the different learning strategies over time, i.e. at
each batch, also averaged over all runs.

Fig. 9 compares the non-adaptive methods to the adaptive
time window approach in concept drift scenario A. Always learn-
ing on all available labeled data ignoring any possible concept drift
that may have happened (Full Memory) leads to good generaliza-
tion and consequently low error rates as long as no concept drift
occurs. But as soon as a concept drift occurs, the error rate goes
up and only very slowly decreases again, because all the old data,
which is no longer representative for the current target concept,
still is part of the training set and hinders effective learning.

The opposite approach of not storing any old data except for
the last labeled batch (No Memory) allows a maximally fast adap-

26

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 4 6 8 10 12 14 16 18 19

E
rr

or
 R

at
e

Batch

Adaptive Window
Batch Selection

KBS stream
KBS hold out

Fig. 10. TREC data, scenario A: Error rate over time for the adaptive time window
and batch selection techniques versus the two KBS variants.

tation to concept drift and a correspondingly quick recovery of
the error rate. However, the baseline error of this second simple
strategy in phases without concept drift is comparatively high,
i.e. more than twice as high as that of the other strategies, and
hence the overall averaged error rate listed in Tab. 1 is also not
so favorable.

Using a sliding time window of Fixed Size means a compro-
mise between these two extremes, i.e. an acceptable baseline error
and a better recovery speed than the full memory method, but the
comparison with the two extremes shows, that the performance of
such a static window approach is only a compromise and trade-off
between adaptability in phases with concept drift and low error
rate in stable phases and hence still leaves a lot of potential for im-
provements for more adaptive strategies. The described behavior
of the non-adaptive methods also explains their high error rates in
Tab. 1 and motivates the use of adaptive approaches to handling
concept drift.

27

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 4 6 8 10 12 14 16 18 19

E
rr

or
 R

at
e

Batch

Adaptive Window
Batch Selection

KBS stream
KBS hold out

Fig. 11. TREC data, scenario B: Error rate over time for the adaptive time window
and batch selection techniques versus the two KBS variants.

The Adaptive Window approach is able to combine the good
generalization performance of the full memory method in stable
phases without concept drift by keeping as much still representa-
tive data as possible with the fast adaptability of the no memory
method by dropping all misleading old data immediately when
the drift occurs. Hence the adaptive time window manages to
combine the advantages of the two static extremes by adapting
to the current extent of drift.

Fig. 10 compares the adaptive time window and batch selec-
tion strategies to the two variants of KBS in the same concept
drift scenario A. Like adaptive time window and batch selection,
both KBS variants achieve low baseline error rates and adapt
quickly to the concept drift. Using a hold-out set allows KBS to
quicker adapt to the drift and consequently a quicker recovery of
the error rate.

Also in concept drift scenario B, as Fig. 11 shows, the two
variants of KBS exhibit a similar behavior in terms of error rate
over time to the adaptive time window and batch selection strate-

28

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 4 6 8 10 12 14 16 18 19

E
rr

or
 R

at
e

Batch

Adaptive Window
Batch Selection

KBS stream
KBS hold out

Fig. 12. TREC data, scenario C: Error rate over time for the adaptive time window
and batch selection techniques versus the two KBS variants.

gies as far as the low base line error and the adaptability to the
drift are concerned. In concept drift scenario C depicted in Fig. 12
applies the same, if KBS uses a hold-out set, but KBS does not
adapt as quickly without the hold-out set. In this scenario with a
re-occurring target concept, the batch selection strategy has the
advantage of being able to re-use old data from before previous
concept drifts and to do so quickly and thereby slightly outper-
forms the other approaches. However, even in this scenario and
even more so in the other scenarios, KBS performs competitively
well or even better as shown by the behavior over time in the
plots and the overall average error rate in Tab. 1.

4.3 Evaluation on Simulated Drifts with Satellite

Image Data

The second set of experiments used the satellite image dataset
from the UCI library [6], a real-world dataset for classification.
It contains no (known) drift over time, so we simulated concept
drifts with the same technique as described in Sec. 4.2: The data

29

J48 J48 AdaBoost+J48 KBS KBS

Fixed Memory Full Memory Full Memory stream hold out

Scen. A 11.06% 21.65% 20.51% 9.50% 9.43%

Scen. B 11.25% 21.22% 19.93% 11.60% 10.92%

Scen. C 12.70% 10.83% 9.50% 11.55% 10.45%

Table 2. Averaged prediction errors for satellite image dataset.

set was randomly ordered into a stream and split into 20 batches
of equal size (321 examples per batch) and only two (grey soil and
very damp grey soil) of the six classes were selected to be relevant.
The same three drift scenarios A-C as in Sec. 4.2 were simulated,
where the two selected classes corresponded to the two selected
topics in the TREC experiments. The results are averaged over
four runs with different random orderings of the examples.

Since decision trees are a more typical base learner for ensem-
ble methods, we chose the J48 algorithm from the Weka toolbox
as base learner for the experiments on this data set. We compared
KBS to the non-adaptive fixed size window (of 3 batches) and
full memory strategies. In addition to running J48 stand-alone,
we also run AdaBoost on top of J48. For all runs the default
settings of the learners were used. The results are listed in Tab. 2.
Unlike for the experiments on the TREC data, the results of KBS

could always be improved by using a hold out set. As before, Sce-
nario C can well be tackled by a full memory approach, which is
exploited by AdaBoost. For the other scenarios KBS is better
than the fixed size window learner, and much better than the full
memory approach.

4.4 Handling Real Drift in Economic Real-World Data:

Predicting Phases in Business Cycles

The third evaluation domain is a task from economics based on
real-world data exhibiting real concept drift. The quarterly data
describes the West German business cycles from 1954 to 1994 [16].
Each of the 158 examples is described by 13 indicator variables.
The task is to predict the current phase of the business cycle of the
West German economy. In accordance to findings from Theis and

30

Full No Fixed Adaptive Batch KBS KBS

Memory Memory Size Size Selection stream hold out

5 batches 32.80% 27.20% 24.00% 24.80% 24.80% 24.60% 17.46%

15 batches 28.08% 28.77% 20.55% 24.80% 23.29% 26.03% 28.77%

Table 3. Prediction error for business cycle data.

Weihs [51], we use two phases instead of four for the description
of the business data, as described in [37].

The following experiments compare the performance of the
KBS data stream algorithm to previously reported results [24],
so the same number of batches (5 and 15) were used. The timely
order of the examples (quarters) was preserved and no artificial
concept drift was simulated. Hence the results are from a single
run only and not averaged over several runs like in the previous
sections, because the examples are taken in their real order and
no artificial concept drift is imposed, but there is a real concept
drift inheret to this real-world data set as demonstrated by pre-
vious experiments [24]. All approaches compared here use support
vector machines (SVMs) as their base learners.

The results of these two evaluations are shown in Tab. 3. The
column for the fixed time window approach lists the results for
the fixed size that performed best. The fact that this approach
performs well may be due to the cyclic nature of the domain. How-
ever, the size is generally not known in advance, and as shown in
[24] using other fixed window sizes, leads to significant drops in
performance. The results for 15 batches shows that KBS does not
perform well, if each batch consists of less than a dozen examples.
The reason is that it is not possible to get reliable probability
estimates from such small data sets. The algorithm could cache
older data in such cases, but it is more reasonable to choose larger
batch sizes. Using just 5 batches (31 examples) already improves
the situation, so KBS performs similar to the fixed size, adaptive
size, and to the batch selection approach. The hold out set turns
out to be surprisingly effective for larger batches. This result pro-
vides first evidence that KBS is able to adapt classifier ensembles
to different kinds of concept drift found in real-world datasets.

31

4.5 Empirical drift quantification

The final experiments of this article investigate whether the claims
made in Sec. 3.4 are realistic in practice. Two examples extracted
during real experiments with the TREC data are presented to
illustrate, how KBS base model weights allow to characterize kind
and intensity of concept drifts in practice. No sophisticated me-
thods for pruning or model evaluation during learning are applied,
in order not to falsify any results. In the experiments the four
Lift values of models making boolean predictions are reduced
to a single weight per model. For Y = {−1, +1} a model that
estimates odds ratios as described by eq. (5) is transformed into
a classifier of the form

ŷ := sign

(

w0 +
n∑

i=1

wihi(x)

)

,

with offset weight w0 and model weights w1, . . . , wn ∈ IR. Weight
vectors could be re-weighted, but are not in the following figures,
in order to ease the comparison of model impacts from one itera-
tion to the next. The transformation works by (i) considering only
the Lift and prior ratios, which results in two weights per model
and one “offset” term, (ii) transforming the corresponding Bayes
optimal decision function by applying the logarithm, which results
in a linear model, and (iii) centering the two weights per model
by shifting offsets to the constant model-independent term w0, so
that a single weight suffices.

Fig. 13 exemplarily shows the weights of the base classifiers for
a KBS application over time. As before, the algorithm is applied
to the TREC dataset with a simulated concept shift (scenario
A), using a support vector machine with linear kernel as the base
learner. The base models are all trained over a period of time,
and afterwards only their weights are adjusted. The performance
of the initial model is directly estimated from the (unweighted)
most recent batch. Model weights are upper-bounded artificially
in the figure to ease visualization. Until the concept shift occurs
in the middle of the figure, the first model is refined by extending
the training set batch by batch. That way, the model reaches high

32

confidence, which varies a bit due to estimates based on small
batches (130 examples). The first batch sampled from the new
distribution already decreases the weight of the initial classifier
rapidly. The classifier is “frozen”, and KBS introduces a second
classifier, which is now refined for several iterations. The first
model still turns out to be useful, but with a negative weight,
which indicates that the opposite of the initial target concept is
correlated to the new target concept. The precise weights of both
models vary a bit, but converge after a while. Refining the second
model by further examples does no longer improve the overall
accuracy, so at this point the KBS estimates freeze the second
model as well, and it introduces a third one. This step allows
to increase the expressiveness of the underlying model language
wherever this seems promising.

The second experiment provides a realistic counterpart to the
motivating example with slow concept drift (scenario B), which
has been presented in Sec. 3.1. Fig. 14 shows how the weights
of all involved base models change over time. Just one “outlier
model”, which is directly removed from the ensemble by the KBS

algorithm after induction, has been removed from the figure, in
order not to overload the figure. The initial model reaches a high
weight during the first stationary phase, which reflects highly con-
fident predictions. The confidence decreases rapidly during the
drift, and after only a few batches sampled from a new station-
ary target distribution, the initial model is even discarded by the
learner (batch 16). Two new models are introduced during the
drift, which both quickly lose weight as the first target concept
diminishes. Please recall, that KBS re-weights the batches as if
they were sampled from the pure target distribution of the new
concept. In this sense, the early batches during the drift can be
considered to have a higher noise level than later ones, which
explains the decreasing weights. The learner still fits each clas-
sifier based on a couple of consecutive batches during the drift.
Reaching the new stationary distribution, the weights of both in-
termediate models converge, because they contain a fixed amount
of information about the new target concept. The final model is

33

-6

-4

-2

0

2

4

6

8

2 4 6 8 10 12 14 16 18 19

W
ei

gh
ts

 o
f t

he
 B

as
e

Le
ar

ne
rs

 in
 th

e
E

ns
em

bl
e

Current Batch

initial base model
model after shift
final base model

Fig. 13. Base model weights of a KBS ensemble for the simulated scenario A on
the TREC data. Only the most recent model is refined, the others are frozen and
just continuously re-weighted with respect to the latest batch. The concept shift
occurs where the weight of the initial model drops drastically (batch 10).

induced after the drift ends, at a point where the previous model
weights have almost converged.

Although the curves are not as simple as in the ideal case
sketched earlier, the example illustrates how the weights of base
learners can be used to identify the kind and degree of a concept
drift underlying a data stream. We expect a higher robustness of
the sketched quantification property as the batch size for estima-
ting base model performances increases.

5 Conclusion and Future Work

This paper presents a new ensemble method for learning from
data streams. At each iteration, base models are induced and
re-weighted continuously, considering the latest batch of exam-
ples, only. Unlike other ensemble methods, the proposed strategy
adapts very early and quickly to different kinds of concept drift.
The algorithm has low computational costs. It has empirically

34

-6

-4

-2

0

2

4

6

8

2 4 6 8 10 12 14 16 18 19

W
ei

gh
ts

 o
f t

he
 B

as
e

Le
ar

ne
rs

 in
 th

e
E

ns
em

bl
e

Current Batch

initial base model
model frozen in batch 12
model frozen in batch 14

final base model

Fig. 14. Base model weights for another KBS ensemble trained for the simulated
concept drift scenario B on the TREC data.

been shown to be competitive to, and often to even outperform
sophisticated adaptive window and batch selection strategies. As
a further advantage, it allows to track the kind and extent of
concept drift.

Interesting directions for future work are evaluations of more
precise and robust strategies to estimate model weights and com-
parisons of different pruning techniques. In addition to the pre-
sented alternatives, to either refine the latest model or to add a
new one to the ensemble, other variants like learning from scratch
or from up to a few batches could continuously be evaluated in
parallel. This would allow to replace a complex ensemble by a sin-
gle, equally well performing base model during stationary phases.
Based on more precise model weights gained by cross-validation
or similar techniques, the drift quantification property of KBS

could be extended to predict the kind of drift to be expected
in the near future. Approaches like linearly extrapolating the re-
cently observed drift should be compared to more complex ones,
like meta-learning. Finally, a comparison of all recently proposed

35

techniques for classifier induction in the presence of concept drift
on standardized simulated drift scenarios would be desirable.

Acknowledgements

This work was supported by the Deutsche Forschungsgemein-
schaft (DFG) within the Collaborative Research Center on the
Reduction of Complexity for Multivariate Data Structures (SFB
475) at University of Dortmund in Germany.

References

1. Jesus S. Aguilar-Ruiz and Paul R. Cohen. ACM Symposium on Applied Com-
puting (SAC-2004), Special Track on Data Streams. In Hisham Haddad, An-
drea Omicini, Roger L. Wainwright, and Lorie M. Liebrock, editors, Proceedings
of the 2004 ACM Symposium on Applied Computing (SAC), Nicosia, Cyprus,
March 14-17, 2004, 2004.
http://www.informatik.uni-trier.de/∼ley/db/conf/sac/sac2004.html.

2. Jesus S. Aguilar-Ruiz and Francisco J. Ferrer-Troyano. ACM Symposium on
Applied Computing (SAC-2006), Special Track on Data Streams. In Proceed-
ings of the 2006 ACM Symposium on Applied Computing (SAC), 2006.

3. Jesus S. Aguilar-Ruiz and Joao Gama, editors. Second International Work-
shop on Knowledge Discovery from Data Streams, Porto, Portugal, Octo-
ber 7th 2005. In conjunction with ECML/PKDD-2005, 16th European
Conference on Machine Learning (ECML) and 9th European Conference
on Principles and Practice of Knowledge Discovery in Databases (PKDD).
http://www.niaad.liacc.up.pt/∼jgama/IWKDDS/.

4. James Allan. Incremental relevance feedback for information filtering. In H. P.
Frei, editor, Proc. 19th Annual ACM SIGIR Conf. on Research and Develop-
ment in Information Retrieval (SIGIR ’96), Zürich, Swiss, August 18-22, 1996,
pages 270–278, New York, NY, USA, 1996. ACM Press.

5. Marko Balabanovic. An adaptive web page recommendation service. In W. L.
Johnson, editor, Proc. First Int’l Conf. on Autonomous Agents, pages 378–385,
New York, NY, USA, 1997. ACM Press.

6. C.L. Blake and C.J. Merz. UCI Repository of machine learning databases. Dept.
of Information and Computer Sciences, University of California - Irvine (UCI),
Irvine, CA, USA, 1998. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

7. Leo Breiman. Bagging predictors. Machine Learning, 13(2):30–37, 1996.
8. Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
9. William W. Cohen. Learning rules that classify e-mail. In Proceedings of the

1996 AAAI Spring Symposium on Machine Learning in Information Access
(MLIA ’96), Stanford, CA, USA, 1996. AAAI Press.

10. Pedro Domingos and Geoff Hulten. Mining High Speed Data Streams. In
Proceedings of the 6th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’00), pages 71–80, 2000.

36

11. Wei Fan. Systematic Data Selection to Mine Concept-Drifting Data Streams. In
Proceedings of the 10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’04), pages 128–137, Seattle, WA, USA,
2004. ACM Press.

12. Simon Fischer, Ralf Klinkenberg, Ingo Mierswa, and Oliver Ritthoff. Yale: Yet
Another Learning Environment – Tutorial. Technical Report CI-136/02, Col-
laborative Research Center 531, University of Dortmund, Dortmund, Germany,
June 2002. ISSN 1433-3325. http://yale.sf.net/ .

13. Yoav Freund and Robert R. Schapire. A decision–theoretic generalization of
on-line learning and an application to boosting. Journal of Computer and
System Sciences, 55(1):119 – 139, 1997.

14. Johannes Fürnkranz and Peter Flach. ROC ’n’ Rule Learning – Towards a
Better Understanding of Covering Algorithms. Machine Learning, 58(1):39–
77, 2005.

15. Joao Gama and Jesus S. Aguilar-Ruiz, editors. First International Work-
shop on Knowledge Discovery in Data Streams, Pisa, Italy, September
24th 2004. In conjunction with ECML/PKDD-2004, 15th European Con-
ference on Machine Learning (ECML) and 8th European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD).
http://www.lsi.us.es/∼aguilar/ecml2004/.

16. Ullrich Heilemann and Heinz Josef Münch. Classification of West German busi-
ness cycles. Technical Report 11, Collaborative Research Center on Reduction
of Complexity for Multivariate Data (SFB 475), University of Dortmund, Dort-
mund, Germany, 1999.

17. David P. Helmbold and Philip M. Long. Tracking drifting concepts using ran-
dom examples. In Leslie G. Valiant and Manfred K. Warmuth, editors, Pro-
ceedings of the Fourth Annual Workshop on Computational Learning Theory
(COLT ’91), pages 13–23, San Mateo, CA, USA, 1991. Morgan Kaufmann.

18. David P. Helmbold and Philip M. Long. Tracking drifting concepts by mini-
mizing disagreements. Machine Learning, 14:27–45, 1994.

19. Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining Time-Changing
Data Streams. In Proceedings of the 7th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD ’01), pages 97 – 106,
2001.

20. Thorsten Joachims. Estimating the generalization performance of a SVM ef-
ficiently. In Pat Langley, editor, Proceedings of the International Conference
on Machine Learning, pages 431–438, San Francisco, CA, USA, 2000. Morgan
Kaufman.

21. Thorsten Joachims, Dayne Freitag, and Tom Mitchell. WebWatcher: A tour
guide for the world wide web. In Proceedings of International Joint Confer-
ence on Artificial Intelligence (IJCAI), volume 1, pages 770 – 777. Morgan
Kaufmann, 1997.

22. George H. John and Pat Langley. Static Versus Dynamic Sampling for Data
Mining. In Proceedings of the Second International Conference on Knowledge
Discovery in Databases and Data Mining, 1996.

23. Ralf Klinkenberg. Maschinelle Lernverfahren zum adaptiven Informationsfil-
tern bei sich verändernden Konzepten. Master’s thesis, Computer Science
Department, University of Dortmund, Dortmund, Germany, February 1998.
http://www-ai.cs.uni-dortmund.de/DOKUMENTE/klinkenberg 98a.ps.gz.

37

24. Ralf Klinkenberg. Predicting phases in business cycles under concept drift.
In Andreas Hotho and Gerd Stumme, editors, LLWA 2003 – Tagungsband der
GI-Workshop-Woche Lehren – Lernen – Wissen – Adaptivität, Proceedings of
the Workshop Week Teaching – Learning – Knowledge – Adaptivity of the Na-
tional German Computer Science Society (GI) / Annual Workshop on Machine
Learning, pages 3–10, Karlsruhe, Germany, October 2003.
http://km.aifb.uni-karlsruhe.de/ws/LLWA/fgml/final/klinkenberg.pdf.

25. Ralf Klinkenberg. Learning drifting concepts: Example selection vs. exam-
ple weighting. Intelligent Data Analysis (IDA), Special Issue on Incremental
Learning Systems Capable of Dealing with Concept Drift, 8(3):281–300, May
2004.

26. Ralf Klinkenberg and Thorsten Joachims. Detecting concept drift with sup-
port vector machines. In Pat Langley, editor, Proceedings of the Seven-
teenth International Conference on Machine Learning (ICML), pages 487–494,
San Francisco, CA, USA, 2000. Morgan Kaufmann. http://www-ai.cs.uni-
dortmund.de/DOKUMENTE/klinkenberg joachims 2000a.ps.gz.

27. Ralf Klinkenberg and Ingrid Renz. Adaptive information filtering: Learn-
ing in the presence of concept drifts. In M. Sahami, M. Craven,
T. Joachims, and A. McCallum, editors, Workshop Notes of the
ICML/AAAI-98 Workshop Learning for Text Categorization, pages 33–
40, Menlo Park, CA, USA, 1998. AAAI Press. http://www-ai.cs.uni-
dortmund.de/DOKUMENTE/klinkenberg renz 98a.ps.gz.

28. Ralf Klinkenberg and Stefan Rüping. Concept drift and the importance of
examples. In Jürgen Franke, Gholamreza Nakhaeizadeh, and Ingrid Renz, edi-
tors, Text Mining – Theoretical Aspects and Applications, pages 55–77. Physica-
Verlag, Berlin, Germany, 2003.

29. Jeremy Z. Kolter and Marcus A. Maloof. Using Additive Expert Ensembles to
Cope with Concept Drift. In Proceedings of the 22nd International Conference
on Machine Learning (ICML-2005), pages 449–456, New York, NY, USA, 2005.
ACM Press.

30. Miroslav Kubat, Joao Gama, and Paul E. Utgoff. Intelligent Data Analy-
sis (IDA) Journal, Special Issue on Incremental Learning Systems Capable of
Dealing with Concept Drift, Vol.8, No.3. 2004.

31. A. Kuh, T. Petsche, and R.L. Rivest. Learning time-varying concepts. In
Advances in Neural Information Processing Systems, volume 3, pages 183–189,
San Mateo, CA, USA, 1991. Morgan Kaufmann.

32. Gerhard Kunisch. Anpassung und Evaluierung statistischer Lernverfahren zur
Behandlung dynamischer Aspekte in Data Mining. Master thesis, Fachbereich
Informatik, Universität Ulm, Germany, June 1996.

33. Ken Lang. NewsWeeder: Learning to filter netnews. In Proceedings of the
Twelfth International Conference on Machine Learning (ICML ’95), pages 331–
339, San Francisco, CA, USA, 1995. Morgan Kaufmann.

34. Carsten Lanquillon. Dynamic neural classification. Master thesis, Fachbereich
Informatik, Universität Braunschweig, Germany, October 1997.

35. Herbert K. H. Lee and Merlise A. Clyde. Lossless Online Bayesian Bagging.
Journal of Machine Learning Research, 5:143–151, February 2004.

36. Tom Mitchell, Rich Caruana, Dayne Freitag, John McDermott, and David
Zabowski. Experience with a learning personal assistant. Communications of
the ACM (CACM), 37(7):81–91, July 1994.

38

37. Katharina Morik and Stefan Rüping. A multistrategy approach to the classi-
fication of phases in business cycles. In Taprio Elomaa, Heikki Mannila, and
Hannu Toivonen, editors, Machine Learning: ECML 2002, volume 2430 of Lec-
ture Notes in Artificial Intelligence, pages 307–318, Berlin, 2002. Springer.

38. Gholamreza Nakhaeizadeh, I. Bruha, and Charles Taylor, editors. Work-
shop Notes on Dynamically Changing Domains: Theory Revision and Context
Dependence Issues, 9th European Conf. on Machine Learning (ECML ’97),
Prague, Czech Republic, April 1997.

39. Nikunj C. Oza and Stuart Russell. Online Bagging and Boosting. In Eighth
International Workshop on Artificial Intelligence and Statistics, Key West,
Florida, USA, 2001.

40. Oliver Ritthoff, Ralf Klinkenberg, Simon Fischer, Ingo Mierswa, and Sven
Felske. Yale: Yet Another Machine Learning Environment. In Ralf Klinken-
berg, Stefan Rüping, Andreas Fick, Nicola Henze, Christian Herzog, Ralf Moli-
tor, and Olaf Schröder, editors, LLWA 01 – Tagungsband der GI-Workshop-
Woche Lernen – Lehren – Wissen – Adaptivität, number 763 in Forschungs-
berichte des Fachbereichs Informatik, Universität Dortmund, pages 84–92,
Dortmund, Germany, October 2001. ISSN 0933-6192. http://yale.sf.net/.

41. Stefan Rüping. mySVM Manual. Universität Dortmund, Lehrstuhl Informatik
VIII, 2000. http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.

42. Stefan Rüping. Incremental learning with support vector machines. In Nick
Cercone, T.Y. Lin, and Xindong Wu, editors, Proceedings of the 2001 IEEE
International Conference on Data Mining (ICDM ’01), pages 641–642. IEEE,
2001.

43. G. Salton and C. Buckley. Term weighting approaches in automatic text re-
trieval. Information Processing and Management, 24(5):513–523, 1988.

44. Martin Scholz. Comparing Knowledge-Based Sampling to Boosting. Technical
Report 26, Collaborative Research Center on the Reduction of Complexity for
Multivariate Data Structures (SFB 475), University of Dortmund, Dortmund,
Germany, 2005.

45. Martin Scholz. Knowledge-Based Sampling for Subgroup Discovery. In Katha-
rina Morik, Jean-Francois Boulicaut, and Arno Siebes, editors, Local Pattern
Detection, volume LNAI 3539 of Lecture Notes in Artificial Intelligence, pages
171–189. Springer, 2005.

46. Martin Scholz. Sampling-Based Sequential Subgroup Mining. In R. L. Gross-
man, R. Bayardo, K. Bennett, and J. Vaidya, editors, Proceedings of the 11th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’05), pages 265–274, Chicago, Illinois, USA, August 2005. ACM
Press.

47. Martin Scholz and Ralf Klinkenberg. An Ensemble Classifier for Drifting Con-
cepts. In J. Gama and J. S. Aguilar-Ruiz, editors, Proceedings of the Second
International Workshop on Knowledge Discovery in Data Streams, pages 53–
64, Porto, Portugal, October 2005. In conjunction with ECML/PKDD ’05,
16th European Conference on Machine Learning (ECML) and 9th European
Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD). http://www.niaad.liacc.up.pt/∼jgama/IWKDDS/.

48. Kenneth O. Stanley. Learning Concept Drift with a Committee of Decision
Trees. Technical Report AI-03-302, Department of Computer Sciences, Uni-
versity of Texas at Austin, Austin, TX, USA, 2003.

39

49. W. Nick Street and YongSeog Kim. A Streaming Ensemble Algorithm (SEA)
for Large-Scale Classification. In Proceedings of the 7th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD ’01),
pages 377–382, 2001.

50. Charles Taylor, Gholamreza Nakhaeizadeh, and Carsten Lanquillon. Structural
change and classification. In G. Nakhaeizadeh, I. Bruha, and C. Taylor, edi-
tors, Workshop Notes on Dynamically Changing Domains: Theory Revision and
Context Dependence Issues, 9th European Conf. on Machine Learning (ECML
’97), Prague, Czech Republic, pages 67–78, April 1997.

51. Winfried Theis and Claus Weihs. Clustering techniques for the detection of
business cycles. Technical Report 40, Collaborative Research Center on the Re-
duction of Complexity for Multivariate Data Structures (SFB 475), University
of Dortmund, Dortmund, Germany, 1999.

52. P. E. Utgoff. Incremental induction of decision trees. Machine Learning, 4:161–
186, 1989.

53. Georg Veltmann. Einsatz eines Multiagentensystems zur Erstellung eines
persönlichen Pressespiegels. Master’s thesis, Computer Science Department,
University of Dortmund, Dortmund, Germany, May 1997.

54. Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining Concept-
Drifting Data Streams using Ensemble Classifiers. In L. Getoor, T. E. Sen-
ator, P. Domingos, and C. Faloutsos, editors, Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’03), pages 226–235, Washington, DC, USA, 2003. ACM Press.

55. Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept
drift and hidden contexts. Machine Learning, 23(2):69–101, 1996.

56. Ian Witten and Eibe Frank. Data Mining – Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann, 2000.

40

