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Abstract

In modern statistics, the robust estimation of parameters of a re-
gression hyperplane is a central problem. Robustness means that the
estimation is not or only slightly affected by outliers in the data. In
this paper, it is shown that the following robust estimators are hard
to compute: LMS, LQS, LTS, LTA, MCD, MVE, Constrained M es-
timator, Projection Depth (PD) and Stahel-Donoho. In addition, a
data set is presented such that the ltsReg-procedure of R has proba-
bility less than 0.0001 of finding a correct answer. Furthermore, it is
described, how to design new robust estimators.

Keywords: Computational statistics, complexity theory, robust statis-
tics, algorithms, search heuristics
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1 Introduction

Robust statistics [6, 9] offers a variety of estimators that are algorithmically
interesting. As a drawback, the proved statistical properties of the estimators
are only valid if the estimator is computed correctly. For that, exact compu-
tation is necessary. In this paper, we will show that the exact computation
of the following robust estimators is NP-hard:

• Least Median of Squares (LMS) [8]

• Least Quantile of Squares (LQS) [9]

• Least Trimmed Squares (LTS) [11]

• Least Trimmed Absolute Deviation (LTA) [5]

• Minimum Covariance Determinant (MCD) [10]

• Minimum Volume Ellipsoid (MVE) [15]

• Subset Estimators in general

• Constrained M estimator (CM) [1]

• Projection Depth (PD) [16]

• Stahel-Donoho (SD) [4]

This means, that under the assumption P 6= NP, there is no hope of finding
exact algorithms that work in polynomial time. In Section 2, we give a short
introduction to the theory of NP-completeness. We show in Section 3 that
the popular ltsReg-procedure from R has a bad behavior on special high
dimensional data sets. In Section 4, we argue that there is a need for new
robust estimators and present a design pattern. Finally in Section 5, the
NP-hardness proofs are presented. Here are some notations, which we use in
the paper:

• ri(β): Consider the points P1, . . . , Pn. ri(β) is the residual of the i-th
point with respect to a hyperplane with parameter vector β. In this
paper, we will use it as a measure of the vertical distance of the point
to the hyperplane.

• r(i)(β): The i-th residual in the sorted order of all residuals.
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• d0.4e = 1 and b0.6c = 0: Round to the next integer above and below
respectively.

•
(

a
b

)>
=

(
a b

)
: Transpose of a vector or matrix.

2 Some notes on NP-hardness

We will show that the computation of the mentioned estimators is NP-hard.
If a problem Π is NP-hard, we need more than polynomial time to solve
Π, under the assumption P 6= NP. This assumption is widely believed, cf.
the keyword “Millennium Problems” [7]. P is the class of problems that
can be solved by a deterministic Turing machine ([12]) in a runtime, that
is polynomial in the input length. NP is the class of problems that can be
solved by a non-deterministic Turing machine with the same time bound.
Explanations of P, NP and NP-hardness can be found in [14].

Inputs used
in the proof

All possible
inputs

ov
erl

ap
?

Hard inputs;
could be used for

 NP-hardness
proofs

Practical inputs
from statistics e.g.
„data from linear

models, ...“

Figure 1: The big ellipse symbolizes the set of all d-dimensional
point sets – the inputs for robust estimators. Also sketched is
the subset of inputs that arise in practice and that are analyzed
by the statistical community. Then there is a grey subset that
contains inputs that could be used in NP-hardness proofs. The
question is whether both subsets overlap? Or asked differently:
Has the NP-hardness consequences for the runtime of algorithms
on practical data sets? The black circle contains the inputs used
in the NP-hardness proof.
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An optimization problem B is proved to be NP-hard with the technique of
Turing reductions. They work as follows: We construct a mapping — the
Turing reduction — that maps each input of an NP-hard problem A to an
input of B. Note, that in most cases not all inputs of B are used by this
mapping, the set of used inputs is displayed in Figure 1 as the black circle.
The reduction needs to have the property that we can construct from the
solution of B in polynomial time a correct solution for A. If both problems
are decision problems then they only answer YES or NO. Then the reduction
needs to have the property that

A answers YES ⇔ B answers YES

There are two directions “⇐” and “⇒”, that are considered in all NP -
hardness proofs. Further, the mapping needs to have the property that it
can be computed in polynomial time.

If a problem A is NP-hard, then there is no algorithm working in polynomial
time under the assumption P 6= NP. This can be seen as follows: Under
the assumption that B has a polynomial time algorithm we can construct
with the Turing reduction an algorithm for A that also works in polynomial
time, in the following way: We take the input of A, run the Turing reduction
in polynomial time and obtain an input for B. We run the polynomial
time algorithm of B and obtain a solution, that leads to a solution for A.
Therefore, we can compute a solution for A in polynomial time. So we know
that one of the two assumptions must be false. But P 6= NP seems to be the
more plausible one.

3 An experiment on a bad data set

In this section, we describe a small experiment with the LTS estimator. We
design a data set such that the related search space contains one global
optimum and one local optimum (not counting the local optima that are
caused by noise). The data set is displayed in Figure 2 and can be extended
to d dimensions. We set the parameters of the model as follows:

550 points: y = εnoise − 1 · x1 + 1.2 with x1 ∼ uniform(0, 1.2)
450 points: y = εnoise − 1

10
· x1 + 1.5 with x1 ∼ uniform(1.2, 2)

The variable εnoise ∼ N(0, 0.0012) and the other variables are x2 ∼ . . . xd ∼
uniform(−1, 1). We expect that the LTS estimator outputs a hyperplane
with β1 = −1 and β2 = 0, . . . , βd = 0, βd+1 = 1.2 since the majority of the
points lie close to this hyperplane.
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Figure 2: The bad data set, 550 points on the left and 450
points on the right. In the figure, a standard deviation of 0.1 is
displayed, but in the experiments we used a value of 0.001.

We use the robust estimator

ltsReg() from the rrcov-package

of the R-software [11, 13] and set the parameter “alpha” = 0.51, to get a
high breakdown point. The LTS estimator is defined as follows:

Definition 3.1 (LTS problem) Given n points and an integer h (0.5n ≤
h < 1), find a hyperplane with parameter vector β, such that the scale
1
h

∑
i=1..h r(i)(β) is minimal.

We run the ltsReg 10000 times for different dimensions. (In 18 dimensions
we run the algorithm 200000 times). The solutions found by the algorithm
are displayed in Figure 3 for the 12-dimensional case. As we expected, the
solutions with β1 ≈ −1, β2 ≈ 0, . . . , βd ≈ 0, βd+1 ≈ 1.2 have a small scale of
≈ 0.0025. In these cases, the correct optimum was found. The second, local
optimum contains solutions with a scale of ≈ 0.15 and its slope is β1 ≈ 1.05
and its y-axis is βd+1 ≈ 0.17.

As we are interested in the number of times the algorithm finds the correct
optimum, we count the number of times the estimate of the scale is smaller
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than 0.01. The count is divided by 10000 and we obtain the estimated
probability for the event that the algorithm has found a good solution. The
probability is displayed in Figure 4. The error bars indicate the 1% quantile,
e.g., if the true probability was at the end of the error bar then the measured
value would occur with probability less than 1%. The bounds were estimated
with Chernoff bounds.

For the 18 dimensional data set, the algorithm finds a global optimum with
a probability of 0.00006. The success probability is plotted logarithmical
on the vertical axis in Figure 4. One gets the impression that the success
probability decreases exponentially as the dimension rises. Therefore, the
algorithm is not practical for higher dimensions.

4 The design of robust estimators

Search heuristics are often used to compute the mentioned estimators. In Fig-
ure 5, the components of a search heuristic are displayed. A search heuristic
maintains a set of individuals. Each individual represents a solution, e.g., a
hyperplane for the LTS problem. It uses search operators to create new indi-
viduals and it explores the search space by asking questions about individuals
to a black box. The black box gives fitness values for each individual, e.g.,
the fitness value of the LTS problem is the sum of the h smallest residuals
(divided by h). In this way, the black box guides the search heuristic and it
hopefully finds a minimal solution, but this is not guaranteed.

The LTS estimate is a solution of the LTS problem with minimal fitness. If
one applies a search heuristic to a robust estimator problem, the difficulty
is that with a certain probability a suboptimal solution is found, as we have
demonstrated in Section 3. Such a solution could be affected by outliers.
Hence, the robust estimators are not implemented appropriately and the
approach lacks reliability.

To add reliability, we provide the black box with the ability to output whether
a solution is optimal (minimal for LTS) or not. Can this work for robust
estimators like LTS? The answer is NO due to the following reasons: To
decide whether a solution is minimal, means, to decide whether the solution
is smaller than or equal to all other possible solutions. Such decision problems
contain a universal quantifier “∀” and belong to the class of co-NP.

Definition 4.1 (co-LTS Problem) Given n points, an integer h (0.5n ≤
h < 1) and a bound B, decide whether 1

h

∑
i=1..h r(i)(β) ≥ B for all possible

hyperplanes with parameter vector β.
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Figure 3: The solutions of the 12-dimensional data sets are
displayed. Most of the solutions are located in the right point
cloud, which is only a local optimum. Only a few solutions are
located in the left cloud, which is the global optimum.
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Figure 4: The logarithm of the success probability of the
ltsReg() function from the rrcov-package is displayed. It was
run 10000 times (200000 times in 18 dimensions) on difficult
data sets in various dimensions.

7



Black box answers ...

Search-Heuristic explores the search space by asking ...

How good is this
individual/solution?

Fitness value of
individual/solution.

This solution is
optimal: yes / no

Figure 5: The components of a search heuristic.

We show in Section 5 that the LTS problem is NP-hard. Hence, the co-LTS
problem is co-NP-hard. With the assumption P 6= NP, it follows that there is
no black box for co-LTS that works in the described way in polynomial time.
If one wants to use search heuristics in robust statistics, the LTS estimator is
not suitable. The other robust estimators listed in Section 1 are not suitable
either.

Therefore, we need new estimators that are robust and that can be computed
reliably by search heuristics. The approach is to design a black box that
decides in polynomial time whether an individual is an optimal solution or
not. It is essential to drop the universal quantifier ”“∀” and replace it by an
existential quantifier “∃”. A suitable definition of a computationally feasible
robust estimator should have the following structure:

Design Pattern: Does there exist a bit string J of polynomial length (the
individual), such that a polynomial-time algorithm (the black box), running
on J and the data set, computes YES? (This is the characterization of the
problem class NP.)

To use the design pattern, one has to specify the semantics of the bit string
as well as the black box. To give an example of such an approach, consider
the usual decomposition of data into signal and noise:

data = signal + noise.

The search heuristic proposes an individual – a signal – and the black box
has to decide whether the remaining part of the data looks like noise. If
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so, the individual describes a signal that we wanted to find. A promising
approach in two dimensions is the use of the multiresolution criteria, see
e.g. [2]. It is able detect Gaussian noise. The question is: Can this approach
be generalized to d dimensions such that the multiresolution criteria problem
remains computable in polynomial time?

5 NP-hardness of robust estimators

Many robust estimators can be used to find subsets of points, such that all
points of the subset are located on a common hyperplane. Therefore, we
define the following problem:

Definition 5.1 (Degenerate Point Subset Problem (c-DPS)) Given
n points in d dimensions and a fixed number c with 0 < c ≤ 0.5, are there
parameters β1, . . . , βd such that h := d(1 − c) · ne points are located on the
hyperplane y =

∑
i=1..d−1 βixi + βd?

This definition is related to the exact-fit-property of a robust estimator in
statistics. We use the c-DPS problem to prove the NP-hardness of some
robust estimators. The proof of the NP-hardness of c-DPS is based on the
NP-complete Vertex Cover problem, see e.g. [3, 14]. It is defined as follows:

Definition 5.2 (Vertex Cover Problem) Given a graph G=(V,E) and a
number k ∈ IN, is there a subset V ′ ⊆ V of size |V ′| = k, such that for all
edges e ∈ E, at least one vertex of e is contained in V ′?

The Vertex Cover problem is illustrated in Figure 6. In the following theo-
rems, we will fix the value c. What does this mean? Well, one could prove,
that c-DPS is NP-hard only for a certain value of c. But then there is
no statement about whether this problem is NP-hard for other values of c.
Therefore, we will carry out the proofs for all values of c fixed in advance to
0 < c ≤ 0.5. We start with the following theorem:

Theorem 5.3 The c-DPS problem is NP-hard for all fixed c with 0 < c ≤
0.5.

Proof. In the following we construct a Turing reduction where we use the
c-DPS problem to find an answer to the Vertex Cover problem. Therefore,
we have to transform the given graph G and the parameter k into a point
set.
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Figure 6: An undirected graph with 8 vertices and 7 edges. A
minimal vertex cover {b, c, d} is marked by the grey area. Either
an edge is crossing the border of the area or an edge is completely
contained in the area. Therefore, the vertices b, c and d cover
all edges of the graph.

If the c-DPS problem outputs YES, then there is a hyperplane

y =
∑

i=1..d−1

βixi + βd,

that contains h points. From that, we can obtain the vertex cover of size k
as follows: The information which vertices are contained in the subset V ′, is
coded into the parameters β1, . . . , βd of the hyperplane. A value of βi = 2 for
i = 1, . . . , |V | means that the vertex i belongs to the vertex cover. A value
of βi = 1 means that the vertex does not belong to the vertex cover. We will
later show that the construction ensures that only these two values of βi are
meaningful. We first give an informal description of the used points:

• vi and vi:
For each vertex i, we construct two points vi and vi. Later in the proof,
they are used to force βi to take the values 1 or 2.

• e′ij and e′′ij:
For each edge (i, j), we construct these two points. Later they are used
to check whether each edge of the graph is covered. If for the edge (i, j)
both vertices i and j are not in the vertex cover, then both points e′ij
and e′′ij are not located on the hyperplane.

• K∗ and K∗:
The point K∗ ensures that

∑
i=1..|V | βi = |V | + k. If K∗ is located on

the hyperplane then exactly k vertices belong to the vertex cover. For
symmetry reasons, the point K∗ is added to the point set.
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• p∗ and p∗:
The point p∗ forces the parameter βd of the hyperplane to 0. The point
p∗ is added due to symmetry.

• p1, . . . , pζ :
Without these points, the proof would only work for c = 0.5. By adding
enough points, every value of 0 < c ≤ 0.5 is achievable.

The coordinates of the mentioned points are listed in the following table,
the first coordinate of the points is y, the other coordinates are named
x1, . . . , xd−1:

y , x1, . . . . , xi, . . . . . . , xj, . . , x|V | , x|V |+1, . . . . . , xd−1

vi = ( 1 , 0, . . . , 0, 1, 0, . . . . . . . . . . . . . , 0 , 0, . . . . . . . . . . . . . , 0 )
vi = ( 2 , 0, . . . , 0, 1, 0, . . . . . . . . . . . . . , 0 , 0, . . . . . . . . . . . . . , 0 )
e′ij = ( 3 , 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0 , 0, . . . . . . . . . . . . . , 0 )
e′′ij = ( 4 , 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0 , 0, . . . . . . . . . . . . . , 0 )
K∗ = ( |V |+ k , 1, . . . . . . . . . . . . . . . . . . . . . . . . , 1 , 0, . . . . . . . . . . . . . , 0 )
K∗ = ( |V |+ k − 1 , 1, . . . . . . . . . . . . . . . . . . . . . . . . , 1 , 0, . . . . . . . . . . . . . , 0 )
p∗ = ( 0 , 0, . . . . . . . . . . . . . . . . . . . . . . . . , 0 , 0, . . . . . . . . . . . . . , 0 )
p∗ = ( 1, , 0, . . . . . . . . . . . . . . . . . . . . . . . . , 0 , 0, . . . . . . . . . . . . . , 0 )
p` = ( 1 , 0, . . . . . . . . . . . . . . . . . . . . . . . . , 0 , 0, . . . , 0, 1, 0, . . . , 0 )

Each point consists of three blocks, the second block has a length of |V |, the
third one has a length of ζ. The value of ζ and other parameters of c-DPS,
the dimension, the number of points and the parameter h are listed below:

ζ = 2 · ⌈1−2c
2c

· (|V |+ |E|+ 2)
⌉

d = 2 + |V |+ ζ
n = 2 · (|V |+ |E|+ 2) + ζ
h = 1 · (|V |+ |E|+ 2) + ζ

For each vertex i in the graph, we construct the points vi and vi, the “1” is
placed at the i-th position within the second block. For each edge (i, j) ∈ E,
we construct the points e′ij and e′′ij, the “1”s in the second block are placed
at the positions i and j. We construct the points p` for ` = 1, . . . , ζ to adjust
the point set to each fixed value of c. In addition, we construct the points
K∗, K∗, p∗, and p∗. Note that the point set can be computed in polynomial
time as c is a fixed value.

To show that this Turing reduction is correct, we have to prove two claims:
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Claim 5.4 If there is a vertex cover of size k, then there is a hyperplane
containing h points.

Proof. Consider a vertex cover V ′ of size k. The parameters of the hyper-
plane are chosen as follows: If i ∈ V ′ then we set βi = 2 and βi = 1 otherwise.
Furthermore, set β|V |+1, . . . , βd−1 = 1 and βd = 0.

It is easy to see that either vi or vi for all i = 1, . . . , |V | is located on the
hyperplane. This gives |V | points. The subset V ′ is a vertex cover, hence,
each edge is adjacent to at least one vertex in V ′. Therefore, it holds that
for each point tuple (e′ij, e′′ij) the parameter βi = 2 or βj = 2 and, therefore,
either e′ij or e′′ij is located on the hyperplane. This gives |V | + |E| points.
The point K∗ is on the hyperplane, as k values of βi = 2 and the remaining
|V | − k ones are equal to 1. The choice of βd = 0 ensures that p∗ is on the
hyperplane. This gives |V | + |E| + 2 points. As β|V |+1, . . . , βd−2 = 1, all
points p1, . . . , pζ are located on the hyperplane. This gives |V |+ |E|+ 2 + ζ
points.

Therefore, this hyperplane contains h points. ¤

Claim 5.5 If the size of all vertex covers is larger than k, then all hyper-
planes contain less than h points.

Proof. The vertices vi and vi cannot be on the same hyperplane, since ver-
tical hyperplanes are not possible with the used hyperplane representation.
The same holds for the tuples (e′ij, e′′ij), (p∗, p∗) and (K∗, K∗). Therefore,
from the points mentioned above, at most |V |+ |E|+2 points can be located
on the same hyperplane. Taking the points p1, . . . , pζ into account, we ob-
tain that at most h = |V | + |E| + 2 + ζ points can be located on the same
hyperplane. The following proof is based on the fact, that we are not able to
reach the required number of points h, if one point is missing.

At first, we consider hyperplanes with parameters βi = 1 or βi = 2 for
i = 1, . . . , |V | and β|V |+1, . . . , βd−1 = 1 and βd = 0. We argue that these
hyperplanes contain less than h points, To enumerate all considered hyper-
planes, we construct the following mapping: Each subset of the vertices
corresponds to a parameter-vector β: A vertex vi is contained in the subset
V ′ if and only if βi = 2. Otherwise βi = 1.

From the assumption of the claim we know, that each subset of ≤ k vertices
is not a vertex cover. Therefore, there is an edge (i, j) that is not covered and
the vertices vi and vj are not in the considered subset. This implies that βi =
1 and βj = 1 and neither the point e′ij nor e′′ij is located on the hyperplane.
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Hence, the number of points is at most |V | + |E\{(i, j)}| + 2 + ζ < h and,
therefore, no hyperplane with parameters considered above contains h points.
For subsets with more than k vertices, it follows that

∑
i=1...|V | βi > |V | + k

and, therefore, the points K∗ and K∗ are not located on the hyperplane.

Second, we inspect hyperplanes with “wrong” parameters, and we also argue
that the parameters lead to hyperplanes that contain less than h points.

A hyperplane with βd 6= 0 and βd 6= 1 does not contain the points p∗ and
p∗. For βd = 1, we have to set βi = 0 or 1 for all i = 1...|V | to achieve that
one of the points vi or vi is located on the hyperplane. But then the points
K∗ and K∗ are not located on the hyperplane. Therefore, βd = 0 is the only
meaningful choice.

For a hyperplane with βd = 0 and βi 6= 1 and βi 6= 2 for i = 1, . . . , |V | or
βj 6= 1 for j = |V | + 1, . . . , d − 1 it can easily be checked that the points vi

and vi or pj are not located on the hyperplane. ¤

This completes the proof of the NP-hardness of c-DPS. ¤

Corollary 5.6 For c = 0, the point set used in the proof of the NP-hardness
of c-DPS, is organized in tuples (Pi , Pi). The residuals of the points Pi and
Pi have the property that for all hyperplanes L

|ri(L)− ri(L)| = 1 .

5.1 Subset estimators

In the statistical literature, h = d(1− ε) ·ne+ dε · (d+1)e is used. All proofs
in this paper hold with this alternative definition. But we do not consider
both cases and we focus on the simpler case h = d(1− ε) · ne, which is also
used in the literature for the CM estimator.

Definition 5.7 (subset estimator problem) Given a set P of n points
in d dimensional space and a fixed parameter ε with 0 < ε ≤ 0.5, the subset
estimator problem is defined as follows: Find a subset S ⊆ P of size h =
d(1− ε) · ne, that minimizes a function fsubset : P(P) −→ IR+. The function
fsubset has the property that fsubset(S) = 0 if the points of S are located on a
hyperplane and fsubset(S) > 0 otherwise.

Theorem 5.8 For every fixed ε, the computation of the subset estimator is
NP-hard.
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Proof. We prove this theorem by a reduction from the c-DPS problem to
the subset estimator problem with c = ε. The input is directly passed to the
subset estimator. If the subset estimator finds a subset S with fsubset(S) = 0,
then there exists a hyperplane with h points on it and we output YES.
Otherwise, the function value is larger than zero, a hyperplane does not
exist, and we output NO. ¤

Definitions of the following estimators can be found in [8],[9],[11],[5]. Note
that r(i) indicates the i-th residual in the sorted order of all residuals.

Definition 5.9 (ε-LXX estimator problems) For a given point set of size
n in d dimensions and a fixed parameter ε with 0 < ε ≤ 0.5, the ε-LXX esti-
mator problems are defined as follows. Let h = d(1−ε)·ne. Find a hyperplane
that is described by the parameter vector β, such that

for LMS: fLMS = r(dn/2e+d(d+1)/2e)(β)2

for ε-LQS: fε-LQS = r(h)(β)2

for ε-LTS: fε-LTS = 1
h

∑h
k=1 r(k)(β)2

for ε-LTA: fε-LTA = 1
h

∑h
k=1 |r(k)(β)|

is minimized.

We discuss the MCD [10] and MVE [15] estimator problems only briefly to
avoid technical details.

Definition 5.10 (ε-MCD and ε-MVE estimator problem) For a given
point set of size n in d dimensions and a fixed parameter 0 < ε ≤ 0.5, the
problems are defined as follows. Find a subset of the points of size d(1−ε)·ne,
such that

• for ε-MCD: the determinant of the covariance matrix of this subset is
minimized.

• for ε-MVE: the volume of the ellipsoid covering this subset is mini-
mized.

Theorem 5.11 For every fixed ε (0 < ε ≤ 0.5), the computation of the
following estimators is NP-hard: LMS, ε-LQS, ε-LTS, ε-LTA, ε-MCD, and
ε-MVE.

Proof. The mentioned estimators match the definition of the subset estima-
tor:
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• LMS, LQS, LTS and LTA:
If a point is located on a hyperplane, its residual is zero. If there are
h points that are located on a common hyperplane, then their residuals
are all zero and the fitness value of the LXX estimators become zero,
as only the smallest h residuals are involved in the objective function.
Otherwise, the fitness value is larger than zero.

• MCD and MVE: Consider a subset of the points of size h. There is
an ellipsoid with minimal volume that contains these points. If these
points are located on a hyperplane, the ellipsoid is flat and therefore
one eigenvalue of this ellipsoid is zero and therefore the determinant
and the volume are zero. Otherwise, the functional values are larger
than zero.

Therefore, the computation of the mentioned estimators is NP-hard. ¤

5.2 CM estimator

Let ρ be a symmetric and continuously differentiable function, which is
bounded and nondecreasing on [0,∞[ and ρ(0) = 0. For a given set of n
points in IRd and a β ∈ IRd, let ri(β) be the residual of the i-th point.

Definition 5.12 (ε-CM problem [1]) For a given point set and a fixed
parameter 0 < ε < 1, the CM problem is defined as follows: Find a scale
parameter σ and a hyperplane that is described by the parameter vector β,
such that

1

n

∑
i=1,...,n

ρ

(
ri(β)

σ

)
≤ ε · ρ(∞)

and such that the function

fCM (β, σ) = log σ +
1

n

∑
i=1,...,n

ρ

(
ri(β)

σ

)

is minimized.

Theorem 5.13 For every fixed ε (0 < ε ≤ 0.5), the ε-CM problem is NP-
hard.

Proof. We solve the ε-DPS problem using the ε-CM problem as a subroutine.
Therefore, we pass the point set to the ε-CM problem. The estimator outputs

15



a vector β and a value σ. If σ = 0, then we output YES. If σ > 0, then we
output NO. We show now that the given answer is correct.

If there is a degenerate point set of size d(1 − ε) · ne, then there exists a
hyperplane H such that the d(1 − ε) · ne residuals are zero even for σ → 0.
Therefore, only bε · nc residuals ri are larger than 0 and it follows that the
constraint of CM is smaller than ε · ρ(∞) even if σ = 0. For this hyperplane
H, it is possible to choose σ = 0, with the result that the objective function
fCM(β, σ) goes to −∞ for σ → 0.

If there is no degenerate point set of this size, then for all hyperplanes H,
there are more than bε · nc residuals with ri larger than 0. The constraint
ensures that σ > 0, since σ = 0 forces the constraint to become larger than
ε · ρ(∞). ¤

5.3 Projection Depth and Stahel-Donoho estimator

Definition 5.14 (DULS) A pair (µ, σ) of estimators belongs to the class
of degenerate univariate location and scale estimators (DULS), if there is a
number c∗ ∈ IR with 0 < c∗ ≤ 0.5, such that the following properties are true:

• If S is a sequence of numbers of length n, where h∗ = d(1 − c∗) · ne
numbers have the same value w, then µ(S) = w and σ(S) = 0.

• If S is a sequence of numbers of length n, where less than h∗ numbers
have the same value, then σ(S) 6= 0.

Popular examples for univariate estimators of location µ and scale σ are the
median and the Median Absolute Deviation (MAD):

µ(p1, . . . , pn) = med
i

(pi) with pi ∈ IR

σ(p1, . . . , pn) = med
i
|pi − µ(p1, . . . , pn)|.

It is easy to see that (med, MAD) ∈ DULS, whereas (mean, variance) are
not in DULS.

We now define two robust estimators that use DULS estimators. Consider the
projection β>x of a point x onto a vector β. Indeed, this is an orthogonal
residual of a point to a hyperplane with the normal vector β. We define
the following abbreviation: β>X := (β>x1, . . . , β

>xn). The following two
definitions can be found in [16]:
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Definition 5.15 (Outlyingness) Given n points in d dimensions, the out-
lyingness of a data point i is defined as

OLi(σ, µ) = max
|β|=1

∣∣β>xi − µ(β>X)
∣∣

σ(β>X)
,

where µ and σ are estimators of location and scale. If the numerator and the
denominator of OLi are both equal to zero, then we define OLi = 0. If only
the denominator is equal to zero, then we define OLi = ∞.

Definition 5.16 ((µ, σ)-Projection Depth problem ((µ, σ)-PD))
Given n points in d dimensions, for each point i the following value is called
the projection depth:

PDi(σ, µ) =
1

1 + OLi(σ, µ)
= min

β

σ(β>X)

σ(β>X) + |β>xi − µ(β>X)|

Theorem 5.17 The (µ, σ)-Projection Depth problem with fixed (µ, σ) ∈ DULS
is NP-hard.

Proof. As the estimators µ and σ are fixed, there is a constant c∗, such
that (σ, µ) fulfill the properties of Definition 5.14. Let h∗ = dc∗ · ne. We use
the Projection Depth problem to compute a solution of the c∗-DPS problem
in the following way: We check in polynomial time whether all points are
located on the same hyperplane. If this is true, we output YES. If h∗ = n,
we output NO. Otherwise, we pass the point set to the Projection Depth
Problem. It reports the projection depth of each point. If there is at least
one point with projection depth zero, we output YES, otherwise NO.

The correctness can be seen as follows: In the first case, we assume that there
is a degenerate point set of size h∗ < n. Consider the normal vector β of a
hyperplane that contains all these h∗ points. Then there are h∗ residuals with
the same value w. Due to the definition of DULS we derive that µ(β>X) = w
and σ(β>X) = 0. Therefore, there is a point xi with β>xi = w and it follows
that PDi = 0.

The case that all points are located on the same hyperplane is handled sep-
arately. Therefore, we can assume that there is at least one point with
projection β>xi 6= w. As we have to minimize the projection depth, we get
that PDi = σ/(σ + β>xi) = 0 as σ = 0.

In the second case, we assume that all degenerate point sets have a size less
than h∗. Then, for all β, there are less than h∗ projections β>xi with the
same value w . From Definition 5.14, it follows that σ(β>X) > 0 for all β
and therefore the Projection Depth of all points is larger than zero. ¤
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Definition 5.18 ((µ, σ)-Stahel-Donoho problem ((µ, σ)-SD) [4])
Given n points x1, . . . , xn in d dimensions, compute the weighted mean T and
the covariance matrix V of the points with weights PDi(µ, σ) as follows:

w =
n∑

i=1

PDi(µ, σ)

T =
1

w
·

n∑
i=1

PDi(µ, σ) · xi

V =
1

w
·

n∑
i=1

PDi(µ, σ) · (xi − T ) · (xi − T )>.

If all PDi = 0, we define as output T = (∞, . . . ,∞)>. Analogously for V .

Theorem 5.19 The (µ, σ)-Stahel-Donoho estimator problem with (µ, σ) ∈
DULS is NP-hard.

Proof. The estimators µ and σ are fixed. There is a constant c∗, such that
(σ, µ) fulfills the properties of Definition 5.14. We use the SD Problem to
compute a solution of the c∗-DPS problem in the following way: We check in
polynomial time whether all points are located on the same hyperplane. If
this is true, we output YES. If h∗ = n, we output NO. Otherwise, we call SD
and obtain a tuple (T, V ). If T = (∞, . . . ,∞) we output YES. Otherwise,
we call SD n times with a modified input. In the i-th call we use the data
set (x1, . . . , xn) without xi and get the output (Ti, Vi). If there is an i with
xi 6= T and T = Ti we output YES. If there is an i with xi = T and V = Vi

we output YES. Otherwise we output NO.

That the c∗-DPS problem is solved correctly can be seen as follows: We focus
on the case, that not all n points are on a common hyperplane and h∗ < n,
as we have handled this cases separately.

First, consider that there is a hyperplane such that h∗ = d(1− c∗) ·ne points
are located on it. We consider this common hyperplane and we know from
the proof of Theorem 5.17 that there is at least one point xi with PDi = 0.
If xi 6= T then the deletion of the point does not alter w or T , as PDi = 0,
and the answer is correct. If xi = T , then (xi − T ) = 0 and, therefore, the
deletion of the point does not alter w or V and also the answer is correct.

Second, let us assume that less than h∗ points are located on the same hy-
perplane. Then we know from the proof of Theorem 5.17 that all PDi 6= 0.
If xi 6= T , the deletion of xi will alter T , as PDi 6= 0. In the case of xi = T ,
the deletion of xi will alter w and therefore will alter V . The output is NO
and, therefore, the answer is correct. ¤
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