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Abstract

In banking the default behavior of the counterpart is of interest not only

for the pricing of transactions under credit risk but also for the assessment

of portfolio credit risk. We develop a test against the hypothesis that default

intensities are constant over time within a homogeneous group of counter-

parts under investigation, e.g. a rating class. The Kolmogorov-Smirnov-type

test builds on the asymptotic normality of counting processes in event hi-

story analysis. Right-censoring accommodates for Markov process with more

than one no-absorbing state. A simulation study and an example of rating

migrations support the usefulness of the test.

∗address for correspondence: Rafael Weißbach, Institut für Wirtschafts- und Sozialsta-

tistik, Fachbereich Statistik, Universität Dortmund, 44221 Dortmund, Germany, email:

Rafael.Weissbach@uni-dortmund.de, Fon: +49/231/7555419, Fax: +49/231/7555284.

JEL classifications. C52, G18. AMS subject classification 62M02

Keywords. Rating migrations, Credit risk, Markov processes, hypothesis testing.

1



1 Introduction

Financial credit risk is currently of interest in connection with the recent

release of new regulatory capital requirements for financial intermediaries

(Basel Commitee on Banking Supervision (June 2004)). Owners of credit

portfolios have to hold capital equal to a high quantile of the credit-portfolio

loss distribution. Banks are allowed - after approval of the national regulatory

forces - to estimate the default probabilities (PD) of their counterparts based

on internal rating data. These probabilities enter the capital charges in the

basic and advanced version of the internal ratings based approach and are

hence of great interest. Additionally, several internal models are currently

used to calculate the loss distribution to find the the economic capital for the

specific portfolio (Gordy (2000)). The rating transition matrix is a parameter

in some of them, e.g. CreditMetrics (see J.P.Morgan (Hrsg.); Finger (1998)).

Moreover, the rating migration intensities are used in banking to calculate

expected losses which arise not only from defaulted counterparts but also

from counterparts which are down rated and thus owning their debt has less

value. Rational prices valued by the “fundamental pricing formula” (Duffie

and Singleton (1999)) depend on the intensities.

Typically, estimation of the rating transition matrix bases on a homoge-

neous Markov process, i.e. the assumption that the migrations have constant

default intensities. The maximum likelihood estimate of the generator is on

the one hand theoretically well established (Albert (1962)) and on the other

hand popular in finance (Bluhm et al. (2002)). However, the estimate is only

unbiased if the model holds, and Basel II requests estimating the PD - which

is the last column of the migration matrix - free of any (known) bias. Re-

cently, Lando and Skødeberg (2002) analysed continuous rating migrations

and raised doubts about the Markovian property. Applying a Cox regression,

they reject for many transitions the hypothesis of a deterministic intensity

and suspect a “rating drift”. Our basis of the same type of observations,

we restrict ourselves to the markovian assumption and consider the problem
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of homogeneity. Practically speaking: “Do rating transitions depend on ti-

me?” A test for the homogeneity of the discrete Markov chain modelling

of credit rating migrations is found in Kiefer and Larson (2004). However,

they are concerned with answering the question on basis of given transitions

matrices for several periods. On basis of their data they find that the homo-

geneous markov model is sufficient, but raise doubt about the adequacy of

their data for a rigorous proof. In contrast to Weißbach et al. (2005) - who

construct a global maximum-likelihood test against the specific alternative

of structural breaks - we consider the singles migrations (as in Lando and

Skødeberg (2002)) and derive a globally consistent test. The Kolmogorov-

Smirnov idea modifies the well-known one-sample log-rank statistic (see e.g.

Andersen et al. (1993)), using a general asymptotic result for counting pro-

cesses by Hjort (1990). Although, for non-homogeneous Markov processes,

nonparametric alternatives for the estimation of the migration matrix exist,

e.g. the Aalen-Johansen estimator (see Aalen (1978); Aalen and Johansen

(1978); Fleming (1978)), we propose to model the generator based on the

assessment of the single transitions, to enable “partial homogeneity”. We see

no need in nonparametric estimation for the entire matrix. For those transi-

tions where the homogeneity need not be rejected, constant intensities reflect

the data. For the transitions where the homogeneity is rejected, we propose

to use kernel estimates as described e.g. in Weißbach (2005). It is important

to note that we take into account censoring of observation because defaults

(and even rating migration) are rare events. Rating histories without move-

ment belong to the population under risk but demand for censored models

in continuous modelling.

A simulation study confirms the consistency as well as the sufficient power

of the test in practice. An application to internal rating migration data of

a cooperating bank finds inhomogeneities for few migrations to neighboring

rating classes (up- and down).

3



2 A consistent test for homogeneity

The intensity of the default process expresses equivalently as hazard rate of

the default time. We observe right-censored default times Xi = min(Ti, Ci)

with censoring indicator δi = 1{Xi=Ti}. The random variables T1, . . . , Tn are

assumed to be independent identically distributed with distribution functi-

on F , the Ci’s are assumed to be independent identically distributed with

distribution function G, and the Ti’s are assumed to be independent of the

(censoring times) Ci’s. We are interested in the hazard rate

λ(t) :=
f(t)

1 − F (t)

of the actual default times Ti.

As test for a known hazard rate, the “one-sample log-rank” test, was

proposed by Breslow (1975). In the context of counting processes the test is

discussed in Andersen et al. (1993). The idea is to compare the increments

of the unrestricted estimator of the cumulative hazard rate with those of

the estimator parametrically arising from the hazard rate model under the

hypothesis H0 : λ(t) = λ0(t).

We want to test for a constant hazard rate, i.e. for an exponential model.

As a prerequisite we need to recall the estimate of the hazard rate under the

null hypothesis, or simply the parameter of an exponential distribution (with

density f(x) = λe−λx). Note that λ−1 is the expectation of the exponential

distribution. For the random right-censoring the ratio of uncensored events

and exposure to risk,

λn :=
nu

∑n

i=1 Xi

, (1)

is the maximum likelihood estimate (see Miller (1981), p. 22). The number

of uncensored observations is defined as nu :=
∑n

i=1 δi.

We construct the test statistic for the hypothesis

H0 : “Is λ(t) constant?” ⇔ λ(t) ≡ λ0 unknown
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in the same manner as above. The differences of the increments of the unre-

stricted estimator of the cumulative hazard and those of the estimator arising

for an exponential distribution are added up.

The non-parametrical Nelson-Aalen estimator of the cumulative hazard

rate Λ(t) :=
∫ t

0
λ(s)ds is

Λ̂(t) =

∫

0<s≤t

H(s)dN(s) =
∑

i:X(i)≤t

δ(i)

n − i + 1
,

where N(t) := ]{i : Xi ≤ t, δi = 1} is the process counting the defaults,

J(t) := I{Y (t) > 0} and H(t) := J(t)
Y (t)

with 0
0

:= 0. The population under

risk at time t is denoted by Y (t) := ]{i : Xi ≥ t} (see Nelson (1972); Aalen

(1978)). The definition of H(s) “stops” the estimation of the cumulative

hazard rate at the largest observation X(n) (irrespective of censoring).

Using estimate (1) for the hazard rate under the null hypothesis yields

Λ?
0(t) =

∫

0<s≤t

J(s)λnds

= min(X(n), t)λn =
nu min(X(n), t)

∑n

i=1 Xi

as the parametric estimate for the cumulative hazard rate, again capped at

X(n).

The log-rank statistic weights the incremental differences added with the

number of observations under risk (Andersen et al. (1993) (p. 333+334)):

Z(t) :=

∫ t

0

K(s)d{Λ̂(s) − Λ?
0(s)}

=

∫ t

0

dN(s) − Y (s)λnds for K(s) = Y (s)

= N(t) − E?(t),

where

E?(t) :=

∫ t

0

Y (s)λnds =
nu

∑n

i=1 min(Xi, t)
∑n

i=1 Xi
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is the expected number of defaults in [0, t] under hypothesis. The explicit

test statistic is finally obtained as

Z(t) =
n

∑

i=1

I{Xi ≤ t, δi = 1} − (
∑n

i=1 δi)(
∑n

i=1 min(Xi, t))
∑n

i=1 Xi

.

For fixed t the asymptotic distribution of the standardized test statistic is

given by a normal distribution, i.e.

Z(t)
√

〈Z〉(t)
d→ N(0, 1)

if n → ∞. Here the predictable variation process 〈Z〉(t) is again E?(t) and

the asymptotics is clear because of the central limit theorem and Slutzky’s

lemma (see for example Andersen et al. (1993), p. 335).

However, the test, which rejects the null hypothesis of a constant hazard

rate for large values of the statistic |Z(t)/
√

〈Z〉(t)| is not uniformly consi-

stent. E.g. if the hazard rates is of the from λ(s) = cλ + 2λ(1 − c)s/t for

any c ∈ [0, 1), the increments sum up to 0 in the limit, the power converges

to the size of the test, not to 1. To avoid this defect, we propose to use a

Kolmogorov-Smirnov- or Cramer-von-Mises-type test statistic of the process

Z(t).

For this purpose we define

σ̂2 :=

∫ T

0

dN(s)

nλ2
n

=
nu

nλ2
n

=
(
∑n

i=1 Xi)
2

nnu

.

For hazard rates bounded away from 0 on [0, T ] it follows from Hjort (1990)

that under the null hypothesis of a constant hazard rate the process

(Z(t)/(
√

nλnσ̂))t∈[0,T ]

converges weakly in D[0, T ] to Brownian bridge, say W 0 in time p(t) = t/T ,

i.e.
Z√
nλnσ̂

d
=⇒ W 0 ◦ p.
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By the continuous mapping theorem (see Shorack and Wellner (1986)) the

Kolmogorov-Smirnov- and Cramer-von-Mises-type statistic show a similar

behaviour, that is

Kn = max
0≤t≤T

∣

∣

∣

∣

Z(t)√
nλnσ̂

∣

∣

∣

∣

d→ max
0≤t≤T

|W 0(t/T )| d
= max

0≤t≤1
|W 0(t)|

Cn =
1

T

∫ T

0

∣

∣

∣

∣

Z(t)√
nλnσ̂

∣

∣

∣

∣

2

dt
d→ 1

T

∫ T

0

|W 0(t/T )|2dt
d
=

∫ 1

0

|W 0(t)|2dt

As a consequence rejecting the null hypothesis of a constant hazard rate for

large values of the statistic Kn or Cn will yield a consistent test. In particular,

if kα denotes the 1−α quantile of the the distribution of the random variable

max0≤t≤1 |W 0(t)| the rule

φ((X1, δ1), . . . (Xn, δn)) := I{max0≤t≤T |∫ t

0 dN(s)−Y (s)λnds|>kασ̂
√

nλn} (2)

corresponds to the Kolmogorov-Smirnov statistic and constitutes a test with

asymptotic level α. The inequality in the indicator function is most explicitly

expressed as

max
0≤t≤T

∣

∣

∣

∣

∣

n
∑

i=1

I{Xi ≤ t, δi = 1} − (
∑n

i=1 δi)(
∑n

i=1 min(Xi, t))
∑n

i=1 Xi

∣

∣

∣

∣

∣

> kα

√
nu,

while the quantiles kα can be found in Shorack and Wellner (1986), p. 143. For

example, the 95% and 90% quantile are given by k0.05 ≈ 1.36 and k0.1 ≈ 1.23,

respectively. In the following section we will discuss properties of this test by

means of a simulation study.

3 Simulation study

A Monte Carlo simulation assesses the validity of the aymptotic approxima-

tion. The hazard rate under hypothesis, λ0 calibrates the mediocre one-year

probability of default of 1% corresponding approximately to a rating of ‘Ba’

in Moody’s system (see Nickell et al. (2000)) or ‘BB’ in Standard & Poor’s
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Tabelle 1: Size of test φ (2) for various number of observations and support

100 and 200 years. The default intensity is λ = − log 0.99.

no. obs 100 years 200 years

50 0.0415 0.0305

100 0.0405 0.041

500 0.045 0.0525

system (see Gordy (2000)). Hence, the constant hazard of the survival (as

well as for the censoring) is − log(0.99). The censoring distribution with ha-

zard rate of − log(0.99) models a 50%-censoring. The percentage resembles

the probability to change to another than the investigated rating class, given

a migration happens. We specify T to be 100 or 200 years. The maximization

of the statistics Z(t) over [0, T ] is performed on a discrete grid. Clearly, the

maximum increases with the fineness of the grid. However, monthly intervals

are found to be sufficiently fine. 2000 simulation loops were used. Table 1

demonstrates for 50 observations a slightly conservative approximation. For

100 observation the approximation is equally good for both 100 years and

200 years support. For 500 observations the approximation is even slightly

anti-conservative for 200 years of observation.

Clearly, the support of the exponential distribution is IR+
0 . However, Table

1 demonstrates that the restriction to 85%-quantile of the survival distribu-

tion, i.e. approximately [0, 200], is sufficient for the hazard rate − log 0.99.

Less than 2% of the observations range larger than that. The 65%-quantile

of the survival distribution does not appear to be sufficient, almost 15% of

the observations range larger than that.

If the end of the support T is taken as additional censoring for the obser-

vations, the censoring distribution is not the same as the survival distribution

anymore. However, the default distribution is not altered and the test can
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Tabelle 2: Size of test for various number of observations and support 100

and 200 years. Parameters: Hazard rate underhypothesis λ0 = − log 0.99,

2000 simulations, monthly maximization.

no. obs 5 years 10 years 20 years 50 years 100 years 200 years

50 0.009 0.0215 0.03 0.0385 0.0495 0.048

100 0.021 0.025 0.032 0.0335 0.039 0.045

500 0.0275 0.041 0.0375 0.038 0.0415 0.048

1000 0.0395 0.038 0.036 NA NA NA

2500 0.045 0.0435 NA NA NA NA

still decide whether its hazard rate is constant up to T . Now, we may decrease

T in order to model realistic designs. Usually, only moderately recent default

information for a set of companies is considered homogeneous and econo-

mically relevant. We believe that at least 5 years of observations should be

assembled. Better are clearly 10, 20 or 50 years.

We need to explain a numerical effect first before interpreting the results.

As the discrete evaluation points are less for monthly spacing and restricted

support, the fineness has to be increased. Especially for a large number of

observations, the path of Z(t) gets finer, the number of in-discontinuities

increases linearly and maxima are more likely to slip thought the grid. The

effect was found to be negligible up to 1000 observations (on a monthly grid).

The maximization of the statistics Z(t) over [0, T ] is performed on a weekly

grid for 2500 observations. Table 2 lists simulated sizes for time horizons

found in the practice of credit risk. The censoring increases up almost 100%.

However, the size for 500 observations of 2.75% advocates the usefulness of

the test even for a short history. It is interesting to see that short history

can be traded off against a larger sample and vice versa and effect known

since Albert (1962). Combinations of long history and many observations
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with obviously valid sizes are not displayed for computational ease.

The power assessment needs a specification of the alternative. Apart from

generalizations of the Exponential distribution, linear increase of the hazard

rate is another, with a special advantage: The distance to the hypothesis, the

constant hazard, is easily expressed in terms of the slope of the hazard. The

hazard rates circle around the point (T/2, λ0). The intercept in our simulation

is least 20% of λ0, corresponding to a maximal slope of 0.002 in our example

where the end of the support is 10 years. Figure 1 of the simulated power

reveal for 100 and 500 years of study period the difference in convergence.

All other conditions of the simulation are as in the size simulations earlier.

Whereas for 500 observations a slope of 0.002 is almost sufficient for a power

of 100%, only 25% power result for 100 observations.

0.0000 0.0005 0.0010 0.0015 0.0020

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

slope

po
w

er

Abbildung 1: Power of the test for 10 years of n = 100 (lower curve) and

n = 500 observations. The alternatives are linear hazard rates with slope as

parameter of distance to the hypothesis.
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4 Example

We apply our test to rating transitions for a rating system with 8 non-default

classes observed over the seven years 1997 through 2003. The time origin is

the event of entering the credit portfolio (of the cooperating large bank),

hence counterparts with business relations before 1997 had to be ruled out.

To protect the interest of the portfolio owner, only around 600 transitions

for randomly chosen 10% of the counterparts (360) are analysed. Only first

transitions can be analysed, second (and third, etc.) transitions can not be

incorporated into the analyses because the methodology does not allow for

left truncation of observation. Clearly, we see room for methodological impro-

vement to integrate residual transitions. No migration during the business

relation (capped with the seventh year) and migration to another but the

target class constitute censoring events. The preliminary analysis assumes

the trivial rating system of only one rating class (combining all non-default

classes) the test statistics (2) has the value 334.68 and does not exceed the

critical value at level 5% of 353.57. For the migrations to neighboring classes

the results of the test are displayed in Table 3. For the upgrade from class 4 to

3 and for the downgrade from 3 to 4 the intensity proves not to be constant.

Further modelling and estimation effort is necessary. All other migration are

- based our the restricted data pool - unobtrusive. Constant intensity reflect

the experience expressed in the data.
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Tabelle 3: Test statistics φ (2) and critical value (at level 5%) for hypothe-

sis that the downgrade (left) and upgrade (right) from a rating class into

the neighboring class does not depend on the time since the entry into the

portfolio.

Rating φ crit. value

1→2 NA NA

2→3 17.02 25.81

3→4∗ 72.38 63.77

4→5 57.81 67.93

5→6 34.89 49.36

6→7 NA NA

7→8 NA NA

8→def. 12.23 16.63

Rating φ crit. value

2→1 NA NA

3→2 95.59 150.32

4→3∗ 58.54 54.46

5→4 24.82 32.31

6→5 3.91 10.44

7→6 NA NA

8→7 NA NA
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