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D-optimal plans in observational studies *

Constanze Pumpliin Stefan Riiping *
Katharina Morik * Claus Weihs T

October 11, 2005

Abstract

This paper investigates the use of Design of Experiments in obser-
vational studies in order to select informative observations and fea-
tures for classification. D-optimal plans are searched for in existing
data and based on these plans the variables most relevant for classifi-
cation are determined. The adapted models are then compared with
respect to their predictive accuracy on an independent test sample.
Eight different data sets are investigated by this method.

Keywords:
D-optimality, Genetic Algorithm, Prototypes, Feature Selection

1 Introduction

Due to technological advances, large data bases exist in all branches of in-
dustry. Hence it is of particular interest to use these data to determine the
variables most important with respect to a certain effect. The aim is to
distinguish a subset of the data containing all the necessary important infor-
mation for classification, so called prototypes. Here, the approach is made
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by Statistical Experimental Design, in particular by the D-optimality crite-
rion. As the search for the D-optimal plan in the data is too time consuming,
plans with high D-value are constructed from the data by a genetic algorithm.
Based on the plan with the highest D-value the relevance of the factors is
determined and a subset of the most relevant factors is selected. With these
variables a model is adapted using either linear discriminant analysis or re-
cursive partitioning and regression trees or the support vector machine with
a linear kernel or the support vector machine with a radial basis kernel. The
resulting error rates on an independent test set are then compared with those
using the above methods on the complete data set.

2 D-optimal plans

Let y = Fx( + ¢ be a linear screening model, y = (y1,...y,)" denoting the
result, Fx := (1,X) the extended design matrix, 1 := (1,...,1)!, where
X is the (n x m) design matrix, 3 = (31,...0m41)" the vector of unknown
coefficients and ¢ := (ey,...,&,)" the error vector with independent &; ~
N(0,0%),1 <i < n (cp. [1]). The information matrix of this experiment is
defined by F% Fx (cp. [1]). Tt is well known that the least squares estimate

~

of 3, denoted by 3, results in § = (FLFyx) 'Fky, with covariance matrix
o? (Fﬁ( Fx)_l .

In general, a design X is called D-optimal, if it maximizes |F{. Fy|, on the
set of all possible (n x m) design matrices Y. The value |F}. Fy| is called the
D-value of the design matrix Y. For a given design matrix Y € Matg(n x m)
the 100(1 — «) per cent confidence region, 0 < a < 1, for all components of
3 forms an ellipsoid, whose volume is proportional to |FLFy|2. |FLFy| 2
is also called the generalized variance of the parameter estimates (cp. [1,
9]). Hence, D-optimal plans minimize the volume of this ellipsoid, i.e. they
minimize the generalized variance of the parameter estimates with respect
to all comparable designs. Thus, for a D-optimal plan, the estimate B is
the best possible. In the following we look for D-optimal plans in already
existing data sets.



3 Heuristic Search for D-optimal Plans

The complete search for a D-optimal plan in the data is often impossible
as the data sets are too big and complex. Currently, fast algorithms are
only known for the special case of binary matrices having entries {-1,1} with
pairwise orthogonal columns [5]. In this case, e.g. Plackett-Burman plans are
D-optimal. Although no analysis of the complexity of the general D-optimal
plan problem has been done yet, it has been proved that a similar problem,
the computation of the MCD estimator, is NP-complete [2]. This is not a
proof for our problem, but it indicates that the D-optimal plan problem may
not be solved efficiently. Hence, we follow a heuristic approach.

The idea is to use a genetic algorithm to construct an almost D-optimal
plan from the data, i.e. a plan with minimum generalized variance. Genetic
algorithms, as general purpose optimization algorithms, have been shown to
provide good solutions for a variety of practical optimization problems [4].

The algorithm runs as follows: a plan consists of d41 observations. First,
a finite set of plans is chosen at random. For each of these plans, the D-value
is computed. The plans with the lowest D-values are replaced by plans sim-
ilar to those plans with highest D-value, in order to locally optimize the set
of plans. Two methods for construction are used. The first one is called
mutation and consists of randomly selecting an old plan with probability
proportional to its D-value (this is called roulette selection in genetic algo-
rithms) and then replacing one of the observations in this plan by an obser-
vation drawn at random from all observations except the ones in this plan.
The other method for generating a new plan is called two-point crossover.

Given two plans (1,...,2Z4+1) and (2], ...,2),,), two indices ¢ and j with
0 <i<j<d+1 are randomly selected. The new plan then consists of
(T1, o, @4, gy T Ty, -, Tag). For @ = 0, in this vector xq, ..., 2
are omitted and for j = d + 1, in this vector x;41,...,2441 are omitted.

These two methods may be seen as a special way of local optimization of the
existing set of plans and are repeated for a fixed number of times. Then the
whole procedure is repeated from the start to account for bad starting values
due to the random initialisation. In the end, the algorithm returns the plan
with the highest D-value.

In a variation of this algorithm, not only the overall best plan is returned,
but several best plans are returned, namely the plans with maximum D-value
from every new start of the algorithm.

The complete algorithm used in this paper can be described as follows:



1. Outer loop: Repeat 100 times

(a) randomly choose 10 plans,
(b) Inner loop: Repeat 10 times

i. compute the D-value of each plan,
ii. locally optimize the best plans by mutation or cross-over

2. Return the best plan / the set of best plans in each iteration

The actual parameters in steps 1, (a) and (b) may be varied for each
data set. In general, a large number of iterations in 1 and small numbers in
(a) and (b) prove to be both effective in terms of the obtained D-value and
computationally efficient. In the experiments, 100 iterations in 1, 10 plans in
(a) and 10 iterations in (b) were used. In a prior investigation, a comparison
with a complete search on small data sets showed that the optimal solution
is approximated efficiently by this genetic algorithm.

4 Feature Selection

4.1 General Feature Selection Methods

The feature selection problem in this case consists of finding the subset of d
most important factors for the prediction, where d is fixed. In general, feature
selection methods can be classified as wrapper methods or filter methods [6].

Filter methods use a fixed measure of feature importance to select the
most important features on a data set independently from the applied learn-
ing algorithm. The most popular measure of feature importance is the ab-
solute correlation between a factor and the result y. Several other methods,
e.g. based on cross-entropy, have also been proposed.

Wrapper methods repeatedly construct a classification model on subsets
of the factors, in order to assess the predictive performance of the variables.
Hence, these methods often perform better than filter methods as they take
information about the classifier into account. On the other hand, they are
obviously much more computer intensive and the evaluation of the predictive
performance is problematic for small data sets, as e.g. the observations in D-
optimal plans.



Two methods of feature selection are used in our experiments, one based
on classification trees and one based on correlation. Both methods give a
ranking of factor importance, from which the top d factors are selected.

4.2 Tree-based Feature Selection

Tree-based feature selection is a more complex filter method based on the gini
index as it is employed in the construction of classification trees [3]. First,
a classification tree is learned on the available data. Each time a variable
occurs in this tree, it is assigned a weight of 277, where p is the depth of the
corresponding node. The weight 277 is chosen, because the pth level can have
at most 2P nodes. As variables occuring early in the tree are more important
than those close to the leaves, they are assigned more weight than the latter.
The measure of feature importance is the sum of the weights of each variable.

5 Feature Selection on D-optimal Plans

Here, the search for D-optimal plans is confined to feature selection. The
idea underlying this approach is that the selected observations in the plan
are taken as optimal if they minimize the correlation between different factors
and hence allow to assess the importance of one factor independently of the
others. While this is strictly true for the least squares estimator of a linear
model (see Section 2), we hope that other model classes and feature selection
procedures benefit also from this selection. This is in part motivated by the
empirical observation that feature selection by linear classifier weights also
has a positive impact on other classification models [7].

A second advantage of this approach is an increase in computational
efficiency in the feature selection, because only a small subset of instances is
used. However, the drawback is that an additional step in the plan search has
to be executed, so an improvement in computer time may only be expected
for complex feature selection schemes.

Two feature selection schemes are compared, on the one hand feature
selection based only on the plan with the maximal D-value found (called “fs
doptimal” in the tables below), and on the other hand a feature selection for
a set of plans with high D-values, where the basic feature selection step was
executed for each plan and the acutal set of features was selected based on
how often each feature was selected in these steps (fs doptimal it). While



the former approach is computationally more efficient, the latter is expected
to give more robust results. We also compared the results to the feature
selection on all available examples (fs standard). Note that in all versions
the final classifier was learned on all observations in contrast to the feature
selection which is performed on certain subsets.

The complete algorithm runs as follows:

1. Input: a set of examples (x;,¥;)i=1..n, the desired number of factors
k < m fixed.

2. Search for the best plan / set of best plans in (x;,y;) using the genetic
algorithm.

3. Use the feature selection method to either

(a) select the k& most relevant factors, based on the best plan or
(b) compute the factor weights for each available plan and select the
k factors with the highest sum of weights.

4. Estimate a classification model on all observations with the selected
factors from either
(a) the best plan,
(b) all plans or

(c) all observations.

5. Return the constructed model.

6 Experimental Results

To validate the performance of the algorithms, 6 data sets, only with con-
tinuous attributes from the UCI library [8] (balance, breast-cancer, diabetes,
iris, liver and wine), are chosen plus 2 additional non-public real-world data
sets (business and medicine). In all these data sets, there are 2 classes to
determine. The following table summarizes these data sets.



Name Size Dimension

balance 576 4
breast-cancer 683 9
diabetes 768 8
iris 150 4
liver 345 6
wine 178 13
business 157 13
medicine 6610 18

As each data set was evaluated by the tree-based feature selection and the
correlation-based feature selection, only 3 out of 16 tables are shown in the
following. For the complete evaluation see the appendix. The first column
indicates the feature selection method used to select the d most important
variables the adapted model is based on. The rows ”all features” denote the
relative error on the test sample of the estimated classification model based
on all features and one of the 4 methods lda: linear discriminant analysis,
rpart: recursive partitioning and regression trees, svmdot: the support vec-
tor machine with a linear kernel, svmrbf: the support vector machine with a
radial basis kernel. The last column holds the number of observations used
to determine the d most relevant factors. The percentage results are the
differences with respect to the relative error of ”all features” in the corre-
sponding cell, if the relative error of ”all features” differs from zero. If the
relative error of "all features” equals zero, the percentage results denote the
absolute differences. Figures 1 - 3 indicate that using only a very small set
of observations for determining the importance of the respective factors for
classification, the error rate using linear discriminant analysis as well as re-
cursive partitioning and regression trees or the support vector machine with
a linear kernel can be improved. There is one case where the improvement is
20.6% of an error rate of 0.05 in figure 2. This motivates the use of the term
prototype, as i.e. in figure 2 only 10 observations out of 683 are needed to
improve the error rate 0.03 by nearly 10%.

Figure 4 gives a survey, how often each feature selection method gives the
best results.

It is surprising that both support vector machines yield best results, using
only the plan with the highest D-value for variable selection in at least as
many cases as if using the standard feature selection. The support vector
machine with a linear kernel results in the best classification model in 44%



d=4 d=7 d=10 nr. obs.
lda
all features 0.16 0.16 0.16 157
fs standard 12.11%  3.68% 19.47% 157
fs doptimal 31.84% 11.58% -4.21% 14
fs doptimal it | 12.11%  7.89% 24.21% 141
rpart
all features 0.20 0.20 0.20 157
fs standard -19.02%  -9.82%  -9.82% 157
fs doptimal 27.81%  3.07% -9.82% 14
fs doptimal it | -15.75% -9.82% -9.82% 141
svindot
all features 0.14 0.14 0.14 157
fs standard 36.53% 37.13%  8.98% 157
fs doptimal 87.72% 36.53% -4.49% 14
fs doptimal it | 32.04% 36.83% 13.77% 141
svmrbf

all features 0.13 0.13 0.13 157
fs standard 32.81% 23.44% 18.75% 157
fs doptimal 56.25% 23.13% 33.13% 14
fs doptimal it | 27.81% 32.81% 19.06% 141

Figure 1: Correlation-based Feature Selection on the data set business

of all cases studied. Also considering the linear discriminant analysis and
the recursive partitioning and regression trees, using all plans with a high D-
value increases the percentage of being the best choice only by approximately

3%.

7 Conclusion

Comparing the error rates resulting from different feature selection methods,
the method based on the plan with the highest D-value yields particular good
results, especially for support vector machines. Depending on the feature
selection method (tree, correlation), the D-optimal selection may result in
even smaller error rates than using all observations (see also Appendix).



d=2 d=>5 d=8 nr. obs.
lda
all features 0.04 0.04 0.04 683
fs standard 89.10% 18.45% 0.00% 683
fs doptimal 74.00% 14.72% 0.00% 10
fs doptimal it | 48.17% 18.45%  0.00% 467
rpart
all features 0.05 0.05 0.05 683
fs standard 11.91% -5.91% -20.60% 683
fs doptimal 64.75% -8.78% -20.60% 10
fs doptimal it | 11.86% -5.87%  -5.91% 467
svindot
all features 0.03 0.03 0.03 683
fs standard 71.43% 23.79% 0.07% 683
fs doptimal 61.79% 14.36%  -9.50% 10
fs doptimal it | 47.50% 14.22%  0.07% 467
svmrbf

all features 0.03 0.03 0.03 683
fs standard 116.57% 38.80% 5.50% 683
fs doptimal 116.49% 49.80%  10.99% 10
fs doptimal it | 83.35% 16.57% 5.50% 467

Figure 2: Correlation-based Feature Selection on the data set breast-cancer

This is only a first step in this direction. Future work might be to investigate
the D-efficiency of the constructed plans and its connection to the results.
Furthermore, one might look for designs by a different optimality criterion.
Also feature selection methods which are more specific, depending on the
classification method, could be used, in order to further improve the results.



d=2 d=4 d=7 nr. obs.
lda
all features 0.22 0.22 0.22 768
fs standard 4.09%  7.06% 1.75% 768
fs doptimal 44.54% 19.36%  9.38% 9
fs doptimal it | 10.57%  9.37%  0.59% 495
rpart
all features 0.26 0.26 0.26 768
fs standard -0.48%  1.55% -2.52% 768
fs doptimal 2.58%  8.07% -1.01% 9
fs doptimal it | 1.53%  3.03%  3.04% 495
svidot
all features 0.23 0.23 0.23 768
fs standard 4.56%  5.15% -0.01 768
fs doptimal 12.59% 12.03% 2.85% 9
fs doptimal it | 9.17%  8.62% 1.14% 495
svmrbf

all features 0.25 0.25 0.25 768
fs standard -0.01% -4.78% -4.25% 768
fs doptimal 12.21%  9.52%  4.22% 9
fs doptimal it | 5.83% -4.24% -1.62% 495

Figure 3: Correlation-based Feature Selection on the data set diabetes

lda rpart svmdot svmrbf
fs standard 46.43% 38.711% 32.00% 34.62%
fs doptimal 25.00% 29.03% 44.00% 34.62%
fs doptimal it | 28.57% 32.26% 24.00% 30.77%

Figure 4: Percentages of best results for the observation selection methods
over all data sets and all values of d (Feature Selection: Correlation)

10
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9 Appendix

Correlation-based Feature Selection on the data set wine
(178 observations, 13 factors)

d=4 d=7 d=10 nr. obs.
Ida
all features 0.02 0.02 0.02 178
fs standard 163.46%  130.77% 1.92% 178
fs doptimal 361.54%  228.85% 65.38% 14
fs doptimal it | 261.54%  130.77% 1.92% 160
rpart
all features 0.13 0.13 0.13 178
fs standard 8.65% 0.00% 0.00% 178
fs doptimal -8.65% -4.33% 0.00% 14
fs doptimal it 8.65% 0.00% 0.00% 160
svmdot
all features 0.01 0.01 0.01 178
fs standard 242.86%  145.71% 48.57% 178
fs doptimal 385.71% 48.57% 0.00% 14
fs doptimal it | 437.14%  145.71% 48.57% 160
svmrbf

all features 0.01 0.01 0.01 178
fs standard 252.94% 52.94%  152.94% 178
fs doptimal 302.94% 50.00% 50.00% 14
fs doptimal it | 302.94%  102.94% 102.94% 160

Correlation-based Feature Selection on the data set balance
(576 observations, 4 factors)

d=1 d=2 nr. obs.
Ida
all features 0.05 0.05 576
fs standard 547.53% 428.34% 576
fs doptimal 498.99% 337.88% 5
fs doptimal it 505.84% 347.31% 323
rpart
all features 0.12 0.12 576
fs standard 171.84% 126.78% 576
fs doptimal 153.37% 119.65% 5
fs doptimal it 167.55% 106.97% 323
svmdot
all features 0.05 0.05 576
fs standard 528.69% 425.49% 576
fs doptimal 470.24% 380.40% 5
fs doptimal it 463.78% 399.78% 323
svmrbf

all features 0.01 0.01 576
fs standard 2314.60%  1814.38% 576
fs doptimal 2151.20%  1702.40% 5
fs doptimal it 2277.12% 1713.29% 323

12



(150 observations, 4 factors)

d=1 d=2 nr. obs.
Ida
all features 0 0 150
fs standard 0.67% 0.67% 150
fs doptimal 4.00% 0.00% 5
fs doptimal it | 0.67%  0.67% 127
rpart
all features 0 0 150
fs standard 0.00%  0.00% 150
fs doptimal 4.00%  0.00% 5
fs doptimal it | 0.00%  0.00% 127
svmdot
all features 0 0 150
fs standard 0.00%  2.00% 150
fs doptimal 4.00% 0.00% 5
fs doptimal it | 0.00%  2.00% 127
svmrbf

all features 0 0 150
fs standard 0.00% 0.00% 150
fs doptimal 2.00%  0.00% 5
fs doptimal it | 0.00%  0.00% 127

(345 observations, 6 factors)

Correlation-based Feature Selection on the data set iris

Correlation-based Feature Selection on the data set liver

d=2 d=4 d=5 nr. obs.
Ida
all features 0.30 0.30 0.30 345
fs standard 33.21%  29.57% 8.62% 345
fs doptimal 30.31% 33.46%  19.20% 7
fs doptimal it | 41.06%  32.41% 16.19% 267
rpart
all features 0.31 0.31 0.31 345
fs standard 30.38% 48.16%  22.74% 345
fs doptimal 18.05%  31.42% 0.79% 7
fs doptimal it | 17.01% 11.37% 17.89% 267
svmdot
all features 0.30 0.30 0.30 345
fs standard 38.08%  43.85% 6.71% 345
fs doptimal 19.76% 17.24%  21.00% 7
fs doptimal it | 33.24%  28.43%  34.48% 267
svmrbf

all features 0.30 0.30 0.30 345
fs standard 39.18% 33.48% 10.51% 345
fs doptimal 37.33% 11.65% 6.64% 7
fs doptimal it | 33.45%  16.24% 5.59% 267
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Correlation-based Feature Selection on the data set medicine
(6610 observations, 18 factors)

d=5 d=10 d=14 nr. obs.
Ida
all features 0.25 0.25 0.25 6610
fs standard 15.79% 2.78% 0.54% 6610
fs doptimal 12.76% 7.62% 2.36% 19
fs doptimal it | 10.47% 5.14% 1.69% 1614
rpart
all features 0.21 0.21 0.21 6610
fs standard 31.59%  10.46% 0.50% 6610
fs doptimal 27.01% 12.39% 4.51% 19
fs doptimal it | 29.15%  11.89% 1.29% 1614
svmdot
all features 0.26 0.26 0.26 6610
fs standard 7.18% 7.35% 5.31% 6610
fs doptimal 7.18% 5.95% 5.60% 19
fs doptimal it 7.18% 7.18% 2.16% 1614
svmrbf

all features 0.20 0.20 0.20 6610
fs standard 41.85%  17.92% 2.70% 6610
fs doptimal 38.30% 17.61%  10.42% 19
fs doptimal it | 40.23%  17.84% 2.78% 1614

Tree-based Feature Selection on the data set business
(157 observations, 13 factors)

d=4 d=7 d=10 nr. obs.
Ida
all features 0.16 0.16 0.16 157
fs standard 8.16%  23.68% 7.89% 157
fs doptimal 47.89%  21.05%  24.47% 14
fs doptimal it 20.26% 27.89%  -20.53% 141
rpart
all features 0.25 0.25 0.25 157
fs standard 0.00% 0.00% 0.00% 157
fs doptimal 30.49% 13.07% 25.29% 14
fs doptimal it 30.49% 12.73% 15.41% 141
svmdot
all features 0.14 0.14 0.14 157
fs standard 9.28%  23.05% 0.30% 157
fs doptimal 93.11% 51.50% 13.47% 14
fs doptimal it | 100.30% 8.38% 9.28% 141
svmrbf

all features 0.13 0.13 0.13 157
fs standard 24.09%  38.44% 23.75% 157
fs doptimal 90.94%  24.06% 19.38% 14
fs doptimal it 92.19% 57.19%  38.44% 141
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Tree-based Feature Selection on the data set breast-cancer
(683 observations, 9 factors)

d=2 d=5 d=8 nr. obs.
Ida
all features 0.04 0.04 0.04 683
fs standard 59.39%  18.55% 0.00% 683
fs doptimal 166.61%  11.27%  14.89% 10
fs doptimal it | 122.65%  29.72% 3.72% 467
rpart
all features 0.08 0.08 0.08 683
fs standard 0.00% 0.00% 0.00% 683
fs doptimal 15.83% 8.81% 0.00% 10
fs doptimal it 5.11% 0.00% 0.00% 467
svmdot
all features 0.03 0.03 0.03 683
fs standard 47.64% 9.57% 4.85% 683
fs doptimal 119.00%  47.78%  -4.79% 10
fs doptimal it | 119.00% 14.15% 0.07% 467
svmrbf

all features 0.03 0.03 0.03 683
fs standard 66.77%  33.23% 0.00% 683
fs doptimal 199.60%  61.03% 5.50% 10
fs doptimal it | 138.32% 61.12% 0.00% 467

Tree-based Feature Selection on the data set diabetes
(768 observations, 8 factors)

d=2 d=4 d=7 nr. obs.
Ida
all features 0.22 0.22 0.22 768
fs standard 14.65%  14.66% 2.92% 768
fs doptimal 36.36%  34.65% 8.22% 9
fs doptimal it | 32.88%  24.68% 7.63% 495
rpart
all features 0.34 0.34 0.34 768
fs standard 0.00% 0.00% 0.00% 768
fs doptimal 3.86% 3.86% 0.39% 9
fs doptimal it 3.86% 3.86% 0.00% 495
svmdot
all features 0.23 0.23 0.23 768
fs standard 11.43% 6.28% 5.14% 768
fs doptimal 41.85%  34.92% 6.30% 9
fs doptimal it | 30.43%  22.90% 8.01% 495
svmrbf

all features 0.25 0.25 0.25 768
fs standard -1.62% -2.67%  -3.70% 768
fs doptimal 24.43% 9.05% 8.46% 9
fs doptimal it | 28.67% 3.16% -1.62% 495
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Tree-based Feature Selection on the data set wine

(178 observations, 13 factors)

d=4 d=7 d=10 nr. obs.
Ida
all features 0.02 0.02 0.02 178
fs standard 590.39%  165.38% 63.46% 178
fs doptimal 826.92%  232.69% 65.38% 14
fs doptimal it 926.92%  394.23% 167.31% 160
rpart
all features 0.11 0.11 0.11 178
fs standard 0.00% 0.00% 0.00% 178
fs doptimal 121.85%  101.23% 0.00% 14
fs doptimal it 52.31% 57.54% 5.23% 160
svmdot
all features 0.01 0.01 0.01 178
fs standard 582.86%  391.43%  245.71% 178
fs doptimal 1245.71% 297.14%  242.86% 14
fs doptimal it | 1414.29%  340.00%  242.86% 160
svmrbf

all features 0.01 0.01 0.01 178
fs standard 658.82%  352.94%  300.00% 178
fs doptimal 958.82%  250.00%  300.00% 14
fs doptimal it 870.59%  355.88%  252.94% 160

Tree-based Feature Selection on the data set balance

(576 observations, 4 factors)

d=1 d=2 nr. obs.
Ida
all features 0.05 0.05 576
fs standard 541.30% 396.30% 576
fs doptimal 528.28% 405.95% 5
fs doptimal it 476.77% 347.47% 323
rpart
all features 0.35 0.35 576
fs standard 0.00% 0.00% 576
fs doptimal -11.99% -2.50% 5
fs doptimal it -15.97% 0.00% 323
svmdot
all features 0.05 0.05 576
fs standard 544.86% 396.46% 576
fs doptimal 509.04% 331.78% 5
fs doptimal it 499.27% 377.15% 323
svmrbf

all features 0.01 0.01 576
fs standard 2414.60%  1601.31% 576
fs doptimal 2150.11%  1625.49% 5
fs doptimal it | 2201.52%  1800.44% 323
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Tree-based Feature Selection on the data set iris

(150 observations,4 factors)

d=1 d=2 nr. obs.
Ida
all features 0 0 150
fs standard 0.67% 0.67% 150
fs doptimal 9.33% 0.67% 5
fs doptimal it 2.67% 0.67% 127
rpart
all features 0 0 150
fs standard 0.00%  0.00% 150
fs doptimal 9.33%  2.00% 5
fs doptimal it 2.67%  0.00% 127
svmdot
all features 0 0 150
fs standard 0.00%  0.00% 150
fs doptimal 8.67%  2.00% 5
fs doptimal it | 10.67%  2.00% 127
svmrbf

all features 0 0 150
fs standard 0.00%  0.00% 150
fs doptimal 7.33%  0.00% 5
fs doptimal it | 14.00%  0.00% 127

Tree-based Feature Selection on the data set liver
(345 observations, 6 factors)

d=2 d=4 d=5 nr. obs.
Ida
all features 0.30 0.30 0.30 345
fs standard 36.06% 32.41%  32.41% 345
fs doptimal 41.72%  15.28%  15.28% 7
fs doptimal it | 29.59%  38.30%  38.30% 267
rpart
all features 0.42 0.42 0.42 345
fs standard 0.00% 0.00% 0.00% 345
fs doptimal 0.00% 0.00% 0.00% 7
fs doptimal it 0.00% 0.00% 0.00% 267
svmdot
all features 0.30 0.30 0.30 345
fs standard 39.02% 18.90% 18.90% 345
fs doptimal 29.43%  34.37%  34.37% 7
fs doptimal it | 37.14%  41.03%  41.03% 267
svmrbf

all features 0.30 0.30 0.30 345
fs standard 35.45% 19.98%  19.98% 345
fs doptimal 33.51% 24.96%  24.96% 7
fs doptimal it | 37.24% 18.18%  18.18% 267
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Tree-based Feature Selection on the data set medicine
(6610 observations, 18 factors)

d=5 d=10 d=14 nr. obs.
Ida
all features 0.25 0.25 0.25 6610
fs standard 10.22% 8.41% 6.17% 6610
fs doptimal 13.31% 10.16%  3.33% 19
fs doptimal it 11.98% 9.86% 2.06% 1614
rpart
all features 0.28 0.28 0.28 6610
fs standard 0.00% 0.00%  0.00% 6610
fs doptimal 0.00% 0.00%  0.00% 19
fs doptimal it 0.00% 0.00%  0.00% 1614
svmdot
all features 0.26 0.26 0.26 6610
fs standard 7.18% 6.01% 6.42% 6610
fs doptimal 7.18% 7.18%  6.53% 19
fs doptimal it 7.18% 7.18%  6.01% 1614
svmrbf

all features 0.20 0.20 0.20 6610
fs standard 35.83% 27.95% 6.25% 6610
fs doptimal 36.53% 14.83%  7.64% 19
fs doptimal it 39.61% 20.62%  4.40% 1614
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