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Abstract 
 
This paper studies optimal non-linear income taxation in a model with labor supply responses at 
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Income Tax Credit (EITC) with negative marginal taxes and negative participation taxes at the 
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distribution and, second, social concerns for redistribution from the poor to the very poor are 
sufficiently weak. This result is driven by a previously neglected trade-off between distortions at 
the intensive margin and distortions at the extensive margin, i.e., between two aspects of 
efficiency. Numerical simulations suggest that a strong expansion of the EITC for childless 
singles in the US could be welfare-increasing. 
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1 Introduction

The Earned Income Tax Credit (EITC) is a refundable tax credit that has been introduced

in 1975 and extended in several steps over the following decades. Today, it represents one

of the largest programs transfering resources towards the poor in the US (Nichols &

Rothstein 2015). The EITC differs from traditional welfare programs in that it entails

negative participation taxes and negative marginal taxes for low-income earners.1 Hence,

it provides incentives to take up work for non-working persons and to increase working

hours for low-income earners. Among political practitioners, there seems to be a broad

consensus that the EITC is an effective instrument for fighting poverty. Just a few years

ago, President Obama and the Republican Chairman of the House of Representatives

Budget Committee, Paul Ryan, even proposed to double the EITC payments for childless

workers (see Executive Office 2014, House Budget Committee 2014). However, economists

have struggled to rationalize tax-transfer schemes with the properties of the EITC. In

particular, a standard result in optimal tax theory is that the marginal tax should never

be negative if labor supply responds only at the intensive margin as in Mirrlees (1971).

The main contribution of this paper is to clarify under which conditions an EITC

with negative marginal taxes and negative participation taxes at the bottom is optimal.

In particular, I derive necessary and sufficient conditions for the optimality of an EITC

in a model where labor supply responds at the intensive (hours, effort) and the extensive

(participation) margin.2 Since Saez (2002), it has been known that the sign of the optimal

marginal tax is ambiguous and that an EITC might be optimal in models with both mar-

gins. However, the previous literature has not identified any case in which the optimality

of a negative marginal tax is actually ensured. Jacquet et al. (2013) even argue that the

marginal tax should generally be positive at all income levels. By contrast, I show both

analytically and numerically that the marginal tax at the bottom should be negative in

empirically relevant cases.

More specifically, I derive three sets of results. First, I study the effects of a small

reform that introduces an EITC with negative participation taxes and negative marginal

taxes up to some income threshold ŷ. I show that this reform gives rise to a positive

fiscal externality if (i) the semi-elasticity of participation is decreasing along the income

distribution. The existing empirical evidence provides support for this condition.3 The

reform also increases welfare if (ii) the income gradient of welfare weights is close enough

to zero at the bottom of the income distribution, i.e., if society considers all agents with

1The participation tax TP : y 7→ TP (y) measures the difference between the net taxes to be paid at
any income level y and 0. Hence, the participation tax is negative at income y if the transfer to a worker
with income y is larger than the transfer to an individual with zero income.

2The empirical literature provides abundant evidence for the relevance of both margins: “the world
is obviously a mix of the two [intensive-margin and extensive-margin] models” (Saez 2002: p. 1054). See
also, amongst others, Chetty, Guren, Manoli & Weber (2013).

3All available empirical studies find that participation elasticities are either constant or decreasing
along the income distribution (see, e.g., Juhn et al. 1991, 2002, Meghir & Phillips 2010, Bargain et al.
2014, Bastani et al. 2020). In both cases, the semi-elasticities of participation are strictly decreasing.
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incomes below the threshold ŷ similarly deserving. Second, I use a structural model to

show that the conditions (i) and (ii) are necessary but not sufficient for an EITC with

negative marginal and participation taxes to be optimal. I also show that the optimality

of an EITC is ensured if, additionally, there is a sufficiently large share of workers with

high incomes above ŷ. As will become clear, this sufficient condition (only) imposes a

restriction on the income threshold ŷ. Third, I calibrate the model to provide numerical

simulations of the optimal income tax for childless singles in the US. The simulation

results substantiate the quantitative relevance of my previous results. They show that

even the recent proposals to double the EITC for childless singles can be rationalized. In

the following, I provide a more detailed account of these results.

Tax reform analysis: The fiscal externality of an EITC. In the first step, I use

a tax perturbation approach to study the effects of a reform that introduces a small

EITC. This analysis provides a novel intuition for why and when the EITC can be an

attractive policy instrument. I start by showing that, if labor supply responds at the

extensive margin, the introduction of negative participation taxes for low-income workers

gives rise to a positive fiscal externality. I then proceed by showing that, given negative

participation taxes, the introduction of negative marginal taxes yields a positive fiscal

externality as well.

For an intuitive understanding of the latter key insight, consider the reform illustrated

in Figure 1. In this figure, the solid blue line depicts a pre-reform tax schedule such that

all workers with incomes below some threshold yp receive identical work subsidies, i.e.,

face zero marginal taxes and strictly negative participation taxes. For example, threshold

yp can be thought of as the poverty line. Then, consider a small tax reform that introduces

a negative marginal tax in such a way that the work subsidies for workers with incomes

close to zero are reduced, while the work subsidies for workers with slightly higher incomes

below yp are increased (see dashed red line in Figure 1). Transfers to non-working agents

and taxes for higher-income workers remain constant.

The reform induces labor supply responses at both margins. First, the changes in

work subsidies lead to responses at the extensive margin: Some workers with very low

Figure 1: A reform that introduces negative marginal taxes.

y

T

0 yp

T (y)

T (0)

T (yp)

Notes: Figure 1 illustrates a reform that introduces negative marginal taxes at low incomes. The
solid blue line represents the pre-reform tax schedule, which involves zero marginal taxes and negative
participation taxes for all incomes below yp. The dashed red line represents the post-reform tax schedule.
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incomes close to zero leave the labor market, and some non-working agents enter the

labor market with higher incomes below yp. Given a work subsidy prior to the reform,

the former responses yield a gain in tax revenue, while the latter responses yield a revenue

loss. The net effect on tax revenue is strictly positive if the participation responses of the

former group are larger than those of the latter group (in line with the empirical evidence).

Second, the reduction in marginal taxes induces workers to increase their working hours.

With a negative marginal tax, this intensive-margin response yields a loss in tax revenue.

Thus, there is a previously neglected tradeoff: tax revenue is positively affected by the

extensive-margin responses and negatively affected by the intensive-margin responses.

Starting from a tax schedule with zero marginal taxes, however, the revenue loss due

to intensive-margin responses is initially negligible. Consequently, the introduction of a

small negative marginal tax yields a strictly positive fiscal externality: a revenue gain due

to behavioral responses that can be redistributed back to the population.

The welfare effect of this reform also depends on the government’s redistributive prefer-

ences, as the reform redistributes resources from workers with very low incomes to workers

with slightly higher incomes. If the income gradient of welfare weights is large, i.e., soci-

ety considers the workers with very low incomes much more deserving than workers with

incomes close to the poverty line yp, the redistributive loss outweighs the gains from the

positive fiscal externality of the reform. If the income gradient of welfare weights is close

to zero, by contrast, the redistributive loss is small and the fiscal externality dominates:

The introduction of a negative marginal tax increases welfare. In this case, it appears

plausible that negative marginal taxes for low-income workers are also part of the opti-

mal tax policy. However, there might exist other tax reforms that increase welfare even

more, e.g., reforms that introduce a small positive marginal tax at the bottom and reduce

marginal taxes for high-income workers. Hence, by construction, the tax reform analysis

in this step provides a novel intuition but does not allow to identify the properties of the

optimal tax.

Optimal tax analysis: Necessary and sufficient conditions for an EITC. In

the second step, therefore, I take a mechanism design approach to solve for the welfare-

maximizing income tax. For this purpose, I use a structural model in which the agents

differ both in marginal costs of providing effort as in Mirrlees (1971) and in fixed costs

of working as in Diamond (1980). This two-dimensional heterogeneity gives rise to labor

supply responses at both margins. To simplify the exposition, I initially focus on a

stylized version of this model with three skill groups and particularly simple functional

forms. Then, I generalize my results to a model with a finite but arbitrarily large number

of skill groups and without assumptions on functional forms, which is flexible enough to

be calibrated to empirical moments.

In both model versions, I derive necessary conditions for the optimality of negative

participation taxes and negative marginal taxes up to some income threshold ŷ, which

mirror those from the previous tax reform analysis: An EITC can only be optimal if (i)

3



the semi-elasticity of participation is decreasing over the skill distribution, and (ii) the

skill gradient of welfare weights is close enough to zero at the bottom. I also identify a

sufficient condition that did not appear before: The optimality of an EITC is ensured

if, on top of the two previous conditions, the population share of workers with earnings

above ŷ is large enough. Intuitively, this implies that the tax base for taxes on high-income

earners is large so that an EITC is easy to finance. In the model with three skill groups,

this sufficient condition is satisfied if both the population share and the productivity of

the highest-skilled group are large enough. In the general model, the condition is always

satisfied for an EITC with a small income threshold ŷ, but not for an EITC with a large

threshold. Hence, the sufficient condition turns into a restriction on the optimal size of

the EITC. A supplementary analysis shows that an EITC remains optimal in the limit

case in which the discrete skill set converges to a continuous set (see Appendix D.1).

Numerical analysis: Optimal income taxes for childless singles in the US. In

the third step, I provide numerical simulations of the optimal income tax for a calibrated

version of the general model. These simulations allow me, first, to assess the quantitative

relevance of my analytical results and, second, to show that an EITC can even be optimal

if only the necessary conditions discussed above are met. Specifically, I calibrate the model

to the subgroup of childless singles in the US, using (a) data from the March 2016 Current

Population Survey and (b) estimates of labor supply elasticities from the empirical litera-

ture. Under 2015 US tax rules, childless singles face a small EITC with negative marginal

taxes for incomes below $6, 580, negative participation taxes for incomes below $14, 820

and a maximum tax credit of $503. According to my benchmark simulations, by contrast,

marginal taxes should be negative for annual incomes up to $15, 000 and participation

taxes should be negative for incomes up to $34, 000. The maximum tax credit should

even amount to levels around $2, 000. Hence, the recent proposals to strongly expand the

EITC can indeed be rationalized (Executive Office 2014, House Budget Committee 2014).

A comprehensive sensitivity analysis shows that variations in intensive-margin and

extensive-margin elasticities and in the discretization of the skill set (i.e., the number of

skill types) have only limited effects on the quantitative properties of the optimal tax

schedule. By contrast, the assumed preferences for redistribution have a crucial impact:

An EITC is optimal if the welfare weights are flat at the bottom, but not if the welfare

weights are steeply decreasing at the bottom (as in the simulations by Saez 2002 and

Jacquet et al. 2013). Additionally, I provide the results of numerical simulations for the

subgroup of single parents in the US.4

How relevant are these results? A main take-way from this paper is that the optimal

design of taxes for low-income earners depends crucially on the income gradient of welfare

weights. This observation gives rise to the question what a convincing assumption on the

4In a nutshell, I find that the current EITC for single parents – which is much more generous than
for childless singles – can be rationalized, but should not be expanded further (see Appendix D.5).
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income gradient of welfare weights is. Is it possible to rationalize welfare weights that are

more or less flat at the bottom of the income distribution? The answer to this question

depends on the type of social objective considered. A Rawlsian planner cares only about

the utility of the non-working, i.e., the implied welfare weights drop discontinuously at

the bottom of the income distribution. Similarly, in a model with only one-dimensional

heterogeneity in skills, the assumptions of a utilitarian welfare function and a standard

utility function imply that marginal welfare weights are convexly decreasing, i.e., partic-

ularly steep at the bottom (as the ones considered by Saez 2002 and Jacquet et al. 2013).

In a two-dimensional model as the one I study, this is less obvious: If agents with higher

skill types are disadvantaged in another dimension (e.g., because they face on average

higher fixed costs than low-skill workers), marginal welfare weights may be flat or even

increasing at the bottom (see Choné & Laroque 2010). Besides, if the social objective is

to alleviate poverty, the social planner cares similarly for everyone below the poverty line.

Correspondingly, Saez & Stantcheva (2016) suggest to model this objective by means of

generalized welfare weights that are flat at the bottom. It has repeatedly been argued

that a poverty alleviation objective appears more descriptive for real-world policy choice

than standard welfarist objectives (Besley & Coate 1992, 1995, Kanbur et al. 1994, Saez

& Stantcheva 2016). The recent political debate supports this view: Proponents of an

EITC expansion mainly emphasize its potential to lift workers above the poverty line and

reduce the depth of poverty for others (e.g., Executive Office 2014, House Budget Com-

mittee 2014). Summing up, my results suggest that an EITC is an attractive instrument

for real-world policy makers that are interested in reducing poverty, but less so for the

utilitarian social planner that is typically considered in economics textbooks.

Outline. The paper proceeds as follows. Section 2 briefly reviews the related literature.

Section 3 introduces the basic framework. Section 4 studies whether the introduction of

a small EITC is welfare-increasing, while Section 5 provides my results on the optimal

income tax. Section 6 provides numerical simulations for a calibrated version of the model.

Section 7 concludes. Appendices A and B contain the formal proofs for the tax reform

analysis and the optimal tax analysis in the stylized model. Appendices C and D provide

the formal proofs for the general model and supplementary material, respectively.

2 Related literature

This paper contributes to two strands of the literature. First and foremost, it contributes

to the small literature on optimal income taxation in settings with labor supply responses

at the intensive and extensive margins. The most closely related papers are given by Saez

(2002) and Jacquet et al. (2013). Saez (2002) studies a model with a finite number of

available income levels interpreted as occupations. He uses a perturbation approach to

derive an optimal tax formula. Jacquet et al. (2013) study a two-dimensional model with

5



continuous sets of skill types and fixed cost types. My model differs from theirs mainly in

that I consider a discrete skill set. They use a mechanism design approach to derive first-

order conditions that characterize the optimal allocation. Neither the optimal tax formula

nor the first-order conditions pin down the optimal sign of the marginal tax, however.5 As

a result, both papers can only note that the optimal marginal tax might be negative, but

neither of them provides examples in which this is indeed the case. Instead, Jacquet et al.

(2013) provide a sufficient condition for optimal marginal taxes to be positive everywhere

below the top.6 Both papers also perform numerical simulations in which the optimal

tax is always monotonically increasing over the entire range of positive income levels.

Based on these simulations, Jacquet et al. (2013) argue that marginal taxes should even

be positive if their sufficient condition is not met.7 By contrast, I show that an EITC

with negative marginal taxes is optimal under empirically plausible conditions.

Second, a few previous papers provide alternative rationalizations of an EITC with

negative marginal taxes. In Beaudry et al. (2009), the social planner uses work subsidies to

redistribute from agents working in an informal (black) labor market to formally employed

workers with low wages. In Choné & Laroque (2010), the planner wants to transfer

resources from low-skill, low-income workers to high-skill, high-income workers because

the latter group is disadvantaged in some other dimension. To achieve this redistribution

from the poor to the rich, she has to use negative marginal taxes. In Lockwood (2020), the

agents suffer from a present bias that makes them underestimate some delayed benefits

of their work effort (e.g., future promotions). As a result, they provide inefficiently little

effort compared to non-biased agents. In this model, negative marginal taxes can increase

welfare because they help to correct for the individual optimization errors. In my model,

there is no informal labor market, welfare weights are monotonically decreasing along the

skill distribution, and agents behave individually rational. Instead, I demonstrate that

negative marginal taxes can be optimal as soon as the standard Mirrlees (1971) model is

augmented to account for labor supply responses at the extensive margin.

3 The basic framework

This section introduces a basic framework for the normative analysis of income taxes with

labor supply responses at both margins. I start by defining the economic environment.

Then, I derive individually optimal earnings choices. Based on this framework, I study the

5In Appendices D.7 and D.8, I present versions of the optimal tax formula and the first-order condi-
tions, and explain why they do not allow to sign the optimal marginal tax.

6Specifically, Jacquet et al. (2013) identify a monotonicity condition under which optimal marginal
taxes are ensured to be positive. To verify this condition, one has to evaluate the skill-specific marginal
welfare weights and semi-elasticities at the second-best allocation. As they acknowledge, this is not trivial
because welfare weights and semi-elasticities are in general endogenous objects.

7Besides, both papers find that the optimal transfer to low-income workers is sometimes higher than
the transfer to non-working agents. Saez (2002) refers to the difference between the transfers to non-
working agents and the lowest-earning workers as the marginal tax at the bottom. In contrast, Jacquet
et al. (2013) and the subsequent literature refer to this difference as the participation tax at the bottom.
I stick to the latter terminology.
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welfare and revenue effects of introducing a small EITC in Section 4 and the properties

of the optimal (welfare-maximizing) tax schedule in Section 5.

3.1 Environment

There is a continuum of agents of mass one. Agent i enjoys consumption ci and suffers

from a cost of providing output yi. This cost can be separated into a variable effort cost

that is continuously increasing in yi and a fixed cost that the agent bears if and only if

she provides strictly positive output. Formally, the agent’s preferences can be represented

by the utility function

u(ci, yi;ωi, δi) = ci − h(yi, ωi)− 1yi>0 δ
i . (1)

Function h captures the variable effort cost, which depends on the output level yi and the

agent’s skill type ωi ∈ Ω. I impose the standard assumptions that h satisfies h(0, ω) = 0,

hy(y, ω) > 0, hyy(y, ω) > 0, hω(y, ω) < 0 and hyω(y, ω) < 0 for all y > 0 and ω ∈ Ω.

Parameter δi ∈ ∆ specifies the agent’s fixed cost type.

Each agent is privately informed about her skill type ωi and her fixed cost type δi.

The type set Ω×∆ is a subset of R2. Specifically, there is a continuous set of fixed costs

∆ =
[
δ, δ̄
]
. The skill set Ω may be discrete or continuous. In any case, I denote by ω and

ω̄ the lowest and the highest skill type, respectively. The joint cross-section distribution

G : Ω × ∆ 7→ [0, 1] of two-dimensional types in the population is commonly known and

has full support on Ω×∆. To ensure that labor supply responds at the extensive margin,

I assume that
δ < maxy>0 y − h (y, ω) ,

δ̄ > maxy>0 y − h (y, ω̄) .
(2)

This assumption and hω < 0 jointly ensure that the extensive margin is relevant in each

skill group ω ∈ Ω: Under laissez-faire, some agents with skill type ω provide strictly

positive output, while other agents with the same skill type provide zero output. As will

become clear, the same is true for the optimal allocation.

The government redistributes resources by setting a non-linear income tax schedule

T : y 7→ T (y) and letting each agent choose her individually optimal income y∗(ω, δ |
T ) := arg maxy u(y−T (y), y;ω, δ). The resulting allocation is evaluated based on a social

welfare function. Specifically, I assume that social welfare is given by

EΩ×∆ [α(ω) V (ω, δ | T )] , (3)

where V (ω, δ | T ) denotes the indirect utility of an agent with type (ω, δ) facing tax

schedule T , and α(ω) denotes an exogenous welfare weight associated to every agent with

skill type ω. I assume that welfare weights are strictly positive, decreasing over the skill

distribution and normalized to have an average value of 1. The government’s budget
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constraint is given by

EΩ×∆ [T (y∗(ω, δ | T ))] ≥ B (4)

where B is an exogenous revenue requirement. For the remainder of this paper, I set

B = 0.

Note that I have imposed three simplifying assumptions. First, I have assumed that

fixed costs enter the utility function in an additively separable way. This implies that the

fixed cost δ only affects an agent’s decision whether or not to work at all, but not her

income choice conditional on working. Second, I have imposed quasi-linearity of utility

in consumption, thereby assuming away income effects in labor supply. Third, I consider

a welfare function with exogenous welfare weights that depend only on the agents’ skill

types, but neither on their fixed cost types nor on the bundles they are assigned. All

three assumptions simplify the analysis, but do not eliminate the problems in signing the

optimal marginal tax. The first assumption follows the random participation approach

by Rochet & Stole (2002) and is standard in the literature on optimal taxation with two

margins. The other two assumptions have been used in many other optimal tax papers,

including Diamond (1998) and Saez (2001).8

3.2 Individual labor supply choices

Fix a tax schedule T : R+
0 → R that is continuously differentiable and weakly convex for

all y > 0.9 An agent with type (ω, δ) maximizes her utility (1) by choosing the output

level

y∗ (ω, δ | T ) =

{
yT (ω) if δ ≤ δT (ω)

0 if δ > δT (ω),
(5)

where the conditional optimum yT (ω) is implicitly defined by the first-order condition

1− T ′ [yT (ω)] = hy (yT (ω), ω) (6)

and the participation threshold δT (ω) is defined by

δT (ω) := yT (ω)− h (yT (ω), ω)− [T (yT (ω))− T (0)] . (7)

Hence, conditional on providing positive output, an agent’s optimal intensive-margin

choice depends only on her skill type ω: All working agents with skill type ω choose

the same income level yT (ω). The extensive-margin decision whether to provide positive

output depends on whether her fixed cost type δ is below or above the skill-specific par-

ticipation threshold δT (ω). As a consequence, the skill-specific participation rate is given

8Jacquet et al. (2013) allow for income effects as well as endogenous welfare weights.
9The assumptions of continuous differentiability and weak convexity simplify the exposition. I main-

tain them in the tax reform analysis in Section 4. In the optimal tax analysis in Sections 5 and 6, by
contrast, I allow for concavity and for kinks in the tax schedule.
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by pT (ω) = Gδ(δT (ω) | ω). Correspondingly, the share of non-working agents is given by

EΩ [1− pT (ω)].

Tax reforms can induce labor supply responses at both margins in each skill group.

As usual, I measure intensive-margin responses by the skill-specific elasticity of income

with respect to the retention rate,

εT (ω) :=
∂yT (ω)

∂ [1− T ′(yT (ω))]

1− T ′(yT (ω))

yT (ω)
. (8)

Following Jacquet et al. (2013), I measure extensive-margin responses by the skill-specific

semi-elasticity of participation,

ηT (ω) :=
∂pT (ω)

∂ [yT (ω)− T P (yT (ω))]

1

pT (ω)
, (9)

which gives the percentage change in the participation rate pT (ω) that results from a

one-unit increase in the net-of-tax labor income y − T P (y).10 In general, both εT and ηT

vary with skill type ω and tax schedule T .

4 The welfare effects of introducing an EITC

In this section, I study the welfare effects of introducing a small EITC. For this purpose,

I assume that there is a status-quo tax schedule with zero marginal and participation

taxes at the bottom. While this tax schedule is generically not optimal, it allows me

to investigate the effects of a small EITC in two steps. In the first step, I clarify the

conditions under which the introduction of negative participation taxes for low-income

workers increases tax revenue and welfare. In the second step, I show that, given a

negative participation tax, the introduction of negative marginal taxes is revenue- and

welfare-increasing under plausible conditions. The analysis is based on the variational

approach introduced by Piketty (1997) and Saez (2001) and its extension to multi-bracket

tax reforms by Bierbrauer et al. (2020).

The results of this section are expressed in terms of sufficient statistics : They only

depend on objects that describe redistributive preferences and labor supply responses for

small perturbations of the tax system (Kleven 2020b). Correspondingly, they could be

derived based on any model of individual behavior that gives rise to intensive-margin and

extensive-margin responses, and for any social objective (see Saez & Stantcheva 2016).11

To maximize the clarity of the argument, I nevertheless use the model introduced in

Section 3, which I subsequently also use to study optimal taxes. The results do not

depend on whether the skill set Ω is discrete or continuous, either. Following most of

10Alternatively, extensive-margin responses could be measured by the (standard) elasticity of partici-
pation, πT (ω) = ηT (ω)

[
yT (ω)− TP (yt(ω))

]
.

11More specifically, the following results hold for any model such that there are no income effects in
labor supply. Income effects would not alter the key insights: The size of the fiscal externality of a small
EITC changes, but it remains strictly positive.
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the literature, I focus on the case of a continuous skill set and denote by y = yT (ω) and

ȳ = yT (ω) the incomes of the lowest-skilled and the highest-skilled workers, respectively.

To study the introduction of a small EITC, I assume that there is a pre-reform tax

schedule T with the following properties.

Assumption 1. The pre-reform tax schedule T is continuously differentiable and weakly

convex for all y > 0. Moreover, it satisfies T (y)− T (0) = tp for all y ∈ (0, yp), where yp

is an income threshold in
(
y, ȳ
)
.

Assumption 1 implies that, prior to the reform, the marginal tax T ′(y) is zero and the

participation tax is identical for all incomes below yp. Below, I will focus on cases where

the participation tax tp at the bottom is either zero or negative. In the latter case, there

is a work subsidy for low-income workers. With a continuous skill set Ω, Assumption

1 implies that T implements an income distribution Fy with density fy on the interval[
y, ȳ
]

and a mass point Fy(0) at zero income. The following subsections make use of two

additional pieces of notation. First, I denote by α̂(y′, y′′) the average welfare weight of

workers with incomes between y′ and y′′, and by α̂0 the average welfare weight of non-

working agents under tax schedule T . Second, I denote by η(y′) the semi-elasticity of

participation for workers with income y′, and by η̂(y′, y′′) the average semi-elasticity of

participation for workers with incomes between y′ and y′′.12

4.1 Introducing negative participation taxes

I start by investigating the welfare effects of a reform that introduces negative participa-

tion taxes for low-income workers. For this purpose, I consider a reform that redistributes

resources from non-working agents with zero income to low-income workers with strictly

positive incomes below some threshold ya < yp. Figure 2a illustrates this reform by de-

picting a pre-reform tax schedule (solid blue line) and a post-reform tax schedule (dashed

red line). Specifically, the reform increases the tax of non-working agents by an amount

τ`. It decreases the tax liability for all incomes in the range (0, ya−`) by the amount τ`φa

and increases the marginal tax in the income range (ya−`, ya) by τφa, where the weighting

parameter φa is set to F0(0)/[Fy(ya)−Fy(y)]. The reform does not affect tax liabilities at

incomes above ya. A potential revenue gain (loss) due to the reform is compensated by

a lump-sum transfer to (tax on) the entire population. Applied to a pre-reform tax that

satisfies Assumption 1 with tP = 0, this reform introduces a negative participation tax

for low-income earners (see dashed red line in Figure 2a).

The following lemma studies the welfare effect of this tax reform, focusing on the limit

case where both τ and ` converge to zero. The details of the formalization and the proof

are relegated to Appendix A.

12Formal definitions of α̂(y′, y′′), α̂0, η(y) and η̂(y′, y′′) are provided in the appendix.
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Lemma 1. Let the pre-reform tax T satisfy Assumption 1 with a zero participation tax

tP = 0 for all incomes below yp. The introduction of a negative participation tax for

incomes below ya < yp is welfare-increasing if and only if∫ ȳ

yp

fy(y)η(y)T P (y)dy >
[
Fy(ya)− Fy(y)

] (
α̂0 − α̂(y, ya)

)
. (10)

By Lemma 1, the welfare effect of introducing negative participation taxes at the

bottom depends on the relative size of two terms. The term on the left-hand side of (10)

captures a positive fiscal externality that is driven by previously non-working agents who

enter the labor market with incomes above yp. As the participation tax was positive above

yp before the reform, these extensive-margin responses yield a revenue gain that can be

redistributed back as a lump-sum transfer. The size of this fiscal externality depends on

the levels of the semi-elasticity of participation η and the participation tax T P for workers

with incomes above yp. It would vanish if labor supply would only respond at the intensive

margin, i.e., if η(y) = 0 for all incomes above yp. With zero participation taxes at the

bottom, tp = 0, there are initially no further fiscal externalities. The term on the right-

hand side captures the direct (mechanical) welfare loss of redistributing resources from

non-working agents with welfare weight α̂0 to low-income workers with average welfare

weight α̂(y, ya). Its size depends on the income gradient of the welfare weights and the

length of the interval (y, ya). In particular, the mechanical welfare loss is zero if society

associates the same welfare weight αp > 1 to all agents with incomes below yp. In this

case, the reform is unambiguously welfare-increasing whenever labor supply responds at

the extensive margin.

For a more complete understanding of Lemma 1, note that a reform with the properties

depicted in Figure 2a in general has mechanical effects and behavioral effects due to both

intensive-margin and extensive-margin responses on tax revenue. First, the mechanical

effects are given by the revenue gain from the tax hike for non-working agents and the

Figure 2: The introduction of a small EITC.

y

T

0 ya

T (y)

`

T (0)

(a) Negative participation taxes.

y

T

0 ya yb

T (y)

` ` `

T (0)

T (0) + tP

(b) Negative marginal taxes.

Notes: Figure 2a in the left panel illustrates a reform that introduces negative participation taxes for
positive incomes below ya. Figure 2b in the right panel illustrates a reform that introduces negative
marginal taxes around income level ya. In both figures, the solid blue line represents the pre-reform tax
schedule T that satisfies Assumption 1, while the dashed red line represents the post-reform tax schedule.

11



revenue loss from the tax cut for low-income workers. The population share of the former

group is given by Fy(0), the share of the latter group by Fy(ya) − Fy(y). With the

weighting parameter φa set to Fy(0)/[Fy(ya)− Fy(y)], both mechanical effects offset each

other. Second, the reform has a behavioral effect that results from the intensive-margin

responses of workers with incomes close to ya, for whom the marginal tax is increased.

Under Assumption 1, however, these responses initially do not affect the workers’ tax

payments because the marginal tax T ′(ya) was equal to zero before the reform. Third,

the reform has a behavioral effect that results from extensive-margin responses. As the

reform has reduced the participation tax at all income levels, taking up work at any

positive income has become more attractive relative to non-working. As a result, some

previously non-working agents enter the labor market with earnings levels between y and

ȳ. For agents entering the labor market with an income below yp, these extensive-margin

responses initially have no effect on tax revenue as the pre-reform participation tax was

given by tP = 0. For agents entering with an income above yp, by contrast, tax revenue is

increased because the pre-reform participation tax was positive. As these revenue gains

are transferred uniformly to the entire population, the reform induces the positive fiscal

externality captured by the left-hand side of (10). The total effect on welfare is positive

if this fiscal externality exceeds the redistributive loss on the right-hand side of (10).13

4.2 Introducing negative marginal taxes

In the next step, I show that the introduction of negative marginal taxes can be welfare-

increasing if the participation tax at the bottom is negative (e.g., as a result of the reform

studied above). For this purpose, consider a tax reform that redistributes resources from

workers with incomes below some threshold ya to workers with slightly higher incomes

between ya and another threshold yb, implemented by a reduction in the marginal tax

around ya. Figure 2b illustrates this reform by depicting both the pre-reform tax schedule

(solid blue line) and the post-reform tax (dashed red line). Specifically, the reform reduces

the marginal tax in the interval (ya−`, ya) by τ and increases the tax liability for incomes

in (y, ya − `) by the amount τ`. Moreover, the reform decreases the marginal tax in the

interval (ya, ya + `) by τφb and increases the marginal tax in the interval (yb, yb + `) by

the same amount. As a result, tax levels for incomes between ya + ` and yb are reduced

by the amount τ`φb, while taxes above yb + ` remain constant constant. The weighting

parameter φb is set to φb = [Fy(ya) − Fy(y)]/[Fy(yb) − Fy(ya)]. Again, I assume that a

potential revenue gain (loss) of the reform is compensated by a lump-sum transfer to (tax

on) the entire population.

Importantly, the solid blue line in Figure 2b depicts a pre-reform tax schedule that

involves zero marginal taxes and negative participation taxes at the bottom, tp < 0.

13If the participation tax at the bottom tp is different from zero, the reform gives rise to an additional
fiscal externality due to the extensive-margin responses of low-income workers. For tp above zero, this
externality is positive and the welfare effect of the reform is further increased. For tp below zero, the
externality is negative and the welfare effect is subsequently decreased.
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Applied to this pre-reform tax, the reform introduces negative marginal taxes in the

interval (ya− `, ya+ `). For the case with negative participation taxes tp < 0 in the status

quo, moreover, the reform reduces the work subsidy for the lowest-income workers and

increases the work subsidy for workers with slightly higher incomes. The resulting tax

schedule is a stylized version of the EITC in the US (see Figure 2b).

The following lemma provides a condition under which this reform increases welfare,

focusing again on the limit case of a small reform with τ → 0 and `→ 0. The details of

the formalization and the proof are relegated to Appendix A.

Lemma 2. Let the pre-reform tax T satisfy Assumption 1 and let ya < yb < yp. The

introduction of a negative marginal tax around a low-income level ya is welfare-increasing

if and only if

− tp
[
η̂(y, ya)− η̂(ya, yb)

]
> α̂(y, ya)− α̂(ya, yb) . (11)

Lemma 2 implies that the welfare effect of introducing negative marginal taxes depends

on the relative sizes of a fiscal externality on the left-hand side, and a redistributive loss

on the right-hand side of (11). The fiscal externality results because the reform makes

it less attractive to take up work with an income below ya rather than to remain non-

working, but more attractive to take up work with an income above ya. Assume that,

prior to the reform, the participation tax tp at the bottom was negative as in Figure 2b.

Then, the fiscal externality on the left-hand side of (11) is positive if the semi-elasticity

of participation is decreasing along the income distribution, in line with the empirical

evidence.14 The size of the externality depends on the level of the work subsidy −tp and

on the income gradient of the semi-elasticity of participation. It would vanish completely

if labor supply would not respond at the extensive margin, η̂(y, ya) = η̂(ya, yb) = 0. The

right-hand side of (11) captures the (mechanical) welfare loss of redistributing resources

from workers with incomes below ya to workers with incomes between ya and yb. Again,

the size of this effect depends on the income gradient of welfare weights and the length of

both intervals. If society associates the same welfare weight αp to all workers with incomes

below yb, the welfare loss vanishes and the overall welfare effect is unambiguously positive

for any tp < 0.

For a deeper understanding of Lemma 2, note that the reform depicted in Figure 2b

as well affects tax revenue due to mechanical effects and behavioral effects that result

from labor supply responses at both margins. As in the previous subsection, the choice

of the weighting parameter φb ensures that the mechanical revenue effects from the tax

hike at incomes below ya and the tax cut at incomes above ya just offset each other. In

general, the reform also induces behavioral effects due to the intensive-margin responses

of workers with pre-reform incomes close to ya and yb, where the marginal tax is reduced

and increased, respectively. Under Assumption 1, however, the marginal tax equals zero

14The fiscal externality is also positive if the participation tax at the bottom is positive with tp > 0
and the semi-elasticity of participation is increasing along the income distribution. The latter condition
is not consistent with the available empirical evidence, however.
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both at ya and yb before the reform; initially, these intensive-margin responses have hence

no effect on tax revenue. Finally, the reform increases the participation tax below ya and

reduces the participation tax above ya, thereby inducing extensive-margin responses in

the entire income range between y and yb. With tp < 0, an agent receives larger transfers

in-work than off-work. Hence, the labor market exits of workers with pre-reform incomes

below ya yield a gain in tax revenue, while the labor market entries of workers with incomes

in (ya, yb) yield a revenue loss. If the former group responds more strongly as measured by

the semi-elasticity of participation, the net effect on tax revenue due to extensive-margin

responses is positive. As this revenue gain is redistributed to the population, the reform

gives rise to a positive fiscal externality that raises welfare.

The previous arguments explain why the introduction of slightly negative marginal

taxes can be welfare-increasing. Can we also rationalize a reform that makes negative

marginal taxes more negative? Assume that, prior to the reform, the marginal tax T ′(y)

is negative in some interval (ya − ϕ, ya + ϕ). Furthermore, assume that the average

participation tax for workers with incomes between y and ya is given by tap < 0, while

the average participation tax for workers with incomes between ya and yb is given by

tbp < tap. Then, the fiscal externality due to extensive-margin responses depends on the

difference tbp η̂(ya, yb) − tap η̂(y, ya). As long as tbp is close to tap, the externality remains

positive. Additionally, however, the reform affects revenue due to the intensive-margin

responses of workers with incomes close to ya for whom the marginal tax has become more

negative. Specifically, the increase in these agents’ incomes reduces their tax payments

according to the negative marginal tax T ′(ya). The implied revenue loss induces a negative

fiscal externality. Hence, the reform gives rise to countervailing fiscal externalities due

to labor supply responses at both margins or, put differently, to a trade-off between

intensive-margin efficiency and extensive-margin efficiency. Starting from a pre-reform

schedule with T ′(ya) close to zero and tap close to tbp, the sum of both fiscal externalities

will initially be positive and decrease subsequently.

5 Optimal taxation in the discrete model

In the previous section, I have identified conditions under which the introduction of an

EITC with negative participation and marginal taxes is welfare-increasing. Even if these

conditions hold, however, there might exist other tax reforms that lead to larger welfare

gains. Hence, the previous section does not clarify whether the welfare-maximizing tax

policy involves an EITC.15 The following section fills this gap by deriving the optimal

income tax for two model versions with a discrete skill set Ω = {ω1, ω2, . . . , ωn}, with

ωj+1 > ωj for all j. To simplify the notation, I denote by αj the welfare weight associated

to agents with skill type ωj, by fj the population share of these agents and by Gj the

15While the perturbation approach can also be used to derive an optimal tax formula, this formula does
not allow to easily sign the optimal marginal taxes and the optimal participation taxes (see Appendices
D.7 and D.8).
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distribution of fixed costs among them, with corresponding density function gj.

5.1 The optimal tax problem

I use a mechanism design approach to solve for the optimal income tax. This approach

requires, in the first step, to identify the optimal allocation and, in the second step, to

find a tax schedule that decentralizes this optimal allocation.

More specifically, the first step requires to solve for the allocation (c, y) : Ω×∆→ R2

that maximizes welfare over the set of allocations that are implementable, i.e., both

feasible such that overall consumption does not exceed overall output and incentive com-

patible such that each type (ω′, δ′) is assigned a bundle of consumption and income that

makes her weakly better off than the bundle assigned to any other type (ω′′, δ′′). The

two-dimensional type set Ω×∆ makes this maximization problem more challenging.

I can simplify the problem, however, by focusing on the set of allocations such that (i)

all working agents with skill type ωj receive the same bundle (cj, yj), (ii) all non-working

agents receive the same consumption level c0 and, (iii) an agent with skill type ωj works if

and only if her fixed cost type is below the participation threshold δj = cj−h(yj, ωj)−c0.16

By (iii), the participation share in skill group j is given by Gj(δj). Under these restrictions,

welfare can be rewritten as

n∑
j=1

fjαj

{∫ δj

δ

[cj − h(yj, ωj)− δ]dGj(δ) + [1−Gj(δj)] c0

}
, (12)

where, for each skill group j, the first term in the bracket gives the utilities of working

agents and the second term gives the utilities of non-working agents. The feasibility

condition simplifies to

n∑
j=1

fjGj(δj) [yj − cj]−
n∑
j=1

fj [1−Gj(δj)] c0 ≥ 0 . (13)

Moreover, an allocation with properties (i) to (iii) is incentive-compatible if and only if,

for any pair of skill groups j and k in J := {1, 2, . . . , n},

cj − h(yj, ωj) ≥ ck − h(yk, ωj) . (14)

Hence, I only have to take into account the one-dimensional incentive compatibility (IC)

constraints among workers with different skill types, which take the same form as in

one-dimensional models á la Mirrlees (1971). Incentive compatibility along the fixed cost

dimension is already ensured by the threshold condition δj = cj − h(yj, ωj)− c0.

16Lemma B.1 in Appendix B shows that these restrictions are without loss of generality: An alloca-
tion that violates one of the conditions (i) to (iii) cannot be optimal because it is either not incentive-
compatible or not second-best Pareto-efficient. As shown in Subsection 3.2, properties (i) to (iii) also hold
in the allocation that follows from the agents’ earnings choices given any weakly convex tax function.
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The second step requires to find a tax schedule that decentralizes the optimal al-

location, invoking the taxation principle. In particular, I can infer the optimal signs

of marginal taxes and participation taxes based on the intensive-margin and extensive-

margin distortions in the optimal allocation. Following Mirrlees (1971), labor supply is

said to be downwards distorted at the intensive margin for workers with skill type ωj

if the marginal rate of substitution between income and consumption is strictly smaller

than the economy’s marginal rate of transformation, hy (yj, ωj) < 1. Labor supply is

said to be upwards distorted at the intensive margin if hy (yj, ωj) is strictly larger than 1.

As shown in Subsection 3.2, conditional on working, an agent’s optimal income choice is

characterized by the first-order condition 1 − T ′(yj) = hy(yj, ωj). Hence, to decentralize

an allocation in which labor supply in skill group j is downwards (upwards) distorted at

the intensive margin, the marginal tax at income level yj has to be positive (negative).

In the model studied here, there is a second type of distortions: labor supply is

said to be downwards distorted at the extensive margin for workers with skill type ωj if

the fixed cost of marginal workers – the participation threshold δj – is strictly smaller

than maxy>0 y − h(y, ωj), the maximal surplus that a worker with skill ωj can generate.

As shown in Subsection 3.2, the agents’ optimizing behavior gives rise to the threshold

condition δj = yj−h(yj, ωj)−T P (yj). Hence, to decentralize an allocation in which labor

supply in skill group j is downwards distorted at the extensive margin, the participation

tax at the income level that maximizes y−h(y, ωj) must be positive. Labor supply is said

to be upwards distorted at the extensive margin if the participation threshold δj is strictly

larger than yj−h(yj, ωj), the surplus a worker with skill ωj generates under tax T . Hence,

to decentralize an allocation in which labor supply in skill group j is upwards distorted

at the extensive margin, the participation tax at income level yj must be negative.17

To sum up, I can sign the optimal marginal and participation taxes by determining

the labor supply distortions in the allocation that maximizes welfare (12) over the vectors

(cj)
n
j=0 and (yj)

n
j=1, subject to feasibility (13), the threshold conditions δj = cj−h(yj, ωj)−

c0 for all skill groups j ∈ J and the reduced set of IC constraints (14).

As shown by Jacquet et al. (2013), the optimal marginal tax can sometimes also be

signed based on a relaxed problem. Specifically, they suggest to solve for the first-and-half-

best allocation that maximizes welfare (12) subject to feasibility (13) and the threshold

conditions, but ignoring the IC constraints (14) along the skill dimension. They show that,

if the tax function implied by the first-and-half-best allocation is monotonically increasing,

the optimal second-best marginal tax is non-negative everywhere. In the following, I refine

this method to identify conditions under which the optimal (second-best) marginal taxes

and participation taxes are negative at the bottom.

17Appendix D.10 discusses the definitions of labor supply distortions at both margins in more detail
and illustrates them graphically.
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5.2 A stylized model with three skill types

This subsection focuses on a model version that is simplified in three ways. First, there

are only three skill types, Ω = {ω1, ω2, ω3}. As will become clear, this is the minimal

number of skill types such that the optimal marginal tax can be negative given decreasing

welfare weights. I refer to the first skill group as the very poor, to the second as the poor

and to the third as the rich.

Second, the effort cost function is isoelastic and has the commonly used form

h(y, ωj) =
σ

1 + σ

(
y

ωj

)1+ 1
σ

. (15)

This implies that the (intensive-margin) elasticity εT (ωj) of income yT (ωj) with respect

to the retention rate 1− T ′(y) is equal to parameter σ > 0 for each skill group j.

Third, fixed costs are uniformly distributed on the interval ∆ =
[
0, δ̄
]

in all skill

groups.18 This implies that the skill-specific participation share is given by Gj(δj) = δj/δ̄

and the semi-elasticity of participation is given by ηj = gj(δj)/Gj(δj) = 1/δj for each skill

group j. The downward IC constraints along the skill dimension require that δ3 > δ2 > δ1.

Hence, the semi-elasticities of participation are decreasing over the skill distribution in

every implementable allocation, in line with the empirical evidence. The participation

elasticity, by contrast, is equal to 1+σ for each skill group in the laissez-faire allocation.19

The following assumption summarizes these properties.

Assumption 2. The skill set is Ω = {ω1, ω2, ω3}, the effort cost function is given by (15)

with σ > 0 and fixed costs are uniformly distributed on
[
0, δ̄
]

in each skill group.

With respect to the planner’s redistributive concerns, I maintain the assumptions that

welfare weights are decreasing with α1 ≥ α2 ≥ α3 and have an average value of 1. As a

result, the welfare weight α3 of high-skill workers satisfies

α3 =
1− f1α1 − f2α2

f3

. (16)

Hence, the pair (α1, α2) completely characterizes the planner’s redistributional concerns

and, thereby, determines the welfare ranking among implementable allocations. Addi-

tionally, I assume that α1 < 2. Under Assumption 2, this ensures that there is a unique

welfare-maximizing allocation that can be identified using the first-order approach.20

18In this stylized model, condition (2) on the type set is equivalent to δ̄ > ω1+σ
3 /(1 + σ).

19Under laissez-faire, workers in skill group j choose income yj = ω1+σ
j , and the participation threshold

follows as δj = ω1+σ
j /(1 + σ). The participation elasticity results as ηj

[
yj − TP (yj)

]
= 1 + σ.

20Choné & Laroque (2011) explain in detail why, in some cases, the optimal allocation cannot be
identified using the first-order approach in random participation models such as mine. In particular, there
may exist local welfare minima, or multiple maxima and mimina. Under Assumption 2, the existence of
a unique, well-behaved optimum is ensured if the welfare weights of all three skill groups are below 2. I
provide a generalization of this condition for the model with n skill types in Hansen (2018). Note that
an EITC always turns out to be optimal for a subset of the parameter constellations that satisfy this
generalized condition.
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In the following, I fix the collection of parameters (σ, δ̄,Ω, f1, f2), which jointly de-

termine the set of implementable allocations. I vary only the planner’s redistributive

concerns as captured by the pair (α1, α2) to investigate the conditions under which the

optimal allocation involves upwards distortions at both margins. The tax reform analysis

in Section 4 suggests that upwards distortions are most likely to be optimal if society

considers the poor and the very poor almost equally deserving. Therefore, I start by

focusing on the limit case where α1 and α2 are identical. Subsequently, I generalize my

results to cases where α1 is close to, but larger than α2.

No desire for redistribution at the bottom. Consider the limit case where the

welfare weights α1 and α2 are equal to the same number αp ∈ (1, 2). This implies that

there is a social desire to redistribute resources from the rich to the poor and the very

poor, but no desire for redistribution between the poor and the very poor. Put differently,

the planner wants to redistribute resources towards the poor and the very poor in the way

that induces as little distortions as possible. The following proposition provides necessary

and sufficient conditions under which this optimal redistribution program gives rise to

upwards distortions at both margins. The formal proof is provided in Appendix B.

Proposition 1. Let Assumption 2 be satisfied and let α1 = α2 = αp ∈ (1, 2).

(i) Necessary condition: There is a number β̄ ∈ (1, 2) such that optimal labor supply in

skill group 2 can only be upwards distorted at the intensive margin if αp > β̄.

(ii) Sufficient conditions: There are two functions φω(αp) > ω2 and φf (αp) > 0 such that

optimal labor supply in skill group 2 is upwards distorted at both margins if αp > β̄,

ω3 > φω(αp) and f3 > φf (αp).

The first part of Proposition 1 provides a necessary condition: Negative marginal

taxes can only be optimal if the desire for redistribution from the rich to the poor and the

very poor is sufficiently strong (as measured by αp). The second part of the proposition

provides jointly sufficient conditions: Negative marginal taxes are optimal if the desire for

redistribution towards the poor is strong enough and, additionally, both the productivity

ω3 and the population share f3 of high-skilled agents are large enough. The two latter

conditions imply that the income share of high-skill workers is sufficiently large. The exact

definitions of the critical values β̄, φω and φf are provided in the appendix.21 Note that

Proposition 1 focuses on the intensive-margin distortions in skill group 2. The reason is

that, as I show in the formal proof, labor supply in skill groups 1 and 3 is never upwards

distorted at the intensive margin under the assumptions imposed above. If the conditions

in part (ii) are satisfied, labor supply in skill group 1 is upwards distorted at the extensive

margin and undistorted at the intensive margin.

21Note that the conditions in Proposition 1 (ii) do not define the empty set: The threshold φf (αp) is
in (0, 1) whenever ω3 > φω(αp).
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To understand the mechanism at work, consider in a first step the first-and-half-best

problem suggested by Jacquet et al. (2013). In this solution, labor supply is undistorted at

the intensive margin because the IC constraints (14) between workers with different skill

types are not taken into account. Thus, the first-and-half-best allocation (c̃, ỹ) provides

no immediate information about marginal taxes. By contrast, labor supply is in general

distorted at the extensive margin, and participation taxes differ from zero. Specifically,

the first-and-half-best participation tax is given by

T Pfhb(ỹj) =
1− αj
η̃j

, (17)

where η̃j is the semi-elasticity of participation of skill group j in the first-and-half-best

allocation. Hence, the participation tax for workers in skill group j is negative if and

only if the welfare weight αj for these workers is above the population average of 1. This

is independent of whether αj is lower or higher than the welfare weight of non-working

agents. For the intuition behind this result, recall that negative participation taxes give

rise to a positive fiscal externality (see Lemma 1).

In the case where α1 and α2 are identical and above the average weight of 1, the

first-and-half-best participation tax is thus negative for workers in skill groups 1 and 2,

while it is positive for the workers in skill group 3. More precisely, the participation tax

for the two lowest skill groups satisfies

T Pfhb(ỹj) = −αp − 1

η̃j
< 0 for each j ∈ {1, 2} . (18)

This is an inverse elasticity rule: The participation tax should be more negative for the

skill group that responds less elastically at the extensive margin. Under Assumption

2, the poor respond less elastically than the very poor with 0 < η̃2 < η̃1. Hence, the

first-and-half-best participation tax is decreasing between ỹ1 and ỹ2. This confirms the

intuition from the tax reform analysis that negative marginal taxes are beneficial due to a

positive fiscal externality (see Lemma 2). Altogether, T Pfhb is non-monotonic: decreasing

from ỹ1 to ỹ2, but increasing from ỹ2 to ỹ3. Thus, the results of Jacquet et al. (2013) do

not pin down the optimal sign of the second-best marginal tax.

To sign the optimal marginal tax, I have to turn to the non-relaxed (second-best)

problem that takes into account the IC constraints (14) along the skill dimension. Specif-

ically, I can proceed by checking whether the first-and-half-best allocation (c̃, ỹ) satisfies

the local IC constraints of the workers in all three skill groups. As the first-and-half-best

tax is lower (more negative) for workers in skill group 2 than for workers in skill groups 1

and 3, it is clear that workers with skill ω2 prefer their bundle to the bundles meant for

the other workers: Both the downward IC and the upward IC constraint of ω2 workers

are satisfied. For the two remaining IC constraints, this is a priori unclear.

Consider the upward IC constraint of ω1 workers first. If the difference between the

tax levels T Pfhb(ỹ1) and T Pfhb(ỹ2) is small, the constraint is satisfied: ω1 workers prefer
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their bundle despite receiving somewhat lower transfers. It is violated, by contrast, if the

difference is large enough. I find that the tax differential is large enough to violate the

upward IC constraint if and only if αp exceeds a critical value β̄ > 1, i.e., if the welfare

weight associated to very poor and poor workers is large enough. For the intuition behind

this result, recall again the fiscal externality identified in Section 4. The more the social

planner cares for low-income workers as measured by αp, the larger should their work

subsidies be, as can be seen in (18). The larger these work subsidies are, however, the

larger is the fiscal externality that results from increasing the subsidy for ω2 workers

relative to the subsidy for ω1 workers (see Lemma 2). Correspondingly, the optimal

difference between T Pfhb(ỹ1) and T Pfhb(ỹ2) is increasing in αp until, eventually, the upward

IC of ω1 workers is violated.

For αp > β̄, hence, the social planner cannot follow the inverse elasticity rule (18)

unless she slackens the upward IC of ω1 workers by distorting labor supply of ω2 workers

upwards at the intensive margin. Hence, she faces a trade-off between two aspects of effi-

ciency: She can only reduce extensive-margin distortions if she increases intensive-margin

distortions and vice versa. As argued in Section 4, the introduction of a slight upward

distortion at the intensive margin only leads to a negligible efficiency loss. Hence, the

extensive-margin benefits of introducing small upward distortions are initially larger than

the intensive-margin costs whenever αp > β̄. For αp ≤ β̄, by contrast, the social planner

can stick to the inverse elasticity rule (18) without violating an upward IC constraint.

In this case, neither upwards distortions at the intensive margin nor negative marginal

taxes bring an benefit. This explains why negative marginal taxes can only be optimal if

αp > β̄.

By part (ii) of Proposition 1, however, the previous condition is not sufficient: For

negative marginal taxes to be ensured, the income share of the rich must be large enough

as measured by the population share f3 and the productivity ω3. To understand this

additional requirement, consider the downward IC constraint of workers with skill ω3. As

the first-and-half-best tax on the rich is positive while the tax on the poor in skill group

2 is negative, this IC constraint may be violated. If the welfare weight α3 of the rich is

above a critical value βD(αp), however, the difference between T Pfhb(ỹ3) and T Pfhb(ỹ2) is

small enough so that the downward IC of ω3 workers is satisfied. Proposition 1 rephrases

the condition α3 > βD(αp) as a condition on the productivity level ω3 and the population

share f3. For an intuitive understanding, note that the taxes on ω3 workers have to be

large enough to finance the work subsidies to the lower-skilled workers. The larger the

share f3 of high-skilled worker is, the smaller is the required tax payment T (y3) for each

single high-skill worker. The larger the productivity level ω3 is, moreover, the higher are

both the gross income y3 and the implied net income y3−T (y3) relative to the net income

of ω2 workers, y2−T (y2). Hence, the larger the share and the productivity of rich workers,

the less increasing tax function T must be between y2 and y3 to finance the work subsidies

to low-skill workers. Correspondingly, the induced intensive-margin costs become smaller
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until, eventually, they are dominated by the extensive-margin benefits of an EITC with

negative marginal taxes for ω2 workers.

If instead only the necessary condition holds but the conditions on f3 and ω3 fail, the

first-and-half-best allocation violates both the upward IC of ω1 workers and the downward

IC of ω3 workers. To slacken the former constraint, labor supply of ω2 workers would

have to be distorted upwards at the intensive margin. To slacken the latter constraint,

in contrast, labor supply of ω2 workers would have to be distorted downwards. But then,

the planner would have to deviate even further from the inverse elasticity rule. In this

case, it hence remains unclear whether optimal labor supply in skill group 2 is upwards

or downwards distorted at the intensive margin.22

Weak desire for redistribution at the bottom. In the next step, I generalize the

previous results to cases in which the welfare weight of the very poor is strictly larger

than the welfare weight on the poor, α1 > α2 > 1. Thereby, I consider cases in which the

social planner has a desire for redistribution from the poor to the very poor. The next

proposition clarifies that upwards distortions at the intensive margin remain optimal as

long as this desire for redistribution at the bottom is weak enough. The formal proof is

relegated to Appendix B.

Proposition 2. Let Assumption 2 be satisfied and let β̄, φω and φf be the thresholds

defined in Proposition 1.

(i) Necessary condition: For any α1 ∈ (β̄, 2), there is a threshold βU(α1) ∈
(
β̄, α1

)
such that optimal labor supply in skill group 2 can only be upwards distorted at the

intensive margin if α2 > βU(α1).

(ii) Sufficient conditions: There is a function φ̂ω(α1, α2) ≥ φω(α2) such that optimal

labor supply is upwards distorted at both margins in skill group 2 if α2 > βU(α1),

ω3 > φ̂ω(α1, α2) and f3 > φf (α2)
(

1 + f1
α1−α2

α2−1

)
.

Part (i) of Proposition 2 shows that the optimal allocation can only involve upwards

distortions at the intensive margin if the welfare weights α1 and α2 are, first, larger than

β̄ – the critical value from Proposition 1 above – and, second, close enough to each other.

Specifically, I find that the optimal marginal tax can be negative even if α2 is strictly

smaller than α1 but larger than the threshold βU(α1).

Part (ii) of Proposition 2 generalizes the sufficient conditions for the optimality of

negative marginal taxes to the case where α1 > α2. On top of the necessary condition

from part (i), the productivity level ω3 and the population share f3 of high-skill workers

must be large enough again. The condition on the high-skill productivity ω3 is the same

as in Proposition 1 for α1 = α2, but somewhat tighter if α1 > α2. The condition on the

high-skill population share f3 uses the same threshold function φf , buts also gets harder

22In this case, the optimal sign of the marginal tax for ω2 workers depends on the complete set of
parameters (f1, f2, δ̄, σ, ω1, ω2, ω3, αp).
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to satisfy if α1 > α2. Intuitively, a higher value of α1 implies that the planner prefers a

larger transfer to the very poor than with α1 = α2 and, hence, needs to collect somewhat

higher taxes from the high-skilled workers. Hence, the optimal tax schedule gets steeper

between y2 and y3, which tends to increase the labor supply distortions at the intensive

margin. The basic insight remains unchanged, however: The larger f3 and ω3 are, the

easier it is to finance work subsidies for lower-skilled workers and the more likely it is than

the extensive-margin benefits of an EITC dominate.

5.3 A general model with many skill types

In this subsection, I extend the previous results to a model version that is more general in

two ways. First, I allow for a finite but arbitrarily large number n ≥ 3 of skill groups. I

assume that the log difference between adjacent skill types is constant, i.e., that the ratio

ωj+1/ωj is equal to the same number a > 1 for all j ∈ {1, . . . , n− 1}.
Second, I do not specify the functional forms of the utility function (1) and the type

distribution, and allow the fixed cost distributions to vary across skill groups. I only

impose three assumptions on the implied labor supply elasticities. I start with a regularity

condition on the labor supply responses at the intensive margin.

Assumption 3. In any implementable allocation, the elasticity of income in each skill

group j ∈ J with respect to

(i) the retention rate 1− T ′(y) is bounded from above by some number ν1 ∈ (0,∞);

(ii) the skill level ω is bounded from below by some number ν2 ∈ (0,∞).

The first part of Assumption 3 rules out cases in which labor supply explodes in

responses to a small reduction in the retention rate. The second part is almost a tautology:

It ensures that agents with higher skill types are actually more productive.

Next, I impose an assumption on the relative strength of labor supply responses at

the extensive margin, which ensures consistency with the empirical evidence.

Assumption 4. In any implementable allocation, the semi-elasticity of participation ηj

is strictly decreasing in ωj and weakly decreasing in cj − c0 for any j ∈ J .

Assumption 4 is satisfied if participation elasticities are decreasing along the income

distribution, in line with empirical findings (see, e.g., Juhn et al. 1991, 2002 for the

US and Meghir & Phillips 2010 for the UK).23 Even if the participation elasticity were

constant along the skill distribution, however, the corresponding semi-elasticity would

still be strictly decreasing.24

23According to Bastani et al. (2020) for Sweden and Miller et al. (2018) for the US, participation
elasticities are also decreasing within the subset of low-skilled workers. In contrast, Bargain et al. (2014)
estimate participation elasticities to be flat at the bottom and only decreasing at higher income levels.

24The participation elasticity πT and the semi-elasticity of participation ηT are related by ηT (ω) =
πT (ω)/

[
yT (ω)− TP (yT (ω))

]
. Hence, with πT constant in ω, ηT is strictly decreasing as long as the net

labor income yT (ω)− TP (yT (ω)) is increasing in ω, i.e., the marginal tax T ′ is below 1.
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Finally, I impose an assumption that rules out extreme fluctuations in the skill gradient

of the semi-elasticity of participation. For this purpose, consider two adjacent skill groups

j and j+1 with participation semi-elasticities ηj and ηj+1, respectively. By Assumption 4,

the ratio ηj/ηj+1 is larger than 1 given any status-quo tax schedule T . Consider now a tax

reform that reduces the participation taxes for the workers in both skill groups by some

amount λ > 0. This is just the type of reform considered in Subsection 4.1 and illustrated

in Figure 2a. In general, the reform can lead to variations in both semi-elasticities and

in their ratio. I measure the latter variations by the semi-elasticity of the ratio ηj/ηj+1

with respect to λ, i.e., with respect to the net-of-tax labor income y−T P (y).The following

assumption puts bounds on these variations, i.e., on the effect of the reform on the relative

participation responses in skill groups j and j + 1.

Assumption 5. In any implementable allocation, the semi-elasticity of the relative partic-

ipation responses ηj/ηj+1 with respect to the net-of-tax labor income y− T P (y) is between

ηj+1 − ηj < 0 and ηj − ηj+1 > 0.

Under Assumption 5, a uniform reduction of the participation tax may increase or

decrease the ratio of the semi-elasticities ηj and ηj+1, but needs to have sufficiently small

effects in absolute terms. While the semi-elasticity of the ratio ηj/ηj+1 is in principle an

observable object, it has never been estimated in the empirical literature to my knowledge.

Most relatedly, Juhn et al. (1991, 2002) find that relative participation elasticities for

different percentiles of the wage distribution have hardly changed between the 70s and

the late 80s. Besides, a back-of-the-envelope calculation suggests that Assumption 5 is

reasonably weak.25

Results I proceed by extending my previous results to the general model with an arbi-

trary number of skill groups. I assume that the optimal allocation can be identified using

the first-order approach. It turns out that, under Assumptions 3 to 5, the results from

the stylized three-type model remain qualitatively unchanged.

For this purpose, recall Proposition 2 for the stylized model. It provides necessary

and sufficient conditions for the optimal allocation to involve upwards distortions at both

margins in skill group 2: The welfare weights of the low-skill ω1 and ω2 workers need to

be large enough – above some threshold β̄ > 1 – and close enough to each other such that

α2 > βU(α1). Moreover, the welfare weight of the high-skill ω3 workers needs to be large

enough to satisfy α3 > βD(α2). The latter condition is satisfied if both the productivity

level ω3 and the share f3 of high-skill workers are large enough. The following proposition

generalizes the conditions on the welfare weights to a model with n skill groups. The

formal proof is provided in Appendix C.

25If the participation elasticities for low-skill workers with earnings $1, 000 and $1, 500 are both given
by 0.5 as assumed by Saez (2002) and the US income tax is approximated as in Section 6, the ratio
ηj/ηj+1 equals 1.5. Hence, the semi-elasticity of participation in the first group is 50% higher than in the
second group. Assumption 5 requires that, if the participation tax is reduced by $500 for both groups,
this relative difference remains between 32.3% and 67.7%.
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Proposition 3. Let Assumptions 3, 4 and 5 be satisfied. If a = ωj+1/ωj is sufficiently

small, there are two sets of functions (βUj)
n−1
j=1 and (βDj)

n−1
j=1 such that optimal labor supply

is upwards distorted at both margins in the skill groups {2, . . . , k} if the welfare weights

satisfy

(i) αj+1 ≥ βUj(αj) for all j ∈ {1, . . . , k − 1} with at least one strict inequality, and

(ii) αj+1 ≥ βDj(αj) for all j ∈ {k, . . . , n− 1}.

If the sequence of welfare weights (α1, α2, . . . , αn) satisfy the conditions in Proposition

3, labor supply is upwards distorted at both margins in the skill groups 2 to k. La-

bor supply in skill group 1, moreover, is upwards distorted at the extensive margin and

undistorted at the intensive margin. Part (i) corresponds to the necessary condition in

Proposition 2: It puts restrictions on the welfare weights of those workers for whom op-

timal labor supply is upwards distorted. Part (ii) corresponds to the additional sufficient

conditions on the weights of the remaining high-skill workers: It puts restrictions on the

welfare weights of remaining skill groups k + 1 to n. The proposition is valid whenever

the relative distance a = ωj+1/ωj between adjacent skill types is small enough, i.e., the

skill set Ω is sufficiently dense. In particular, this restriction rules out degenerate cases

in which optimal labor supply in some skill groups is undistorted at the intensive margin

for all welfare weights.

The economic implications of Proposition 3 depend on the properties of the threshold

functions βUj and βDj. To illustrate these properties, Figure 3 on the next page depicts all

possible combinations of the welfare weights for an arbitrary pair of adjacent skill groups

j and j + 1. It focuses on the combinations with decreasing welfare weights αj+1 ≤ αj,

i.e., in the shaded area below the 45◦ line. The purpose of this figure is to clarify which

of these combinations satisfy the conditions (i) αj+1 ≥ βUj(αj) and (ii) αj+1 ≥ βDj(αj).

Under Assumptions 3 to 5, the functions βUj and βDj always have the shape depicted in

Figure 3 (see also Lemma C.1 in the appendix).

First, function βUj is located below the 45◦ line for all values of αj above a critical

value β̄j > 1. Hence, the condition αj+1 ≥ βUj(αj) is satisfied for all combinations in the

red-shaded area, where both welfare weights αj and αj+1 are large enough (above β̄j) and

close enough to each other. As the critical value β̄j is larger than the average weight of

1, this case can only appear for pairs of low-skill workers (i.e., at the bottom of the skill

distribution). Second, function βDj is located below βUj for all values of αj, and below

the 45◦ line for all values of αj above another critical value β
j
< 1. Hence, the condition

αj+1 ≥ βDj(αj) is satisfied for all combinations in the red-shaded area and in the blue-

shaded area, where both welfare weights are neither too small nor too far apart. As the

critical value β
j

is below the average weight of 1, this case can even appear for pairs of

high-skill workers (i.e., at the top of the skill distribution). The condition αj+1 < βDj(αj)

is violated, finally, for combinations in the green-shaded area where both welfare weights

are either pretty low or pretty distant.
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Figure 3: Local IC constraints in the first-and-half-best allocation.
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Notes: Figure 3 illustrates the properties of the threshold functions βUj and βDj under Assumptions
3 to 5. The red-shaded area contains the combinations of αj and αj+1 such that αj+1 > βUj(αj).
The blue-shaded area contains the combinations such that αj+1 is between βDj(αj) and βUj(αj). The
green-shaded area contains the combinations such that αj+1 < βDj(αj). The optimal allocation involves
upwards distortions at both margins if the combination (αj , αj+1) is located in the red-shaded area for
each j below k, and in the blue-shaded area or the red-shaded area for each j above k.

Summing up, Proposition 3 implies that the optimal allocation involves upwards dis-

tortions at both margins for the lowest k skill groups if, first, the welfare weights of all

these skill groups are high enough and close enough to each other, i.e., if the skill gradient

of the welfare weights is small enough at the bottom and, second, if the welfare weights

of the remaining skill groups are close enough to the population average, i.e., the skill

gradient at the top is moderate.

For the stylized model, the sufficient condition on the welfare weight α3 of high-skill

workers can be rewritten in terms of the type distribution: The condition α3 ≥ βD(α2) is

satisfied so that an EITC is optimal if both the productivity level ω3 and the population

share f3 of high-skilled workers are large enough (see Propositions 1 and 2). The following

proposition extends this insight to the general model. The formal proof is provided in

Appendix C.

Proposition 4. Let Assumptions 4, 5 and 3 be satisfied. If a = ωj+1/ωj is sufficiently

small, there are two numbers ωm ∈ Ω : ωm ≥ ωk+1 and z̄ ∈ (0, 1) such that, if

(a) ωn ≥ ωm and

(b)
∑n

j=m fj > z̄,

there exists a strictly decreasing sequence (α1, . . . , αn) of welfare weights for which optimal

labor supply in skill groups {2, . . . , k} is upwards distorted at both margins.

Proposition 4 clarifies that, in the general model as well, the sufficient conditions on the

welfare weights can be satisfied if the share of highly skilled agents is large enough. More

specifically, condition (a) requires the productivity of the highest-skilled workers to be

sufficiently large, relative to the productivity of the EITC recipients with skills below ωk.

Specifically, the productivity of the highest-skilled workers must be above some threshold
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ωm. Condition (b) requires the population share of the highly productive workers with

skill types ωm to ωn to be large enough. Both conditions are natural generalizations of the

sufficient conditions on the productivity ω3 and the share f3 of high-skill workers in the

stylized model. Again, the proposition is valid whenever the relative distance a = ωj+1/ωj

between adjacent skill types is small enough.

An important difference is, however, that Proposition 4 effectively puts an upper

bound on the number k of skill groups with upward distortions at both margins, i.e., on

the income range with negative marginal taxes. To see this, note that the proposition

provides sufficient conditions for the optimality of different allocations: some with up-

ward distortions for only a few skill groups (k small, close to 2) and others with upward

distortions for the majority of skill groups (k large, close to n). In the former case, an

EITC with negative marginal taxes is concentrated on the working poor. In the latter

case, an EITC even benefits workers in the (upper) middle class. As one would expect,

the conditions in Proposition 4 are easier to satisfy in the former case than in the latter

one. Specifically, the larger the productivity ωk of the highest-skilled EITC recipient, the

larger is the threshold skill type ωm referred to in Proposition 4. For empirically reason-

able calibrations such as those in the next section, both conditions (a) and (b) are always

satisfied for number k being as small as 2, but violated for k being as large as n− 1.

The intuition for these sufficient conditions, and for the implied bound on the size of

the EITC, is the same as in the stylized model with three skill types. An EITC with

work subsidies and negative marginal for the workers in the lowest k skill groups has to

be financed by tax payments from the workers in higher skill groups. The more workers

with high skill types and high incomes there are, the more easily the social planner can

raise the required tax revenue. In particular, a larger share of high-skilled workers allows

the planner to rely on a relatively flat tax schedule that only induces small distortions at

the intensive margin. In this case, as discussed above, the extensive-margin benefits of an

EITC with negative marginal taxes dominate the intensive-margin costs.

Finally, I explain the relevance of Assumptions 3 to 5. For this purpose, recall that

the introduction of negative marginal taxes leads to a positive fiscal externality, which is

proportional to −tP
[
η̂(y, ya)− η̂(ya, yb)

]
by Lemma 2. The term tP is the participation

tax for low-income workers; the term in brackets is a measure of the skill gradient of the

semi-elasticity of participation among low-income workers. Assumption 4 implies that

the semi-elasticity of participation is decreasing, i.e., the term in brackets is positive.

Hence, it ensures that the fiscal externality is positive whenever the participation tax

tP is negative. Assumption 5 implies that changes in the participation tax have only

limited effects on the skill gradient of the semi-elasticities, i.e., on the term in brackets.

In particular, it ensures that the fiscal externality becomes larger when the participation

tax tP gets more negative. Together, Assumptions 4 and 5 ensure that the introduction

of an EITC with negative marginal taxes leads to a positive fiscal externality and to

welfare gains that are larger, the higher the welfare weights of low-income workers are.
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Finally, Assumption 3 implies that the introduction of a small negative marginal tax for

low-income workers does not lead to huge changes in their income choices. This ensures

that, initially, the intensive-margin costs of an EITC are negligible and, in particular,

smaller than the extensive-margin benefits.

6 Numerical simulations

The theoretical analysis above has shown that an EITC can be optimal, but has not

provided information about the optimal size of an EITC (i.e., eligibility threshold, length

of phase-in range, optimal levels of marginal and participation taxes). To answer these

quantitative questions, the following section performs numerical simulations for a model

version that is calibrated to the subgroup of childless singles in the US. The focus on singles

ensures consistency with the theoretical model studied above, which does not account for

joint labor supply decisions within families. Moreover, childless singles are in the spotlight

of a recent policy debate: prominent politicians from both political camps have proposed

to strongly expand the EITC for this group. At the same time, the previous literature

has not provided any support for negative marginal taxes in this group. In Appendix D.5,

I additionally provide a calibration for single parents, who benefit from a more generous

EITC under the current US tax system.

6.1 Calibration

I calibrate the model by imposing assumptions on the labor supply elasticities at both

margins, the two-dimensional distribution of skill types and fixed cost types and the redis-

tributive preferences of the social planner. To specify the labor supply elasticities, I mainly

follow the survey by Saez et al. (2012) and the meta-study by Chetty, Guren, Manoli &

Weber (2013), who consider estimates from fifteen studies providing quasi-experimental

estimates of extensive-margin elasticities. Additionally, I consider the studies by Chetty,

Friedman & Saez (2013) on the elasticities on EITC recipients and by Bargain et al. (2014)

on the elasticities of childless singles (see Appendix D.9 for a discussion of empirical esti-

mates). For completeness, note that I have assumed away income effects in labor supply

by the quasi-linearity of the utility function (1). Saez (2002) and Jacquet et al. (2013)

impose the same simplifying assumption in their calibrated models.26

First, with respect to the intensive-margin elasticity of income with respect to the

retention rate, the best available estimates are in the range between 0.12 and 0.4 according

to Saez (2002). The preferred estimate by Chetty, Guren, Manoli & Weber (2013) is given

by 0.33, while Bargain et al. (2014) estimate an elasticity of 0.18. I calibrate the model

by assuming that the effort cost function h has the same functional form (15) as in the

stylized model. Thus, the intensive-margin elasticity equals the parameter σ, which I set

26The existing evidence on income effects is scarce and inconclusive. For example, Holtz-Eakin et al.
(1993) and Imbens et al. (2001) find only small and sometimes insignificant income effects.
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to 0.3 for the benchmark calibration. In the sensitivity analysis, I consider alternative

values of 0.1 and 0.5.

Second, with respect to the extensive-margin elasticity of participation, the preferred

estimate of Chetty, Guren, Manoli & Weber (2013) for the entire population is given by

0.25. Bargain et al. (2014) estimate an average elasticity of 0.28 for childless singes in the

US. Moreover, a number of studies consistently find that participation elasticities are de-

creasing along the skill distributions (e.g., Juhn et al. 1991, 2002, Meghir & Phillips 2010,

Bargain et al. 2014 and Bastani et al. 2020). In my model, the participation elasticities

depend on the distributions of fixed costs in each skill skill group. Unfortunately, there

is no empirical evidence on these fixed cost distributions to the best of my knowledge. I

therefore follow Jacquet et al. (2013) by assuming a logistic distribution of the form

Gj(δ) =
exp (−ψj + ρjδ)

1 + exp (−ψj + ρjδ)
. (19)

This assumption ensures that the participation share is between 0 and 1 and that labor

supply responds at the extensive margin in each skill group for any admissible tax func-

tion T . Moreover, it allows me to set the skill-specific parameters ψj and ρj to match

empirically plausible values of the participation elasticity πj and the employment share

Lj in each skill group.

Following Jacquet et al. (2013) once more, I assume that participation elasticities

decrease gradually along the skill distribution according to

πj = π̄ − (π − π̄)

(
ωj − ω1

ωn − ω1

)1/3

, (20)

where π and π̄ are the participation elasticities in the lowest and the highest skill group,

respectively. For my benchmark calibration, I assume that participation elasticities de-

crease from π = 0.4 to π̄ = 0.18 in the group of childless singles. These parameters ensure

that the average elasticity equals the preferred estimate of 0.25 in Chetty, Guren, Manoli

& Weber (2013). In the sensitivity analysis, I consider both higher elasticities (decreasing

from 0.5 to 0.4 as in the calibration by Jacquet et al. 2013) and lower elasticities (decreas-

ing from 0.3 to 0.1). Additionally, I consider a model version in which the participation

elasticity is equal to 0.25 in all skill groups. Similarly, I target skill-specific employment

shares given by

Lj = L+ (L̄− L)

(
ωj − ω1

ωn − ω1

)1/3

, (21)

where L and L̄ are the participation elasticities in the lowest and the highest skill group,

respectively. I assume that the participation share is increasing from 0.7 in the lowest

skill group to 0.85 in the highest skill group. This implies an average participation share

close to 0.8, in line with CPS data.

Third, I calibrate the unconditional skill distribution to match the observed income
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distribution in the US economy. Specifically, I estimate the latter distribution based

on income data for childless singles at ages 25 to 60 in the March 2016 CPS. I restrict

the sample to respondents that are neither living with an unmarried spouse nor with

any family members in the same household. I then calculate an agent’s earned income

as the sum of, first, wage and salary income and, second, business and self-employed

income.27 Using the OECD tax database, I approximate the US income tax in 2015 for

both population groups by a linear tax function with marginal tax rate of 29.3% (OECD

2017, p. 54).28 Based on this approximation, I can use the first-order condition of the

individual optimization program to back out the skill types of all CPS respondents with

strictly positive earned incomes.

Fourth, I consider a discrete skill set with n = 96 skill types, where the relative

distance between each pair of adjacent skill types is equal to ωj+1/ωj = 1.05. Compared

to most previous papers, this represents a relatively fine skill set. For example, Saez (2002)

uses a model with only 17 occupation groups. In Appendix D.3, however, I additionally

provide simulation results for models with a larger and a smaller number of skill groups

(n equal to 192 and 48, respectively). The workers with the lowest and highest skill

types receives annual incomes of $500 and $206, 942, corresponding to wages of ω1 = $129

and ωn = $13, 300 per unit of work, respectively. In the March 2016 CPS, 98.8% of the

employed childless singles have incomes in this range. To obtain a smooth distribution,

I estimate the share of workers in each skill group j with a kernel density approximation

of the distribution of computed skill types. This procedure gives the conditional skill

distribution among employed workers under the 2015 US tax regime. In the last step,

I use the skill-specific employment rates imposed by (21) to compute the unconditional

skill distribution (including workers and non-workers).

Finally, I need to calibrate the redistributive preferences of the social planner. For my

benchmark analysis, I consider two sequences of exogenous welfare weights that depend

only on the agents’ skill types. Graphical illustrations and details on the construction of

both sequences are provided in Appendix D.2.

Specifically, sequence αA assigns a constant welfare weight of 1.04 to all working agents

with annual incomes below $11, 000 under the current US tax system (i.e., to the agents in

the lowest 49 skill groups). The welfare weights for higher-income workers are gradually

decreasing in such a way that the average welfare weight equals 1. In particular, sequence

αA is constructed to satisfy the sufficient conditions for an EITC with negative marginal

taxes for all incomes below $11, 000 (see Proposition 3). Hence, I already know that the

optimal income tax is given by an EITC. The numerical simulation allows to assess the

quantitative properties of this EITC, e.g., the optimal levels of marginal taxes and the

maximum tax credit.

27In particular, I compute for each worker his average income for each week in employment according
to the CPS data. To calculate an agent’s skill, I then multiply the weekly income by 52 to get individually
optimal incomes conditional on working the entire year.

28This approximation accounts for federal and (average) state income taxes as well as the employee
share of payroll taxes (OECD 2017, see also http://www.oecd.org/tax/tax-policy/tax-database.htm).
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Sequence αB assigns a constant welfare weight of 1.04 to the working agents with

annual incomes below $26, 000 (i.e., to the 26.3% of agents in the lowest 63 skill groups).

Furthermore, it assigns a constant welfare weight to all higher-income workers. In par-

ticular, the welfare weight of the high-skill agents is set equal to 0.986 in order to get an

average welfare weight of 1. Importantly, sequence αB satisfies the necessary conditions

for an EITC with negative marginal taxes for incomes below $26, 000, but violates the

sufficient conditions. In this case, the numerical simulation allows to determine whether

the optimal tax is nevertheless given by an EITC with negative marginal taxes.

Both sequences αA and αB imply that the social planner has no concerns for redis-

tribution among the working poor, i.e., from low-income earners to even-lower-income

earners.29 In the sensitivity analysis, I additionally consider a case in which the welfare

weights are steeply falling at the bottom of the skill distribution (as in the simulations by

Saez 2002 and Jacquet et al. 2013).

6.2 Benchmark results

I start with the results of my numerical simulation for the benchmark calibration. Figure

4 illustrates the optimal tax schedules for weight sequences αA and αB. In particular, it

depicts the optimal participation taxes T PA (y) = TA(y)−TA(0) and T PB (y) = TB(y)−TB(0)

for annual incomes below $60, 000. To make the discreteness of the skill set transparent,

I mark the simulated (y, T P ) bundles for workers in all skill groups by dots and triangles,

respectively. As a reference, the red dotted line in Figure 4 illustrates the actual EITC

for childless singles in the US. In 2015, childless singles were eligible for the EITC if their

earned income was below $14, 820. The marginal income tax for this group was −7.65%

for incomes below $6.580 (phase-in range) and +7.65% for incomes between $8.240 and

$14.820 (phase-out range). Workers with incomes between $6.580 and $8.240 received the

maximum tax credit of $503.30

First, I report the properties of the optimal tax schedule for weight sequence αA, which

was constructed to satisfy the sufficient conditions in Proposition 3. Thus, I already know

that an EITC with a negative marginal tax at all income levels below $11, 000 is optimal.

The simulation shows that optimal marginal taxes are even negative for incomes up to

$13, 228, and participation taxes are negative for incomes up to $32, 144 (see solid blue

line in Figure 4). Put differently, labor supply is upwards distorted at the intensive margin

in the lowest 51 skill groups and at the extensive margin in the lowest 65 skill groups.

This implies that 28.4% of all childless singles benefit from negative participation taxes

as part of an EITC, and 21.9% of these EITC recipients face negative marginal taxes in

the phase-in range. The share of non-working agents is reduced substantially to 12.6%

(compared to 20% under the current US tax).

29In the working paper version (Hansen 2018), I show that the optimal tax has the same qualitative
properties if the welfare weights are strictly decreasing with a small skill gradient at the bottom.

30In the phase-in region, the EITC exactly offsets the employee share of social security contributions.
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Figure 4: Optimal participation taxes for welfare weights αA and αB, benchmark case.
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Notes: Figure 4 illustrates the simulation results by depicting the optimal participation tax schedule
TPA for welfare weights αA (solid blue line with dots), and the optimal participation tax schedule TPB
for welfare weights αB (dashed green line with triangles) as functions of gross labor income y. Each
dot/triangle represents the tuple (yj , T

P (yj)) for the workers in one skill group. For comparison, the red
dotted line depicts the actual 2015 EITC.

More specifically, the maximum tax credit is given by $1, 959 at income level $13, 288.

For comparison, the optimal transfer to non-working agents is given by $1, 517. The

ratio T PA (y)/y of optimal participation taxes to gross labor incomes, which is sometimes

referred to as the participation tax rate, is around −40% for very low incomes such as

yA1 = $555.31 The ratio subsequently diminishes to levels around −15% at the phase-in

endpoint. The average marginal tax in the phase-in range is given by −13, 6%, and the

average marginal tax in the phase-out range is given by 9.4%.32

Second, I report the simulation results for weight sequence αB, which does not satisfy

the sufficient conditions identified in Proposition 3. The simulation shows that the optimal

tax is given by an EITC, nevertheless (see dashed teal line in Figure 4). In particular, the

optimal tax for weight sequence αB even involves negative marginal taxes for incomes up

to $15, 020 (in the lowest 53 skill groups) and negative participation taxes for incomes up

to $34, 100 (in the lowest 66 skill groups). In this case, 31.3% of all agents benefit from

participation subsidies and 24.7% of the EITC recipients face negative marginal taxes.

Regarding the details of the optimal tax function, the maximum tax credit is given

by $2.303, while the optimal transfer to non-working agents is equal to $1, 923. The

participation tax rate is below −50% at very low incomes and around −15% at the phase-

in endpoint. The average marginal tax rate in the phase-in range is equal to −13.9%, and

the average marginal tax in the phase-out range is given by 11.2%. The optimal marginal

tax in the phase-in range is hence more negative for weight sequence αB than for sequence

αA, and the phase-in range, the EITC range and the maximum tax credit are larger.

31The large negative participation taxes at the very bottom suggest that the optimal income tax may
fall discontinuously at zero, in line with the results of Jacquet et al. (2013).

32The average marginal tax between yk and yj is computed as [T (yk)− T (yj)] / (yk − yj). Alternatively,
one can compute the implicit marginal tax at income yj , which is given by 1 − hy(yj , ωj). The implicit
marginal taxes are between 0 and 8% in the phase-in range and equal to zero in the phase-out range.
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Summing up, the numerical simulations show that the effects of the mechanism stud-

ied in this paper - the tradeoff between intensive-margin efficiency and extensive-margin

efficiency - are not only qualitatively, but also quantitatively important. When there are

no (or only weak) concerns for redistribution among the poor, the optimal EITC may

cover a much larger income range and feature a much larger maximum tax credit than

the current EITC for childless workers in the US. Moreover, negative marginal taxes and

participation taxes can be more than twice as large (in absolute terms) in the optimal

scheme than in the current US scheme. The simulations also show that an EITC can be

optimal in cases where the welfare weights fail to satisfy the sufficient conditions derived

in Proposition 3. Interestingly, the simulated tax schedules closely resemble the one im-

plied by recent proposals to strongly expand the EITC for childless workers in the US (for

example, see Executive Office 2014 and House Budget Committee 2014).

6.3 Sensitivity analysis

To investigate the robustness of my results, I perform additional simulations in which I

vary the key parameters of my calibrated model. Graphical illustrations of the optimal

tax schedules for all parameter constellations are provided in Appendix D.3.

First, I simulate the optimal income tax for a lower intensive-margin elasticity of 0.1

and a higher elasticity of 0.5, respectively (benchmark: 0.3). In both cases, the qualitative

properties of the optimal tax remain constant: In all cases, it is given by an EITC with

negative marginal taxes for incomes below $12, 500 and negative participation taxes for

incomes below $30, 000. The larger the intensive-margin elasticity, however, the flatter

are the tax functions, both in the phase-in and in the phase-out range. For a higher

elasticity, this implies both smaller marginal subsidies and a smaller maximum credit.

This makes sense: A higher value of σ implies that the first-and-half-best tax schedule

would induce larger distortions at the intensive margin. Hence, the planner is willing to

deviate further from this “target function” in order to implement the optimal compromise

between distortions at both margins. Besides, a higher elasticity at the intensive margin

seems to be related to a slightly smaller phase-in range (see Figure D.2).

Second, I consider alternative assumptions on the average levels and skill gradients

of participation elasticities. In the benchmark, I assumed participation elasticities to fall

from 0.4 in the lowest skill groups to 0.18 in the highest ones. In the sensitivity analysis, I

consider a case with higher participation elasticities (falling from 0.5 to 0.4 as in Jacquet

et al. 2013) and a case with lower elasticities (falling from 0.3 to 0.1). Additionally, I

consider a case where the participation elasticity is equal to 0.25 in all skill groups. The

effects of variations in the participation elasticities on the optimal tax schedule are very

limited and go in different directions. In the case with higher participation elasticities,

e.g., the optimal EITC for welfare weights αA is slightly smaller, while the optimal EITC

for welfare weights αB is slightly larger than in the benchmark case (see Figure D.3).

Third, I simulate the optimal income tax for versions of the model with a finer skill set
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(192 skill types) and a coarser skill set (48 skill types) than in the benchmark model with

96 skill types. Specifically, I vary the discretization of the skill set by jointly adjusting the

number of skill types n and the relative distance ωj+1/ωj between adjacent skill types,

while holding the levels of the lowest skill type ω1 and the highest skill type ωn constant.

Variations in the number of skill types affect the optimal tax schedule in a similar way

as variations in the level of the intensive-margin elasticity: The larger the number of skill

types, the flatter is the optimal income tax and the smaller is the maximum tax credit

(see Figure D.4).

Fourth, I simulate the optimal tax schedule for an alternative sequence αC of welfare

weights that are convexly decreasing over the skill distribution (as the welfare weights

considered by Saez 2002 and Jacquet et al. 2013). These welfare weights represent a

social planner with a strong desire for redistribution among low-skilled workers (i.e., from

the poor to the very poor). All other parameters are kept as in the benchmark calibration.

The variation of welfare weights changes the simulation results drastically: The optimal

tax is given by a Negative Income Tax with strictly positive marginal taxes and strictly

positive participation taxes at all income levels (see Figure D.5).

To sum up, variations in the levels of intensive-margin and extensive-margin elastici-

ties, in the skill gradient of participation elasticities and in the number of skill types have

some effects on the quantitative properties of the optimal income tax, but not on the

qualitative properties. Specifically, the simulated EITC for all parameter constellations

is more than twice as large as the current EITC for childless workers in the US. In con-

trast, the qualitative properties of the optimal tax schedule depend crucially on whether

the skill gradient of welfare weights is small or large at the bottom, i.e., on whether the

planner has a weak or a strong concern for redistribution from the poor to the very poor.

7 Conclusion

This paper has studied optimal income taxation in a model with labor supply responses

at both the intensive margin and the extensive margin, as in Saez (2002) and Jacquet

et al. (2013). Building on this earlier work, it is the first paper to provide both necessary

and sufficient conditions for the optimality of an Earned Income Tax Credit with negative

marginal taxes and negative participation taxes at the bottom. In particular, I show that

an EITC is optimal if, first, participation elasticities are non-increasing along the skill

distribution, second, society has only weak concerns for redistribution from the poor to

the very poor and, third, there is a large share of high-skill workers. The case for an EITC

is particularly strong if the government’s objective is to alleviate poverty, and if all agents

with earned incomes below the poverty line are considered as equally deserving. As shown

above, this result is driven by a tradeoff between intensive-margin and extensive-margin

aspects of efficiency, which has not been discussed in the previous literature.
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Appendix

A Proofs for Section 4

Section 4 studies the revenue and welfare effects of the tax perturbations depicted in Figures 2a

and 2b. The following proofs build on the perturbation approach developed by Piketty (1997)

and Saez (2002), and on its extension to multi-bracket reforms in Bierbrauer et al. (2020). I

start with a preliminary result that prepares for the proofs of Lemmas 1 and 2.

Lemma A.1. Let the skill set be given by Ω = [ω, ω̄]. Consider a continuously differentiable,

weakly convex tax schedule T such that yT (ω) > 0, and a generic tax reform (τ, h) that replaces

T (y) by T (y) + τh(y). For τ = 0, the marginal revenue effect of this reform is given by

Rτ (0, h) = Fy(0) h(0) +

∫ ȳ

y
fy(y) h(y) dy −

∫ ȳ

y
fy(y) h′(y) y ε(y)

T ′(y)

1− T ′(y)
dy

−
∫ ȳ

y
fy(y) [h(y)− h(0)] η(y) TP (y) dy , (A.1)

where ε(y) = εT (ωT (y)), η(y) = ηT (ωT (y)) and ωT = y−1
T is the inverse function of yT .

Proof. Consider a tax reform (τ, h), where the scalar τ gives the magnitude and the function

h : y 7→ h(y) gives the direction of the reform. After this reform, net tax revenue can be written

as R(τ, h) = EΩ [R(τ, h | ω)], where R(τ, h | ω) is the net revenue collected from individuals with

skill type ω. This skill-specific revenue is given by

R(τ, h | ω) = p̂(ω, τ) [T (ŷ(ω, τ)) + τh(ŷ(ω, τ))] + (1− p̂(ω, τ)) [T (0) + τh(0)] ,

where ŷ(ω, τ) denotes the optimal earnings of agents with skill type ω conditional on working,

and p̂(ω, τ) denotes the participation rate among the agents with skill type ω. The derivative of

the skill-specific revenue with respect to τ is given by

Rτ (τ, h | ω) = p̂(ω, τ) h(ŷ(ω, τ)) + [1− p̂(ω, τ)] h(0)

+ p̂(ω, τ) ŷτ (ω, τ)
[
T ′(ŷ(ω, τ)) + τh′(ŷ(ω, τ))

]
+ p̂τ (ω, τ) [T (ŷ(ω, τ)) + τh(ŷ(ω, τ))− T (0)− τh(0)] ,

where the first line captures the mechanical effects for working and non-working agents in this

skill group, the second line captures revenue changes due to intensive-margin responses that

are induced by changes in the marginal tax, and the third line captures revenue changes due to

extensive-margin responses that are induced by changes in the participation tax. The derivatives

of ŷ(ω, τ) and p̂(ω, τ) with respect to the reform magnitude τ are given by

ŷτ (ω, τ) = −h′(ŷ(ω, τ))
∂ŷ(ω, τ)

∂[1− T ′(ŷ(ω, τ))]
, and

p̂τ (ω, τ) = − [h(ŷ(ω, τ))− h(0)]
∂p̂(ω, τ)

∂ [ŷ(ω, τ)− TP (ŷ(ω, τ))]
.

For the next step, I evaluate the derivative Rτ (τ, h | ω) for τ = 0. Using ŷ(ω, 0) = yT (ω) and
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p̂(ω, 0) = pT (ω), and rewriting the intensive-margin and extensive-margin responses in terms of

the (semi-)elasticities (8) and (9), this gives

Rτ (0, h | ω) = pT (ω) h(yT (ω)) + [1− pT (ω)] h(0)

− pT (ω) h′(yT (ω)) εT (ω) yT (ω)
T ′(yT (ω))

1− T ′(yT (ω))

− pT (ω) [h(yT (ω))− h(0)] ηT (ω) TP (yT (ω)) .

Denote by gω the density of the unconditional skill distribution. Then, integrating over all skill

groups, the marginal revenue effect Rτ results as

Rτ (0, h) =

∫ ω̄

ω
gω(ω) [1− pT (ω)] dω h(0) +

∫ ω̄

ω
gω(ω)pT (ω)h(yT (ω))dω

−
∫ ω̄

ω
gω(ω) pT (ω) h′(yT (ω)) εT (ω) yT (ω) T ′(yT (ω))dω

−
∫ ω̄

ω
gω(ω) pT (ω) [h(yT (ω))− h(0)] ηT (ω) TP (yT (ω))dω .

For any continuously differentiable and weakly convex tax schedule T , yT (ω) is strictly increasing

in ω due to the single-crossing property hyω < 0. This implies that optimal income choices give

rise to an income distribution such that Fy(0) =
∫ ω̄
ω gω(ω) [1 − pT (ω)]dω, Fy(y) = Fy(0) +∫ ωT (y)

ω gω(ω) pT (ω) dω and fy(y) = gω(ωT (y)) pT (ωT (y)) ∂ωT (y)/∂y. Hence, a substitution of

the integration variable gives expression (A.1) in Lemma A.1.

Proof for Lemma 1

Proof. Consider the tax reform (τ, ha) depicted in Figure 2a. Formally, the direction ha of this

reform is given by

ha(y) =


` for y = 0 ,

−φa` for y ∈ (0, ya − `] ,
−φa(ya − y) for y ∈ (ya − `, ya) ,

0 for y ≥ ya

(A.2)

for any ` > 0. The derivative h′a(y) equals φa for incomes in (ya − `, ya) and zero otherwise. By

Lemma A.1, the marginal revenue of this reform applied to a generic tax schedule T is

Rτ (0, ha) = ` Fy(0)− φa`
∫ ya−`

y
fy(y)dy − φa

∫ ya

ya−`
fy(y)(ya − y)dy

−φa
∫ ya

ya−`
fy(y) y ε(y)

T ′(y)

1− T ′(y)
dy

+φa`

∫ ya−`

y
fy(y) η(y) TP (y)dy + φa

∫ ya

ya−`
fy(y) η(y) (ya − y) TP (y)dy

+`

∫ ȳ

y
fy(y) η(y) TP (y)dy ,
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where the first line captures mechanical revenue effects and the second line captures behavioral

revenue effects due to intensive-margin responses. The third and fourth line captures behavioral

revenue effects from extensive-margin responses to the tax cut h(yT (ω)) for low-income workers

and the tax hike h(0) for non-working agents, respectively. The second-order derivative of

revenue R with respect to τ and `, evaluated for τ = 0 and ` = 0, follows as

Rτ`(0, ha)|`=0 = Fy(0)− φa
[
Fy(ya)− Fy(y)

]
−φa fy(ya) ya ε(ya)

T ′(ya)

1− T ′(ya)

+φa

∫ ya

y
fy(y) η(y) TP (y) dy +

∫ ȳ

y
fy(y) η(y) TP (y) dy .

With φa = Fy(0)/[Fy(ya) − Fy(y)], the sum of the mechanical effects in the first line is zero.

Moreover, Assumption 1 with tp = 0 implies that T ′(y) = 0 and TP (y) = 0 for all y ∈ (0, yp).

Hence, for ya < yp, the second-order derivative Rτ`(0, ha)|`=0 simplifies to

Rτ`(0, ha)|`=0 =

∫ ȳ

yp

fy(y) η(y) TP (y) dy ,

which is the positive fiscal externality from a small reform.

I have assumed that this revenue gain is redistributed back using a uniform lump-sum transfer

to all agents, with average welfare weight 1. Hence, the marginal welfare effect of a reform in

direction ha is given by

Wτ (0, ha) = Rτ (0, ha) + Fy(0) α̂0 h(0) +

∫ ȳ

y
fy(y) α(ωT (y)) h(y) dy ,

where α̂0 = EΩ×∆ [α(ω) | y∗(ω, δ) = 0] is the average welfare weight of non-working agents.

Similarly, I denote by α̂(y, ya) = EΩ×∆

[
α(ω) | y∗(ω, δ) ∈

[
y, ya

)]
the average welfare weight

of workers with incomes between y and ya. Then, the second-order derivative of welfare with

respect to τ and ` is

Wτ`(0, ha)|`=0 = −Fy(0) α̂0 + φa
[
Fy(ya)− Fy(y)

]
α̂(y, ya) + Rτ`(0, ha)|`=0

= Fy(0)
[
α̂(y, ya)− α̂0

]
+

∫ ȳ

yp

fy(y) η(y) TP (y) dy ,

where I have again used that φa
[
Fy(ya)− Fy(y)

]
= Fy(0) by construction. The welfare effect

of a small reform in direction ha with τ and ` positive but close to zero is approximately given

by W (τ, ha)−W (0, ha) ≈ τ` Wτ`(0, ha)|`=0. This welfare effect is strictly positive if and only if

condition (10) in Lemma 1 is satisfied.
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Proof of Lemma 2

Proof. The following proof proceeds along the same lines as the one for Lemma 1. For the tax

reform (τ, hb) depicted in Figure 2b, the direction hb is given by

hb(y) =



0 for y = 0 ,

` for y ∈ (0, ya − `] ,
ya − y for y ∈ (ya − `, ya] ,

−φb(y − ya) for y ∈ (ya, ya + `) ,

−φb` for y ∈ [ya + `, yb]

−φb(yb − y) for y ∈ (yb, yb + `)

0 for y ≥ yb + ` .

(A.3)

for any ` > 0. Using equation (A.1), the marginal revenue of this reform is

Rτ (0, hb) = `

∫ ya−`

y
fy(y) dy +

∫ ya

ya−`
fy(y) (ya − y) dy

−φb
∫ ya+`

ya

fy(y) (y − ya) dy − φb`
∫ yb

ya+`
fy(y) dy − φb

∫ yb+`

yb

fy(y) (yb − y) dy

+

∫ ya

ya−`
fy(y) y ε(y)

T ′(y)

1− T ′(y)
dy + φb

∫ ya+`

ya

fy(y) y ε(y)
T ′(y)

1− T ′(y)
dy

−φb
∫ yb+`

yb

fy(y) y ε(y)
T ′(y)

1− T ′(y)
dy

−`
∫ ya−`

y
fy(y) η(y) TP (y) dy −

∫ ya

ya−`
fy(y) η(y) (ya − y) TP (y) dy

+φb

∫ ya+`

ya

fy(y) η(y) (y − ya) TP (y) dy + φb`

∫ yb

ya+`
fy(y) η(y) TP (y) dy

+φb

∫ yb+`

yb

fy(y) η(y) (y − ya) TP (y) dy ,

where lines 1 and 2 capture mechanical effects, and lines 3 and 4 capture behavioral effects

due to intensive-margin responses for workers with incomes in (ya − `, ya + `) and (yb, yb + `),

respectively. Line 5 captures behavioral effects due to extensive-margin responses for workers

with incomes below ya, and lines 6 and 7 capture behavioral effects due to extensive-margin

responses for workers with incomes in (ya, yb+ `). The second-order derivative of R with respect

to τ and `, evaluated for τ = 0 and ` = 0, follows as

Rτ`(0, hb)|`=0 =

∫ ya

y
fy(y) dy − φb

∫ yb

ya

fy(y) dy

+(1 + φb) fy(ya) ya ε(ya)
T ′(ya)

1− T ′(ya)
− φb fy(yb) yb ε(yb)

T ′(yb)

1− T ′(yb)

−
∫ ya

y
fy(y) η(y) TP (y) dy + φb

∫ yb

ya

fy(y) η(y) TP (y) dy .

With φb =
[
Fy(ya)− Fy(y)

]
/ [Fy(yb)− Fy(ya)], the sum of the mechanical effects in the first line

is again zero. Moreover, Assumption 1 implies that T ′(y) = 0 and TP (y) = tp for all y ∈ (0, yp).
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Hence, with ya < yb < yp, the second-order derivative of R simplifies to

Rτ`(0, hb)|`=0 = −tp

[∫ ya

y
fy(y) η(y) dy − φb

∫ yb

ya

fy(y) η(y) dy

]
= −tp

[
Fy(ya)− Fy(y)

] [
η̂(y, ya)− η̂(ya, yb)

]
,

where I have used that φb [Fy(yb)− Fy(ya)] = Fy(ya)− Fy(y) and I have denoted by η̂(y1, y2) =∫ y2
y1
fy(y) η(y) dy/ [Fy(y2)− Fy(y1)] the average semi-elasticity of participation among workers

with incomes between y1 and y2. By the last line, the fiscal externality of the reform is positive

if tp < 0 and η̂(y, ya) > η̂(ya, yb). Again, I have assumed that this revenue gain is redistributed

back to the agents using a uniform lump-sum transfer. Hence, the second-order derivative of

welfare with respect to τ and ` is given by

Wτ`(0, hb)|`=0 = −
[
Fy(ya)− Fy(y)

]
α̂(y, ya) + φb [Fy(yb)− Fy(ya)] α̂(ya, yb)

+ Rτ`(0, hb)|`=0

=
[
Fy(ya)− Fy(y)

] {
α̂(ya, yb)− α̂(y, ya)− tP

[
η̂(y, ya)− η̂(ya, yb)

]}
.

Again, the welfare effect of a small reform with τ > 0 and ` > 0 can be approximated by

W (τ, hb)−W (0, hb) ≈ τ` Wτ`(0, hb)|`=0, which is positive if and only if condition (11) in Lemma

2 is satisfied.
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B Proofs for Subsections 5.1 and 5.2

In the following, I provide the formal proofs of Propositions 1 and 2. For this purpose, I proceed

in several steps. First, I provide two preliminary results that allow to simplify the optimal tax

problem for the model introduced in Section 3 with a discrete skill set Ω. Second, I provide two

intermediate results in which I identify the first-and-half-best allocation and derive conditions

under which this allocation satisfies or violates the incentive-compatibility constraints between

workers in different skill groups. In the third and final step, I show that the labor supply

distortions in the second-best allocation can be determined based on which IC constraints are

violated and satisfied in the first-and-half-best allocation.

I start by showing that all implementable and second-best Pareto-efficient allocations have

a distinct set of properties. Hence, I can restrict the following analysis to the set of allocation

with these properties.

Lemma B.1. Every implementable and second-best Pareto-efficient allocation is characterized

by two vectors (cj)
n
j=0 and (yj)

n
j=1 such that

� all agents with skill type ωj ∈ Ω and fixed cost type δ below the threshold δj := cj −
h(yj , ωj)− c0 receive bundle (cj , yj), and

� all other agents receive bundle (c0, 0).

Proof. Consider an allocation (c, y) : Ω×∆→ R2 that is incentive-compatible and second-best

Pareto-efficient. Incentive compatibility requires that, for any pair of types (ωa, δa) and (ωb, δb),

ca − h(ya, ωa)− 1ya>0 δ
a ≥ cb − h(yb, ωa)− 1yb>0 δ

a and (B.1)

cb − h(yb, ωb)− 1yb>0 δ
b ≥ ca − h(ya, ωb)− 1ya>0 δ

b (B.2)

where ci = c(ωi, δi) and yi = y(ωi, δi) denote the consumption and output levels allocated to

type (ωi, δi), respectively. In the following, I show by contradiction that these IC constraints

have three implications for allocation (c, y).

First, assume that, under (c, y), there are two types (ωa, δa) 6= (ωb, δb) that provide zero

output, ya = yb = 0, but receive different consumption levels ca 6= cb. Then, one of the IC

constraints (B.1) or (B.2) is violated. Hence, incentive compatibility requires that all non-

working agents receive the same consumption level c0.

Second, assume that, under (c, y), there are two types with ωa = ωb = ωj and δa 6= δb

that provide strictly positive output but receive different bundles such that ca − h(ya, ωj) 6=
cb− h(yb, ωj). Then, one of the IC constraints (B.1) or (B.2) is violated again. Hence, incentive

compatibility requires that the gross utility ci − h(yi, ωj) is equal to the same number zj for

each working agent with skill type ωj . It does not require that the bundles (ca, ya) and (cb, yb)

are identical, however.

Third, assume that, under (c, y), there are two types with ωa = ωb = ωj and δa > δb such

that only the agent with the higher fixed cost provides positive output, ya > yb = 0. Then,

the IC constraints (B.1) and (B.2) imply that ca − h(ya, ωj) − δa ≥ cb ≥ ca − h(ya, ωj) − δb,
respectively. Both constraints can only be satisfied simulataneously if δb ≥ δa, which gives a

contradiction. Hence, incentive compatibility requires that, in each skill group j, there is a
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unique participation threshold δj = zj − c0 such that all agents with skill ωj and fixed cost

below δj provide strictly positive output, while all agents with skill ωj and fixed cost above δj

provide zero output.

Fourth, second-best Pareto efficiency requires that all working agents with skill type ωj are

allocated the same consumption-output bundle. For a proof by contradiction, assume that, in

the incentive-compatible and Pareto-efficient allocation (c, y), two types with ωa = ωb = ωj and

δa 6= δb receive different bundles that satisfy ya < yb and ca − h(ya, ωj) = cb − h(yb, ωj) = zj . I

will now show that the government can achieve a Pareto improvement. For this purpose, define

the set B of (c, y) bundles such that c = k(y) = zj +h(y, ωj) and y ∈ [ya, yb]. Note that, as long

as the agents a and b are provided with (potentially different) bundles in B, their utility stays

constant and the allocation remains incentive-compatible. For the government, the net resource

cost of providing bundle (k(y), y) to an agent is given by k(y)− y = zj + h(y, ωj)− y. This net

resource cost is strictly convex in y by hyy > 0. Hence, there is a unique bundle (cj , yj) that

minimizes the net resource cost over set B. Consequently, by changing the allocation so that

both agents a and b are provided bundle (cj , yj), we can free up resources without making any

agent worse off and use these resources to make all agents in the population better off. But this

means that the allocation considered above was not Pareto-efficient.

Finally, if all working agents with skill type ωj are allocated the same bundle (cj , yj), the

skill-specific participation threshold is given by δj = zj − c0 = cj − h(y,ωj)− c0.

For the next step, note that, by Lemma B.1, a potentially optimal allocation is effectively

given by two vectors (cj)
n
j=1, (yj)

n
j=1 that characterize the bundles of working types, the vector

(δj)
n
j=1 of participation thresholds and the consumption level c0 of non-working agents. The

next preliminary result shows that the optimal tax problem can be rewritten in a compact way

that only involves the vectors (yj)
n
j=1 and (δj)

n
j=1, which characterize labor supply distortions

at both margins. Hence, we can eliminate the consumption levels of working and non-working

agents from the optimal tax problem, thereby simplifying the following analysis.

Lemma B.2. The optimal allocation problem is equivalent to maximizing

n∑
j=1

fj

{
Gj(δj) [yj − h (yj , ωj) + δj (αj − 1)]− αj

∫ δj

δ
δdGj(δ)

}
(B.3)

over (yj)
n
j=1 and (δj)

n
j=1, subject to the incentive compatibility constraints along the skill dimen-

sion that, for any pair of skill groups j and k in J = {1, 2, . . . , n},

δj − δk ≥ h (yk, ωk)− h (yk, ωj) . (B.4)

Proof. I start by showing in two steps that (B.3) results from substituting the feasibility con-

dition into the welfare function. For the first step, Lemma B.1 implies that welfare is given

by

EΩ×∆

[
α(ω)

{
c(ω, δ)− h (y(ω, δ), ω)− 1y(ω,δ)>0 δ

}]
=

n∑
j=1

fjαj

{∫ δj

δ
[cj − h(yj , ωj)− δ] dGj(δ) + [1−Gj(δj)] c0

}
,
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with δj = cj − h(yj , ωj) − c0 denoting the participation threshold in skill group j. Using

this threshold condition, the utility of a working type in skill group j can be rewritten as

cj − h(yj , ωj)− δ = c0 + δj − δ. Hence, all agents receive at least utility c0, and a working agent

with type (ωj , δ) receives an additional utility of δj − δ. We can thus rewrite welfare as

n∑
j=1

fjαj

{
c0 +

∫ δj

δ
[δj − δ] dGj(δ)

}
= c0 +

n∑
j=1

fjαj

∫ δj

δ
[δj − δ] dGj(δ) , (B.5)

where I have used that the average welfare weight is given by
∑n

j=1 fjαj = 1.

For the second step, Lemma B.1 implies that the feasibility condition is given by

EΩ×∆ [y(ω, δ)− c(ω, δ)] =

n∑
j=1

fj {Gj(δj)[yj − cj ]− [1−Gj(δj)] c0} ≥ 0 .

Again, I can use the threshold condition to rewrite the net tax payment of a worker in skill

group j as yj− cj = yj−h(yj , ωj)−δj− c0. Hence, we can interpret c0 as the base transfer to all

agents, and yj−h(yj , ωj)−δj as the gross tax payment of a worker in skill group j. Substituting

this expression into the feasibility condition gives

n∑
j=1

fjGj(δj)[yj − h(yj , ωj)− δj ] ≥ c0 . (B.6)

In the optimal allocation, this feasibility condition holds with equality by standard arguments.

Hence, we can use (B.6) to eliminate the consumption level c0 of non-working agents in the

welfare function (B.5). After some rearrangements, this gives expression (B.3) in Lemma B.2.

Finally, consider the IC constraint between working agents with skill types ωj and ωk, which

is usually written as cj − h (yj , ωj) ≥ ck − h (yk, ωj). Using the threshold conditions on δj and

δk, I can replace cj = δj + h(yj , ωj) + c0 and ck = δk + (yk, ωk) + c0 in this IC constraint. Some

rearrangements then give inequality (B.4) in Lemma B.2. Together, constraint (B.4) and the

threshold condition also ensure that any non-working agent with type (ωj , δ) prefers his bundle to

the one of any working agent with skill type ωk because c0 ≥ cj−h (yj , ωj)−δ ≥ ck−h (yk, ωj)−δ.
Finally, the threshold condition directly implies that any working agent with skill type ωj prefers

his bundle to the one of (all) non-working agents.

I continue with two intermediate results that, first, identify the first-and-half-best alloca-

tion and, second, derive conditions under which this allocation satisfies or violates any of the

incentive-compatibility (IC) constraints between workers in the skill groups 1, 2 and 3. For

consistency, I continue to refer to the first-and-half-best allocation as (c̃, ỹ), even though I char-

acterize it in terms of the vectors (ỹj)
n
j=1 and (δ̃j)

n
j=1. Based on the latter result, I can then

proceed to proof Propositions 1 and 2.

Lemma B.3. [Jacquet et al. (2013)] The first-and-half-best allocation (c̃, ỹ) is defined by

hy(ỹj , ωj) = 1 , (B.7)

δ̃j = ỹj − h(ỹj , ωj) +
αj − 1

η̃j
, (B.8)
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where η̃j = gj(δ̃j)/Gj(δ̃j) is the semi-elasticity of participation of skill group j. The first-and-

half-best participation tax is given by TPfhb(ỹj) = (1− αj)/η̃j.

Proof. Following Jacquet et al. (2013), the first-and-half-best allocation is defined as the al-

location that maximizes welfare (12) subject to the feasibility condition (13) and the set of

threshold conditions for all skill groups, but ignoring the IC constraints between workers with

different skill types. By Lemma B.2, the feasibility condition and the threshold conditions can

be substituted into the welfare function to get the objective function (B.3). Hence, allocation

(c̃, ỹ) can be derived by a point-wise maximization of (B.3) with respect to yj and δj without

side constraints. The first-order condition with respect to yj requires that ỹj satisfies (B.7), i.e.,

maximizes y − h(y, ωj). Hence, labor supply in the first-and-half-best allocation is undistorted

at the intensive margin in each skill group j.

The first-order condition with respect to δj requires that

gj(δ̃j)
[
ỹj − h (ỹj , ωj) + δ̃j(αj − 1)− αj δ̃j

]
+Gj(δ̃j) (αj − 1) = 0 . (B.9)

Rearranging this first-order condition and using η̃j = gj(δ̃j)/Gj(δ̃j) gives (B.8). Finally, the

first-and-half-best participation tax is given by TPfhb(ỹj) = Tfhb(ỹj) − Tfhb(0) = ỹj − c̃j + c̃0 =

ỹj − h(ỹj , ωj) − δ̃j = (1 − αj)/η̃j , where I have used the threshold condition on δ̃j and (B.8).

Hence, the first-and-half-best participation tax is negative (positive) if αj is larger (smaller)

than 1.

Lemma B.4. Let Assumption 2 hold, let αj < 2 for all j ∈ J and define a2 = ω2/ω1 and

a3 = ω3/ω2. The first-and-half-best allocation satisfies

(i) all IC constraints if α1 = α2 = α3 = 1;

(ii) the upward IC constraint of ω1 workers if and only if

α2 ≤ βU (α1) := 2− a1+σ
2

(2− α1)−1 + σa1+σ
2 (a

1+1/σ
2 − 1)

. (B.10)

If α1 is strictly larger than the critical value β̄ := 2− a1+σ2 −1

σa1+σ2

(
a
1+1/σ
2 −1

) ∈ (1, 2), then βU (α1)

is located in (β̄, α1). If α1 < β̄, in contrast, then βU (α1) < α1 < β̄;

(iii) the upward IC constraint of ω2 workers if α3 ≤ α2 ≤ α1;

(iv) the downward IC constraint of ω3 workers if and only if

α3 ≥ βD(α2) := 2− a1+σ
3

(2− α2)−1 + σ(1− a−1−1/σ
3 )

. (B.11)

Let φf (α2) = [α2 − 1] / [α2 − βD(α2)]. There is a function φ̂ω(α1, α2) > ω2 such that (B.11)

holds if and only if

ω3 > φ̂ω(α1, α2) and (B.12)

f3 > φf (α2)

(
1 + f1

α1 − α2

α2 − 1

)
. (B.13)
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Proof. For part (i) of Lemma B.4, assume that αj = αk = 1 for two skill groups j and k. By

Lemma B.3, in the first-and-half-best allocation, the participation threshold in skill group j is

given by δ̃j = ỹj − h(ỹj , ωj). Correspondingly, the participation threshold in skill group k is

given by δ̃k = ỹk − h(ỹk, ωk). Using these expressions, the first-and-half-best allocation satisfies

the IC constraint (B.4) between workers in skill groups j and k if

ỹj − h(ỹj , ωj) ≥ ỹk − h(ỹk, ωj) .

This condition is always satisfied because, by Lemma B.3, the first-and-half-best income ỹj is

implicitly defined by hy(ỹj , ωj) = 1, i.e., is the unique maximizer of y − h(y, ωj). Intuitively,

incentive compatibility is ensured because the workers in both skill groups receive their laissez-

faire bundles.

To prove the remaining parts of Lemma B.4, I derive closed-form expressions for the first-

and-half-best allocation, which can then be used to verify the local IC constraints. For this

purpose, I combine Assumption 2 with the definitions of ỹj and δ̃j in Lemma B.3. First, with

the iso-elastic effort cost function (15), income ỹj has to satisfy hy(ỹj , ωj) = ỹ
1/σ
j ω

−1−1/σ
j = 1.

Hence, it is given by ỹj = ω1+σ
j . This also implies that ỹj − h(ỹj , ωj) = ω1+σ

j /(1 + σ). Second,

with a uniform distribution of fixed costs, the semi-elasticity in skill group j is given by η̃j =

gj(δ̃j)/Gj(δ̃j) = 1/δ̃j as long as δ̃j < δ̄. Plugging these expressions into the first-order condition

(B.9) gives

δ̃j =
ỹ2 − h(ỹ2, ω2)

2− αj
=

ω1+σ
j

(1 + σ)(2− αj)
, (B.14)

which is well-defined and increasing in ωj and αj for any αj < 2. Using the closed-form expres-

sions for ỹj and δ̃j , the first-and-half-best allocation satisfies the IC constraint (B.4) between

workers in skill groups j and k if and only if

ω1+σ
j

(1 + σ)(2− αj)
−

ω1+σ
k

(1 + σ)(2− αk)
≥ σ

1 + σ
ω1+σ
k

[
1−

(
ωk
ωj

)1+1/σ
]
. (B.15)

For parts (ii) and (iii), consider the local upward IC constraint of ωj workers, which is given

by inequality (B.15) with k = j+1. Rearranging this inequality and substituting aj+1 = ωj+1/ωj

gives

1

2− αj
−

a1+σ
j+1

2− αj+1
≥ σa1+σ

j+1

(
1− a1+1/σ

j+1

)
⇔ αj+1 ≤ β̃U (αj , aj+1) := 2−

a1+σ
j+1

(2− αj)−1 + σa1+σ
j+1 (a

1+1/σ
j+1 − 1)

. (B.16)

Note that function β̃U is continuously differentiable and strictly increasing in αj and smaller than

2 for any αj < 2 and aj+1 > 1. Hence, we know that the first-and-half-best allocation satisfies

the upward IC of ωj workers if αj+1 ≤ β̃U (αj , aj+1), and violates it if αj+1 > β̃U (αj , aj+1).

Next, I show that, fixing any aj+1 > 1, function β̃U ( , aj+1) has a unique fixed point β̃(aj+1),

which is located in (1, 2). For this purpose, I can rearrange the condition β̃U (αj , aj+1) ≶ αj to
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read

αj ≷ β̃(aj+1) := 2−
a1+σ
j+1 − 1

σ a1+σ
j+1

(
a

1+1/σ
j+1 − 1

) .
The fixed point β̃(aj+1) is uniquely defined and below 2 for any aj+1 > 1 and σ > 0. Hence, I

know that the upward IC is violated if αj = αj+1 ∈ (β̃(aj+1), 2). By Lemma B.4 (i), however, the

IC is satisfied if αj = αj+1 = 1. Hence, β̃(aj+1) must be located in (1, 2) for any combination

of aj+1 > 1 and σ > 0. Finally, as β̃U is strictly increasing in αj , αj ≷ β̃(aj+1) implies

β̃U (αj , aj+1) ≷ β̃(aj+1).

For part (ii), note that βU (α1) = β̃U (α1, a2) and β̄ = β̃(a2). Hence, the previous arguments

imply that the upward IC of ω1 workers is satisfied if α2 ≤ βU (α1) = β̃U (α1, a2). Moreover,

βU (α1) ∈ (β̄, α1) for any α1 ∈ (β̄, 2), while βU (α1) > α1 for any α1 < β̄.

For part (iii), note that α3 ≤ α2 ≤ α1 implies that α3 is smaller than the average welfare

weight 1, and strictly smaller than β̃(a3) > 1. Hence, we have α3 ≤ α2 < β̃U (α2, a3) if α2 <

β̃(a3). We have α3 < β̃(a3) ≤ β̃U (α2, a3) if α2 ≥ β̃(a3). In both cases, we have α3 < β̃U (α2, a3),

which ensures that the local upward IC of ω2 workers is satisfied.

For part (iv), finally, I consider the downward IC constraint of ω3 workers. Rearranging

inequality (B.15) with j = 3 and k = 2 and using a3 = ω3/ω2 gives

a1+σ
3

2− α3
− 1

2− α2
≥ σ

(
1− a−1−1/σ

3

)
⇔ α3 ≥ 2− a1+σ

3

(2− α2)−1 + σ
(

1− a−1−1/σ
3

) = βD(α2) .

By the normalization of welfare weights, the welfare weight of ω3 workers equals α3 = α2 −
[α2 − 1 + f1(α1 − α2)] /f3. This implies that the condition α3 ≥ βD(α2) is equivalent to

f3 ≥
α2 − 1

α2 − βD(α2)

(
1 + f1

α1 − α2

α2 − 1

)
(B.17)

where the first bracket equals function φf (α2) in part (iv) of Lemma B.4. Because f1+f2+f3 = 1,

inequality (B.17) can only be satisfied if its right-hand side is smaller than 1 − f1. This is

equivalent to the condition βD(α2) < (1− f1α1)/(1− f1) or, using (B.11),

2− a1+σ
3

(2− αp)−1 + σ
(

1− a−1−1/σ
3

) <
1− f1α1

1− f1

⇔ Z(a3) := a1+σ
3 +

(
σa
−1−1/σ
3 − σ − (2− α2)−1

)(
1 + (α1 − 1)

f1

1− f1

)
> 0 .

In the final step of the proof, I show that, for any combination of α1 ∈ (1, 2), α2 ∈ (1, α1],

σ > 0 and f1 ∈ (0, 1), there is a unique threshold φ̂ω(α1, α2) > ω2 such that the condition

Z(a3) > 0 is satisfied if and only if ω3 > φ̂ω(α1, α2). For this purpose, note first that Z(1) =

1− (2− α2)−1 [1 + (α1 − 1)f1/(1− f1)], which is strictly negative because both (2− α2)−1 and

[1 + (α1 − 1)f1/(1− f1)] are larger 1. Second, Z(a3) converges to infinity for a3 → +∞. Third,
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the derivative of Z in a3 is given by

Z ′(a3) = (1 + σ)aσ3 − (1 + σ)a
−2−1/σ
3

[
1 + (α1 − 1)

f1

1− f1

]
,

which is strictly positive if and only if a3 > ã := [1 + (α1 − 1)f1/(1− f1)]1/(2+σ+1/σ) > 1.

Thus, I have shown that Z(1) < 0, Z ′(a3) ≤ 0 for all a3 ≤ ã, Z ′(a3) > 0 for all a3 > ã

and lima3→∞ Z(a3) = ∞. This implies that there is a unique threshold φa(α1, α2) > 1 such

that Z(a3) > 0 if and only if a3 = ω3/ω2 > φa(α1, α2) or, equivalently, ω3 > φω(α1, α2) :=

ω2 φa(α1, α2) > ω2. Note finally that Z is strictly decreasing in α1 such that φ̂(α1, α2) ≥
φ̂(α2, α2) for α1 ≥ α2.

The following corollary provides the conditions under which the first-and-half-best allocation

satisfies the upward IC of ω1 workers and the downward IC of ω3 workers in the case in which

α1 = α2 > 1 (i.e., the social planner has no concerns for redistribution at the bottom). As they

follow directly from the conditions in Lemma B.4, I state the corollary without further proof.

Corollary 1. Let Assumption 2 hold and α1 = α2 = αp > 1. The first-and-half-best allocation

satisfies

(i) the upward IC constraint of ω1 workers if and only if αp > β̄;

(ii) the downward IC constraint of ω3 workers if and only if f3 > φf (αp) and a3 > φω(αp) =:

φ̂ω(αp, αp).

Proof of Proposition 1 (i) and 2 (i)

Proof. By Proposition 2 (i), the optimal allocation can only involve upwards distortions at

the intensive margin if the condition α2 > βU (α1) is satisfied, i.e., if the first-and-half-best

allocation violates the upward IC of ω1 workers. Proposition 2 (i) focuses on the special case

where α1 = α2 = αp, in which the condition α2 > βU (α1) is equivalent to αp > β̄.

To proof that α2 > βU (α1) is a necessary condition for upwards distortions at the intensive

margin, note first that the optimal allocation can be obtained by maximizing the objective (B.3)

subject to the subset of the local IC constraints (B.4) that are binding. By standard arguments,

optimal labor supply y∗j in skill group j can only upwards distorted at the intensive margin if

the upward IC of ωj−1 workers is binding. Hence, labor supply in skill group 1 can never be

upwards distorted in the optimum. In the following, I study which IC constraints can be binding

if α2 ≤ βU (α1) holds, i.e., if the necessary condition is violated. By Lemma B.4, this condition

ensures that the first-and-half-best allocation (c̃, ỹ) satisfies the upward IC of ω1 workers. By

Lemma B.4 part (iii), moreover, (c̃, ỹ) never violates the upward IC of ω2 workers.

There remain three possible cases. First, if (c̃, ỹ) violates the downward ICs of ω2 and ω3

workers, both downward ICs are unambiguously binding in the optimal allocation. Moreover,

both y∗2 and y∗3 are downwards distorted. Second, if (c̃, ỹ) only violates the downward IC of ω2

workers, this IC is unambiguously binding in the optimal allocation. The downward IC of ω3

workers may be binding or slack in the optimal allocation, but the upward IC of ω2 workers

is always slack. Hence, y∗1 is downwards distorted and y∗2 is either undistorted or downwards

distorted. Formal proofs for these two cases are available on request.
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Third, if (c̃, ỹ) only violates the downward IC of ω3 workers, this IC is unambiguously binding

in the optimal allocation. If this were the only binding IC constraints, δ2 would be smaller than

δ̃2 and y2 would be smaller than ỹ2. While δ2 < δ̃2 makes the bundle of ω2 workers less attractive,

y2 < ỹ2 makes the bundle more attractive for ω1 workers. If the latter effect dominates, then

the downward IC of ω3 workers may be binding in the optimal allocation as well, in addition

to the binding upward IC of ω1. Even in this case, however, y∗2 cannot be upwards distorted.

Using Lemma B.2, the Lagrangian is then given by

L =
3∑
j=1

fj

[
Gj(δj) (yj − h [yj , ωj)] + δj [αj − 1])− αj

∫ δj

δ
δdGj(δ)

]
+µU1 [δ1 − δ2 − h(y2, ω2) + h(y2, ω1)]

+µD3 [δ3 − δ2 − h(y2, ω2) + h(y2, ω3)] , (B.18)

where µU1 denotes the Lagrange multiplier of the upward IC of ω1 workers and µD3 denotes the

multiplier of the downward IC of ω3 workers. For j ∈ {1, 3}, the first-order condition with

respect to yj implies that 1 − hy(y∗j , ωj) = 0. Hence, y∗j is equal to ỹj and undistorted at the

intensive margin for j ∈ {1, 3}. As Gj(δ) = δ/δ̄ and gj(δ)/Gj(δ) = δ, the first-order conditions

with respect to δ2 and δ1 require that

δ∗1 =
y∗1 − h(y∗1, ω1)

2− α1
+ µU1

δ̄

f1(2− α1)
> δ̃1 , and

δ∗2 =
y∗2 − h(y∗2, ω2)

2− α2
−
(
µU1 + µD3

) δ̄

f2(2− α2)
< δ̃2 ,

where the inequalities follow because µU1 > 0, µD3 > 0, ỹ2 = arg max y − h(y, ω2) and δ̃j =

[ỹj − h(ỹj , ωj)] /(2− αj) by (B.8). As the upward IC of ω1 workers is binding by construction,

we also know that

δ∗1 − δ∗2 = h(y∗2, ω2)− h(y∗2, ω1) > δ̃1 − δ̃2 .

If the sufficient condition α2 > βU (α1) is not met, allocation (c̃, ỹ) satisfies the upward IC of ω1

so that δ̃1 − δ̃2 ≥ h(ỹ2, ω2)− h(ỹ2, ω1). Hence, we have

h(y∗2, ω2)− h(y∗2, ω1) > h(ỹ2, ω2)− h(ỹ2, ω1) ,

which ensures that y∗2 < ỹ2 by hyω < 0. Hence, labor supply in skill group y2 is unambiguously

downwards distorted. Summing up, I have shown that optimal labor supply cannot be upwards

distorted in any skill group if the condition α2 > βU (α1) is violated. Put differently, α2 > βU (α1)

is a necessary condition for upwards distortions at the intensive margin to be optimal.

Proof of Proposition 1 (ii) and 2 (ii)

Proof. By Proposition 2 (ii), the optimal allocation involves upwards distortions at both margins

if the jointly sufficient conditions α2 > βU (α1), ω3 > φ̂ω(α1, α2) and f3 > φf (α2)
(

1 + f1
α1−α2
α2−1

)
are satisfied. Proposition 1 (ii) focuses on the special case with α1 = α2 = αp, where the

previously mentioned conditions are equivalent to αp > β̄, ω3 = φω(αp) and f3 > φf (αp). To

prove these statements, I invoke Lemma B.4, by which the condition α2 > βU (α1) ensures that
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the first-and-half-best allocation violates the upward IC of ω1 workers. The conditions ω3 >

φ̂ω(α1, α2) and f3 > φf (α2)
(

1 + f1
α1−α2
α2−1

)
jointly ensure that the first-and-half-best allocation

satisfies the downward IC of ω3 workers.

For the second-best allocation, the three conditions jointly ensure that the upward IC of

ω1 workers is binding in the second-best allocation and that the downward IC of ω2 worker is

slack by standard arguments. With respect to the IC constraints between ω2 and ω3 workers,

there are two possible cases: (a) no other IC is binding, (b) the downward IC of ω3 workers is

binding. The latter case is possible because, if only the upward IC of ω1 workers were binding,

y2 would be larger than ỹ2. This would make the bundle of ω2 workers more attractive to ω3

workers. In case (a), y∗2 is upwards distorted by standard arguments. I now show that y∗2 is

also upwards distorted in case (b), which has not been studied in the optimal tax literature so

far. Using Lemma B.2, the Lagrangian for this case is again given by (B.18). As argued above,

the first-order condition with respect to yj implies that y∗j is equal to ỹj , i.e., undistorted at the

intensive margin for skill group j ∈ {1, 3}. As gj(δ)/Gj(δ) = δ, the first-order conditions with

respect to δ̂2 and δ̂3 require that

δ∗2 =
y∗2 − h(y∗2, ω2)

2− αp
−
(
µU1 + µD3

) δ̄

f2(2− αp)
< δ̃2 , and

δ∗3 =
y∗3 − h(y∗3, ω1)

2− α3
+ µD3

δ̄

f3(2− α3)
> δ̃3 ,

where the inequalities follow because µU1 > 0, µD3 > 0, ỹ2 = arg max y − h(y, ω2) and δ̃j =

[ỹj − h(ỹj , ωj)] /(2−αj) by (B.8). As the downward IC of ω3 workers is binding by construction,

I also know that

δ∗3 − δ∗2 = h(y∗2, ω2)− h(y∗2, ω3) > δ̃3 − δ̃2 .

Recall that allocation (c̃, ỹ) satisfies the downward IC of ω3, δ̃3 − δ̃2 ≥ h(ỹ2, ω2) − h(ỹ2, ω3).

Hence, we must have

h(y∗2, ω2)− h(y∗2, ω3) > h(ỹ2, ω2)− h(ỹ2, ω3) ,

which ensures that y∗2 > ỹ2 by hyω < 0. Hence, y2 is unambiguously upwards distorted in case

(b) as well. Summing up, I have shown that optimal labor supply is upwards distorted at the

intensive margin in skill group 2 if the jointly sufficient conditions on α1, α2, ω3 and f3 are met.

It remains to show that optimal labor supply is upwards distorted at the extensive margin in

skill groups 1 and 2. For this purpose, consider the participation threshold of ω1 workers. The

first-order condition with respect to δ1 requires that δ∗1 =
[
y∗1 − h(y∗1, ω1) + µU1 δ̄/f1

]
/(2 − α1).

As µU1 > 0 and 2 − α1 < 1, this implies that δ∗1 > y∗1 − h(y∗1, ω1). Hence, labor supply by ω1

workers is upwards distorted at the intensive margin.

Second, I have already shown that y∗2 is upwards distorted and, hence, larger than ỹ2 > ỹ1.

This implies that y∗1 − h(y∗1, ω1) > y∗2 − h(y∗2, ω1) because y∗1 = ỹ1 is the unique maximizer of

y−h(y, ω1). Hence, we know that δ∗1 > y∗2−h(y∗2, ω1). As the upward IC of ω1 workers is binding,

the participation threshold of ω2 workers satisfies δ∗2 = δ∗1 + h(y∗2, ω1) − h(y∗2, ω2). Substituting

in δ∗1 + h(y∗2, ω1) > y2∗, the optimal allocation has to satisfy δ∗2 > y∗2 − h(y∗2, ω2). Hence, labor

supply by ω2 workers is upwards distorted at the extensive margin as well.
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C Proofs for Subsection 5.3

I start by providing a preliminary result upon which Propositions 3 and 4 build. In particular,

the following lemma provides conditions under which the first-and-half-best allocation (c̃, ỹ)

satisfies or violates each of the local IC constraints between workers with adjacent skill types.

Lemma C.1. Let Assumptions 4 and 5 be satisfied. If a is sufficiently close to 1, the following

statements are true for any skill group j ∈ J \ {n}:

(i) There is a strictly increasing function βUj : R → R such that (c̃, ỹ) satisfies the upward

IC of ωj workers if and only if αj+1 ≤ βUj(αj). There is a number β̄j > 1 such that

βUj(αj) < αj if and only if αj > β̄j.

(ii) There is a strictly increasing function βDj : R→ R such that (c̃, ỹ) satisfies the downward

IC of ωj+1 workers if and only if αj+1 ≥ βDj(αj). There is a number β
j
< 1 such that

βDj(αj) < αj if and only if αj > β
j
.

Proof. Lemma C.1 establishes the existence of two functions βUj and βDj that determine for

each couple (αj , αj+1) which of the IC constraints between skill groups j and j+ 1 are satisfied.

The properties of both functions are illustrated in Figure 3. In the following, I first provide a

complete and detailed derivation of part (i) on the existence and the properties of function βUj .

I then sketch the corresponding proof for part (ii) on function βDj .

Part (i), first step: If a is small enough, there is a number β̄j > 1 such that the upward IC

of ωj workers is violated if αj = αj+1 > β̄j, and satisfied if αj = αj+1 < β̄j.

The claim generalizes the first step of the proof of Proposition 1 for arbitrary skill sets, effort

cost functions and type distributions. By (B.4), allocation (ỹ, δ̃) satisfies the upward IC of ωj

workers if and only if

δ̃j − δ̃j+1 ≥ h(ỹj+1, ωj+1)− h(ỹj+1, ωj) . (C.1)

First, I show that (C.1) is violated if α′ is equal to some fixed number above 1 and a is

close enough to 1. For this purpose, fix two numbers â > 1 and γ ∈ (1, 2) such that (ỹ, δ̃) is

well-behaved and defined by first-order conditions for α′ = γ and any a ∈ [1, â]. In the limit case

a = 1, we have ωj+1 = ωj , ỹj+1 = ỹj , ηj(δ) = ηj+1(δ) and δ̃j+1 = δ̃j . Hence, (C.1) is satisfied

with a strict equality.

Now consider a small increase in a. For a = 1, the derivative of the left-hand side of (C.1)

with respect to a is given by

d
[
δ̃j − δ̃j+1

]
da

∣∣∣∣∣∣
a=1

= − dδ̃j+1

da

∣∣∣∣∣
a=1

=
ωjhω(ỹj , ωj)η

2
j + ωj∂ηj/∂ωj(γ − 1)

η2
j + ∂ηj/∂δj(γ − 1)

,

while the derivative of the right-hand side is given by

d [h(ỹj+1, ωj+1)− h(ỹj+1, ωj)]

da

∣∣∣∣
a=1

= ωjhω(ỹj , ωj) .

Hence, the derivative of the difference between the left-hand side and the right-hand side follows
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as
ωj(γ − 1)

η2
j + ∂ηj/∂δj(γ − 1)

[∂ηj/∂ωj − hω(ỹj , ωj)∂ηj/∂δj ] .

While the fraction before the bracket is strictly positive, the term in the bracket is strictly

negative because hω < 0 and because ηj is decreasing in both ωj and δj by Assumption 4.

Hence, there is a number z > 1 such that the left-hand side of (C.1) is smaller than the right-

hand side for a for all a ∈ (1, z). This implies that (ỹ, δ̃) violates the upward IC of ω1 workers

whenever α′ > 1 and a is close enough to 1.

Second, I show that there is a unique threshold β̄j ∈ (1, γ) such that (C.1) is satisfied if

and only if α′ < β̄j . The derivative of δ̃k with respect to αk can be calculated by implicit

differentiation of (B.9). In particular, δ̃k is strictly increasing in αk and given by

dδ̃k
dαk

=

[
ηk −

∂ηk
∂δk

(
ỹk − h(ỹk, ωk)− δ̃k

)]−1

=

[
ηk −

∂ηk/∂δk
ηk

(1− αk)
]−1

> 0 ,

for any k ∈ J whenever (ỹ, δ̃) satisfies the second-order condition for a welfare optimum. Con-

sequently, the difference δ̃j − δ̃j+1 is strictly decreasing in α′,

d[δ̃j − δ̃j+1]

dα′

∣∣∣∣∣
αj=αj+1=α′

=
1

ηj − ∂ηj/∂δj
ηj

(1− α′)
− 1

ηj+1 − ∂ηj+1/∂δj+1

ηj+1
(1− α′)

< 0

⇔
(
∂ηj/∂δj
ηj

− ∂ηj+1/∂δj+1

ηj+1

)(
1− α′

)
< ηj − ηj+1 .

The first bracket on the left-hand side is equal to the semi-elasticity of the relative participation

responses ηj/ηj+1. By Assumption 5, the absolute value of this semi-elasticity is smaller than

ηj − ηj+1. For any α′ ∈ (0, 2), the absolute value of 1− α′ is smaller than 1. Consequently, the

left-hand side of the previous inequality is smaller than the right-hand side of the last inequality.

Hence, the left-hand side of (C.1) is strictly decreasing in α′. In contrast, the right-hand side of

(C.1) does not depend on α′.

Recall from the first step 1 that, as long as a is small enough, the upward IC (C.1) is

violated for α′ = γ. It is satisfied for α′ = 1 as shown in the proof of Proposition 1. Hence, the

monotonicity in α′ ensures that there is a unique threshold β̄j ∈ (1, γ) such that the upward IC

is satisfied if α′ ≤ β̄j and violated if α′ ∈ (β̄j , 2).

Part (i), second step: Existence and properties of function βUj. The claim gen-

eralizes the statement proven in the first part of Proposition 2. The proof is simple and mainly

exploits that δ̃k is continuously differentiable and strictly increasing in αk for any k ∈ J , as shown

in the first step. This directly implies that the left-hand side of (C.1) is strictly increasing in αj

and strictly decreasing in αj+1 (and continuously differentiable in both parameters). Hence, if

function βUj exists, (C.1) has to be satisfied with equality for any αj and αj+1 = βUj(αj) such

that there is a well-behaved welfare maximum. Moreover, βUj must be continuously differen-

tiable and strictly increasing in αj .

To prove the existence and the properties of function βUj , I again exploit the monotonicity

of (C.1) in αj and αj+1. In the first part of this proof, I have shown that (C.1) is satisfied with

equality for αj = αj+1 = β̄j . First, fix αj to be equal to some γ > β̄j . As the left-hand side
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of (C.1) is strictly increasing in αj , the upward IC is also satisfied if αj = γ and αj+1 = β̄j .

However, I have shown above that it is violated if αj+1 = αj = γ > β̄j . Due to the monotonicity

in αj+1, there is a unique number z ∈ (β̄j , γ) such (C.1) is satisfied with equality for αj+1 = z

and αj = γ.

Second, fix αj so be equal to some number γ < β̄j . As the left-hand side of (C.1) is strictly

increasing in αj , the upward IC is violated if αj = γ and αj+1 = β̄j . However, I have shown

above that it is satisfied if αj+1 = αj = γ < β̄j . Due to the monotonicity in αj+1, there is a

unique number z ∈ (β̄j , γ) such (C.1) is satisfied with equality for αj+1 = z and αj = γ.

Hence, for any αj such that (ỹ, δ̃) is well-defined, the function βUj(αj) is well-defined as the

unique number such that (C.1) is satisfied with equality for αj+1 = βUj(αj). This completes

the proof of part (i) of Lemma C.1.

Part (ii): Existence and properties of function βDj. The proof of part (ii) applies

similar arguments as the proof of part (i) to determine conditions on the welfare weights αj and

αj+1 such that allocation (ỹ, δ̃) satisfies the downward IC of ωj+1 workers, i.e.,

δ̃j+1 − δ̃j ≥ h(ỹj , ωj)− h(ỹj , ωj+1) . (C.2)

First, it can be shown that (C.2) is violated if αj = αj+1 is equal to some number γ < 1 and

a is slightly larger than 1. Again, this is done by comparing the derivatives of the left-hand

side and the right-hand side of (C.2) in a, evaluated for a = 1. Second, for αj = αj+1 equal

to some number α′, the left-hand side is strictly increasing in α′ (this directly follows from the

observation that the left-hand side of (C.2) is equal to minus one times the left-hand side of

(C.1)). For α′ = 1, (C.2) is satisfied. Hence, if a is small enough, there is a unique number

β
j
∈ (γ, 1) such that the downward IC of ωj+1 workers is satisfied if α′ ≥ β

j
and violated if

α′ < β
j
.

Finally, I can again exploit the monotonicity of δ̃j and δ̃j+1 in the welfare weights αj and

αj+1, respectively, to show that there is a uniquely defined function βDj such that (C.2) is

satisfied with equality for any combination of αj and αj+1 = βDj(αj). For αj < β
j
, we have

βDj(αj) ∈ (αj , βj). For αj > β
j
, we have βDj(αj) ∈ (β

j
, αj). Moreover, the differentiability and

monotonicity of δ̃k in αk ensures that βDj is continuously differentiable and strictly increasing

in αj .

Proof of Proposition 3

Proof. The conditions in Proposition 3 imply that the first-and-half-best allocation (ỹ, δ̃) (i)

violates the upward IC of ωj workers for at least one j ∈ {1, . . . , k − 1} and either violates or

satisfies with strict equality the upward IC of ωj workers for each j ∈ {1, . . . , k − 1}, and (ii)

satisfies the downward IC of ωj workers for each j ∈ {k + 1, . . . , n}, i.e.,

δ̃j − δ̃j+1 < h(ỹj+1, ωj+1)− h(ỹj+1, ωj) for at least one j ∈ {1, . . . , k − 1} , (C.3)

δ̃j − δ̃j+1 ≤ h(ỹj+1, ωj+1)− h(ỹj+1, ωj) for all j ∈ {1, . . . , k − 1} , (C.4)

δ̃j − δ̃j−1 ≥ h(ỹj−1, ωj−1)− h(ỹj−1, ωj) for all j ∈ {k, . . . , k − 1} . (C.5)
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I now show that this ensures an upward distortion in the second-best output of ωj workers,

y∗j > ỹj for all j ∈ {2, . . . , k}. This requires to determine the set of binding IC constraints in

the second-best allocation (y∗, δ∗). Assume that the upward IC of ωj workers is binding for j in

the set JU ⊂ J only and that the downward IC of ωj workers is binding for j in the set JD ⊂ J
only. Then, the Lagrangian of the optimal tax problem is given by

L =

n∑
j=1

fj

[
Gj(δ̂j)

(
yj − h [yj , ωj)] + δ̂j [αj − 1]

)
− αj

∫ δ̂j

δ
δdGj(δ)

]

+
∑
j∈JU

µUj

[
δ̂j − δ̂j+1 − h(yj+1, ωj+1) + h(yj+1, ωj)

]
+
∑
j∈JD

µDj

[
δ̂j − δ̂j−1 − h(yj−1, ωj−1) + h(yj−1, ωj)

]
,

where µUj and µDj are the Lagrange multiplier of the upward IC and the downward IC, respec-

tively, of ωj workers.

In the following, I show that the upward IC of each skill group j ∈ {1, . . . , k − 1} is binding

and that y∗j > ỹj for each j ∈ {2, . . . , k} in (y∗, δ∗). To provide the relevant arguments in a

simple way, I go through three alternative cases for an economy with 4 skill groups.

Case 1: k = 3, upward IC of ω2 workers violated. Assume that n = 4, k = 3 and

that equation (C.3) holds for j = 2, (C.4) holds for j = 1 and (C.5) holds for j = 4. It is

immediately clear that (y∗, δ∗) cannot be given by an allocation in which no IC is binding, nor

by an allocation in which only some downward ICs are binding. Moreover, I can rule out the

possibility that only the upward IC of ω2 workers is binding, i.e., that JU = {2} and JD = ∅. In

this case, the FOCs would imply that δ∗1 = δ̃1, y∗2 = ỹ2 and δ∗2 was given by

δ∗2 = y∗2 − h(y∗2, ω2) +
α2 − 1

η∗2
+

µU2
f2g2(δ∗2)

> δ̃2 = ỹ2 − h(ỹ2, ω2) +
α2 − 1

η̃2
, (C.6)

where η∗2 and η̃2 denote the semi-elasticities of participation of ω2 workers in (y∗, δ∗) and in (ỹ, δ̃),

respectively. We find that δ∗2 > δ̃2 because µU2 > 0 and η∗2 ≤ η̃2 for δ∗2 > δ̃2 by Assumption 4

(moreover, the second-order condition must be satisfied in a welfare maximum). Combining this

inequality with δ∗1 = δ̃1, y∗2 = ỹ2 and (C.4) for j = 1 implies that δ∗1 − δ∗2 < h(y∗2, ω2)− h(y∗2, ω1),

i.e., the upward IC of ω1 workers is violated. Hence, this allocation cannot be second-best.

Rather, both upward ICs of ω1 and ω2 workers must be binding as long as the upward IC of ω3

workers and the downward IC of ω4 workers are not taken into account.

It remains to determine the set of binding IC constraint and the distortions in y∗2 and y∗3 when

the full set of IC constraints is taken into account. For this purpose, we can easily generalize the

arguments given in the proof of Propositions 1 (ii) and 2 (ii). As a result, the upward ICs of ω1

and ω2 workers are binding in (y∗, δ∗), while the downward IC of ω4 workers might be binding

or not. In any case, however, both y∗2 and y∗3 are upwards distorted at the intensive margin.

Case 2: k = 3, upward IC of ω1 workers violated. Assume that n = 4, k = 3 and

that equation (C.3) holds for j = 1, (C.4) holds for j = 2 and (C.5) holds for j = 4. Again,

(y∗, δ∗) cannot be given by an allocation in which no IC is binding nor an allocation in which

54



only some downward ICs are binding. Moreover, I can rule out the possibility that only the

upward IC of ω1 workers is binding, i.e., JU = {1} and JD = ∅. In this case, the FOCs would

imply that δ∗3 = δ̃3, y∗3 = ỹ3, y∗2 > ỹ2 and that δ∗2 was given by

δ∗2 = y∗2 − h(y∗2, ω2) +
α2 − 1

η∗2
− µU1
f2g2(δ∗2)

< δ̃2 = ỹ2 − h(ỹ2, ω2) +
α2 − 1

η̃2
. (C.7)

We find that δ∗2 < δ̃2 because µU1 > 0, y∗2 − h(y∗2, ω2) < ỹ2 − h(ỹ2, ω2) and η∗2 ≥ η̃2 for δ∗2 < δ̃2

by Assumption 4. Combining this inequality with δ∗3 = δ̃3, y∗3 = ỹ3 and (C.4) for j = 2 implies

that δ∗2 − δ∗3 < h(y∗3, ω3) − h(y∗3, ω2), i.e., the upward IC of ω2 workers is violated. Again, this

means that both upward ICs of ω1 and ω2 workers must be binding as long as the upward IC

of ω3 workers and the downward IC of ω4 workers are not taken into account. As in case 1,

we can apply the arguments given in the proof of Propositions 1 (ii) and 2 (ii) to show that

both upwards ICs are binding in (y∗, δ∗) and that both y∗2 and y∗3 are upwards distorted at the

intensive margin.

Case 3: k = 2. Assume that n = 4 and k = 2. This implies that (C.3) holds for j = 1

and that (C.5) holds for j ∈ {3, 4}. For concreteness, assume also that (C.4) is not satisfied

for j ∈ {2, 3}. As before, (y∗, δ∗) cannot be given by an allocation in which no ICs are binding

or only some downwards ICs are binding. Consider a relaxed problem that takes into account

only the upward IC constraints of ω1 and ω2 workers, and only the downward IC constraints

of ω2 and ω3 workers. The proof of Propositions 1 (ii) and 2 (ii) directly implies that, in the

solution (yR, δR) to this relaxed problem, the upward IC of ω1 workers is binding and yR2 is

upwards distorted. Besides, there are three possible constellations: (1) If no other IC is binding

in (yR, δR), then the same is true in the second-best allocation (y∗, δ∗). (2) If the upward IC of

ω2 workers is binding in (yR, δR), then we can apply the arguments in the proof of Propositions 1

(ii) and 2 (ii) to show the same is true in (y∗, δ∗) and that both y∗2 and y∗3 are upwards distorted.

(3) If the downward IC of ω3 workers is binding in (yR, δR), then it is also binding in (y∗, δ∗)

but y∗2 is upwards distorted by the arguments given the proof of Propositions 1 (ii) and 2 (ii).

Moreover, the downward IC of ω4 workers may be binding or not and, correspondingly, y∗3 may

be undistorted or downwards distorted.

For any economy with any n > 4 and k ∈ {2, . . . , n− 1}, the complete proof follows from a

repeated application of the arguments given in cases 1 to 3.

Proof of Proposition 4

Proof. In the following, I derive conditions under which some decreasing sequence of welfare

weights (α1, . . . , αn) satisfies the conditions in Proposition 3, i.e., upward distortions at both

margins are optimal. While this result generalizes Proposition 1, the formal arguments in the

following proof differ substantially.

Specifically, the proof shows that a sequence α of welfare weights can at the same time (a)

satisfy conditions (i) and (ii) in Proposition 3, (b) be weakly decreasing such that αj+1 ≤ αj ,

and (c) imply an average weight of
∑n

j=1 fjαj = 1. The strategy of the proof is to construct

a candidate sequence q = (q1, . . . , qn−1) and to derive conditions under which q satisfies (a)

to (c). For this purpose, fix q̄ > 1 to be given by a number such that δ̃j is defined by the
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first-order condition (B.9) for any j ∈ J and αj ∈ [0, q̄]. Now, consider the sequence q such that

qj = q̄ > 1 for all j ∈ {1, . . . , k} and qj+1 = max
{
βDj(qj), q

}
for all j ∈ {k, . . . , n− 1}, where

q := maxj≥k βj < 1.

Property (a): Conditions in Proposition 3. First, by Lemma C.1 (i), there is for each

j ∈ J a number β̄j > 1 such that βUj(qj) < qj if qj > β̄j . As shown in the proof of Lemma C.1

(i), β̄j < q̄ if a = ωj+1/ωj is close enough to 1. Then, qj+1 > βUj(qj) for all j ≤ k − 1. Second,

by construction, we have qj+1 ≥ βDj(qj) for all j ≥ k such that qj+1 > q. Finally, by C.1 (ii),

q = maxj≥k βj ensures that qj+1 ≥ βDj(qj) for all j ≥ k such that qj+1 = q.

Property (b): Decreasing weights. First, by construction, qj+1 ≤ q for all j ≤ k − 1.

Second, by Lemma C.1, q = maxj≥k βj implies that qj+1 = max
{
q, βDj(qj)

}
≤ qj for all j ∈ J

(with a strict inequality if qj > β
j
).

Property (c): Average weight of 1. First, with decreasing weights,
∑n

j=1 fjqj = 1 and

q1 > 1 requires that qn < 1. As qj = q̄ > 1 for all j ≤ k, this obviously requires that n ≥ k + 1.

In the following, I show that there is a finite number m ≥ k + 1 such that qn < 1 whenever

n ≥ m. To see why, assume that there is a lower bound ε > 0 such that qj − qj+1 > ε for each

j ≥ k such that αj ≥ 1. If this is true, then αj < min {1, q̄ − (j − k)ε} for each j ≥ k + 1.

Consequently, there is a unique natural number m ≤ k + (q̄ − 1)/ε such that αj < 1 is ensured

for all j ∈ [m,n].

I now show that qj−qj+1 is indeed smaller than some number ε > 0 if qj ≥ 1, ωj+1/ωj = a > 1

and Assumption 3 holds. For this purpose, recall that δ̃j+1 is an increasing function of αj+1

and that, with qj+1 = qj ≥ 1, δ̃j+1 − δ̃j would be weakly larger than ỹj+1 − h(ỹj+1, ωj+1) −
[ỹj − h(ỹj , ωj)]. With qj+1 = βDj(qj), instead, the downward IC of ωj+1 workers is binding,

δ̃j+1 − δ̃j = h(ỹj , ωj)− h(ỹj , ωj+1). Hence, the welfare weights qj and qj+1 satisfy

∫ qj

qj+1

dδ̃j+1(α)

dαj+1
dα ≥ ỹj+1 − h(ỹj+1, ωj+1)− [ỹj − h(ỹj , ωj+1)] . (C.8)

Define ζ4 := maxj≥k, αj∈[1,q̄] dδ̃j(αj)/dαj > 0. Then, the left-hand side of (C.8) is weakly smaller

than (qj − qj+1)ζ4. Due to hyω < 0 and hyy > 0, in contrast, the right-hand side is larger than

ỹj+1 − h(ỹj+1, ωj+1)− [ỹ(z)− h(ỹ(z), z)] =

∫ ỹ(z)

ỹj

[1− hy(ỹ(ω), ωj+1)] dω

> (ỹ(z)− ỹj) [1− hy(ỹ(z), ωj+1)]

with z ∈ (ωj , ωj+1) and ỹ(z) = arg max y − h(y, z). Assumption 3 (i) implies that

ỹ(z)− ỹj >
∫ z

ωj

ν1
ỹ(ω)

dω
dω > ν1ỹj ln

(
z

ωj

)
,

while Assumption 3 (ii) implies that

1− hy(ỹ(z), ωj+1) =

∫ ωj+1

z
hyy(ỹ(ω), ωj+1)

ỹ(ω)

dω
dω >

∫ ωj+1

z

ν1

ν2

hy(ỹ(ω), ωj+1)

ω
dω
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>
ν1

ν2
hy(ỹ(z), ωj+1) ln

(ωj+1

z

)
.

For z = ωja
1/2, the right-hand side of (C.8) is hence larger than

ζ5 :=
ν2

1

ν2
(1/2 ln a)2 min

j≥k
ỹjhy(ỹj , ωj+1) > 0 .

Substituting all terms into (C.8), it follows that qj − qj+1 > ζ5/ζ4 and, hence, bound away from

0 for all j ≥ 0. As argued above, this ensures that there is a number m ≤ k + (q̄ − 1)ζ4/ζ5 such

that qj < 1 for all j ∈ [m,n].

Finally, the average welfare weight is exactly equal to 1 if

n∑
j=1

fjqj =

m−1∑
j=1

fjE [qj | j < m] +

n∑
j=m

fjE [qj | j ≥ m] = 1

⇔
n∑

j=m

fj = z̄ :=
E [qj | j < m]− 1

E [qj | j < m]− E [qj | j ≥ m]

For
∑n

j=m fj > z̄, there exists another (similar) weight sequence q′ with average value 1 that

satisfies the conditions in Proposition 3 and that is strictly decreasing with q′j > q′j+1 for all

j ∈ {1, . . . , n− 1}.
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D Supplementary material

Appendix D provides additional results and numerical analyses. Additionally, it reviews previous

results in the optimal tax literature, summarizes empirical estimates of labor supply elasticities

and discusses the arguments for and formalization of poverty alleviation objectives.

D.1 Limit result

In the previous subsections, I have provided necessary and sufficient conditions for the optimality

of an EITC in models with a discrete skill set. A natural question is whether the results also

extend to a model with a continuum of skill types. The tax reform analysis in Section 4 shows

that, in the continuous model, the introduction of a small EITC with negative marginal and

participation taxes at the bottom increases welfare if the desire for redistribution among the

poor is sufficiently small. However, this analysis did not clarify whether the optimal income

tax involves negative marginal and participation taxes as well; there might be alternative tax

reforms that allow to increase welfare even more. Section 5 provides sufficient conditions for the

optimality of an EITC in the discrete model, but the formal proofs exploit the discreteness of

the skill set and, hence, cannot be transferred to the continuous model.

I can tackle this question, however, by studying the results of the model for the limit case

where a discrete skill {ω1, ω2, . . . , ωn} converges to the set of all rational numbers in the interval

[ω1, ωn]. For this purpose, I first impose the same functional-form assumptions on the utility

function and the type distribution as in the stylized model studied in Subsection 5.2. Hence,

I assume that the effort cost function h is isoelastic according to (15) and that fixed costs are

uniformly distributed on an interval [0, δ̄] in all skill groups. Second, I consider an economy

with a large finite number n of skill groups and constant relative distances between adjacent

skill types, ωj+1/ωj = a > 1 for all j ∈ J−n, as in Subsection 5.3. The highest skill type follows

as ωn = ω1a
n−1. I denote by F (ω′) the share of agents with skill types in the interval [ω1, ω

′].

An economy in this class is characterized by a collection (n, a, F, σ, ω1, δ̄). In the following, I let

the relative distance a shrink to 1 and the number n of skill groups go to infinity, while keeping

the smallest and the largest skill type fixed. Hence, I consider the limit case where the skill set

converges to an infinite number of evenly spaced skill types in the interval [ω1, ωn]. The following

proposition demonstrates that the optimal marginal tax can be negative on a substantial income

range even in this limit case.

Proposition D.1. Fix σ > 0, δ̄, ω1 and ωn. Consider three skill types ωa, ωb and ωc in (ω1, ωn)

such that ỹ(ωb) = 2ỹ(ωa) and ỹ(ωc) = 4ỹ(ωa). Let a and n converge to 1 and to ∞, respectively,

in such a way that ωn = ω1a
n−1 stays constant. In the limit, there are strictly decreasing welfare

weights α : ω 7→ α(ω) such that optimal labor supply is upwards distorted at both margins for

each skill group ω ∈ (ω1, ωa) if
1− F (ωc)

F (ωb)
≥ 2 . (D.1)

The formal proof is available on request. Proposition D.1 clarifies that an EITC with negative

marginal taxes can be optimal even if the limit case where the discrete skill set converges to a

continuum. More specifically, it shows that a tax with strictly negative marginal taxes for all

incomes below some threshold y(ωa) is optimal for some strictly decreasing welfare weights α if

58



condition (D.1) is satisfied. As in Proposition 1 for the stylized model with three skill types and

in Proposition 4 for the general discrete model, the sufficient condition is expressed in terms of

the skill distribution; it requires that there exists a sufficiently large share of agents that are

sufficiently more productive than those workers with incomes in the phase-in range. In particular,

this condition compares, first, the shares of high-skill agents with conditionally optimal incomes

above ỹ(ωc) = 4ỹ(ωa) and, second, the share of low-skill agents with conditionally optimal

incomes below ỹ(ωb) = 2ỹ(ωa). Intuitively, the latter subset includes both the agents in the

phase-in range and in the phase-out range of the EITC. An EITC with negative marginal taxes

up to threshold ỹ(ωa) can be rationalized whenever the share 1− F (ωc) of high-skill workers is

at least twice as large as the share F (ωb) of low-skill workers. Remarkably, this condition does

not depend on the level of the intensive-margin elasticity σ > 0.

Implicitly, Proposition D.1 also provides a lower bound on the size of the phase-in range

that can be rationalized with decreasing welfare weights. For a given skill distribution F , I

can determine the highest skill level ωa that still satisfies condition (D.1).33 As an illustration,

consider the subgroup of childless singles in the US in 2015, which is also considered in the

numerical simulations in Section 6. I can estimate the skill distribution in this subgroup using

data from the March 2016 CPS. Based on this data, Proposition D.1 implies that an EITC with

negative marginal taxes up to an annual income of $12, 600 and negative participation taxes

up to an annual income of $25, 200 can be rationalized. By contrast, the 2015 US EITC only

implied negative marginal taxes for incomes below $6, 580 and negative participation taxes for

incomes below $14, 820.

D.2 Construction of weight sequences for simulations

Figure D.1 below plots the exogenous welfare weights αA and αB, which are used in the numerical

simulation in Section 6. In particular, it plots the welfare weights αAj and αBj associated to each

skill group j ∈ J (on the vertical axis) against the skill-specific gross income yj under the current

US income tax (on the horizontal axis). The figure focuses on skill groups with gross incomes

below $100.000.

Figure D.1: Welfare weight sequence αA and αB.

yj [k$]

αj

αA

αB

1.00

1.05

0 50 40 60 80 100

Notes: Figure D.1 illustrates the welfare weight sequences αA and αB used in the numerical analysis.
Specifically, it plots for each skill group j the welfare weight αAj (blue, dots) and the welfare αBj (teal,
triangles) against the skill-specific gross income level yj under the current US tax system.

33Note that both ωb and ωc are increasing with ωa by construction. Hence, the left-hand side of
condition (D.1) is strictly decreasing in ωa. This implies that the maximum of skill levels ωa that satisfy
condition (D.1) is well-defined.
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The blue solid line shows sequence αA, which is constructed by setting αAj = 1.04 for all

skill types with a conditionally optimal income below $11, 000 under the current US tax system.

This condition is satisfied for the 49 lowest skill groups, who constitute the bottom 5.6% of the

skill distribution according to CPS data. For each skill group j ∈ (49, 74), I set the weight αj

to the lowest value such that the first-and-half-best allocation still satisfies the downward IC of

workers with skill type ωj . Formally, this implies that αAj = βDj−1(αAj−1). The welfare weight of

each skill group j ≥ 75 is set to a number αA that implies an average welfare weight of 1. The

implied weight sequence αj is monotonically decreasing over the skill distribution.

The green dashed line shows sequence αB. It associates a welfare weight of 1.04 to all

agents with skill type ωj such that gross incomes under the current US tax are smaller than

$26, 000 (conditional on working). This includes approximately the lowest-skilled quartile of

the population according the CPS data (26.3%). To ensure an average welfare weight of 1, the

welfare weight of all higher-skilled agents is set to a number αB ≈ 0.986.

D.3 Sensitivity analysis

The following figures depict the optimal tax schedules for a number of alternative parameter

choices. In particular, each figure shows that simulated participation tax TP (y) = T (y)− T (0)

that is optimal given the sequence of welfare weights αA (left panel) and the sequence of welfare

weights αB (right panel).

Figure D.2 shows how variations in the intensive-margin elasticity affect the optimal tax

schedule for both weight sequences. In both panels, the benchmark calibration with parameter

value σ = 0.3 is depicted by the black dashed line. The blue lines with triangles depict the

participation taxes that are optimal for a smaller elasticity of σ = 0.1. The red lines with

squares depict the optimal participation taxes for a larger elasticity σ = 0.5. Both figures show

that a higher elasticity leads to a flatter tax schedule, both in the phase-in and in the phase-out

income ranges.

Figure D.2: Optimal taxes for different intensive-margin elasticities.

(a) Optimal tax for weight sequence αA
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EITC

0

−1

−2

−3

−4

1

2

3

0 10 20 30 40 50

(b) Optimal tax for weight sequence αB.
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Notes: Figure D.2 depicts the optimal participation tax schedules for welfare weights αA (left panel) and
for welfare weights αB (right panel), given three alternative values of the intensive-margin elasticity ε: a
low elasticity of ε = 0.1 (blue lines with triangles), the benchmark case ε = 0.3 (black dashed lines), and
a high elasticity of ε = .5 (red lines with squares). Each triangle/square represents the tuple (yj , T

P (yj))
for the workers in one skill group. For comparison, the black dotted lines depict the actual 2015 EITC.
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Figure D.3 shows how variations in the participation elasticities affect the optimal tax sched-

ule for both weight sequences. In both panels, the benchmark simulations for participation

elasticities that are falling from 0.4 in the lowest skill group to 0.18 in the highest skill group

are depicted by black dashed lines. The teal lines with triangles depict the participation taxes

that are optimal for smaller participation elasticities that are falling from 0.3 to 0.1. The red

lines with squares depict the optimal taxes for larger elasticities that are falling from 0.5 to 0.4

as in the benchmark calibration by Jacquet et al. (2013) (to be consistent with this calibration,

I also set the intensive-margin elasticity to 0.25 instead of 0.3). Finally, the blue lines with dots

depict the participation taxes that are optimal if participation elasticities are equal to 0.25 in

all skill groups. Both figures show that a variations in the average level and in the skill gradient

of participation elasticities have only minor effects on the properties of the optimal income tax.

Figure D.3: Optimal taxes for different participation elasticities.

(a) Optimal tax for weight sequence αA
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(b) Optimal tax for weight sequence αB
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Notes: Figure D.3 depicts the optimal participation tax schedules for welfare weights αA (left panel)
and for welfare weights αB (right panel), given four alternative assumptions on participation elasticities:
low elasticities that are falling from 0.3 in the lowest skill groups to 0.1 at higher skill groups (teal lines
with triangles), higher elasticities that are falling from 0.5 to 0.4 (red lines with squares), and constant
elasticities of 0.25 in all skill groups (blue lines with dots). The optimal taxes in the benchmark case with
participation elasticities that are falling from 0.4 to 0.18 are depicted by black dashed lines, which are
hardly distinguishable from the blue lines. Each triangle/square/dot represents the tuple (yj , T

P (yj)) for
the workers in one skill group. For comparison, the black dotted lines depict the actual 2015 EITC.

Figure D.4 shows how the discretization of the skill set affects the optimal tax schedule for

both weight sequences. In both panels, the benchmark simulations for a skill set with 96 are

depicted by black dashed line. The relative distance between each pair of adjacent skill types is

equal to ωj+1/ωj = 1.05. To study the effects of the discretization, I consider two alternative

calibrations with skill sets such that the lowest and the highest skill types are identical to the

benchmark calibration, but the number of skill types and the relative distance between adjacent

types are varied. For each discretization, I have re-estimated the skill distribution based on

March 2016 CPS data. In particular, the blue lines with triangles depict the participation

taxes that are optimal for a coarser skill set with 48 skill types. The red lines with squares

depict the optimal taxes for a finer skill set with 192 skill types. Both figures show that a finer

discretization of the skill set leads to flatter tax schedules both in the phase-in and the phase-out

income ranges. At the same time, there are only small effects on the width of the phase-in range.

The reason for these effects is that, with a larger number of less distant skill types, there is

a larger set of IC constraints along the skill dimension, which also become more restrictive.34 In

34To see this, fix the bundles (cj , yj) and (cj+1, yj+1) of the workers with skill types ωj and ωj+1,
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Figure D.4: Optimal taxes for different discretizations of the skill set.

(a) Optimal tax for weight sequence αA
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(b) Optimal tax for weight sequence αB
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Notes: Figure D.4 depicts the optimal participation tax schedules for welfare weights αA (left panel) and
welfare weights αB (right panel), given three alternative discretizations of the skill set: a case with 48
skill types (blue lines with triangles), the benchmark case with 96 skill types (black dashed lines), and a
case with 192 skill types (red lines with squares). Each triangle/square represents the tuple (yj , T

P (yj))
for the workers in one skill group. For comparison, the black dotted lines depict the actual 2015 EITC.

the cases considered in Figure D.4, the inverse elasticity rule (18) maximizes extensive-margin

efficiency, but conflicts with incentive compatibility along the skill dimension. To implement

the inverse elasticity rule, the upward ICs of low-skill workers must be slackened, which requires

to distort labor supply upwards at the intensive margin. The finer the skill set, the more the

upward IC constraints must be slackened by means of larger upwards distortions at the intensive

margin. Thus, the tradeoff between intensive-margin efficiency and extensive-margin efficiency

becomes more severe. As a result, the optimal tax schedule becomes flatter because it deviates

further from the (unchanged) first-and-half-best tax. A further increase in the number of skill

groups would lead to a further flattening of the optimal tax schedule, but would continue to

involve strictly negative marginal and participation taxes at the bottom.

Finally, I vary the sequence of welfare weights. In particular, I assume that the weight of

skill group j is given by αCj = 3/4 + 0.3 (ω1/ωj)
1/3. Figure D.5a depicts these welfare weights

by plotting, for each of the 96 skill groups, the welfare weight αj against the skill-specific

gross incomes yj under the current US tax. As can be seen, the welfare weights are convexly

decreasing over the skill distribution as in the calibrations of Saez (2002) and Jacquet et al.

(2013). Figure D.5b plots the optimal income tax for welfare weights αC that results from my

numerical simulations. In contrast to all previous figures, both participation taxes and marginal

taxes are strictly positive at all income levels below the very top.

D.4 Optimality of positive marginal taxes

Above, I have shown numerically that the results of Saez (2002) and Jacquet et al. (2013)

are recovered in my model if the skill gradient of welfare weights at the bottom is large. To

complement this numerical result, I provide an analytical condition for the optimality of strictly

respectively. Assume that, given these bundles, the upward IC constraint of ωj workers with respect to
the bundle of ωj+1 workers is binding such that cj − h(yj , ωj) = cj+1 − h(yj+1, ωj). Now, I introduce
another group of workers with an intermediate skill ωj+1/2 ∈ (ωj , ωj+1) and some bundle of income
yj+1/2 ∈ (yj , yj+1) and consumption cj+1/2 ∈ (cj , cj+1). It can be shown that, for any such bundle
(yj+1/2, cj+1/2), either the upward IC of ωj workers with respect to the bundle of ωj+1/2 workers, or the
upward IC of ωj+1/2 workers with respect to the bundle of ωj+1 workers is violated.
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Figure D.5: An example with strictly positive marginal taxes.
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Notes: Figure D.5a in the left panel plots for each skill group j the welfare weight αCj against the skill-
specific gross income level yj under the current US tax system. Figure D.5b in the right panel depicts the
optimal participation tax TPC (y) for welfare weights αC and benchmark values of the intensive-margin
elasticity (ε = 0.3) and the participation elasticity (decreasing from 0.4 to 0.18). Each dot represents the
tuple (yj , T

P
C (yj)) for the workers in one skill group.

positive marginal taxes.

Proposition D.2. Let Assumptions 4, 5 and 3 be satisfied. Optimal output is downwards

distorted at the intensive margin in all skill groups j ∈ J−n if αj+1 ≤ βDj(αj) for all j ∈ J−n
with at least one strict inequality, where function βDj is defined in Lemma C.1.

Proposition D.2 extends the main result of Jacquet et al. (2013) to a model with a dis-

crete instead of a continuous skill set. A formal proof is available on request. Basically, the

proposition says that optimal labor supply is downwards distorted at the intensive margin if

the first-and-half-best allocation violates the downward IC constraints of the workers in all skill

groups {2, . . . , n}. The proof shows that, in this case, every single downward IC constraint is

unambiguously binding in the optimal allocation. By Lemma C.1, the condition αj+1 ≤ βDj(αj)
is satisfied if either the difference between the welfare weights αj and αj+1 is large enough, or

both welfare weights are sufficiently much below the average weight of 1 (see also Figure 3).

D.5 Optimal income taxes for single parents

The following section provides the results of numerical simulations for a second subgroup of the

US population, single parents. To calibrate the model for this population group, I consider the

same functional forms as for childless singles: (a) utility (1) is quasilinear, (b) the effort cost

function (15) gives rise to a constant elasticity at the intensive margin, (c) the distributions

of fixed costs (19) are logistic in each skill group, (d) the participation elasticity πj and the

participation share πj vary along the skill distribution according to equations (20) and (21),

respectively. The last point implies that parameters µ, π and π̄ have to be set in order to match

empirically plausible labor supply elasticities for single parents.

For this purpose, I again follow the survey by Saez et al. (2012), the meta-study by Chetty,

Guren, Manoli & Weber (2013) and the study by Chetty, Friedman & Saez (2013) on EITC

recipients. With respect to the intensive margin, there is no convincing evidence for differences

between single parents and other population groups. Hence, I again set the intensive-margin

parameter to σ = 0.3.
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With respect to the extensive margin, in contrast, the literature suggests substantial differ-

ences across population groups. In particular, single mothers are commonly perceived as the

group that is most responsive at the participation margin (along with married women). Early

studies estimate extremely large elasticities for single mothers receiving the EITC, sometimes

even above 1 (see, e.g., Meyer & Rosenbaum 2001). Chetty, Guren, Manoli & Weber (2013) re-

view a number of studies based on quasi-experimental variation and re-calculate the elasticities

to be consistent with each other. The resulting elasticities in those studies that focus on single

mothers are in the range of 0.43, which is still larger than for other population groups. The

two most recent studies exploiting EITC reforms point towards smaller levels: Bastian & Jones

(2020) estimate a participation elasticity of 0.33 for single mothers, while Kleven (2020a) is a

clear outlier in the literature, finding an elasticity close to 0.

Based on this literature, I set the parameters π equal to 0.6 and π̄ equal to 0.3. This gives an

average participation elasticity of 0.42, close to the suggestion of Chetty, Guren, Manoli & Weber

(2013). In particular, this also implies that elasticities are falling along the skill distribution, in

line with the existing evidence for all subgroups of the population. As the participation rate of

single parents is 82.1% in the CPS data (similar to the one of childless singles), I set L = 0.7

and L̄ = 0.85.

To calibrate the skill distribution of single parents, I again use data from the March 2016

CPS. For this purpose, I consider only single parents at ages 25 to 60 that do neither live with

an unmarried spouse nor with any family member except for own children below the age of 18.

This ensures that there is no joint labor supply decision problem. The restricted sample contains

7, 141 observations. In the CPS data, single parents are on average less productive than childless

singles (average annual income $32, 958 compared to $42, 223 for childless singles). To back out

the skill distribution, I again use the same linear approximation of the US tax system.35 I can

then use the first-order condition for an individual optimum to assign skill levels to all single

parents with positive incomes. In particular, I use the same skill set with n = 96 skill types and

estimate the share of single parents in each skill group based on a kernel density estimation.

To calibrate the planner’s redistributive preferences, I cannot simply use the same weight

sequences as for childless singles. As the skill distribution varies across subgroups, the average

weight among single parents would differ from 1. Hence, I again construct two exogenous

sequences of welfare weights that are monotonically decreasing and have an average value of 1

(within the group of single parents). First, I consider a sequence α̃A that assigns a welfare weight

of 1.04 to the agents in the lowest 45 skill groups, i.e., to all working agents with incomes below

$9, 050. The welfare weights of higher-skilled agents are assumed to be gradually decreasing (as

with sequence αA for childless singles). Second, I consider a sequence α̃B that assigns a welfare

weight of 1.03 to the lowest 66 skill groups. These agents constitute the lower-skilled half of

the single parent subpopulation (more precisely: 52.3%) and include all working agents with

35For single parents, this approximation is less convincing than for childless singles, especially at low
income levels where the effective marginal tax depends on the statutory tax schedule, the EITC phase-in
and phase-out rates and the marginal reduction rates of welfare transfers. As shown by Maag et al.
(2012), the effective marginal tax varies strongly across states and income levels. For example, if a single
parents moves from zero income to the federal poverty line, he faces an average marginal tax between a
minimum of −13.3% and a maximum of 25.5%. Between the poverty level and twice the poverty level,
the average marginal tax is above 40% in most states. Given the lack of superior alternatives, I stick to
the same linear approximation as for childless singles.
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incomes below $31, 000. The average weight of the higher-skilled agents is set to be constant

as well and equal to 0.967. As in the case of childless singles, welfare weights α̃A satisfy the

sufficient conditions for an EITC with negative marginal taxes, while welfare weights α̃B only

satisfy the necessary conditions.

Figure D.6: Optimal income taxes for single parents.
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Notes: Figure D.6 depicts the optimal participation taxes for single parents given welfare weights α̃A

(left panel) and welfare weights α̃B (right panel). In each panel, the optimal participation tax for single
parents is depicted by the solid blue line. Each square represents the tuple (yj , T

P (yj)) for one of the 96
skill groups. For comparison, the optimal participation tax for childless singles is depicted by the dashed
black line in each panel.

The simulation results are depicted in Figures D.6a for sequence α̃A and D.6b for sequence

α̃B. In particular, the solid blue lines in both figures show the optimal participation taxes for

single parents. For welfare weights α̃A, the optimal tax involves an EITC with negative marginal

taxes for incomes up to $10, 935, a maximum tax credit of $1, 566 and negative participation

taxes for incomes up to $26, 574. For welfare weights α̃B, the optimal tax involves an EITC

with negative marginal taxes for incomes up to $15, 017, a maximum tax credit of $1, 753 and

negative participation taxes for incomes up to $29, 912. The transfers to non-working agents

only reach levels of $1, 231 and $1, 573, respectively. However, these transfers have to interpreted

as transfers paid by higher-skilled single parents only. If the social planner has a desire for

redistribution from other population groups to the group of single parents, then there is an

additional lump-sum transfer towards all single parents. With quasi-linear utility, specifically,

these between-subgroup transfers only imply parallel shifts in the budget sets; they do not affect

the optimal levels of marginal taxes and participation taxes.

These simulated tax schedules have to be interpreted as the optimal integrated schemes

that result from the combination of income taxes and welfare transfers (and, potentially, child

care costs). As argued above, the integrated tax-transfer systems effectively imply a larger “net

EITC” in some US states and a smaller one in other states (see Maag et al. 2012). Hence, my

simulation results can be broadly interpreted as providing support for the current levels of the

EITC for single parents. They do not provide support for another substantial extension of the

EITC, however.

For comparison, Figures D.6a and D.6b also depict by the black dashed lines the optimal

tax schedules that would result for childless singles given similar welfare sequences. According

to these simulation results, the optimal EITC should be larger for childless singles than for

single parents. This is probably in contrast to the current US policies, although single parents
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in the US do not only benefit from a more generous EITC but also face larger positive reduction

rates from a number of welfare transfers such as TANF, SNAP, Public Housing etc. The main

reason for the different simulation results is that the share of high-skilled agents is much larger

in the group of childless singles than in the group of single parents. As explained in Subsection

5.2, this implies that a generous EITC can more easily be financed in the group of childless

singles without imposing strong distortions at the intensive margin. In contrast, the larger

participation elasticities of single parents seem to have only a negligible effect on the optimal

size of the subgroup EITC.

D.6 Generalized welfare weights and poverty alleviation

In this section, I discuss whether an EITC is the optimal policy for alleviating poverty. Following

Mirrlees (1971), optimal income taxation is commonly studied under the assumption that the

social objective is given by a utilitarian welfare function (see Weinzierl 2014 for a recent critique).

As an alternative, Kanbur et al. (1994) as well as Besley & Coate (1992, 1995) suggest to

use the goal of alleviating poverty as measured by the available income. They advocate this

objective as being more consonant with public debates and, consequently, as providing better

insights into real-world policy choices. In particular, they argue that neither policy-makers nor

taxpayers seem to value the leisure enjoyed by the poor (which is an argument of standard utility

functions), but rather seem to focus on income as a more visible sign of poverty (see, e.g., Besley

& Coate 1995, p. 189, and Kanbur et al. 1994, pp. 1615-1616).

Support for this view comes from the recent public debate surrounding a potential expansion

of the EITC for childless workers. Most prominently, President Barrack Obama and Paul Ryan,

then Republican Chairman of the House of Representative Budget Committee, independently

proposed to expand the EITC by doubling the phase-in and phase-out rates, raising the phase-out

start and the eligibility threshold, and relaxing age restrictions for childless workers (Executive

Office 2014, House Budget Committee 2014). The Obama proposal emphasizes the goal to

reduce poverty for childless low-income workers. In particular, the proposal estimates that “the

increase in the credit would lift about half a million people above the poverty line and reduce

the depth of poverty for 10 million more” (Executive Office 2014: 2). It also criticizes that the

current US tax code pushes childless workers with low incomes ”into or deeper into poverty”

(Executive Office 2014: 3), both directly and indirectly through discouraging work.36 The Ryan

proposal suggests a number of reforms to reduce poverty and increase economic self-sufficiency.

It argues that the EITC is the most successful program in fighting poverty among families,

and that its expansion would significantly reduce poverty among childless workers. The Ryan

proposals also emphasizes that an EITC expansion would provide larger incentives for people to

work and “earn enough money to place them above the poverty line” (House Budget Committee

2014: 7). A number of further proposals provide similar arguments for an even more generous

EITC expansion, emphasizing the goals of lifting people above the poverty line, reducing the

depth of poverty for others and, in particular, eliminating the possibility that low-income workers

are taxed into poverty. For example, such poverty-related arguments were made to support two

36Besides, the proposal argues that an EITC expansion would increase employment rates, and that
this might benefit society through positive external effects such as increasing marriage rates, supporting
child outcomes and reducing incarceration rates (Executive Office 2014: 9).
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recent proposals for EITC expansions, introduced in the House of Representatives in February

2017, and in the Senate in June 2017.37

I continue by sketching the most common poverty measures and their formalization in opti-

mal tax problems. Let c̄ denote the poverty line, expressed in terms of consumption or available

income (after tax and transfers).38 Foster et al. (1984) introduce a class of poverty measures

given by

Pa(c, c̄) =
1

n

n∑
i=1

(
c̄− ci
c̄

)a
1ci≤c̄ .

where n is the number of agents in the population and ci is agent i’s available income. For a = 0,

this measure is equal to the poverty rate or head count ratio, the share of a population with

available incomes below c̄. For a = 1, it is equal to the poverty gap, the average (percentage)

shortfall of available income from the poverty line. In contrast to the poverty rate, the poverty

gap also accounts for the intensity (depth) of poverty. For a > 1, the measure assigns higher

weights to larger shortfalls from the poverty line. Institutions such as the World Bank and the

United Nations commonly use the first two measures, the poverty rate and the poverty gap.

Kanbur et al. (1994) were the first to study optimal income taxation under the goal of poverty

alleviation instead of welfare maximization. They formalize the objective of poverty alleviation

by using what they call a generalized poverty gap measure (with a > 1). For an intensive-

margin model, they find that the optimal marginal tax might be negative at incomes below the

poverty line. Numerical simulations show large positive marginal taxes to be optimal even at

the very bottom, however. They also point out that their formalization of poverty alleviation

is inconsistent with the Pareto principle, because it fails to account for the agents’ disutility

of providing output instead of enjoying leisure. To reconcile the poverty gap criterion with

the Pareto principle, Saez & Stantcheva (2016) suggest to apply their approach of generalized

welfare weights by setting welfare weights equal to αp > 1 for all agents with consumption

below the poverty line c̄, and equal to αnp ∈ [0, 1) for all agents with consumption above c̄.

In my numerical simulations, I have considered the sequence αB of welfare weights, which has

exactly this shape. As shown in Subsection 6.2, the optimal tax for these welfare weights is given

by an EITC with negative marginal taxes and negative participation taxes in my model with

labor supply responses at two margins. With intensive-margin responses alone, in contrast, the

optimal marginal taxes for this criterion are strictly positive both below and above the poverty

line c̄ (Saez & Stantcheva 2016).

D.7 Perturbation approach and optimal tax formula

One common method to solve for the optimal income tax is the perturbation approach, intro-

duced by Piketty (1997) and Saez (2001). Jacquet et al. (2013) and Lorenz & Sachs (2016) use

this approach in a model with two margins and a continuum of skill (or income) levels. The

analysis starts by fixing an initial tax schedule T and the income distribution Fy it implements.

It then considers a perturbation of the tax system that increases the marginal tax T ′ by a small

amount τ on a small interval (y′, y′ + `). For the model introduced above, the welfare effect of

37For the details on these proposals, see https:// www.congress.gov/ bill/ 115th-congress/ house-bill/ 822
and https:// www.congress.gov/ bill/ 115th-congress/ senate-bill/ 1371 .

38Sometimes, the poverty line is also defined in terms of pre-tax income.
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a small reform with τ → 0 and ` → 0 is zero if and only if the marginal tax at income level y′

satisfies

T ′(y′)

1− T ′(y′)
=

1− Fy(y′)
ε(y′) y′ fy(y′)

[
1− α̂(y′, ȳ)− 1

1− Fy(y′)

∫ ȳ

y′
fy(y) η(y) TP (y)dy

]
, (D.2)

where ε(y) denotes the intensive-margin elasticity of workers with income y, η(y) denotes the

semi-elasticity of participation of workers with income y, and ᾱ(y′) is the average welfare weights

associated to agents with incomes above y′ under tax schedule T . If tax schedule T is optimal,

it satisfies equation (D.2) at any income level y′ ∈
[
y, ȳ
]
. Note that the formula does not

account for income effects, which are ruled out in my model by the assumption of quasi-linear

preferences. Jacquet et al. (2013) and Lorenz & Sachs (2016) provide generalized versions of this

optimal tax formula that allow for income effects. Saez (2002) provides a discretized version of

(D.2), where the right-hand side contains the sum
∑ȳ

y′=y fy(y)η(y)TP (y′) over a finite number

of income levels interpreted as occupations (instead of the integral term in D.2).

Equation (D.2) has a similar structure as the well-known ABC formula for the intensive

model (Diamond 1998). The only difference is given by the integral term on the right-hand

side, which accounts for the extensive-margin responses at income levels above y′. Due to

this integral term, however, the optimal tax formula for the two-margin model is substantially

less informative about the qualitative properties of the optimal tax schedule T than the ABC

formula. To see this, note that the optimal marginal tax at income y′ also depends on the

values of the semi-elasticity η, the income density fy and the optimal participation tax TP at all

income levels above y′. Most importantly, the optimal participation tax TP is an endogenous

object – more precisely, the object of interest in the optimal tax problem. Hence, we cannot

determine T ′ at any income level without precise knowledge of the entire tax function. Formally,

(D.2) represents a differential equation with an integral term, which in general cannot be solved

analytically. This complication makes it even hard to determine the optimal sign of T ′(y). On

the right-hand side of (D.2), all terms in front of the bracket and the difference 1− α̂(y′, ȳ) are

positive for any y ∈
[
y, ȳ
]
. However, we have to subtract the extensive-margin terms under the

integral, which is also positive in the plausible case that TP (y) > 0 for most high-skill workers.

But then, the optimal sign of T ′(y) depends on whether the term 1 − α̂(y′, ȳ) or the integral

term is larger, given the optimal participation tax TP (y) for all y > y′.39

Based on Saez (2002), some papers argue that a negative marginal tax is more likely to be

optimal if labor supply responds more strongly at the extensive margin than at the intensive

margin. Indeed, an increase in the semi-elasticity η(y) decreases the right-hand side of (D.2)

if TP (y) is positive and held constant. However, TP (y) itself varies with η in a non-trivial

way: In the extensive model, TP (y) is decreasing (increasing) in η(y) if α(y) is above (below)

1 (see Diamond (1980), Saez (2002), Choné & Laroque (2011)). Moreover, the intensive-margin

elasticity ε(y′) has only a direct effect on the absolute value of the right-hand side, not on

its sign; the indirect effects on TP are not obvious. To conclude, it is hard to sign the optimal

39Without the integral term, by contrast, the optimal marginal tax can be determined point-wise at
each income level: It only depends on the values of ε, α̂ and the hazard rate at income y′. In particular,
the optimal marginal tax is unambiguously positive if welfare weights are monotonically decreasing with
income (and skill) so that α̂(y′, ȳ) is below 1 for any y′ ∈ [y, ȳ].
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marginal tax T ′ based on the optimal tax formula (D.2). This problem cannot even be alleviated

by imposing structural assumptions on the labor supply elasticities ε and η.

D.8 The mechanism design approach with a continuous skill set

Lemma B.2 provides a simplified expression of optimal allocation problem that is valid both with

a discrete and a continuous skill set. In the case of a continuous skill set, the dimensionality of

the problem can be reduced further by rewriting the incentive compatibility constraints in terms

of an envelope condition. Then, the participation threshold in each skill group ω is given by

δ̂(ω, δ0, y) := δ0 −
∫ ω

ω
hω(y(ω′), ω′)dω′ , (D.3)

where δ0 is the participation threshold of the lowest skill type ω. Plugging (D.3) into equation

(B.3) allows to write the optimal tax problem as the unconstrained problem to maximize

W̃ (δ0, y) =

∫
ω∈Ω

f(ω)Gδ(δ̂(ω, δ̂0, y) | ω)
[
y(ω)− h(y(ω), ω) + (α(ω)− 1)δ̂(ω, δ̂0, y)

]
dω

−
∫
ω∈Ω

f(ω)α(ω)

∫ δ̂(ω,δ̂0,y)

δ
δgδ(δ | ω)dδdω (D.4)

over δ0 and the output function y : Ω→ R.

Dealing with an unconstrained maximization problem seems straightforward. Indeed, we

can easily differentiate (D.4) point-wise with respect to y(ω) to get the first-order condition

f(ω′) G(δ̂(ω′, ) | ω′) · 1− hy(y(ω′), ω′)

hyω(y(ω′), ω′)
=∫ ω̄

ω′
f(ω)G(δ̂(ω, ) | ω)

{
α(ω)− 1 +

g(δ̂(ω, ) | ω)

G(δ̂(ω, ) | ω)

[
y(ω)− h(y(ω), ω)− δ̂(ω, )

]}
dω . (D.5)

The term 1−hy(y(ω′), ω′) on the left-hand side captures the intensive-margin distortion and the

implicit marginal tax at income level y(ω′) in terms of the model’s primitives, while the term

y(ω) − h(y(ω), ω) − δ̂(ω) at the right-hand side captures the extensive-margin distortions and

the implicit participation tax at income y(ω).

As in the case of the optimal tax formula (D.2) derived from the perturbation approach,

however, the sign of either side cannot be determined for skill type ω′ in isolation. By equation

(D.5), the intensive-margin distortions in skill group ω′ rather depends on the extensive-margin

distortions in all skill groups above ω′ (and vice versa). As a result, the first-order condition

(D.5) is not directly informative about the optimal signs of marginal taxes and participation

taxes. Actually, the first-order condition (D.5) only differs from the optimal tax formula (D.2)

derived in Subsection D.7 in that the former is expressed in terms of the model’s primitives,

while the latter is expressed in terms of empirically estimable objects.

D.9 Empirical evidence on labor supply elasticities

In Section 6, I calibrate my model to match empirical moments for the subgroup of childless

singles in the US. This requires to choose calibration targets for the labor supply elasticities at
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both margins. The current state of the empirical literature is summarized in the survey by Saez

et al. (2012) and the meta-study by Chetty, Guren, Manoli & Weber (2013). Unfortunately,

there is no clear consensus on the empirical levels of elasticities at both margins. In particular,

participation elasticities seem to differ substantially across subgroups of the population. For my

calibration, I mainly use the preferred estimates suggested by Chetty, Guren, Manoli & Weber

(2013) and Saez et al. (2012). Besides, I consider the studies by Chetty, Friedman & Saez (2013)

on the elasticities on EITC recipients and by Bargain et al. (2014) on the elasticities of childless

singles as particularly informative for my purposes.

With respect to the intensive-margin elasticity, Saez et al. (2012) consider the best available

estimates to be in the range between 0.12 and 0.4. Chetty, Guren, Manoli & Weber (2013)

suggest 0.33 as their preferred estimate, and Chetty, Friedman & Saez (2013) estimate an average

elasticity for EITC recipients of 0.21 (wage earnings) and 0.36 (total earnings). Bargain et al.

(2014) estimate an elasticity of 0.13 for childless singles, with somewhat higher levels among

low-skill workers.

With respect to the extensive-margin elasticity, Chetty, Guren, Manoli & Weber (2013) sug-

gest 0.25 as their preferred estimate for the population average based on a meta-analysis. They

also emphasize that elasticities are probably higher around 0.43 in groups such as single mothers

who have a lower attachment to the labor force. For childless singles in the US, Bargain et al.

(2014) estimate an average elasticity around 0.24. Besides, most studies find that participation

elasticities are strictly decreasing along the income distribution (see Juhn et al. 1991, 2002 for

the US and Meghir & Phillips 2010 for the UK). Miller et al. (2018) and Bastani et al. (2020)

provide evidence that participation responses are even decreasing within the group of low-income

workers. In particular, Miller et al. (2018) document the results from a recent randomized con-

trol trial that studied the effects of a substantial increase in the EITC for childless workers,

finding much larger responses among the most vulnerable subgroups. Bastani et al. (2020) ex-

ploit a tax reform in Sweden to estimate the extensive-margin responses of married females from

low-income families. In contrast, Bargain et al. (2014) find participation elasticities to be by

and large constant along the income distribution.

Summing up, there remains a considerable uncertainty about the levels of labor supply

responses at both margins. In my benchmark simulations for childless singles, I mainly follow

the suggestions of Chetty, Guren, Manoli & Weber (2013). In particular, I consider an intensive-

margin elasticity of 0.3 in all skill groups. With respect to the extensive margin, I assume that

participation elasticities are decreasing from 0.4 in the lowest skill group to 0.18 in the highest

skill group. This gives an average elasticity of 0.25, the preferred value of Chetty, Guren, Manoli

& Weber (2013). In my simulations for single parents, I consider an intensive-margin elasticity

of 0.3 as well. With respect to the extensive margin, I consider somewhat higher participation

elasticities for single parents than for childless singles. Specifically, I assume that participation

elasticities are falling from 0.6 in the lowest skill group to 0.3 in the lowest skill group. This gives

an average participation elasticity of 0.42, close to the value of 0.43 found in Chetty, Guren,

Manoli & Weber (2013).
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D.10 Definition and illustration of labor supply distortions

In Subsection 5.1, I provide definitions for labor supply distortions at both margins. These

definitions are based on the following thought experiment, which I illustrate in Figures D.7 and

D.8 below. Consider an initial allocation in which agent i’s bundle is given by
(
ci, yi

)
≥ 0. Now

consider providing agent i with a different bundle (c̃, ỹ) ≥ 0 such that ỹ − yi = c̃− ci 6= 0. The

set of these potential deviations is given by a straight line through
(
ci, yi

)
with slope equal to

1, the economy’s marginal rate of transformation between consumption and output. Agent i’s

labor supply is said to be distorted if there is a bundle (c̃, ỹ) on this line that i strictly prefers

to
(
ci, yi

)
.

First, it might be possible to increase i’s utility through a marginal deviation from
(
ci, yi

)
.

This will be the case if and only if i’s marginal rate of substitution, hy
(
yi, ωi

)
, differs from 1.

If hy
(
yi, ωi

)
< 1, i would strictly prefer an output-increasing deviation. Then, i’s labor supply

is said to be downwards distorted at the intensive margin. Correspondingly, if hy
(
yi, ωi

)
> 1, i

would strictly prefer an output-decreasing deviation, and i’s labor supply is said to be upwards

distorted at the intensive margin.

Second, it might be possible to increase i’s utility through a large deviation from
(
ci, yi

)
that

changes his participation status from non-working (zero output) to working (positive output).

Consider an initial allocation with yi = 0 and the deviation to bundle
(
ci + ỹ, ỹ

)
for some ỹ > 0.

Agent i would be strictly better off with the new bundle than with his initial bundle if and

only if i’s total costs of providing output ỹ are below the additional utility from consuming ỹ,

h
(
ỹ, ωi

)
+ δi < ỹ. Hence, i’s labor supply is said to be downwards distorted at the extensive

margin if both yi = 0 and δi < maxy>0 y − h(y, ωi).

Correspondingly, it might be possible to increase i’s utility through a large deviation from(
ci, yi

)
that changes his participation status from working (positive output) to non-working (zero

output). Consider an initial allocation with yi > 0. Agent i would be strictly better off with

bundle
(
ci − yi, 0

)
than with his initial bundle if and only if i’s total costs of providing output

yi exceed the utility from consuming yi, h
(
yi, ωi

)
+ δi > yi. Hence, i’s labor supply is said to

be upwards distorted at the extensive margin if both yi > 0 and δi > yi − h
(
yi, ωi

)
.

Figures D.7 and D.8 illustrate these definitions of labor supply distortions graphically. In

Figure D.7, point A marks the initial bundle (ci, yi) allocated to agent i, with a strictly positive

output yi > 0. The set of hypothetical deviations is given by the solid lines through the points

A and B. The indifference curves of Agent i are given by the union of the dashed line and

point Z, corresponding to the discontinuity in i’s utility due to the fixed cost δi. Figure D.7

shows a case where, in point A, the slope of the indifference curve – i.e., the marginal rate of

substitution – is below 1. Hence, i’s utility could be increased by moving slightly upwards the

solid line. Alternatively, i’s utility could also be increased by a large deviation downwards to

point B, where output provision is zero. Hence, i’s labor supply is at the same time downwards

distorted at the intensive margin and upwards distorted at the extensive margin.

In Figure D.8, the initial bundle (ci, yi) is again marked by point A. In this case, the initial

output of agent i is zero, yi = 0. Again, the set of hypothetical deviations is given by the

solid lines through the points A and B. The indifference curves of Agent i are given by the

union of the dashed line and point A, corresponding to the discontinuity in i’s utility due to

the fixed cost δi. Figure D.8 shows a case in which point B is located above the indifference
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Figure D.7: Labor supply distortions, example 1.
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Notes: Figure D.7 depicts an example with labor supply distortions at both margins. Point A represents
the current bundle (ci, yi) allocated to agent i. The solid black line through points A and B depicts the
set of bundles that correspond to the same net resource cost as bundle (ci, yi). The union of the dashed
blue line and point Z represent an indifference curve of agent i. Labor supply is downwards distorted at
the intensive margin because the utility of agent i could be increased by giving him a bundle at the solid
black line with a slightly higher output level y than in point A. Labor supply is also upwards distorted
at the extensive margin because the utility of agent i could be increased by giving bundle B with zero
output instead of bundle A.

curve that corresponds to i’s initial utility level. Hence, agent i’s utility can be increased by

jumping upwards to point B with positive output yB = arg maxy>0

{
y − h(y, ωi)

}
. Hence, i’s

labor supply is downwards distorted at the extensive margin.

Figure D.8: Labor supply distortions, example 2.
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Notes: Figure D.7 depicts an example with a downwards distortion at the extensive margin. Point A
represents the current bundle (ci, yi) allocated to agent i. The solid black line through points A and B
depicts the set of bundles that correspond to the same net resource cost as bundle (ci, yi). The union of
the dashed blue line and point A represent an indifference curve of agent i. Labor supply is downwards
distorted at the extensive margin because the utility of agent i could be increased by giving him bundle
B with output level yB = arg maxy y − h(y, ωi) instead of point A.

By Lemma B.1, it is possible to characterize the labor supply distortions for the agents in

each skill group j ∈ J simultaneously. In particular, labor supply in skill group j is said to

be distorted at the intensive margin if the marginal rate of substitution h(yj , ωj) differs from

one for all working agents with skill type ωj . Similarly, labor supply in skill group j is said to

be downwards distorted at the extensive margin if the skill-specific participation threshold δj is

located below maxy y − h(y, ωj). It is said to be upwards distorted at the extensive margin if

the participation threshold δj is above yj − h(yj , ωj).
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