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Abstract 
 
Elite skills have become crucial in today’s superstar economy. We develop a multi-period skill-
formation model where we show that individuals with temporary disadvantages must exert greater 
effort to gain access to elite education. This “underdog-incentive effect” implies that “educated 
underdogs” obtain superior adult skills. We find support for this mechanism in soccer data: players 
born early in the year dominate youth soccer, but players born late (but not too late) in the year 
become the superstars. We also show that if young students discount the future “too much”, high 
requirements to elite education can increase expected life-time welfare for disadvantaged students. 
JEL-Codes: I200, J240, D900. 
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1 Introduction

Who becomes the ultimate superstar? Malcolm Gladwell states in his best seller book ”David versus

Goliath”that underdogs might become superstars by turning their weaknesses into strengths. The

basic idea is that underdogs need to work harder and try new strategies to compensate for their

weaknesses. Many fail, but the ones who are successful might become extremely successful.

Football, or soccer, is probably the most competitive activity among young males around the

world and is thus a natural place to search for evidence in favour of Gladwell’s hypothesis.1,2 As

a first approximation, it seems reasonable to classify players who are born late in the year as

”underdogs”since they are usually more physically disadvantaged in their youth than older players

in the same cohort. As a measure of superstardom in a (later) career as a professional football

player, we consider the most prestigious individual award in football, the Ballon d’Or, which has

been awarded annually since 1956.3 If Gladwell’s hypothesis is correct, winners (and nominees) of

the Ballon d’Or should be born later in the year than a random male from the population.

Figure 1 examines this prediction via kernel density plots of the distribution of birthdays for

Ballon d’Or winners (red line) and winners and nominees (blue line). As a benchmark, we also

plot the day of birth probability of the world population (grey area).4 Figure 1 reveals a bimodal

birthday distribution with two distinct features: the birthdays of winners (and nominees) are highly

overrepresented around late summer and early fall and highly underrepresented at the end of the

year. The first observation supports Gladwell’s original hypothesis, but the second rejects, or

1 In 2015, LinkedIn asked 8,000 professionals in the U.S. about their childhood dream jobs. More than 8% of all
surveyed professionals stated that their childhood dream job was to become a professional or Olympic athlete. Other
top childhood dream jobs included airplane or helicopter pilot, scientist, lawyer and astronaut. Approximately 30% of
the surveyed professionals reported that they have actually pursued their childhood aspirations (or a similar career).

2Approximately 50,000 boys have been born each year in Sweden in recent decades, and 48 % of all 9-year-old boys
and 35 % of all 14-year-old boys played football in some organized form in Sweden during 2015. Of the 25,000 9-year-
old players and 17,500 14-year-old players, only approximately 100 participated in national youth team practises, and
approximately 1,000 were given the chance to play in youth clubs with excellent training. Eventually, approximately
60 players became elite players as adults. (Source: The Swedish Football Association, http://fogis.se/om-svff.)

3The Ballon d’Or was an annual association football award presented by France Football between 1956 and 2009.
Conceived by chief magazine writer Gabriel Hanot, the award honoured the player deemed to have performed the best
over the previous year, based on voting by Europe-based journalists. Originally, only European players were included
in the competition for the Ballon d’Or, but in 1995, all players from European clubs became eligible. Every year,
three players are nominated for the Ballon d’Or award, and the winner is chosen from among these three players.

4The birthday data for the population are collected from the UN Demographic Statistics Database ”live births
by month of birth”(http://data.un.org/Data.aspx?d=POP&f=tableCode%3A55). This data contains the number of
children born every month (sample ranges may differ by country) for most countries in the world. We aggregate the
data for all countries and then calculate the average number of births in each month (over each year in the sample).
Since the data are on a monthly frequency, we divide the monthly number of births by the number of days in the
corresponding month to obtain a proxy of the number of births each day.
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Figure 1: Distribution of birthdays for winners (red line) and winners and nominees (blue line) of the Ballon
d’Or. The grey area is the distribution of birthdays for the world population.

qualifies, it. In particular, it is the players who are born later in the year– but not too late– who

are most likely to become the ultimate superstars.

In this paper, we develop a skill-formation model that formally examines the underdog hypoth-

esis. More generally, the model explains how institutions in society affect (i) which individuals

become disadvantaged (”underdogs”) and who becomes advantaged (”topdogs”) while young and

(ii) how this affects which individuals become superstars as adults and which individuals fail.

The model sheds light on the conditions under which individuals may pursue a successful work-

life career after having gone through the education system with initial or even permanent disadvan-

tages. Our point of departure is that society selects children into high-quality educational programs,

and the skill development for each child accelerates in the high-quality program. This could be due

to better instructors, better peers and a good reputation of the program. However, to be selected

into the high-quality program, the children must exceed a minimum youth skill level threshold.

The youth skill level depends on both the skill acquired from the effort exerted by the individual

and idiosyncratic human capital. In our soccer example, the day of birth determines the level of

age capital, meaning that players who are born early in the year have a larger and more muscular

body. In a broader educational framework, the differences between disadvantaged and advantaged

3



children can be interpreted in terms of factors such as talent, parent skills or intelligence. The se-

lection system, however, does not make a distinction between these sources of observed skill. Skill

formation in itself is subject to self-productivity and dynamic complementarity (Cunha and Heck-

man, 2007). Self-productivity means that skills formed from early training effort are accumulated,

which improves productivity in later periods of life, while dynamic complementarity means that

acquiring higher skills in early periods makes investments in future skills more productive. At first

sight, one might believe that self-productivity and dynamic complementarity should lead to advan-

taged children acquiring the highest skills as adults and, consequently, advantaged children being

more successful as adults. However, counteracting mechanisms exist. Disadvantaged children must

invest more in training effort in early periods than advantaged children since the former cannot

rely on given human capital to access high-quality programs. This effect is excessively strong for

children who barely make it into elite education programs. We label this as the ”underdog incentive

effect”.

The observed pattern in Figure 1, where winners (and nominees) of the Ballon d’Or are more

likely to be born late– but not too late– in the year can then be rationalized as follows: When

individuals who are born later in the year are just barely admitted into the elite program (or elite

team), their youth skills are derived from excessive training effort. Since physical differences from

idiosyncratic age capital have largely vanished by the time they participate in the elite program,

the high amount of youth training makes these individuals very productive in achieving elite skills.

Amplified over time by dynamic complementarity and self-productivity, the underdog incentive

effect shapes individuals who are born late into the best elite players– the ultimate superstars.

But why does this process not extend to players who are born very late in the year? For such

players, it is not worthwhile to enter into the high-quality program since the cost of acquiring

the necessary youth skills to pass the entry barrier becomes too high. They eventually relinquish

their ambition to reach the elite program and a future elite career as a professional player. But

why do not (advantaged) individuals who are born early in the year exert greater youth effort to

become ultimate superstars? The key to understand this result is that the underdogs are forced

to invest significantly more than their (optimal) first-best effort level to be admitted into the elite

program. That is, a player who is born early in the year– and, hence, is endowed with abundant

age capital– will pass the threshold by expending his (lower) interior optimal level of youth effort.

The paper proceeds are follows: We first place the paper in relation to other literature in Section

2. In Section 3, we complement the evidence from the international Ballon d’Or award in Figure 1
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with detailed data from the Swedish football market. Consistent with the distribution of the winners

of the Ballon d’Or, we find an inverted relative age effect among the very best Swedish elite players,

where players who are born late– but not too late– are overrepresented in winning the best player

award. We also find a strong relative age effect in youth soccer; that is, players who are born

very early in the year are overrepresented in the national U17 team compared to the Swedish male

population. To explain these twin patterns, in Section 4, we develop a multi-period skill-formation

model with selection into elite education and temporary youth disadvantage for children who are

born late. In Section 5, we show that our results extend to a setting with permanent differences

in talent between individuals; that is, when individuals with lower talent need to overcome their

disadvantages with hard work at a young age, they may still excel over more talented individuals

as adults. In Section 6, we remark on how these results impact education policy. We show that

if young students are short-sighted and discount their future too much, then barriers to university

education can bring disadvantaged students closer to their far-sighted optimum effort level if there

are dynamic complementarities in education. Section 7 concludes the paper. In the appendix, we

provide a detailed analysis of the Swedish football data. An online appendix collects proofs of the

main results and provides a deeper analysis of the relative age effect.

2 Related literature

This paper contributes to the literature on the economics of skill formation by children (e.g., Cunha

et al., 2006; Cunha and Heckman, 2007). Building on empirical evidence on skill formation, this

literature has introduced multi-period models with self-productivity and dynamic complementarity

as key factors in shaping childrens’skill formation. Moreover, this literature has shown why the re-

turn to investing early in the life cycle is high, and why mitigating disadvantages for certain groups

of children is more effi cient than interventions later in life. A common theme is that the decision

to invest in a child’s education is typically done at the family level, subject to financial budget

constraints. In contrast, our framework emphasizes that individuals also optimize with regard to

real constraints– in the form of hurdles and entry barriers– that must be overcome by spending

early effort and training to gain access to higher education. We assume that individuals differ in

exogenous temporary abilities (age differences), as well as permanent abilities (talents), that can

substitute for effort in producing early youth skills. We show that children who are disadvantaged

as youths may still possess the highest skills as adults. Early disadvantage pushes young individuals
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to excessive investment to obtain the necessary skills to gain access to better education. Given that

an individual can endure the initial hardships, the high effort exerted in obtaining the early neces-

sary skills can then– perpetuated by self-productivity and dynamic complementarity– enable these

individuals to excel as adults. But even without significant institutional hurdles, our framework re-

veals how preferences and different types of complementarities can turn an early disadvantage into

an advantage later in life or, conversely, how an early head-start may produce a later disadvantage.

Our paper also contributes to the literature examining the effects of tracking and elite education.

A recent strand of this literature examines the effects of attending an elite school (or a high-level

program) with mixed findings.5 We contribute to this literature by showing that much of the effects

of access to elite education may come ex ante through incentive effects, where individuals need to

work hard in order to pass entry tests. This may jeopardize external validity in studies using a

regression-discontinuity (RD) design. As we show in our model, the reason is that individuals just

above and just below the margin of entry may have very different ex ante incentives than individuals

who either fail or pass the entry requirements by a significant margin.

Our model also provides insight into the economics of superstars. Rosen (1981) shows how

agents with marginally higher quality may become ”superstars” earning substantially more than

others. Superstar effects have been shown to explain substantial increases in inequality among

CEOs (Terviö, 2008; Gabaix and Landier, 2008), lawyers (Garicano and Hubbard, 2009), rock

stars (Krueger, 2005), entertainers (Koenig, 2019) and financial service workers (Kaplan and Rauh,

2009; Célérier and Vallée, 2019). Our model shows that individuals with temporary disadvantages

at a young age (”underdogs”) are most likely to become superstars as adults since they have to

spend a considerable amount of youth effort, which benefits them as adults. However, there may

be substantial differences among underdogs: individuals with a similar predisposition may either

end up as top-achieving ”educated underdogs”or as drop-outs, who fail to enter higher education.

Our paper also relates to the literature on the science of expertise. Several reviews argue

that gaining expertise requires both deliberate (i.e., planned and focused) practise (”nurture”)

and talent (”nature”).6 Empirically, this literature shows that deliberate training is correlated

5Jackson (2010) and Pop Echeles and Urquiola (2011) find that attending better schools improves children’s
academic achievement. Clark (2010) and Abdulkadiroglu et al. (2011) find no evidence that elite schools improve
standardized test scores. Deming et al. (2014) examine the impact of a public school choice lottery and find a
significant overall increase in college attainment among lottery winners but that gains in attainment are concentrated
among girls. Dustmann et al. (2017) find no evidence that students attending a more advanced track achieve more
favourable long-term outcomes.

6See, e.g., Ackerman (2014), Ericsson (2007), Ericsson et al. (1993) and Tucker and Collins (2012).
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with high-quality (sport) performance.7 Moreover, this literature suggests that heritable individual

differences might influence the capacity to engage in hard work. To the best of our knowledge, we

propose the first theoretical formalization of this literature, where the individual makes her own

deliberate choice of practise level within an institutional setting. We show how motivation, ability,

and institutions interact to produce the final expertise of an individual, as long it is combined with

guided practise (elite education). We also provide empirical evidence from professional soccer that

talent is not all that matters for success.

Finally, our paper provides new insights into the literature on the so-called relative age effect

(RAE). This literature has focused on the RAE in various sport activities by showing that players

born early in the year are usually overrepresented in elite youth teams.8 Some papers have also

found an inverse RAE in adult sports. For example, Gibbs et al. (2012) and Bryson et al. (2014)

find that players born later in the year might perform better in the long run. Ashworth and Heyndels

(2007) provide a stylized model based on the selection of exogenous talent and peer influence on the

performance of football players and find some empirical evidence that players born later in the year

earn higher wages but that this effect vanishes for players born in the last two months of the year

(i.e., these players earn less than older players).9 In this paper, we provide a general theoretical

formalization of the RAE at younger stages of life (not only pertaining to sports) and find that this

effect is closely connected to an inverted RAE (IRAE) at later stages. Our model also captures the

”drop-out effect”, which provides an explanation for why players born very late in the year earn

less than older players. All these effects are also consistent with the empirical pattern found in the

Ballon d’Or distribution in Figure 1. In the next section, we provide more evidence of the RAE in

youth soccer and the IRAE in elite soccer using detailed Swedish data.

3 Relative age effects in Swedish soccer data

The data on birthdays of Ballon d’Or winners in Figure 1 is obtained by pooling top players from

many different national leagues, which may have different institutions. For instance, the cut-off

for starting to play on a youth team may differ, or there may be different systems for how youth

players are selected into elite training. To learn more about what explains the birthday distribution

7 In sports, an explanation for this result is that intense physical training is often associated with changes in muscle
fibres, capillaries, and the size and structure of the heart (See, e.g., Ericsson, 2006).

8See, e.g., Musch and Grondin (2001) for a review.
9See also Fumarco (2015).
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of top players, we study a single country, Sweden. The use of Swedish data has several advantages:

First, football clubs in Sweden have had a well-developed education system for youth players

for the past 50 years, with well-educated and experienced coaches in top clubs. The cut-off for

participating on a team has consistently been January 1 for both clubs and national teams. Im-

portantly, the selection criteria into elite teams at different levels in the education system are also

transparent and known to every youth player.

Second, the Swedish Football Association (SvFF)10 coordinates national youth teams for boys

in every yearly cohort from the ages of 15 to 19. Since these teams consist of the very best youth

players in Sweden, they are the top elite teams in Swedish football. The final selection of players

to the national youth teams is purely exogenous (i.e., there should be little chance of self-selection)

since it is done by the coaches at SvFF.

Finally, since 1946, one Swedish senior player has been given a national best player award each

year, which can be seen as an analogous award to Ballon d’Or exclusively given to Swedish players.

This player is chosen by a selection committee consisting of representatives from SvFF and sports

journalists from one of the largest newspapers in Sweden. Since all (but one) winners of the best

player award have played on the senior Swedish national team, we can treat the sub-set of winners

as a treatment group (within the entire set of national team players). In this case, the treatment is

well-defined and clearly exogenous since the player is chosen by an outside committee. Hence, the

treatment effect (i.e., having been given the best player award) has a straightforward interpretation.

For these reasons, we collected birthday data on all Swedish national youth team players under

the age of 17 (U17) between 2010 and 2015 (186 observations), birthday data on all players who have

played on the Swedish senior national team between 1946 to 2015 (650 observations), and birthday

data on all winners of the best player award in Sweden from its beginning in 1946 until 2015

(53 observations, omitting multiple observations from the same player). To obtain an appropriate

control group, we also collected birthday data for the entire male population in Sweden between

1968 and 2010 (1,706,304 observations).11

Panel (i) in Figure 2 reproduces the birthday distribution of the winners of the Ballon d’Or

award (dashed red line) and the world population (shaded grey area) from Figure 1. On the basis

of the Swedish data, panel (ii) depicts the birthday distributions of the winners of the Swedish best

player award (dashed red line), players on the senior national team (dashed purple line), players

10www.svenskfotboll.se/in-english/
11See Table A in Appendix A for descriptive statistics of these data.
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on the youth national team (U17) (dashed green line), and the Swedish male population (shaded

grey area). There are some noteworthy observations from the plots of the raw data in Figure 2:

The birthday distributions of the Ballon d’Or winners in panel (i) and the winners of the best

player award in Sweden in panel (ii) are remarkably similar. For example, note that the modes, i.e.,

the most likely day to be born, almost coincide and that the two distributions are similarly skewed

to the left.12 More generally, both distributions reveal two distinct features: (1) winners who are

born in the late summer or early fall are overrepresented and (2) winners who are born either early

or very late in the year are underrepresented (in comparison to the birthday distribution of the

entire male population in Sweden and the world population).

However, in sharp contrast to the best elite players, panel (ii) shows that U17 players who are

born very early in the year are highly overrepresented, while U17 players who are born later in

the year are highly underrepresented. Thus, we find strong evidence of a RAE in these data. The

presence of a RAE is also observed in Table B in Appendix A, which shows that the mode of the

distribution of birthdays for the U17 players is estimated at day 42, while the corresponding mode

for the entire male population is estimated at day 101, i.e., 59 days later than that of U17 players.

Table B also shows that the mode of the birthday distribution for winners of the Swedish best

player award is estimated at day 266, which is 165 days later than that of the entire Swedish

male population. Thus, in contrast to the strong RAE in the U17 data, panel (ii) indicates an

IREA at the very top level of Swedish senior football. The REA in the U17 data and the IREA in

the best player award data are further highlighted in panel (iii), where the estimates of the mode

of the respective distributions are plotted against the skewness coeffi cient for the corresponding

distributions (See also Table B). Note the inverse relationship between the U17 data and the data

on the best players: while the data on U17 players are characterized by high positive skewness

combined with a low mode, the data on birthdays of the best players display negative skewness

with a high mode. Interestingly, the corresponding numbers for the national team are between

these two extremes and closer to the overall male population. The observed distinct features can

be summarized as follows:

Empirical results In the Swedish data on soccer players, there is:

ER1: A relative age effect (RAE) in youth soccer; i.e., (a) players who are born early in the

12The coeffi cients of the mode and skewness of the distribution for winners of the Ballon d’Or are 273.1 and −0.39
(for winners and nominees they are 265.3 and −0.10), while the coeffi cients are 266.0 and −0.24 for winners of the
best player award in Sweden.
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year are overrepresented on the national youth team and (b) players who are born mid-year

and late in the year are underrepresented.

ER2: An inverted relative age effect (IRAE) in elite soccer; i.e., (a) players who are born

late in the year– but not too late in the year– are overrepresented in winning the best player

award and (b) players who are born early in the year or very late in the year are underrepre-

sented.

In Appendix A, we provide a more detailed analysis of these data. This analysis adds birthday

data from the winners of another award, called the distinguished player award (also depicted in

panel (iii) of Figure 2). Moreover, we provide a regression analysis that shows that the empirical

predictions ER1 and ER2 hold even when conditioning on a set of control variables collected for

every national team player. Overall, our results show that when comparing the birthday distribu-

tions for the three categories (national team players, distinguished player awardees and best player

awardees), as the quality of the players increase, we obtain an increasingly inverted RAE, which is

consistent with ER2.

In the next section, we develop a theoretical model that explains these empirical results. While

we use a framework with soccer as a running example of our model, the analysis provides new

insights into the education system and how institutions affect incentives and outcomes in elite

education, where some individuals have temporary or even permanent disadvantages. Subsequently,

we use the model to discuss how education policy can improve outcomes for individuals.

4 A skill-formation model with temporary youth disadvantages

We first describe the ingredients of the model and then turn to the analysis.

4.1 How youth skills are formed

As shown in Figure 3, we study a continuum of individuals, who we refer to as players, from the

same cohort over two stages. Some players are endowed with a temporary advantage in the first

stage (which vanishes in the second stage): Advantaged players are born earlier in the year and

are thus more physically and/or mentally developed than their peers born later in the year. This

difference is captured by a player’s age capital, a ∈ [0, amax], where players born earlier in the

year have higher age capital. Formally, a player’s day of birth– and, hence, his age capital– is

11
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• Nature chooses the day of birth of a 
player. Early born players obtain
more age capital, a, than late born
players.
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• Club system allows a youth player
into an elite program  if his youth
quality is sufficiently high.
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differences in age capital (i.e
physical strength) vanish as players
born late in the year catch up with
players born early in the year.

• Players admitted into the elite
program spend effort in elite
training, e2 , producing elite
quality,                                        .

• Nature chooses if a player
participating in the elite program 
gets a professional career in elite
soccer

e1

Admitted to
elite program 

Not admitted to
elite program 

 1 − 

a

Nature: 

Player: 

Clubs: 

Player: 

Nature: 

Yes! No! No Professional elite player?

Utility:

Effort cost:

Player: 

Player: 

Continue Quit

S1 ≥ S1
min S1  S1

min

S1  fe1, a

Professional with elite quality S2 Fail and quit

S2  hfe1, amax, e2
≡ ge1, e2, amax

e2

0

uS1  vS2 uS1

C1e1  C2e2 C1e1  C2e2 C1e1

uS1

S1  fe1,a

amax

a → amax

S2  ge1,e2,amax

Figure 3: Sequence of events.

12



exogenously drawn by nature at the beginning of the first stage from some distribution Ω(a). We

assume that all individuals participate in the youth program, i.e., they all play youth soccer. Given

a player’s age capital, a, his skill or quality as a youth player, S1, is determined by his choice of

youth training, e1, according to the youth skill production function:

S1 = f(e1, a)︸ ︷︷ ︸
Youth player quality

, a ∈ [0, amax]. (1)

Youth skills are strictly increasing and strictly concave in youth training effort, e1, i.e., ∂f/∂e1 > 0

and ∂2f/∂e21 < 0 with f(0, a) = 0. Since a player who is born early in the year is more physically

and/or mentally developed, youth skills are also strictly increasing and strictly concave in age

capital, i.e., ∂f/∂a > 0 and ∂2f/∂a2 < 0. Older players can also benefit from a complementarity

between age capital and training effort: a higher level of youth training may increase youth skills

to a greater extent for a player who is born earlier in the year than for a player born later in the

year, i.e., ∂2f/∂e1∂a ≥ 0.

4.2 How elite skills are formed

In the final part of stage 1, elite organizations invite youth players to join an elite program, provided

that a player’s youth skills S1 = f(e1, a) have reached a minimum threshold, Smin1 . Participation in

the elite program, where training occurs under the supervision of quality instructors and together

with highly skilled peers, provides the only way to acquire the elite skills to pursue a future career

as a professional elite player.13

As shown in Figure 3, we assume that age capital converges after the termination of the youth

program but before the start of the elite program. This means that once players enter the elite

program, we assume that players who are born later in the year have grown to the same physical

strength as their peers born earlier in the year, i.e., the temporary advantage for players born early

in the year is lost. Thus, in the elite program, the achieved youth skills, S1, are evaluated at the

age capital of a ”fully matured”player, a = amax, i.e., S1|a=amax = f(e1, a
max).

13What motivates an organizations’requirement of a minimum youth skill? One reason is simply that managers
and trainers in the elite program have an incentive to succeed, in which case they will only accept players above a
minimum quality level, S1 ≥ Smin1 . Another reason might be that in order to make productive use of elite training,
youth skills simply need to exceed a minimum level.
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Hence, elite skills, denoted by S2, are formed from the following elite skill production function:

S2 =


0, if S1 = f(e1, a) < Smin1 ,

h(f(e1, a
max)︸ ︷︷ ︸

S1|a=amax

, e2), if S1 = f(e1, a) ≥ Smin1 . (2)

We note the following in (2):

• The first row reiterates that elite skills can only be attained in the elite program and that

only players who achieve the minimal threshold Smin1 as youth players are admitted.

• The second row depicts the elite skill-formation process: elite skills, S2 = h(f(e1, a
max), e2),

are increasing in elite training, ∂h
∂e2

> 0, and in the acquired youth skills, ∂h∂f > 0, reflecting

what Cunha and Heckman (2007) label self-productivity, i.e., skills that are acquired in one

period persist and increase productivity in future periods.

To simplify the notation, it is convenient to use a reduced-form production function to charac-

terize how elite skills are formed in the elite program. Thus, from the second row in (2), we define

reduced-form elite skills as:

S2 = g(e1, e2) ≡ h(f(e1, a
max), e2)). (3)

It follows that reduced-form elite skills increase in the amount of elite training, ∂g
∂e2

= ∂h
∂e2

> 0, and

youth effort, ∂g
∂e1

> 0, since self-productivity implies:

∂g(e1,e2)
∂e1

= ∂h(f(e1,amax),e2)
∂f · ∂f(e1,a

max)
∂e1︸ ︷︷ ︸

Self productivity

> 0. (4)

Additionally, we assume that elite skills are strictly concave in the amount of youth training and

elite training, i.e., ∂2g/∂e21 < 0 and ∂2g/∂e22 < 0. Finally, early investment in youth training may

also– by increasing early youth skills– improve the productivity of investing into later elite skills,

which implies:
∂2g(e1,e2)
∂e1∂e2

= ∂
∂e1

(
∂h(f(e1,amax),e2)

∂e2

)
︸ ︷︷ ︸
Dynamic complementarity

≥ 0. (5)

This property captures what Cunha and Heckman (2007) call dynamic complementarity and is a

key factor in their model of skill formation, as well as in our model.
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4.3 The utility maximization problem

How much youth effort will players spend? If admitted, how much effort will players expend in the

elite program? When should a player aim for the elite program and try to become professional?

To examine these decisions, we assume that preferences over youth and elite effort are given by the

following expected (net) utility function:

U (e1, e2)︸ ︷︷ ︸
Overall utility

= u(S1)− C1(e1)︸ ︷︷ ︸
Net utility as youth player

+ δ · [p · v(S2)− C2(e2)] .︸ ︷︷ ︸
Expected net utility as elite player

(6)

The utility of participating in the youth activity is denoted u (S1), which we assume to be strictly

increasing and strictly concave in youth player quality, i.e., u′(S1) > 0 and u′′(S1) < 0. Youth

training is associated with a strictly increasing and strictly concave effort cost, i.e., C ′1(e1) > 0 and

C ′′1 (e1) > 0.14

In the second stage, training effort in the elite program is associated with a strictly increasing

and strictly concave cost, C ′2(e2) > 0 and C ′′2 (e2) > 0.15 To simplify, we assume that a player does

not receive any special benefits in the elite program. Instead, the benefit from participating in the

elite program stems from engaging in the elite activity and receiving utility v(S2), which is assumed

to be strictly increasing and strictly concave in elite quality, i.e., v′(S2) > 0 and v′′(S2) < 0.16

However, aiming for a career as an elite player carries a risk of injury. As shown in Figure 3, we

assume that there is only a probability p ∈ (0, 1) that a player in the elite program engages in the

elite activity after leaving the program.17 If the player is injured, he receives no benefits from elite

skills. Finally, δ ∈ (0, 1] is a discount factor. To further simplify the exposition, we assume δ = 1

in (6) in our benchmark analysis. We explore the impact of discounting in more detail in Section

6, where we apply the model to investigate education policy more generally.

14Note that although we assume that the utility function U has the same additive form (6) for all players in the
cohort, the functional forms of u, v, C1 and C2 may differ among players. Thus, it is, for example, possible for one
player to have a higher cost of youth training effort than other players; however, since our goal is to explore the effect
of heterogeneity in age capital on players’skills, we assume that players are symmetric in all other dimensions but
age capital (i.e., day of birth in a year).
15By assumption, U is the sum of strictly concave functions and is therefore strictly concave. Thus, U has a unique

solution for any combination of a, e1 and e2.
16 In a more elaborate framework (incorporating additional stages), one could think of players training and receiving

utility as youth players, as youth elite players and as senior elite players. While this approach would not change our
results qualitatively, it makes the analysis more complicated.
17We expect p to be low in professional sports since there are only a few youth athletes who actually become

professional athletes. For example, in the U.S. alone, there were only approximately 12,450 professional athletes in
2013 (Source: ”What Common Dream Jobs Actually Pay”, Jacquelyn Smith, Forbes magazine, Dec 13, 2013).
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From (1)-(6), we can write the player’s utility maximization problem as choosing early youth

training, e1, and later elite training, e2, to maximize the following Lagrangian:

max
{e1,e2,λ,µ}

L (e1, e2, λ, µ) = u(S1)− C1(e1)︸ ︷︷ ︸
Net utility as youth player

+ p · v(S2)− C2(e2)︸ ︷︷ ︸
Expected net utility as elite player︸ ︷︷ ︸

U(e1,e2)

− λ · [Smin1 − S1]︸ ︷︷ ︸
Entry constraint: elite program

− µ ·
[
UY (a)− U(e1, e2)

]︸ ︷︷ ︸ .
Participation constraint: elite program

(7)

Of the two constraints in (7), we recognize the first, associated with the Lagrange multiplier λ,

as the youth skill constraint for admission into elite training, S1 ≥ Smin1 . The second constraint,

associated with the Lagrange multiplier µ, defines a player’s endogenous choice of participating in

the elite program. Thus, if the indirect utility defined from (6) is lower than the indirect utility

from only participating in the activity as a youth player, given by the solution to the problem

UY (a) ≡ maxe1 {u(S1)− C1(e1)}, a player abstains from participating in the elite program. In

such a case, the player quits after the first period and relinquishes any potential future career as

an elite player.

4.4 Stage 2: The optimal amount of elite training

We use backward induction and first solve for the optimal investment in elite training in the

second stage. Consider a player who is eligible for the elite program, S1 > Smin1 , and who finds

it worthwhile to participate in the elite program, i.e., U(e1, e2) > UY (a). Since neither the ”elite

constraint”, S1 > Smin1 , nor the ”participation constraint”, U(e1, e2) > UY (a), is binding, the

maximization problem in the second stage becomes:

max
{e2}

U (e1, e2) = u(S1)− C1(e1)︸ ︷︷ ︸
Net utility as youth player

+ p · v(S2)− C2(e2)︸ ︷︷ ︸ .
Expected net utility as elite player

(8)

The first order condition, ∂U/∂e∗2 = 0, is:

p · v′(S2) · ∂g∂e2︸ ︷︷ ︸
Marginal benefit

= C
′
2 (e∗2)︸ ︷︷ ︸

Marginal cost

. (9)

The left-hand side (LHS) in (9) depicts the (expected) marginal benefit of elite training, p · v′(S2) ·

∂g/∂e∗2, which depends on how the optimal level of elite training improves elite skills, ∂g/∂e
∗
2 > 0,
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how much elite skills are valued on the margin, v′(S2) > 0, and on the probability, p, that the

player engages in a professional career. The right-hand side (RHS) in (9) is the marginal cost of

youth training, C
′
2 (e∗2), which can be interpreted as the cost of giving up alternative activities such

as leisure, family life or work to exert additional elite effort in the elite program.

4.4.1 Elite skills: dynamic complementarity and self-productivity

Which player achieves the highest elite skills? An important factor is, of course, how much the

player already has invested in youth training, e1, since the achieved youth quality, S1 = f(e1, a
max),

affects elite skills through dynamic complementarity (see Eq. (5)) and self-productivity (see Eq.

(4)). What can we then say about the link between youth effort, e1, the chosen amount of elite

effort, e2, and achieved elite skills, S1?

We begin with how youth training affects a player’s choice of elite training. Differentiating the

first-order condition for elite training (9) in youth effort and in elite training effort and then using

(11) and (12) yields:18

de∗2
de1

= φ
(+)
· [ϕ(S2)− α(S2)] . (10)

Thus, how early youth training affects the amount of elite training depends on the sign of the

bracketed term in (10). To evaluate the sign of this term, first consider the marginal benefit

from increasing elite training, v′(S2) · ∂g/∂e2 > 0, on the LHS of the first-order condition (9).

Strict dynamic complementarity, ∂2g/∂e1∂e2 > 0, implies that a higher youth effort, e1, raises

the marginal product of elite training, ∂g/∂e2. This mechanism increases the incentive to train

harder in the elite program and is represented by the first term, ϕ(S2), which we label the degree of

dynamic complementarity between youth training and elite training in the formation of elite skills

and is defined as:

ϕ(S2) =

Dynam ic complem entarity︷ ︸︸ ︷
∂2g

∂e2∂e1
/
∂g

∂e2
∂g

∂e1︸︷︷︸
Self-productiv ity

≥ 0. (11)

Note that ϕ(S2) is large when dynamic complementarity dominates self-productivity. Intuitively,

under strong self-productivity, that is, when higher youth skills from intense youth training more

easily translate into stronger elite skills, a player has weaker incentives to improve his elite skills

18See Section A.1 in the online appendix, where we also show that φ > 0.
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by exerting greater elite training effort.

The second term within brackets in (10) further highlights how incentives play a key role. If

more youth training effort, e1, raises elite skills, S2, then declining marginal elite utility, v′′(S2) < 0,

serves to dampen the incentive to supply further elite effort. This saturation mechanism is captured

by the elasticity, α(S2), which is the degree of concavity of the elite utility function, defined as:

α(S2) = −v′′(S2)
v′(S2)

> 0. (12)

To proceed, we define the reduced-form elite skill production function as S2(e1) ≡ g(e1, e
∗
2(e1)). By

differentiating the reduced-form elite skill production function S2(e1) in youth effort, e1, we obtain:

dS2
de1

=
∂g

∂e1
(+)︸︷︷︸

Self productivity (+)

+
∂g

∂e2
(+)

· de
∗
2

de1
(?)︸ ︷︷ ︸

Dynamic complementarity (?)

. (13)

Thus, early youth training affects elite skills through two distinct effects: a direct effect, which

from Eq. (4) captures self-productivity, where more intense youth training effort increases youth

skills which, in turn, increases elite skills, i.e., ∂g
∂e1

= ∂h
∂f ·

∂f
∂e1

> 0; and an indirect effect, whose sign

depends on how youth training effort affects elite quality through its effect on elite training, i.e.,
∂g
∂e2
· de

∗
2

de1
. By combining Eqs. (10) and (13), we obtain the following result:19

Proposition 1 Elite skills are strictly increasing in youth training, i.e. dS2/de1 > 0.

This result essentially states that the best elite players are those who spend the most youth

effort. This result is straightforward to see under strong dynamic complementarity, ϕ(S2) > α(S2),

where more intense youth training effort induces a higher training effort in the elite program from

(10), de
∗
2

de1
> 0. In such a case, elite skills S2 then increase both through self-productivity,

∂g
∂e1

> 0,

and indirectly through boosted elite training, ∂g
∂e2
· de

∗
2

de1
> 0. When dynamic complementarity is

neither weak nor strong, α(S2) = ϕ(S2), self-productivity,
∂g
∂e1

> 0, ensures that elite skills increase

in youth training.

However, under weak dynamic complementarity, ϕ(S2) < α(S2), a higher youth effort induces

decreasing elite effort from (10), i.e., de∗2
de1

< 0. This makes the indirect effect in (13) negative.

Nevertheless, as Proposition 1 shows, the impact of self-productivity always dominates, and elite

19See Section A.2 in the online appendix for a proof.

18



skills unambiguously increase in youth effort, i.e., ∂g
∂e1

> − ∂g
∂e2
· de

∗
2

de1
> 0. The next section explains

the intuition for the latter result.

Why do early youth training always increase elite skills? Consider two players A and

B. Both are admitted into the elite program, but player B has invested more youth training effort

than A, i.e., eB1 > eA1 . Under weak dynamic complementarity, player A will then invest more in

elite training effort than B, i.e., e∗2(e
A
1 ) > e∗2(e

B
1 ). Then, why will not A– from spending more elite

training– catch up with B’s elite skills? The following illustration explains this mechanism.

Player B’s first-order condition, which defines his optimal level of elite training effort, eB
∗

2 , is:

p · v′(S̄2) ·
∂g(eB1 , e

∗
2(e

B
1 ))

∂e2︸ ︷︷ ︸
Marginal benefit for B

= C
′
2

(
e∗2(e

B
1 )
)︸ ︷︷ ︸ .

Marginal cost for B

(14)

If A’s ambition is to catch up with B, then he would need to invest a higher elite effort level eA2 to

reach B’s elite skill level, where eA2 is defined from the condition g(eA1 , e
∗
2(e

A
1 )) = S̄2 = g(eB1 , e

∗
2(e

B
1 )).

Under strictly convex effort costs and in order for A to catch up with B, his marginal effort

costs must be strictly higher than those of B, i.e.,

C
′
2

(
e∗2(e

A
1 )
)︸ ︷︷ ︸

Marginal cost for A "in catch up"

> C
′
2

(
e∗2(e

B
1 )
)︸ ︷︷ ︸ .

Marginal cost for B

(15)

In addition, note that dynamic complementarity, ∂2g
∂e2∂e1

> 0, implies that having invested less

youth effort, player A will be less effi cient in increasing his elite skills by spending higher elite effort

than B. This difference is exacerbated by A’s marginal product of elite training being reduced by

diminishing returns, ∂
2g
∂e22

< 0. Hence, under the catch-up scenario, A would also perceive a lower

marginal benefit of elite training than B, i.e.,

p · v′(S̄2) ·
∂g(eB1 , e

∗
2(e

B
1 ))

∂e2︸ ︷︷ ︸
Marginal benefit for player B "in catch-up"

> p · v′(S̄2) ·
∂g(eA1 , e

∗
2(e

A
1 ))

∂e2︸ ︷︷ ︸
Marginal benefit for player A

. (16)

Thus, if player A has invested less in youth training effort than player B, eA1 < eB1 , it follows

from (15) and (16) that even under weak dynamic complementarity, where A invests more in elite

training effort than B, e∗2(e
B
1 ) < e∗2(e

A
1 ), he is never able to catch up with B. In the end, it is

always player B, who enters the elite program with more youth training and higher youth skills,
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who obtains higher elite skills, i.e., S̄2 = SB2 = g(eB1 , e
∗
2(e

B
1 )) > SA2 = g(eA1 , e

∗
2(e

A
1 )).

4.5 Stage 1: The optimal amount of youth training

Proposition 1 shows that early youth training is the key to high elite skills. Proposition 1 can thus

be seen as a formalization of the literature on the science of expertise discussed in Section 2, which

highlights that deliberate practise is key in shaping expertise. But what factors determine how

much individuals invest in deliberate early practise?

Let us return to stage 1, where the choice of how much to spend on youth training is decided.

We continue to study a player with non-binding entry and participation constraints. We begin by

defining the reduced-form utility function U(e1) ≡ U(e1, e
∗
2(e1)) from Eq. (6), taking into account

the player’s optimal choice of elite effort in the elite program, e∗2(e1). In this case, the optimal

amount of youth training is determined by solving:

max
{e1}

U(e1) = u(S1)− C1(e1) + p · v(S2)− C2(e∗2(e1)), (17)

where youth skills are given by S1 = f(e1, a) and elite skills are given by the reduced-form produc-

tion function S2(e1) = g(e1, e
∗
2(e1)).

From the envelope theorem, the first-order condition is:

u′(S1) ·
∂f

∂e1
+ p · v′(S2) ·

∂g

∂e1︸ ︷︷ ︸
Marginal benefit

= C ′1(e
∗
1)︸ ︷︷ ︸

Marginal cost

. (18)

The marginal benefit of higher youth training effort is shown on the LHS of (18): investing in higher

youth training effort increases utility as a youth player since increased effort is associated with a

higher youth quality, i.e., u′(S1) · ∂f∂e1 > 0. Moreover, a youth player also takes into account that

increased youth effort yields a higher expected utility as an elite player since higher youth effort

always increase his elite quality, i.e., p · v′(S2) · ∂g∂e1 > 0. In the optimum, the sum of these effects

is equal to the marginal effort cost of youth effort, as shown on the RHS of (18).

4.5.1 Age capital, youth training and elite skills

The main source of heterogeneity among players in our model is their age capital, a, which stems

from players being born at different times of the year. In this section, we begin to explore the full

link from a player’s age capital to his choice of youth training, elite training, and achieved elite
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skills.

First, we use the implicit function theorem in (18) and define optimal youth training as a

function of age capital, e∗1(a). By differentiating the first-order condition (18) in age capital, a, and

in youth training effort, e1, we obtain:20

de∗1
da

= ω
(+)
· [Ψ(S1)− η(S1)] . (19)

Hence, the sign of (19) is determined by the sign of the bracketed term. Consider the first-order

condition (18) for optimal youth training effort. Let us focus attention on the first term on the

LHS of (18), given by the marginal benefit in youth utility, u′(S1) · ∂f/∂e1, as this is the only term

that depends on age capital, a. On the one hand, by age capital and youth effort complementarity,

∂2f/∂e1∂a ≥ 0, having a higher age capital, a, raises the marginal product of youth training,

∂f/∂e1, which increases the marginal benefit of youth training. This mechanism is captured by the

elasticity Ψ(S1), which is the degree of complementarity between youth training e1 and age capital

a in youth quality, defined as:

Ψ(S1) =
∂2f
∂e1∂a
∂f
∂a
· ∂f
∂e1

≥ 0. (20)

On the other hand, higher age capital, a, directly raises youth skills, S1, reducing the marginal

benefit of youth training effort due to declining marginal utility, u′′(S1) < 0. This saturation

mechanism is captured by the elasticity, η(S1), which is the degree of concavity of youth utility,

defined as:

η(S1) = −u′′(S1)
u′(S1)

> 0, (21)

where η(S1) > 0, since u′(S1) > 0 and u′′(S1) < 0.

As a final step, we define the reduced-form elite skill production function S2(a) ≡ g(e∗1(a), e∗2(e
∗
1(a))),

and differentiate with respect to age capital, a, which yields:

dS2(a)

da
=


Self productivity︷︸︸︷

∂g
∂e1

+

Dynamic complementarity︷ ︸︸ ︷
∂g
∂e2
· de

∗
2

de1︸ ︷︷ ︸
dS2
de1

>0

 · de∗1da . (22)

Since elite skills, S2, are increasing in youth effort, e1, from Proposition 1, it follows that how a

player’s elite skills are effected by age capital, dS2(a)da , depends on only whether higher age capital

20See Section A.3 in the online appendix, where we also show that ω > 0.
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increases or decreases the optimal amount of youth training, de∗1
da . Combining (19) and (22), we

obtain the following proposition:

Proposition 2 Age capital, a, affects the optimal level of youth training effort, e∗1, and hence elite

skills, S2, as follows:

(i) Under weak age-capital complementarity, Ψ(S1) < η(S1), an increase in age capital leads to

a reduction in optimal youth training effort, de∗1/da < 0 and, hence, a decrease in elite skills,

dS2/da < 0.

(ii) Under strong age-capital complementarity, Ψ(S1) > η(S1), an increase in age capital leads

to an increase in optimal youth training effort, de∗1/da > 0, and, hence, an increase in elite

skills, dS2/da > 0.

Proposition 2 is straightforward: when age-capital complementarity is suffi ciently strong and

dominates saturation, Ψ(S1) > η(S1), higher age capital induces a player to invest more in youth

training effort, de∗1/da > 0; and with more intense youth training, elite skills increase, i.e., dS2(a)da =

dS2(a)
de1

· de
∗
1

da > 0. Conversely, if age-capital complementarity is weak and dominated by saturation,

η(S1) > Ψ(S1), higher age capital induces a player to engage less in youth training, de∗1/da < 0,

and elite skills decline in age capital, dS2(a)da = dS2(a)
de1

· de
∗
1

da < 0.

4.6 Why players born early in the year achieve the highest youth skills and

players born later achieve the highest elite skills

In this section, we reconcile the seemingly disparate empirical results in Section 3. For ease of

exposition, we make the following assumption (which is relaxed in Section 4.7):

Assumption 1: Youth skills are formed under weak age-capital complementarity, Ψ(S1) < η(S1).

4.6.1 The underdog-incentive effect

Consider a player who chooses to participate in, and is accepted into, the elite program. Suppose

that this player is born late in the year. How will this late birthday affect the player’s achieved

elite skills? We note that being born marginally later in the year results in a lower age capital,

da < 0. Under weak age-capital complementarity, this is associated with increased investment in

youth training effort, i.e., de
∗
1

da · da > 0. This result is shown in panel (i) of Figure 4, where the
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horizontal axis depicts the amount of youth training, e1, and the vertical axis depicts age capital,

a. The point T depicts the optimal choice of youth effort in (18) for a player endowed with age

capital aT , i.e., eT1 = e∗1(a
T ), while the point U depicts the optimal choice of youth effort in (18) for

a player endowed with age capital aU , i.e., eU1 = e∗1(a
U ). Player U, the ”underdog”, is born later

in the year than player T, the ”topdog”, and is consequently endowed with less age capital, i.e.,

aU < aT . Imposing Assumption 1 in Eq. (19), we have that the underdog spends more effort on

youth training than the topdog, e∗1(a
U ) > e∗1(a

T ). We call this the ”underdog-incentive effect”.

According to Proposition 1, elite skills are increasing in youth training, dS2de1
> 0. Hence, the

underdog incentive effect implies that the underdog will obtain higher elite skills than the topdog,

SU2 = S2(a
U ) > ST2 = S2(a

T ). This result is illustrated in panel (ii) of Figure 4, where the

horizontal axis again depicts the amount of youth training, e1, while the vertical axis depicts the

amount of elite effort, e2, and where we have depicted strictly convex isoquants of elite skills,

S2 = g(e1, e2), with elite skills growing in the north-east direction.21 Proposition 2 enables us to

understand the first part of the second empirical result (ER2), i.e., that players born later in the

year are overrepresented in the award for best elite player. Under weak age-capital complementarity

in youth soccer, players born late in the year invest intensively in youth training, which in turn,

though self-productivity and dynamic complementarity in the formation of elite skills, gives these

later born players higher elite skills than their earlier born peers. However, this mechanism cannot

explain why very late born players, that is, players with very low age capital, are underrepresented

in the best elite player award. To understand the latter result, we turn our attention to how age

capital a affects youth skills, S1. This examination will also provide insight in to the RAE in youth

soccer, where players born early in the year are overrepresented among the best youth players.

4.6.2 The relative age effect

The RAE applies if youth skills, S1, are increasing in age capital, a. Formally, let S1(a) ≡ f(e∗1(a), a)

be the reduced-form youth quality, where the optimal level of youth quality e∗1(a) is, again, implicitly

21Panel (ii) of Figure 4 is drawn under the assumption of strong dynamic complementarity in elite skills: having
invested more in youth effort induces the underdog to train harder than the topdog in the elite program, i.e.,
e∗2(a

U ) > e∗2(a
T ). Note that according to Proposition 1, the underdog would also obtain the highest elite skills under

weak dynamic complementarity.
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Figure 4: Solving the model. Panel (i) illustrates how players choose early youth training as functions of
their age capital. Panel (ii) shows how players, given early youth training, choose elite training. This is
illustrated under Assumption 1 and strong dynamic complementarity in elite skills. Panel (iii) depicts the
indirect utility achieved by players.
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given from (18). Differentiating S1(a), we obtain:

dS1
da

=
∂f

∂a
(+)︸︷︷︸

Direct effect

+
∂f

∂e1
(+)

· de
∗
1

da
(?)︸ ︷︷ ︸

Indirect effect

. (23)

The change in youth skills, S1, from a marginal increase in age capital, a, is the sum of a direct

effect, which is strictly positive by assumption, and an indirect effect, which stems from how age

capital affects optimal youth training, de∗1/da. From Proposition 2, we know that under strong

age-capital complementarity, i.e., Ψ(S1) > η(S1), more age capital induces additional investments

into youth training, de∗1/da > 0. Thus, in such a case, greater age capital unambiguously increases

youth skills, i.e., dS1da > 0. However, under weak age-capital complementarity, Ψ(S1) < η(S1), the

indirect effect in (23) becomes negative from age capital reducing youth training, de∗1/da < 0, which

makes the overall sign of dS1da ambiguous. These results are summarized in the following lemma:

Lemma 1 (The relative age effect) Youth skills, S1, increase in age capital a, i.e.,
dS1(a)
da >

0:

1. under strong age-capital complementarity in youth skills, Ψ(S1) > η(S1),

2. under weak age-capital complementarity in youth skills, Ψ(S1) < η(S1), and

(i) strong dynamic complementarity in elite skills, ϕ(S1) > α(S1), when the reduced elite

skill function g(e1) ≡ g(e1, e
∗
2(e1), a

max) is not excessively convex.

(ii) weak dynamic complementarity in elite skills, ϕ(S1) < α(S1), when the elite utility func-

tion v(S2) is not excessively concave.

Thus, the RAE always holds under strong age-capital complementarity; however, the RAE also

holds under weak age-capital complementarity given additional assumptions. Similar to the reason

why it is impossible for players who spend less youth effort to catch up in elite skills, the strictly

convex youth effort costs prevents a player with lower age capital from exerting greater youth

effort to obtain at least the same youth quality as a player with higher age capital. Age-capital

complementarity and diminishing returns in youth skills also make more intense youth training

less productive in increasing youth skills. Section B in the online appendix provides a proof and
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detailed discussion of these results.22

4.6.3 Trapped in the elite constraint

Under Lemma 1, players who are born later have lower youth skills, i.e.,

dS1(a) =
dS1
da
(+)︸︷︷︸
(RAE)

· da
(−)

< 0. (24)

This result is shown in panel (i) in Figure 4, which also contains strictly convex isoquants of youth

skills, S1 = f(e1, a), where youth skills grow in the north-east direction. The RAE implies that

lower age capital always results in lower youth skills, which has a fundamental effect on behaviour.

Consider again panel (i), where the underdog, U, with age capital aU achieves the minimum skill

necessary to be admitted into the elite program, i.e., SU1 = Smin1 = f(eU1 , a
U ). If U would have been

born marginally later in the year (i.e., a marginal reduction in age capital), the elite constraint is

no longer attainable in the unconstrained solution in (18). In this case, U has a different objective,

and changes his strategy accordingly.

To see how the strategy changes, consider a player who faces a binding elite constraint, S1 =

Smin1 , but a non-binding participation constraint (i.e., U (e1, e2) > UY (a)). This player solves the

following problem:

max
{e1,λ}

L = u (S1)− C1 (e1)︸ ︷︷ ︸
Net utility as youth player

+ p · v (S2)− C2 (e∗2 (e1))︸ ︷︷ ︸
Expected net utility as elite youth player︸ ︷︷ ︸
U(e1,e∗2(e1))

− λ · [Smin1 − S1]︸ ︷︷ ︸ .
Entry constraint for elite training

(25)

By substituting in S1 = f (e1, a) and using the reduced-form elite skill production function S2 =

22Briefly, the additional conditions can be understood as follows: under weak age-capital complementarity, lower
age capital induces more effort in youth training. Strong dynamic complementarity then provides a greater incentive
to increase elite training. However, anticipating more future elite training, a player has a stronger incentive to invest
even more in youth training– putting restrictions on the reduced-form elite skills function g(e1) limits this feed-back
loop. A similar argument applies to putting restrictions on the concavity of the elite utility function, v(S2), under
weak age-capital complementarity. In this latter case, the ambiguity arises from weaker incentives to invest in elite
training, leading to lower elite skills, which increases the marginal utility of elite skills.
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g (e1, e
∗
2 (e1) , a

max), we obtain the first-order conditions:

(
u′ (S1) ·

∂f

∂e1
+ p · v′ (S2) ·

∂g

∂e1
− C ′1(ẽ1)

)
︸ ︷︷ ︸

dU(e1)
de1

+ λ · ∂f
∂e1

= 0, (26)

f(ẽ1, a) = Smin1 , (27)

where the Lagrange multiplier λ is strictly positive.23

Comparing (18) and (26), it follows that a player with a binding entry constraint exerts more

youth effort than if he would if this constraint were not binding, i.e., ẽ1 > e∗1. But how does

this (constrained) player react to a further reduction in age capital? First, we apply the implicit

function theorem to (27) and write the optimal youth effort as a function of age capital, e1 = ẽ1(a).

By differentiating the elite constraint (27) in age capital, a, and youth effort, ẽ1, the underdog

incentive effect again applies:

dẽ1(a)
da = −

(+)

∂f/∂a
∂f/∂e1
(+)

< 0. (28)

Intuitively, to be admitted into the elite program, lower age capital (da < 0) has to be compensated

for by increased youth effort, ẽ1. But what is the effect on future elite skills? Note that the reduced-

form elite skill production function becomes S2(a) ≡ g(ẽ1(a), e∗2(ẽ1(a))). When the elite constraint

is binding, the underdog-incentive effect implies that lower age capital is always associated with

increased elite skills, i.e.:

dS2(a) =

 ∂g

∂e1︸︷︷︸
Direct effect (+)

+
∂g

∂e2
· de

∗
2

de1︸ ︷︷ ︸
Indirect effect (+)


︸ ︷︷ ︸

=
dS2
de1

>0

· dẽ1
da
(−)

· da
(−)︸ ︷︷ ︸

The "underdog effect"

> 0. (29)

Consider panel (i) in Figure 4, where the underdog, U, is at the binding entry constraint, i.e,.

S1(a
U ) = Smin1 with e∗1(a

U ) = ẽ1(a
U ). From Eq. (28), at an even lower age capital, a < aU , the

underdog needs to increase his youth effort further to be able to participate in the elite program.

As shown in panel (ii), this increase will lead to a further increase in elite skills.

23See Section A.4 in the online appendix.
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4.6.4 The ultimate superstar

Taking the mechanism in (29) to its limit implies that players born at the very end of the year

become the best elite players. However, increasing youth effort is associated with increasing effort

costs. Indeed, for those born very late in the year, the youth effort required to be admitted into

the elite program may be excessively high, implying that the participation constraint is not met

(i.e., UY (a) > U (e1, e2)).

To demonstrate this result, define the reduced-form utility function for a player who is trapped

in the entry constraint (27) as:

Ũ(a) = U (ẽ1(a), e∗2 (ẽ1(a)))

= u(S1(a))− C1(ẽ1(a))︸ ︷︷ ︸
Net utility as youth player

+ p · v(S2(a))− C2(e∗2 (ẽ1(a)))︸ ︷︷ ︸
Expected net utility as elite youth player

, (30)

where the reduced forms of youth and elite skills are defined as S1(a) = f(ẽ1(a), a) and S2(a) =

g(ẽ1(a), e∗2(ẽ1(a)), amax).

The effect of a reduction in age capital (da < 0) on the reduced-form utility Ũ(a) is given by:

dŨ(a) =

[
λ(a)
(+)

+ u′(S1)
(+)

]
· ∂f
∂a
(+)

· da
(−)

< 0. (31)

This expression has two separate effects. First, utility, Ũ(a), is reduced by the direct effect, u′(S1) ·
∂f
∂ada < 0. Second, there is an indirect effect, λ(a) · ∂f∂a ·da < 0, which stems from the greater level of

youth effort required to fulfil the participation constraint in the elite program. Hence, the indirect

utility, Ũ(a), is strictly decreasing in age capital. Since utility is continuous and monotonic, there

exists a player with age capital, aQ, such that Ũ(aQ) = UY (aQ). This player Q is indifferent to

participating in the elite program, which yields utility Ũ(aQ), or not entering into the elite program

with no chance of a future elite career, yielding utility UY (aQ). As shown in panel (ii), it is Q–

stretched to his limit by the elite constraint– who has the potential to become the best elite player.

If he is not injured before engaging in the elite activity, player Q – ”the ultimate underdog”–

becomes the ultimate superstar.

But what happens to players who are born even later in the year, that is, the players whose

age capital is below the threshold, aQ? For these players, the cost of youth effort is simply too

high, so they choose not to participate in the elite program or engage in a future elite career. This
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result is shown in panel (iii) of Figure 4, where we illustrate how player Q’s youth effort in the elite

constraint eQ1 is pushed very far from his optimal interior solution, eQ
′

1 . An infinitesimal reduction

in age capital from aQ implies that it is optimal to participate in only the youth activity and refrain

from reaching the skill requirement Smin1 to be eligible for the elite program. The next proposition

summarizes our results:

Proposition 3 Suppose that Assumption 1 and Lemma 1 hold (i.e., youth skills are formed under

weak age-capital complementarity and the relative age effect in youth skills holds). Consider players

T, U and Q with age capital aT > aU > aQ > 0, such that UY
(
aQ
)

= Ũ
(
aQ
)
. Then, we have the

following results:

(i) Player T (with the highest age capital) becomes the best youth player, i.e., S1
(
aT
)
> Smin1 =

S1
(
aU
)

= S1
(
aQ
)
.

(ii) Player Q (with the lowest age capital in the elite program) becomes the best elite player, i.e.,

S2
(
aQ
)
> S2

(
aU
)
> S2

(
aT
)
.

Players who are born early and have the highest age capital become the best youth players.

However, players born later– but not too late– become the best elite players. More precisely,

players who are born later, and are thus endowed with low age capital, must overinvest in youth

training to be admitted into the elite program. This underdog-incentive effect, which is amplified

over time by self-productivity and dynamic complementarity, provides the players with outstanding

elite quality. For players born very late in the year, however, the cost of youth effort required to

be admitted into the elite program is excessive, so they choose not to enter the elite program.

Thus, Proposition 3 can reconcile both empirical regularities described in Section 3: first, the

RAE in elite youth soccer, where players who are born early in the year are overrepresented and

players born later are underrepresented (ER1); second, the IRAE in elite soccer, where the best

players are usually born considerably later in the year and less frequently at the beginning or very

end of the year (ER2).

4.7 Robustness

In this section, we present some evidence that Proposition 3 is not dependent on the specific

assumptions made on how youth and elite skills are formed: if players born later in the year suffer
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from lower youth skills, then at suffi ciently low age capital, they will be forced by the underdog-

incentive effect to engage in excessive training in order to reach the elite program. This excessive

level of youth training effort explains why underdogs have superior elite skills and also why players

who are born very late relinquish any future elite career.

Consider the following parametric representation of our model, where the production functions

take a constant elasticity of substitution (CES) for and the utility functions take a constant relative

risk aversion (CRRA) form. Let the production function for youth skills in (1) take a standard

CES form:

S1 = f (e1, a) = [αeρ1 + (1− α) aρ]
1/ρ

, (32)

where 0 ≤ α ≤ 1 and ρ ≤ 1 to ensure concavity of f . The share parameter α is a youth effort

multiplier that represents the direct productivity of youth effort in acquiring youth skills S1. Anal-

ogously, 1− α is a measure of the direct productivity of age capital in acquiring youth skills. The

elasticity of substitution between youth training, e1, and age capital, a, is defined as σ = 1
1−ρ . The

reciprocal 1/σ is usually interpreted as the elasticity of complementarity between e1 and a and

governs how easy it is to compensate for low levels of age capital in producing youth skills.

The production function of elite skills for a player admitted into the elite program in (2) takes

the following (nested) CES form:

S2 = h(S1, e2) = [βSγ1 + (1− β) eγ2 ]
1/γ

=

β
[(1− α) eρ1 + α (amax)ρ]

1/ρ︸ ︷︷ ︸
S1=f(e1,amax)


γ

+ (1− β) eγ2


1/γ

, (33)

where 0 ≤ β ≤ 1 and γ ≤ 1. Analogously to (32), β represents the direct productivity of youth

skills, S1 = f (e1, a
max), in acquiring elite skills, S2. The elasticity of substitution between youth

skills, S1 = f (e1, a
max) , and elite training, e2, is λ = 1

1−γ , and the reciprocal 1/λ is the elasticity

of complementarity between S1 and e2.

The utilities drawn from youth and elite skills in (6) are given by the following CRRA functional

forms:

u (S1) =


S1−ξ1
1−ξ if ξ > 0 and ξ 6= 1

lnS1 if ξ = 1,
and v (S2) =


S1−µ2
1−µ if µ > 0 and µ 6= 1

lnS2 if µ = 1,
(34)
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where the parameters ξ and µ are the standard Arrow-Pratt measures of relative risk aversion (i.e.,

curvature) for u and v, respectively. Finally, let the cost functions of youth and elite effort in (6)

be quadratic, C1(e1) = a1 · e1 + b1 · e21 and C2(e2) = a2 · e2 + b2 · e22 with a1, a2, b1, b2 > 0.

Panels (i)-(iv) in Figure 5 depict the optimal youth training effort, youth quality, elite training

effort and elite skills as functions of age capital under all possible combinations of age-capital

complementarity in youth skills and dynamic complementarity in elite skills:

A1: Youth skills are formed under weak age-capital complementarity, and elite skills are formed

under strong dynamic complementarity, i.e., Ψ(S1) < η(S1) and α(S2) < ϕ(S2), which cor-

responds to 1
σ < ξ and µ < 1

λ in the CES-CRRA model.
24

A2: Youth skills are formed under weak age-capital complementarity, and elite skills are formed

under weak dynamic complementarity, i.e., Ψ(S1) < η(S1) and α(S2) > ϕ(S2) ⇐⇒ 1
σ < ξ

and µ > 1
λ .

A3: Youth skills are formed under strong age-capital complementarity, and elite skills are formed

under strong dynamic complementarity, i.e., η(S1) < Ψ(S1) and α(S2) < ϕ(S2) ⇐⇒ ξ < 1
σ

and µ < 1
λ .

A4: Youth skills are formed under strong age-capital complementarity, and elite skills are formed

under weak dynamic complementarity, i.e., η(S1) < Ψ(S1) and α(S2) > ϕ(S2) ⇐⇒ ξ < 1
σ

and µ > 1
λ .

Panel (i) depicts the benchmark case A1, where Assumption 1 is combined with strong dynamic

complementarity in elite skills. Consider players Q, U and T, with age capital aQ < aU < aT ,

presented in Proposition 3. Consistent with Proposition 3, the bottom figure in panel (i) shows

that the ”ultimate underdog”, Q, has the highest elite skills, while the ”topdog”, T, has the lowest

elite skills, S2
(
aQ
)
> S2

(
aU
)
> S2

(
aT
)
. As shown in the top graph in panel (i), this pattern

stems from the underdog-incentive effect, which is succinctly illustrated by player Q, who balances

on the edge of the elite constraint, S1
(
aQ
)

= Smin1 . The third figure from the top in panel (i) also

shows that under strong dynamic complementarity, Q invests more in elite training effort than do

U and T.

Panels (ii)-(iv) depict the three other possible combinations A2-A4. These scenarios have in

common the RAE, where players who are born later in the year have lower youth skills. This

24See Section A.5 in the online appendix for a proof.
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Figure 5: Illustration of model with temporary youth advantage under A1-A4. The parameters in the model
are set to Smin1 = 0.4, p = 0.05, α = β = 0.5, a1 = a2 = 0, b1 = 5 and b2 = 1. The degrees of risk
aversion and elasticities of complemetarity in the CRRA-CES functions are set as follows: A1 (Panel (i)):
Ψ(S1) = 0.5, η(S1) = 0.75, ϕ(S2) = 0.75, α(S2) = 0.5; A2 (Panel (ii)): Ψ(S1) = 0.5, η(S1) = 0.75, ϕ(S2) =
0.5, α(S2) = 0.75; A3 (Panel (iii)): Ψ(S1) = 0.75, η(S1) = 0.5, ϕ(S2) = 0.75, α(S2) = 0.5; A4 (Panel (iv)):
Ψ(S1) = 0.75, η(S1) = 0.5, ϕ(S2) = 0.5, α(S2) = 0.75. Age capital a is normalized to lie within the open unit
interval and drawn from a uniform distribution.
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characteristics implies that at a suffi ciently low level of age capital, players are forced into excessive

youth training to achieve the necessary youth skills to be eligible for the elite program. Moreover,

it is always the ”ultimate underdog”, Q, who achieves the highest elite skills. Finally, we see that

players with less age capital than Q choose not to aim for the elite program.

5 Talent

So far, we have assumed that individuals differ only in their age capital as youth players and that

this asymmetry disappears when players enter into the elite program (that is, we have assumed that

younger players catch up to their older peers, in which case, all players are on the same level in terms

of physical strength and maturity). Hence, the focus has been on temporary advantages. However,

the initial (dis)advantages may be permanent. Several papers argue that creating expertise is an

exercise of both deliberate practise (”nurture”) and talent (”nature”).25 In this section, we extend

our model to incorporate permanent advantages, which we label ”talent”. In particular, this allows

us to analyse whether our empirical predictions hold even if the asymmetry between players is

permanent, that is, if players differ in inherent talent.

To incorporate talent, we assume that the production function of elite skills takes the following

form:

S2 =


0 if S1 = f(e1, a) < Smin1 ,

h(f(e1, a)︸ ︷︷ ︸
S1

, e2, a) ≡ g(e1, e2, a) if S1 = f(e1, a) ≥ Smin1 . (35)

Here, a is interpreted as talent capital. Talent is not only an input in the product function for

youth skills, S1 = f(e1, a), but also a direct input in the reduced-form elite skill production S2 =

g(e1, e2, a). The marginal input of talent capital contains both a direct and an indirect effect and is

given as ∂g∂a = ∂h
∂f ·

∂f
∂a + ∂h

∂a > 0. The marginal effect, ∂h∂a , raises elite skills directly via talent capital,

while ∂h
∂f ·

∂f
∂a raises elite skills indirectly since a more talented player is equipped with higher youth

skills, ∂f∂a > 0.

We define additional complementarities:

χ(S2) =
∂2g
∂e1∂a
∂g
∂a
· ∂g
∂e1

and ς(S2) =

∂2g
∂e2∂a
∂g
∂a ·

∂g
∂e2

, (36)

25See Section 2.
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where ∂2g/∂e1∂a ≥ 0 captures the dynamic complementarity between youth training effort and

talent capital in elite skills and ∂2g/∂e2∂a ≥ 0 captures the dynamic complementarity between elite

training effort and talent capital in elite skills. We have the following result:26

Proposition 4 Suppose that players have permanent differences in talent capital, a, and that elite

skills are formed from Eq. (35). Then, Proposition 3 holds under strong dynamic complementarity

in producing elite skills, that is, ϕ(S2) > α(S2) = χ(S2) = ς(S2).

Under strong complementarity between youth training and later elite training, Proposition 4

implies that it will be a talented player– but not the most talented player– who becomes the best

elite player. Even when raw talent endows a player with higher youth skills and high elite skills

(since talent capital has a direct effect on elite skills), it will be the player who exerts the highest

level of youth effort that becomes the best elite player. This result is analogous to the relative

age effect discussed in the previous section, in which players who are born later in the year are

forced into intensive youth training to be admitted to the elite program. Similarly, it is the less

talented players who exert an excessive amount of youth effort to be admitted to the elite program.

Subsequently, these players benefit from this effort when forming their elite skills.

To illustrate these mechanisms under more general assumptions, let us again turn to the CES-

CRRA framework. Let the production function of elite skills for a player who is admitted into the

elite program in (2) take the following (nested) CES form:

h(f (e1, a) , e2) =

β
[(1− α) eρ1 + α (a)ρ]

1/ρ︸ ︷︷ ︸
S1=f(e1,a)


γ

+ (1− β) eγ2


1/γ

, (37)

where 0 ≤ β ≤ 1 and γ ≤ 1.27 Using the parameter values corresponding to A1-A4 in panels

(i)—(iv) in Figure 5, we illustrate Proposition 4 in Figure 6. Similar to the benchmark model A1

in Figure 5, we can note how the RAE drives less talented players to invest excessively in youth

training. Regardless of the combination of the underlying parameter configuration, it is yet again

player Q who achieves the highest elite skills, albeit this time closely challenged by player T.

26See Section A.6 in the online appendix for a proof.
27Note the difference between (33) and (37), where in the former specification, youth skills S1 are evaluated at

a = amax, while S1 is evaluated at a in the latter specification.

34



0
.1

.2
.3

.4
Y
o

u
th

 e
ff

o
rt

0
.2

.4
.6

Y
o

u
th

 q
u

a
li
ty

.0
8

.0
9

.1
.1

1
E

li
te

 e
ff

o
rt

.1
.2

.3
E

li
te

 q
u
a
li
ty

0
.1

.2
.3

.4
Y
o

u
th

 e
ff

o
rt

0
.2

.4
.6

Y
o

u
th

 q
u

a
li
ty

.0
8

.0
9

.1
.1

1
E

li
te

 e
ff
o

rt
.1

.2
.3

E
li
te

 q
u
a
li
ty

0
.1

.2
.3

.4
Y

o
u
th

 e
ff
o
rt

0
.2

.4
.6

Y
o

u
th

 q
u

a
li
ty

.0
8

.0
9

.1
.1

1
E

li
te

 e
ff

o
rt

.1
.2

.3
E

li
te

 q
u
a
li
ty

0
.1

.2
.3

.4
Y
o

u
th

 e
ff

o
rt

0
.2

.4
.6

Y
o

u
th

 q
u

a
li
ty

.0
8

.0
9

.1
.1

1
E

li
te

 e
ff

o
rt

.1
.2

.3
E

li
te

 q
u
a
li
ty

e1
∗a
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Figure 6: Illustration of model with permanent advantage under A1-A4. Parameters are set as in Figure 5.

35



6 Education policy

In this section, we shift focus and use insights from our model to discuss some general issues in

education policy. Tirole (2017) notes six categories of market failures that call for policy action.

One of these categories concerns when individuals become victims of their own actions. Ever since

Adam Smith, scholars have argued that people may have excessive preferences for the present. A

typical and often cited example is (young) students’inclination to discount the future too much,

which may suggest that this particular market failure might be especially strong in education. In

this section, we use our model to explore how policy can mitigate this underinvestment problem in

education.

Consider the set-up in Section 4 but now with students choosing how much effort to invest in

(early) lower-level education, e1, and how much effort to invest in (later) high-level education, e3,

where students face an entry barrier into higher education in terms of grades or admission tests,

S1 ≥ Smin1 . Students who are born late in the year are less mature and equipped with less age

capital, a. To introduce a bias towards the present among students, we assume that the socially

optimal (inverse) discount factor exceeds one, i.e., δ > 1. Thus, students– when left to their own

discrete choice– will choose the effort to study using an excessively low discount factor, δ = 1.

Suppose that there are no capacity constraints in higher education. In this case, the first-best

effort in early education is derived by solving the following unconstrained problem:

max
{e1}

U(e1, δ) = u(S1)− C1(e1) + δ · [p · v(S2)− C2(e∗2(e1))] , (38)

where students correctly assess the expected value of future education to which there is no entry

constraint and where the optimal investment in higher education, e∗2(e1), is given from (9).

According to the envelope theorem, the first-best effort in early education, labelled e∗1(a, δ), is

given from the first-order condition:

u′(S1) ·
∂f

∂e1
+ δ · p · v′(S2) ·

∂g

∂e1︸ ︷︷ ︸
Marginal benefit

= C ′1(e
∗
1(a, δ))︸ ︷︷ ︸

Marginal cost

. (39)

If we first compare the first-best unconstrained solution in (39) with students’choices in the un-

constrained solution in (18), it follows that e∗1(a, δ) > e∗1(a). That is, students who know that they

are able to be admitted into a higher education program underinvest in early education effort (as
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they fail to internalize the full value of the future). This is shown in panel (i) of Figure 7, which

also shows that e∗1(a) > ĕ1(a) = max{e1}[u(S1)− C1(e1)]. In other words, students who know that

they have no chance to be admitted into a higher education program (due to failing the admission

test or having low grades) have an even lower incentive to invest in early education. Thus, both

”quitters”(students with very low age capital, a ∈
[
0, aQ

)
) and ”topdogs”(students with very high

age capital, a ∈
(
aU , amax

]
) underinvest in early education:

e∗1(a, δ)︸ ︷︷ ︸
”First-best”

> e∗1(a)︸ ︷︷ ︸
”Topdogs”: a∈[aU ,amax]

> ě1(a)︸ ︷︷ ︸ .
”Quitters”: a∈[0,aQ)

(40)

However, from (26), we know that ”underdogs”(students with medium age capital, a ∈ [aQ, aU ])

will ”overinvest” in early education effort, ẽ1(a) > e∗1(a). Hence, underdogs may end up closer to

their first-best effort than will more advantaged students. Indeed, as shown in panel (i) of Figure

7, if the entry barrier to higher education is suffi ciently high, there will be an underdog, student

L, who exactly achieves her first-best effort in early education, i.e., ẽ1(aL) = e∗1(a
L, δ). In fact,

all underdog students with age capital a ∈ [aL, aU ) are brought closer to their first-best effort as

age capital declines. However, underdog students with suffi ciently low age capital, a ∈ [aQ, aL),

increasingly diverge from their first-best effort as age capital declines.

Panel (ii) explores the implications of these patterns in terms of expected life-time utility.

From the utility function U(e1, δ) = u(S1) − C1(e1) + δ · [p · v(S2)− C2(e∗2(e1))] in (38), we define

U∗(a, δ) ≡ U(e∗1(a, δ), δ) as the first-best utility, where e
∗
1(a, δ) is given from (39). We let U(a, δ) ≡

U(e∗1(a), δ) be the second-best utility derived from evaluating the utility function U(e1, δ) with

students’unconstrained choices e∗1(a) in (18). Similarly, let Ũ(a, δ) ≡ U(ẽ1(a), δ) be the second-

best utility, where the utility function U(e1, δ) is evaluated using children’s constrained solutions

ẽ1(a) from (26). Finally, let the second-best utility for students who are unable to enter higher

education be UY (a), as defined in Section 4.3.

Panel (ii) in Figure 7 depicts these utility functions as functions of age capital, a. There are

several noteworthy observations. First, since student L spends her first-best lower education effort,

ẽ1(a
L) = e∗1(a

L, δ), she achieves her first-best utility, Ũ(aL, δ) = U∗(aL, δ). Second, student Q– the

”ultimate underdog”, who is the top achiever in higher education and, potentially, most successful

in the labour market– does not achieve her first-best utility. Due to the excessive early education

effort, Q has lower expected life-time utility than L. Third, depending on the shape of the utility

function U(a, δ), L’s expected utility may even exceed that of topdog students, including student
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Figure 7: Illustration of education policy. Panel (i) illustrates how children endowed with different age
capital diverge from the first-best studying effort in early education. Here, the first-best choice is defined
as the early effort a child would have chosen when correctly valuing the future benefits of higher education,
whilst facing no entry barrier to higher education. Panel (ii) illustrates the welfare cost of the children’s
distorted choice of early studying effort in terms deviation from their first best utility.
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T, who is endowed with the highest age capital, amax. Finally, students who do not engage in

higher education also have lower expected life-time utility. Interestingly, if a student’s age capital

falls just below the level aQ, there is a discrete fall in utility, Ũ(aQ, δ) > UY (aQ).

How can policy programs prevent children without proper guidance or influence from underin-

vesting in early education? Ideally, this is the job of parents, but in many circumstances, parents

may be unable to enact suffi cient influence. Consider a second-best solution by adjusting the entry

barrier, Smin1 , which again can be thought of as the entry grade or the score on an admission test

required to be admitted into the higher education program. Suppose that we know how children

choose to study in early education, as highlighted in panel (i) in Figure 7, i.e.,


ě1(a), if a ∈ [0, aQ),

ẽ1(a), if a ∈ [aQ, aU ),

e∗1(a), if a ∈ [aU , aT ).

(41)

Further, suppose that we also know the distribution of age capital, i.e., when children are born in

the year, Ω(a). We can then form the expected second-best utility as:

E[U(Smin1 )] =

aQ(Smin1 )∫
0

UY (a) · Ω(a)da

︸ ︷︷ ︸
”Quitters”: a∈[0,aQ)

+

aU (Smin1 )∫
aQ(Smin1 )

Ũ(a, δ) · Ω(a)da

︸ ︷︷ ︸
”Underdogs”: a∈[aU ,amax]

+

amax∫
aU (Smin1 )

U(a, δ) · Ω(a)da

︸ ︷︷ ︸
”Topdogs”: a∈[aU ,amax]

. (42)

Differentiating (42) in Smin1 , the first-order condition, dE[U(Smin1 )]/dSmin1 = 0, can be written as:

aU (Smin
∗

1 )∫
aL

∂Ũ
∂e1︸︷︷︸
(+)

· dẽ1
dSmin1︸ ︷︷ ︸
(+)

· Ω(a) · da

︸ ︷︷ ︸
Marginal benefit: more intense youth effort by ”underdogs”

=
[
Ũ(aQ, δ)− UY (aQ)

]
︸ ︷︷ ︸

(+)

· Ω(aQ) · daQ

dSmin1︸ ︷︷ ︸
(+)︸ ︷︷ ︸

Marginal cost: less entry to higher education

+

aL∫
aQ(Smin

∗
1 )

∂Ũ
∂e1︸︷︷︸
(−)

· dẽ1
dSmin1︸ ︷︷ ︸
(+)

· Ω(a) · da

︸ ︷︷ ︸
,

Marginal cost: too intensive youth effort by ”underdogs”

(43)

where it follows from (27) that the cut-off aQ is strictly increasing in the entry requirement Smin1 .

Eq. (43) reveals that the optimal entry requirement, or entry barrier into higher education,

denoted Smin
∗

1 , should be set such that the increase in utility from earlier born underdog students
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moving closer to their first-best youth effort (the LHS) is balanced by the marginal cost from two

sources: the loss in utility from the extensive margin as marginal students are pushed out of higher

education (first-term on the RHS) and the reduction in utility for later born underdog students

who are forced into even more excessive investments in youth effort to be admitted into the higher

education program (second term on the RHS).28

More generally, an entry hurdle in terms of grades– or minimum skills– to be admitted into

the higher education program forces constrained students with lower age capital or talent to study

harder in pre upper-level education than they would choose to do in an interior solution without

an intervention. In this way, the entry hurdle mitigates the underinvestment problem in early

education, where students fail to internalize the full value of the future. To set the optimal entry

barrier, society must weigh this benefit against the costs for students with insuffi cient age capital

or talent capital who are forced to work excessively hard to gain access to higher education or are

inclined to give up their ambitions to access higher education. High demands on skill, knowledge

and grades can thus serve as a means to mitigate the issue of underinvestment in education, but

such measures should be complemented with other effective policies. While providing support is

important for weaker students, it is also imperative to find measures that encourage students with

high age or talent capital to exert more youth effort since these students will otherwise spend

insuffi cient youth effort (as they are already certain that they will be admitted into the higher

education program without having to exert a high level of youth effort).

7 Conclusions

In this paper, we investigate how motivational, technological and institutional factors affect skill

formation from childhood to adult life. In our stylized model, (i) all individuals have the same

innate talent, but (ii) individuals born early in the year have a temporary advantage, and (iii)

there is selection into higher education based on achieved early skills. We then show how the day

of birth of an individual affects the evolution of her skills from youth to adult.

Children born late in the year face an initial disadvantage from being less mature or lacking

28Thus, in (43), we are assuming that the first-best entry barrier, Smin
∗

1 , is such that some underdogs, a ∈ [aQ, aL),
will study harder than the first-best effort without an entry barrier. However, this assumption is not needed for an
interior solution Smin

∗
1 ∈ (0, Smax1 ) to exist. In general, setting the barrier so high that no student can access higher

education, i.e., aU (Smax1 ) = amax, cannot be optimal. Conversely, the absence of an entry barrier also cannot be
optimal. To demonstrate this result, we can always set the barrier such that all students can enter higher education
with some students being underdogs, i.e., we could set SQ1 > 0 such that aQ(SQ1 ) = 0 < aU (SQ1 ). Thus, for a
suffi ciently low barrier, all underdog students would be closer to their first-best effort.
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physical strength. One might therefore expect that individuals born early in the year should be

more successful not only at a young age but also as adults. In contrast, our model predicts that it

is the individuals who are born late, but not too late, that become the most successful as adults.

What is the mechanism behind this result? Because of their initial disadvantage, individuals who

are born later in the year, so called “underdogs”, are forced to expend excessive effort at a young

age to be admitted into higher education. This excessive effort, which their earlier born peers

do not find worthwhile to match, enables “educated underdogs” to excel in higher education and

in later work life. We call this the “underdog-incentive effect”. However, for underdogs with a

severe disadvantage, the required amount of youth effort is excessive, and they eventually give up

on trying to attain higher education. We then generalize our model to a setting with (permanent)

talent asymmetries and show that the above underdog-incentive effect also holds in this context.

In this setting, we find that it is, in general, talented, but not the most talented individuals, who

become most successful as adults.

Our results also suggest that the skill requirements for higher education programs force students

with lower age capital or talent to study harder in order to gain admission. This hurdle mitigates

the underinvestment problem in early education, where students may fail to internalize the full

value of future skills.

We use soccer, one of the most competitive activities for children, as a running illustration in

the model. We show how the underdog-incentive effect can reconcile two seemingly contradicting

facts: compared to a random male in the population, (i) individuals on elite youth teams are more

likely to be born early in the year and (ii) superstars in adult elite soccer are more likely born

late (but not too late) in the year. The underdog-incentive effect can also explain the outcomes of

other studies. For instance, Balalic et al. (2007) examine a group of children playing chess and find

that the best performing children, on average, have the highest IQ. However, among the children in

the group of best players, the pattern is reversed, and children with lower IQ perform better than

children with higher IQ. Ericsson (2015) finds that the very best achievers, i.e., experts, are highly

talented, but are not the most talented, compared to their peers.

Empirically testing the underdog-incentive effect in a wider context is an interesting avenue

for future research. For example, are our empirical predictions also valid for data on wages in

competitive occupations such as managers and physicians? It would also be interesting to search

for the underdog-incentive effect in gender differences. A stylized fact in the economics of gender is

that boys have a temporary youth disadvantage since they mature later than girls. The underdog-
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incentive effect would thus imply that the distribution of males’adult skills is more skewed than

that of females.

Finally, exploring the implications of the model in more general settings in the economics of

education is also an interesting avenue for future research. In this context, our model predicts

that individuals with medium or high age capital and talent perform better in terms of educational

achievements and labour market outcomes than individuals with the highest age capital and talent.

In our analysis, we show how erecting hurdles to higher education in terms of entry barriers or

grades can be welfare-improving. However, it is also important to find measures that encourage

students with high age or talent capital to exert more youth effort since these students are certain

of being admitted to the higher education program, even at a low level of youth effort. Moreover,

there are other important elements of the educational system that we have abstracted from, and it

would be interesting to compare different types of educational systems in the context of our model.

This, for example, could include comparing education systems based on absolute performance with

systems of relative performance or comparing systems based on deliberate practice elements with

more traditional ones. More generally, extending the model to derive optimal educational systems

under resource and informational constraints is another interesting avenue for future research.
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Table A: Descriptive statistics for birthday distributions

Summary statistic
Data sample # obs. min P25 P50 P75 max mean std. dev.

Population 1, 706, 304 1 88 172 263 365 176.1 102.9
U17 186 2 44.5 110 125 362 125.0 93.5
National team 650 1 74 153 266.5 365 167.3 109.1
Distinguished player 299 1 80.5 167 268.5 363 173.2 104.2
Best player 53 2 80 214 279 353 186.6 106.1

Notes: P25: 25th percentile (first quartile); P50: 50th percentile (median); P75: 75th percentile (third quartile) and
std. dev: standard deviation.

A Appendix

This appendix contains a detailed analysis of the Swedish soccer data presented in Section 3.

A.1 Additional descriptive analysis

Control group: The male population in Sweden. The data on birthdays of the entire male

population in Sweden from 1968 to 2010 are obtained from Statistics Sweden (leap years excluded).

Assuming that the distribution of birthdays for the Swedish male population has remained rather

constant since 1946, we have the correct comparison (control) group. This allow us to compare the

birthday distributions of the elite youth players and the very best senior players with the birthday

distribution of the general male population.

Table A provides summary statistics. The median (P50) birthday is at day 172 (June 20). The

results for the 25th percentile (P25) and 75th percentile (P75) says that 25% and 75% of all males,

respectively, were born at days 88 (March 28) and 263 (September 19) or earlier.

The grey shaded area in panel (ii) in Figure 2 plots the full distribution for the sample of

1,706,304 born males. Most babies are born in early/mid April after which the birth rate decreases

until September when it starts to weakly increase and obtains a second mode in late Septem-

ber/early October.29 The most likely day to be born at, that is, the highest mode of the distribution

is reported in the second column of Table A, and is estimated at day 101 (April 10). These distri-

butional features can be explained by that most babies are conceived during the summer holidays

(giving the highest mode in April) and Christmas/winter holidays (explaining the second mode in

29A Kolomogorov-Smirnov test of the null that the distribution is uniformly distributed is rejected at 1% significance
level (p−value <0.0000).
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Table B: The highest mode, Silverman test and measures of skewness

High. mode Silverman test Measures of skewness
Data sample Day p-value ”Conv.” Bowley G&M Pearson

Population 101.4 (3.2) n/a 0.09 0.04 0.05 0.04
U17 42.3 (7.1) 0.721 0.61 0.10 0.19 0.16
National team 81.5 (15.6) 0.001∗∗∗ 0.20 0.18 0.15 0.13
Distiguished player 88.6 (15.6) 0.011∗∗ 0.10 0.08 0.07 0.06
Best player 266.0 (62.4) 0.023∗∗ −0.24 −0.35 −0.30 −0.26

Notes: For the highest mode, standard deviations are reported in parenthesis. The hypothesis in the Silverman test
is H0 : Distribution is unimodal, vs. H1 : Distribution is at least bimodal. ∗∗∗ and ∗∗ denote significance at the 1 and
5% nominal significance levels. ”Conv.”refers to the conventional moment coeffi cient of skewness, G&M and Pearson
refers to the Groeneveld & Meeden coeffi cient of skewness and the Pearson mode measure of skewness, respectively.
Section C in the online appendix contains a brief description of the Silverman test and the measures of skewness.

September/October).

The under 17 (U17) national team players. Panel (ii) in Figure 2 plots the kernel density

of the birthdays for the Swedish national youth team (U17), which shows that the distribution is

strongly positively skewed. The measures of skewness presented in columns 4-7 in Table B shows

that the distribution is considerably more positively skewed than the distribution of the general

male population. Table A shows that the median birthday for U17 players is at day 110 (April 19),

which is more than 60 days earlier than the median birthday in the general male population, and

moreover, 75% (P75) of all U17 players are born earlier than day 125 (May 4).30 This shows that

there is a strong relative age effect (RAE) in Swedish youth football. That is, individuals who are

born early in the year are overrepresented in the Swedish U17 national team.

National team players. The kernel density plot of the birthdays of all Swedish national team

players between 1946 and 2015 in panel (ii) in Figure 2 shows that the distribution is positively

skewed and also that it is weakly bimodal with the highest mode at day 81 (March 21, see Table

B), after which it sharply falls until mid-year when it starts to weakly increase and obtains a second

mode in mid/late October.31 The summary statistics in Table A shows that the median birthday

for national team players is 20 days earlier than the median birthday in the male population,

30The highest mode is estimated at day 42 (February 11, see Table B), which is considerably earlier than in
the general male population. Results from a Silverman test shows that the birthday distribution of U17 players is
unimodal.
31The results from the Silverman test in Table B rejects that the distribution is unimodal in favor of that it is

bimodal.
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indicating the presence of a weak RAE. This is also suggested by the positive measures of skewness

reported in Table B which also shows that the distribution is seemingly more positively skewed

than the birthday distribution for the population.

The distinguished player award. If a player in the national team collects a certain amount

of points based on the number of international matches and participation in major tournaments

such as the World and European Championships, he is given an honorary award called ”Stora

grabbars märke”, which is equivalent to a distinguished player award.32 Because players are chosen

by the manager of the national team we believe it is fair to assume that the selection is exogenous.

Accordingly, we proceed by interpreting the group of national team players who have received the

distinguished player award as a treatment group (within the set of national team players).

We extracted the birthdays/birth years of the national team players who have received the

distinguished player award yielding a total of 299 observations. From the summary statistics in

Table A we see that the median birthday is 14 days later than for national team players, and only

5 days earlier than for the general population. Together with the measures of skewness in Table

B this suggests that the birthday distribution of the distinguished player award is similar to the

distribution of the general population.

The best player award. A price for the best male player, called ”Guldbollen”33, has been

awarded in Sweden since 1946. One Swedish player (from the domestic or an international league)

is chosen each year by a selection committee consisting of representatives from the Swedish Football

Association and sports journalists from one of the largest newspapers in Sweden. In total, we have

70 observations, but because a few players have received the award more than once, we omit multiple

observations of the same player, giving a final sample of 53 observations.34

From Table A we can see that the median birthday for winners of the best player award is

at day 214 (August 1), which is 44 days later than for the general population. Moreover, Table

B shows that, in contrast to U17 players, the general population and national team players, the

32Literally translated into ”the big boys badge”.
33Literally translated into ”the Golden ball”. The award is given to the player in an offi cial ceremony that is

broadcasted on national Swedish TV.
34We also performed our analysis on the entire sample of 70 observations. The results from this analysis gives even

stronger evidence in favor of our empirical results. It is easy to understand why since 8 players have won the award
twice while one player (Zlatan Ibrahimovic), born on October 3, have won the award 10 times. Thus, because the
birthday of this player receives 10 times the weight of a player who have only received the award once, it shifts the
birthday distribution more to the left. Hence, the month of October has even more actual winners than expected.
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distribution of birthdays for winners of the best player award is negatively skewed. This can also

be observed from the kernel density plot in panel (ii) in Figure 2, which additionally shows that the

distribution is bimodal with one weak mode around early/mid April and the second and highest

mode at day 266 (September 22, see Table B), implying that winners of the best player award are

more likely to be been born in September/October than in the spring.35

These results reveal an interesting pattern: If we classify a national team player who have been

awarded ”distinguished player” as having a higher quality than a player without an award, but

having a lower quality than a player who have won the best player award, we obtain an ordered

scale in terms of quality, where national team players without awards have ”low”quality, players

with the distinguished player award have ”medium”quality and winners of the best player award

have ”top”quality. If we compare the birthday distributions for these three categories, we see that,

as the quality of the players increase, the distributions progressively shifts to the right and obtains

more mass later in the year. Thus, as the quality of players increase, we observe an increasingly

’inverted’RAE, which is consistent with the empirical prediction ER2.

A.2 Regression analysis

Our descriptive analysis in the previous section provides evidence that players with the best player

award are born later in the year than players without awards. However, the analysis does not control

for other factors that might explain this outcome. In this section, we complement our descriptive

(unconditional) analysis with a regression analysis to see whether the empirical predictions still

hold conditionally on some other factors. As argued above, our data is ideal for such a conditional

analysis since it is fair to argue that the selection of player awards is exogeneous. As such, we

may proceed to interpret the winners as a treatment group (within the entire set of national team

players).

We use our sample of 650 national team players, and in addition to their birthdays, for each

player, we have collected detailed information on each player described in Table C. In our first

analysis, we assign national team players without any awards the number 0 (”low quality”), players

who have won the ”distinguished” player award the number 1 (”medium quality”) and players

who have won the best player award the number 2 (”high quality”). Thus, our dependent variable

takes three possible outcomes depending on the quality of the player, and we therefore estimate

35Table B reports results from a Silverman test which rejects that the distribution is unimodal in favor of that it
is bimodal.
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Table C: Data for each senior national team player (650 observations)

Variable Definition

Birthday Player’s day of birth in the calender year
Goalkeeper 1 if the player’s main position was as goalkeeper, and 0 otherwise
Midfielder 1 if the player’s main position was as midfielder, and 0 otherwise
Attacker 1 if the player’s main position was as attacker, and 0 otherwise
International 1 if he played in an international (i.e., non-Swedish) league,

and 0 otherwise
Year of debut Age when player did his first senior national team match
Team performance The difference between the number of goals scored and goals against

by the national team during the player’s time in the team
Distinguished 1 if the player has received the distinguished player award, and 0 otherwise
Best 1 if the player has received the best player award, and 0 otherwise

ordered probit models, where we use the log of birthday and the control variables in Table C as

independent variables. The estimation results of the estimated coeffi cients and marginal effects are

given in Table D.

Our main variable of interest ln (Birthday) is significant on the 5% level. The average marginal

effects are reported at the three different outcomes. For example, the marginal effect for ln (Birthday)

at the outcome ”medium quality”means that if a national team player is born 1%, i.e., 3.65 days,

later in the year then he has a 3.6% higher probability of receiving the distinguished player award,

while he has 0.7% higher probability of receiving the best player award. All marginal effects for

ln (Birthday) are significant at the 5% level. Thus, even after controlling for other variables, these

results suggest that being born later in the year significantly increases the quality of the player.

Finally, note the remarkably high goodness-of-fit measured by the McFadden R2, which indicates

a (very) good model fit.

Using our entire sample of 650 national team players, we also run quantile regressions to estimate

the treatment effect γ from the treatment model:

Birthdayi=γ · Besti+β · xi+εi,

where Besti is a binary variable taking on the value 1 if national team player i has won the best

player award and zero otherwise, and where x is the same set of controls (including a constant) as

in the ordered Probit model. The estimate of γ gives a measure (in days) of how much later in the
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Table D: Estimates and marginal effects in ordered Probit model

Marginal effects
”Low quality” ”Medium quality” ”High quality”

Variable Estimates (no award) (distinguished player) (best player)

ln (Birthday) 0.1224∗∗ −0.0425∗∗ 0.0360∗∗ 0.0066∗∗

Goalkeeper 0.1245 −0.0433 0.0366 0.0067
Midfielder −0.0603 0.0210 −0.0177 −0.0032
Attacker −0.0749 0.0260 −0.0220 −0.0040
Played abroad 0.2553∗∗ −0.0888∗∗ 0.0751∗∗ 0.0137∗

ln (Year of debut) −1.3789∗∗ 0.4794∗∗ −0.4055∗∗ −0.0739∗∗

Team performance 0.0462∗∗∗ −0.0161∗∗∗ 0.0136∗∗∗ 0.0025∗∗∗

McFadden R2 0.2800

Notes: ∗∗∗ , ∗∗ and ∗ denotes significance on the 1, 5 and 10% nominal significance levels.

Table E: Quantile regression results

Variable Quantile 0.5 Quantile 0.90 Quantile 0.95

Best 52.363∗∗ −18.568∗∗ −12.837∗∗

Goalkeeper −3.514 −0.554 6.903
Midfielder −0.016 −0.532 2.347
Attacker 1.294 8.446 0.044
Played abroad 11.362 3.568 11.453∗∗

ln (Year of debut) 122.622∗∗ 93.110∗∗∗ 20.779
Team performance 0.448 0.386 −0.120

year a winner of the best player award is born, relative to a player who has not won the award. We

estimate the treatment model at all nodes in an equally spaced grid with increment 0.05 starting

from 0.05 to 0.95. Estimation results are given in Table E.

Our main variable of interest γ is significant at three quantiles. The median effect (quantile 0.5)

shows that a winner of the best player award is born 52.363 days later than a player without such

award. This gives further evidence for the second empirical result (ER2), and is very close to the

descriptive results in Table A, which estimated the unconditional median effect to 61 (= 214− 153)

days. Also consistent with ER2, we find a significant negative effect for players born very late in

the year. Specifically, for the 0.9 and 0.95 quantiles we find that winners of the best player award

are born 18.568 and 12.837 days earlier, respectively, than players without this award.
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This supplementary material is organized into the following sections:

• Section A contains a detailed analysis of the Swedish soccer data presented in Section 3.

• Section B contains proofs of the main theorems and propositions, and derivations of key

equations in the main text.

• Section C contains a proof and detailed discussion of Lemma 1.

• Section D contains a brief description of the Silverman test and the measures of skewness in

Table B.

A Additional empirical results

A.1 Descriptive analysis

Control group: The male population in Sweden. The data on birthdays of the entire male

population in Sweden from 1968 to 2010 are obtained from Statistics Sweden (leap years excluded).
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Table A: Descriptive statistics for birthday distributions

Summary statistic
Data sample # obs. min P25 P50 P75 max mean std. dev.

Population 1, 706, 304 1 88 172 263 365 176.1 102.9
U17 186 2 44.5 110 125 362 125.0 93.5
National team 650 1 74 153 266.5 365 167.3 109.1
Distinguished player 299 1 80.5 167 268.5 363 173.2 104.2
Best player 53 2 80 214 279 353 186.6 106.1

Notes: P25: 25th percentile (first quartile); P50: 50th percentile (median); P75: 75th percentile (third quartile) and
std. dev: standard deviation.

Assuming that the distribution of birthdays for the Swedish male population has remained rather

constant since 1946, we have the correct comparison (control) group. This allow us to compare the

birthday distributions of the elite youth players and the very best senior players with the birthday

distribution of the general male population.

Table A provides summary statistics. The median (P50) birthday is at day 172 (June 20). The

results for the 25th percentile (P25) and 75th percentile (P75) says that 25% and 75% of all males,

respectively, were born at days 88 (March 28) and 263 (September 19) or earlier.

The grey shaded area in panel (ii) in Figure 2 plots the full distribution for the sample of

1,706,304 born males. Most babies are born in early/mid April after which the birth rate decreases

until September when it starts to weakly increase and obtains a second mode in late Septem-

ber/early October.1 The most likely day to be born at, that is, the highest mode of the distribution

is reported in the second column of Table A, and is estimated at day 101 (April 10). These distri-

butional features can be explained by that most babies are conceived during the summer holidays

(giving the highest mode in April) and Christmas/winter holidays (explaining the second mode in

September/October).

The under 17 (U17) national team players. Panel (ii) in Figure 2 plots the kernel density

of the birthdays for the Swedish national youth team (U17), which shows that the distribution is

strongly positively skewed. The measures of skewness presented in columns 4-7 in Table B shows

that the distribution is considerably more positively skewed than the distribution of the general

male population. Table A shows that the median birthday for U17 players is at day 110 (April 19),

1A Kolomogorov-Smirnov test of the null that the distribution is uniformly distributed is rejected at 1% significance
level (p−value <0.0000).
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Table B: The highest mode, Silverman test and measures of skewness

High. mode Silverman test Measures of skewness
Data sample Day p-value ”Conv.” Bowley G&M Pearson

Population 101.4 (3.2) n/a 0.09 0.04 0.05 0.04
U17 42.3 (7.1) 0.721 0.61 0.10 0.19 0.16
National team 81.5 (15.6) 0.001∗∗∗ 0.20 0.18 0.15 0.13
Distiguished player 88.6 (15.6) 0.011∗∗ 0.10 0.08 0.07 0.06
Best player 266.0 (62.4) 0.023∗∗ −0.24 −0.35 −0.30 −0.26

Notes: For the highest mode, standard deviations are reported in parenthesis. The hypothesis in the Silverman test
is H0 : Distribution is unimodal, vs. H1 : Distribution is at least bimodal. ∗∗∗ and ∗∗ denote significance at the 1 and
5% nominal significance levels. ”Conv.”refers to the conventional moment coeffi cient of skewness, G&M and Pearson
refers to the Groeneveld & Meeden coeffi cient of skewness and the Pearson mode measure of skewness, respectively.
Section D in the online appendix contains a brief description of the Silverman test and the measures of skewness.

which is more than 60 days earlier than the median birthday in the general male population, and

moreover, 75% (P75) of all U17 players are born earlier than day 125 (May 4).2 This shows that

there is a strong relative age effect (RAE) in Swedish youth football. That is, individuals who are

born early in the year are overrepresented in the Swedish U17 national team.

National team players. The kernel density plot of the birthdays of all Swedish national team

players between 1946 and 2015 in panel (ii) in Figure 2 shows that the distribution is positively

skewed and also that it is weakly bimodal with the highest mode at day 81 (March 21, see Table

B), after which it sharply falls until mid-year when it starts to weakly increase and obtains a second

mode in mid/late October.3 The summary statistics in Table A shows that the median birthday for

national team players is 20 days earlier than the median birthday in the male population, indicating

the presence of a weak RAE. This is also suggested by the positive measures of skewness reported

in Table B which also shows that the distribution is seemingly more positively skewed than the

birthday distribution for the population.

The distinguished player award. If a player in the national team collects a certain amount

of points based on the number of international matches and participation in major tournaments

such as the World and European Championships, he is given an honorary award called ”Stora

2The highest mode is estimated at day 42 (February 11, see Table B), which is considerably earlier than in
the general male population. Results from a Silverman test shows that the birthday distribution of U17 players is
unimodal.

3The results from the Silverman test in Table B rejects that the distribution is unimodal in favor of that it is
bimodal.
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grabbars märke”, which is equivalent to a distinguished player award.4 Because players are chosen

by the manager of the national team we believe it is fair to assume that the selection is exogenous.

Accordingly, we proceed by interpreting the group of national team players who have received the

distinguished player award as a treatment group (within the set of national team players).

We extracted the birthdays/birth years of the national team players who have received the

distinguished player award yielding a total of 299 observations. From the summary statistics in

Table A we see that the median birthday is 14 days later than for national team players, and only

5 days earlier than for the general population. Together with the measures of skewness in Table

B this suggests that the birthday distribution of the distinguished player award is similar to the

distribution of the general population.

The best player award. A price for the best male player, called ”Guldbollen”5, has been

awarded in Sweden since 1946. One Swedish player (from the domestic or an international league)

is chosen each year by a selection committee consisting of representatives from the Swedish Football

Association and sports journalists from one of the largest newspapers in Sweden. In total, we have

70 observations, but because a few players have received the award more than once, we omit multiple

observations of the same player, giving a final sample of 53 observations.6

From Table A we can see that the median birthday for winners of the best player award is

at day 214 (August 1), which is 44 days later than for the general population. Moreover, Table

B shows that, in contrast to U17 players, the general population and national team players, the

distribution of birthdays for winners of the best player award is negatively skewed. This can also

be observed from the kernel density plot in panel (ii) in Figure 2, which additionally shows that the

distribution is bimodal with one weak mode around early/mid April and the second and highest

mode at day 266 (September 22, see Table B), implying that winners of the best player award are

more likely to be been born in September/October than in the spring.7

4Literally translated into ”the big boys badge”.
5Literally translated into ”the Golden ball”. The award is given to the player in an offi cial ceremony that is

broadcasted on national Swedish TV.
6We also performed our analysis on the entire sample of 70 observations. The results from this analysis gives even

stronger evidence in favor of our empirical results. It is easy to understand why since 8 players have won the award
twice while one player (Zlatan Ibrahimovic), born on October 3, have won the award 10 times. Thus, because the
birthday of this player receives 10 times the weight of a player who have only received the award once, it shifts the
birthday distribution more to the left. Hence, the month of October has even more actual winners than expected.

7Table B reports results from a Silverman test which rejects that the distribution is unimodal in favor of that it
is bimodal.
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Table C: Data for each senior national team player (650 observations)

Variable Definition

Birthday Player’s day of birth in the calender year
Goalkeeper 1 if the player’s main position was as goalkeeper, and 0 otherwise
Midfielder 1 if the player’s main position was as midfielder, and 0 otherwise
Attacker 1 if the player’s main position was as attacker, and 0 otherwise
International 1 if he played in an international (i.e., non-Swedish) league,

and 0 otherwise
Year of debut Age when player did his first senior national team match
Team performance The difference between the number of goals scored and goals against

by the national team during the player’s time in the team
Distinguished 1 if the player has received the distinguished player award, and 0 otherwise
Best 1 if the player has received the best player award, and 0 otherwise

These results reveal an interesting pattern: If we classify a national team player who have been

awarded ”distinguished player” as having a higher quality than a player without an award, but

having a lower quality than a player who have won the best player award, we obtain an ordered

scale in terms of quality, where national team players without awards have ”low”quality, players

with the distinguished player award have ”medium”quality and winners of the best player award

have ”top”quality. If we compare the birthday distributions for these three categories, we see that,

as the quality of the players increase, the distributions progressively shifts to the right and obtains

more mass later in the year. Thus, as the quality of players increase, we observe an increasingly

’inverted’RAE, which is consistent with the empirical prediction ER2.

A.2 Regression analysis

Our descriptive analysis in the previous section provides evidence that players with the best player

award are born later in the year than players without awards. However, the analysis does not control

for other factors that might explain this outcome. In this section, we complement our descriptive

(unconditional) analysis with a regression analysis to see whether the empirical predictions still

hold conditionally on some other factors. As argued above, our data is ideal for such a conditional

analysis since it is fair to argue that the selection of player awards is exogeneous. As such, we

may proceed to interpret the winners as a treatment group (within the entire set of national team

players).

We use our sample of 650 national team players, and in addition to their birthdays, for each

5



Table D: Estimates and marginal effects in ordered Probit model

Marginal effects
”Low quality” ”Medium quality” ”High quality”

Variable Estimates (no award) (distinguished player) (best player)

ln (Birthday) 0.1224∗∗ −0.0425∗∗ 0.0360∗∗ 0.0066∗∗

Goalkeeper 0.1245 −0.0433 0.0366 0.0067
Midfielder −0.0603 0.0210 −0.0177 −0.0032
Attacker −0.0749 0.0260 −0.0220 −0.0040
Played abroad 0.2553∗∗ −0.0888∗∗ 0.0751∗∗ 0.0137∗

ln (Year of debut) −1.3789∗∗ 0.4794∗∗ −0.4055∗∗ −0.0739∗∗

Team performance 0.0462∗∗∗ −0.0161∗∗∗ 0.0136∗∗∗ 0.0025∗∗∗

McFadden R2 0.2800

Notes: ∗∗∗ , ∗∗ and ∗ denotes significance on the 1, 5 and 10% nominal significance levels.

player, we have collected detailed information on each player described in Table C. In our first

analysis, we assign national team players without any awards the number 0 (”low quality”), players

who have won the ”distinguished” player award the number 1 (”medium quality”) and players

who have won the best player award the number 2 (”high quality”). Thus, our dependent variable

takes three possible outcomes depending on the quality of the player, and we therefore estimate

ordered probit models, where we use the log of birthday and the control variables in Table C as

independent variables. The estimation results of the estimated coeffi cients and marginal effects are

given in Table D.

Our main variable of interest ln (Birthday) is significant on the 5% level. The average marginal

effects are reported at the three different outcomes. For example, the marginal effect for ln (Birthday)

at the outcome ”medium quality”means that if a national team player is born 1%, i.e., 3.65 days,

later in the year then he has a 3.6% higher probability of receiving the distinguished player award,

while he has 0.7% higher probability of receiving the best player award. All marginal effects for

ln (Birthday) are significant at the 5% level. Thus, even after controlling for other variables, these

results suggest that being born later in the year significantly increases the quality of the player.

Finally, note the remarkably high goodness-of-fit measured by the McFadden R2, which indicates

a (very) good model fit.

Using our entire sample of 650 national team players, we also run quantile regressions to estimate

6



Table E: Quantile regression results

Variable Quantile 0.5 Quantile 0.90 Quantile 0.95

Best 52.363∗∗ −18.568∗∗ −12.837∗∗

Goalkeeper −3.514 −0.554 6.903
Midfielder −0.016 −0.532 2.347
Attacker 1.294 8.446 0.044
Played abroad 11.362 3.568 11.453∗∗

ln (Year of debut) 122.622∗∗ 93.110∗∗∗ 20.779
Team performance 0.448 0.386 −0.120

the treatment effect γ from the treatment model:

Birthdayi=γ · Besti+β · xi+εi,

where Besti is a binary variable taking on the value 1 if national team player i has won the best

player award and zero otherwise, and where x is the same set of controls (including a constant) as

in the ordered Probit model. The estimate of γ gives a measure (in days) of how much later in the

year a winner of the best player award is born, relative to a player who has not won the award. We

estimate the treatment model at all nodes in an equally spaced grid with increment 0.05 starting

from 0.05 to 0.95. Estimation results are given in Table E.

Our main variable of interest γ is significant at three quantiles. The median effect (quantile 0.5)

shows that a winner of the best player award is born 52.363 days later than a player without such

award. This gives further evidence for the second empirical result (ER2), and is very close to the

descriptive results in Table A, which estimated the unconditional median effect to 61 (= 214− 153)

days. Also consistent with ER2, we find a significant negative effect for players born very late in

the year. Specifically, for the 0.9 and 0.95 quantiles we find that winners of the best player award

are born 18.568 and 12.837 days earlier, respectively, than players without this award.
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B Proofs

B.1 Derivation of de∗2/de1 in Section 4.4.1

Differentiating the first order condition ∂U/∂e2 in e1 yields:

∂2U

∂e22
· de

∗
2

de1
= − ∂2U

∂e2∂e1

Straightforward calculations yield:

∂2U

∂e22
= −

(
∂g

∂e2

)2
· v′ (S2) · p · [α (S2) + β (S2)]− C ′′2 (e2),

∂2U

∂e2∂e1
= v′ (S2) ·

∂g

∂e1
· ∂g
∂e2
· p · [ϕ (S2)− α (S2)] .

Thus,

de∗2
de1

= −
∂2U
∂e2∂e1
∂2U
∂e22

= φ · [ϕ (S2)− α (S2)] ,

where

φ =
v′ (S2) · ∂g∂e1 ·

∂g
∂e2
· p((

∂g
∂e2

)2
· v′ (S2) · p · [α (S2) + β (S2)] + C ′′2 (e2)

) ,
with φ > 0, since α (S2) > 0, β (S2) > 0 and C ′′2 (e2) > 0.

B.2 Proof of Proposition 1

Towards a contradiction, suppose dS2/de1 ≤ 0. Multiplying dS2/de1 by 1/φ > 0 (where φ is defined

above) yields:

0 ≥ dS2
de1
· 1

φ

=

(
∂g

∂e1
+

∂g

∂e2
· de

∗
2

de1

)
· 1

φ

=
∂g

∂e1
· 1

φ
+

∂g

∂e2
· [ϕ(S2)− α(S2)]

=

((
∂g
∂e2

)2
· v′ (S2) · p · [α (S2) + β (S2)] + C ′′2 (e2)

)
v′ (S2) · ∂g∂e2 · p

+
∂g

∂e2
· [ϕ(S2)− α(S2)] .
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But then:

0 ≥

((
∂g
∂e2

)2
· v′ (S2) · p · [α (S2) + β (S2)] + C ′′2 (e2)

)
v′ (S2) · ∂g∂e2 · p

+
∂g

∂e2
· [ϕ(S2)− α(S2)]

←→
(
∂g

∂e2

)2
· v′ (S2) · p · [α (S2) + β (S2)] + C ′′2 (e2) ≤ v′ (S2) ·

(
∂g

∂e2

)2
· p · [α(S2)− ϕ(S2)]

←→ 0 <

(
∂g

∂e2

)2
· v′ (S2) · p · [ϕ(S2) + β (S2)] + C ′′2 (e2) ≤ 0,

which is a contradiction.

B.3 Derivation of de∗1/da in Section 4.5.1

We derive de∗1/da using a backward induction approach in the paper. Here, we use a direct approach

to prove the result. Consider the first-order condition in (18). Differentiating in e1, e2 and a yields

the following system:  ∂2U
∂e21

∂2U
∂e1∂e2

∂2U
∂e2∂e1

∂2U
∂e22

 de∗1
da

de∗2
da

 =

 − ∂2U
∂e1∂a

− ∂2U
∂e2∂a

 .
Thus:  de∗1

da

de∗2
da

 =
1

D
·

 ∂2U
∂e22

− ∂2U
∂e1∂e2

− ∂2U
∂e2∂e1

∂2U
∂e21

 − ∂2U
∂e1∂a

− ∂2U
∂e2∂a

 ,
where the determinant D is:

D =
∂2U

∂e21
· ∂

2U

∂e22
− ∂2U

∂e1∂e2
· ∂2U

∂e2∂e1
.

We have D > 0 because U is strictly concave (See footnote 14). The derivatives ∂2U/∂e22 and

∂2U/∂e1∂e2 are calculated above. Straightforward calculations yield the other derivatives:

∂2U

∂e21
= −u′ (S1) ·

(
∂f

∂e1

)2
· [η (S1) + γ (S1)]− v′ (S2) ·

(
∂g

∂e1

)2
· p · [α (S2) + τ (S2)]

−v′ (S2) ·
∂g

∂e∗2
· ∂g
∂e1
· p · [α(S2)− ϕ(S2)] ·

de∗2
de1
− C ′′1 (e1),

∂2U

∂e1∂a
= −u′ (S1) ·

∂f

∂a
· ∂f
∂e1
· [η (S1)−Ψ (S1)] ,

∂2U

∂e2∂a
= 0.
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Hence,
de∗1
da

= − 1

D
·
[
∂2U

∂e22
· ∂

2U

∂e1∂a

]
= $ · [Ψ (S1)− η (S1)] ,

where

$ = ξ ·
u′ (S1) · ∂f∂a ·

∂f
∂e1

D
,

ξ =

(
∂g

∂e2

)2
· v′ (S2) · p · [α (S2) + β (S2)] + C ′′2 (e2).

We have $ > 0 since ξ > 0, u′ (S1) · ∂f∂a ·
∂f
∂e1

> 0 and D > 0.

Note also that:

de∗2
da

=
1

D
·
[
∂2U

∂e2∂e1
· ∂

2U

∂e1∂a

]
= $2 · [ϕ (S2)− α (S2)] · [Ψ (S1)− η (S1)] ,

where

$2 =
v′ (S2) · ∂g∂e1 ·

∂g
∂e2
· p · u′ (S1) · ∂f∂a ·

∂f
∂e1

D
,

with $2 > 0.

B.4 Proof that the Lagrange multiplier λ is strictly positive in Eq. (26)

Since ∂f/∂e1 > 0, the sign of λ is determined by the sign of u′ (S1) · ∂f/∂e1 + p · v′ (S2) · ∂g/∂e1 −

C ′1 (ẽ1). By (23), we know that youth quality S1 = f(e∗1(a), a) declines as age capital a falls. As

noted, it must then exist a level of age capital aU at which f(ẽ(aU ), aU ) = Smin1 holds. Moreover,

at this point, we must have that the level of youth effort in the interior solution (18) is equal to

the level of youth effort in the corner solution (27), i.e., e∗1(a
U ) = ẽ1(a

U ). But then we must have

ẽ1(a) > e∗1(a) for a < ã since f(e∗1(a), a) declines in age capital a and f(ẽ1(a), a) = Smin1 holds at

any level of a. In this case, by comparing the first-order conditions (18) and (26), it follows that

the marginal utility of additional youth effort (the bracketened first term in (26)) must be negative,

i.e., du/dS1 · ∂f/∂e1 + δ · dv/dS2 · ∂g/∂e1− dC ′1/dẽ1 (a) < 0. Then, since ∂f/∂e1 > 0 in the second

term of (26), λ > 0 must hold for the first-order condition to hold.

B.5 Proof of η (S1) > Ψ (S1)⇐⇒ ξ > 1
σ
and α (S2) < ϕ (S2)⇐⇒ µ < 1

λ
in Section 4.7

We only prove η (S1) > Ψ (S1) ⇐⇒ ξ > 1
σ (the proof of α (S2) < ϕ (S2) ⇐⇒ µ < 1

λ follows analo-

gously). Consider S1 = f (a, e1) = [αeρ1 + (1− α) aρ]
1/ρ in Eq. (32). Straightforward calculations
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yield:

∂S1
∂a

= α · f (a, e1)
1−ρ · aρ−1 > 0,

∂S1
∂e1

= (1− α) · f (a, e1)
1−ρ · eρ−11 > 0,

∂2S1
∂e1∂a

= α · (1− α) · (1− ρ) · f (a, e1)
1−2ρ · (e1 · a)ρ−1 ≥ 0,

Ψ (S1) =

∂2f(a,e1)
∂a∂e1

∂f(a,e1)
∂a · ∂f(a,e1)∂e1

= (1− ρ) · 1

f (a, e1)
=

1

σ · S1
≥ 0,

where σ = 1/ (1− ρ). Consider next u (S1) = u (f (a, e1)) = S1−ξ1 /1 − ξ (if ξ > 0 and ξ 6= 1) and

u (S1) = u (f (a, e1)) = lnS1 (if ξ = 1) in Eq. (34):

u′ (S1) =

 S−ξ1 if ξ > 0 and ξ 6= 1,

1
S1

if ξ = 1,

u′′ (S1) =

 −ξ · S
−ξ−1
1 if ξ > 0 and ξ 6= 1,

− 1
S21

if ξ = 1,

η (S1) = −u
′′ (S1)

u′ (S1)
=

ξ

S1
> 0.

Thus,
de∗1
da

= ω · (η (S1)−Ψ (S1)) = ω ·
[
ξ

S1
− 1

σ · S1

]
= ω · 1

S1
·
[
ξ − 1

σ

]
.

Hence, η (S1) > Ψ (S1)⇐⇒ ξ > 1
σ .

B.6 Proof of Proposition 4 in Section 5

The model is:

U(e1, e2) = u(S1)− C1(e1) + δ · [p · v(S2)− C2(e2)]

S1 = f(e1, a),

S2 = g(e1, e2, a).

The player solves the problem:

max
{e1,e2}

U(e1, e2) s.t. S1 ≥ Smin1 and U(e1, e2) ≥ UY (a) .

11



To prove (i) and (ii), it suffi ces to show that the model reduces to the baseline model whenever

α (S2) = χ (S2) = ς (S2). Clearly, de∗2/de1 remains unchanged. We show that de
∗
1/da reduces to

the expression of de∗1/da in Section A.3. We use the equation system in Section A.3. The only

first-order conditions that differ are ∂2U/∂e1∂a and ∂2U/∂e2∂a. We have:

∂2U

∂e1∂a
= −u′ (S1) ·

∂f

∂a
· ∂f
∂e1
· [η (S1)−Ψ (S1)]− p ·

∂g

∂a
· ∂g
∂e1
· v′ (S2) · [α (S2)− χ (S2)] ,

∂2U

∂e2∂a
= −p · ∂g

∂a
· ∂g
∂e2
· v′ (S2) · [α (S2)− ς (S2)] .

Clearly, these first-order conditions reduce to the ones in Section A.3 whenever α (S2) = χ (S2) =

ς (S2). Thus, Proposition 4 holds if ϕ(S2) > α(S2) = χ(S2) = ς(S2).

C Discussion and proof of Lemma 1: The relative age effect

The relative age effect in Lemma 1 states that players who are born early in the year should attain

higher youth skills than players born later in the year. This is consistent with the empirical evidence

from the Swedish football data in Section 3 and Appendix A. In this section, we provide a detailed

discussion of this result, using the same argument as in Section 4.4.1.

Consider two player, an underdog (U) and a topdog (T), where the topdog is defined as the

”older player”, i.e., with more age capital, aT > aU . Will the topdog always attain higher youth

skill, or can the underdog catch up?

Strong age-capital complementarity If there is strong age capital complementarity, η(S1) >

Ψ(S1), then from Proposition 2(ii) we have de∗1/da > 0. Hence, dS1/da > 0. Therefore, the

underdog will not be able to catch-up if there is strong age capital complementarity.

Weak age-capital complementarity Suppose instead that there is weak age-capital comple-

mentarity. From Proposition 2(i), we have de∗1/da > 0, implying that the underdog will choose to

spend more youth effort than the topdog, e∗1(a
U ) > e∗1(a

T ). Will the underdog be able to catch-up,

i.e., can we have S̄1 = f(e∗1(a
T ), aT ) = f(e∗1(a

U ), aU )?

Let us start from the optimal choice of youth training effort for the topdog given by the first-

12



order condition in (18):

Marginal benefit as youth︷ ︸︸ ︷
u′(S̄1) ·

∂f(e∗1(a
T ), aT )

∂e1
+

Marginal benefit as elite︷ ︸︸ ︷
p · v′(S2(aT )) · ∂g(e∗1(a

T ), e∗2(e
∗
1(a

T )), amax)

∂e1︸ ︷︷ ︸
Marginal benefit for T

= C ′1(e
∗
1(a

T ))︸ ︷︷ ︸ .
Marginal cost for T

(1)

Now, consider the underdog’s incentive for supplying youth training. First, note that supplying

more youth effort in order to catch-up, e∗1(a
U ) > e∗2(a

T ), must imply a higher marginal effort cost

of youth training for the underdog, i.e.,

C ′1(e
∗
1(a

T )) < C ′1(e
∗
1(a

U )).

Can the underdog then obtain a higher marginal benefit that matches this higher marginal effort

cost? Consider the first term on LHS, i.e., the marginal benefit from higher youth quality achieved

by a marginally higher youth effort. By aU < aT and e∗1(a
U ) > e∗2(a

T ), age capital complementarity

and diminishing returns must imply that the underdog is less productive in enhancing youth quality

than the topdog, i.e.,
∂f(e∗1(a

T ), aT )

∂e1
>
∂f(e∗1(a

U ), aU )

∂e1
.

Hence, if he choose to try to catch-up, the underdog would experience a lower marginal benefit

from higher youth quality than the topdog. Thus, in such case, a higher youth effort would imply

a lower marginal benefit from higher youth skill for the underdog compared to the topdog, but also

a higher marginal effort cost, in which case, the underdog would not have an incentive to try to

catch-up in his youth skills.

However, this argument does not take into account how increased youth training affects the

marginal benefit of elite quality, given by the second term in (1). There are two cases, depending on

the strength of the dynamic complementarity, i.e., how important youth skills are for the formation

of elite skills.

Case 1: Strong dynamic complementarity If strong dynamic complementarity holds,

then ϕ(S2) > α(S2), which implies by Eq. (10) in the main text that de∗2/de1 > 0. Thus, the

combination of weak age capital complementarity in youth skill formation and strong dynamic

complementarity in elite skill formation implies e∗1(a
U ) > e∗1(a

T ) since aU < aT , which, in turn,

implies e∗2(a
U ) = e∗2

(
e∗1(a

U )
)
> e∗2(a

T ) = e∗2
(
e∗1(a

T )
)
. But then from Proposition 2, it must be that

13



S2(a
U ) = S2(e

∗
1(a

U ), e∗2
(
e∗1(a

U )
)
> S2(a

T ) = S2(e
∗
1(a

T ), e∗2
(
e∗1(a

T )
)
. Moroever, concavity implies:

v′(S2(a
T ) > v′(S2(a

U ))

However, we also have that:

∂g(e∗1(a
T ), e∗2(e

∗
1(a

T )), amax)

∂e1
R ∂g(e∗1(a

U ), e∗2(e
∗
1(a

U )), amax)

∂e1
.

Concavity of the elite skill production function will reduce the marginal product of youth training

effort for the underdog since e∗1(a
U ) > e∗1(a

T ). However, dynamic complementarity will give the

opposite effect since investing more into elite training, i.e., e∗2(e
∗
1(a

U ) > e∗2(e
∗
1(a

T )), will boost the

marginal product of youth training. Thus, we cannot tell whether the marginal benefit of more

youth training on elite skills when the underdog tries to catch-up is higher or lower for the underdog

than the topdog. If the marginal benefit on elite training is suffi ciently higher for the underdog,

catch-up is a possibility, however probably unlikely, especially given that the RAE is strong in the

data.

The assumption of limited convexity of the reduced-form elite skill production function g(e1) =

g(e∗1, e
∗
2(e
∗
1), a

max) limits how youth training can effect youth skills and ensures that the underdog

is unable to catch up with the topdog. Thus, limited convexity ensures that aT > aU , implying

S1(a
T ) > S1(a

U ), wich is consistent with the RAE, i.e., dS1/da > 0.

Case 2: Weak dynamic complementarity If weak dynamic complementarity holds, then

ϕ(S2) < α(S2), which implies by Eq. (10) in the main text that de∗2/de1 < 0. Thus, the combination

of weak age capital complementarity in youth skill formation and weak dynamic complementarity

in elite skill formation implies e∗1(a
U ) > e∗1(a

T ), since aU < aT . Thus, in turn, implies e∗2(a
U ) =

e∗2
(
e∗1(a

U )
)
< e∗2(a

T ) = e∗2
(
e∗1(a

T )
)
, in which case, we have:

∂g(e∗1(a
T ), e∗2(e

∗
1(a

T )), amax)

∂e1
>
∂g(e∗1(a

U ), e∗2(e
∗
1(a

U )), amax)

∂e1
.

On the one hand, concavity of the elite skill production function will again reduce the marginal

product of youth training effort for the underdog relative to the topdog from e∗1(a
U ) > e∗1(a

T ). On

the other hand, dynamic complementarity will give the opposite effect since investing more into

elite training, i.e., e∗2(e
∗
1(a

U ) > e∗2(e
∗
1(a

T )), will boost the marginal product of youth training more
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for the topdog.

However, from Proposition 2, we have,

S2(a
U ) = S2(e

∗
1(a

U ), e∗2
(
e∗1(a

U )
)

< S2(a
T )

= S2(e
∗
1(a

T ), e∗2
(
e∗1(a

T )
)
.

Then, concavity of elite utility implies

v′(S2(a
T )) < v′(S2(a

U )).

Hence, a suffi ciently strong concavity of the elite skill utility give rise to a higher marginal benefit of

youth training on elite skills for the underdog. The assumption of limited concavity of v(S2) limits

the strength of this channel and ensures that the underdog is unable catch up with the topdog, so

that aT > aU ensures S1(aT ) > S1(a
U ), which is consistent with the RAE, dS1/da > 0.

D The Silverman test and measures of skewness

The mode (or peak) of a continuous probability distribution is the value at which its probability

density function (pdf) obtains its maximum value. The mode is not necessarily unique. When the

pdf has multiple local maxima points it is common to refer to all (local) maxima points as modes, in

which case the distribution is called multimodal (as opposed to unimodal). A bimodal distribution

has two modes. Silverman (1981) developed a non-parametric (i.e., free of any assumption on the

distribution of the data) test of the number of modes of a pdf. We use this test to test the following

hypothesis:

H0: The probability distribution function is unimodal,

H1: The probability distribution function is at least bimodal (i.e., multimodal).

Hall and York (2001) developed a testing procedure that has better power than the original test

and the correct asymptotic level. They proposed a bootstrap procedure to mimic the asymptotic

distribution of the test statistic under the null. We used the R package silvermantest to implement

the Silverman test with Hall and York’s (2001) bootstrap procedure.
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The convential measure of skewness (called ”Conv.” in Table B) is given by E ((yt − µ) /σ)3

where {y1, ..., yN} is a set of N i.i.d observations, µ = E (yt) is the mean and σ =
√
E (yt − µ)2

is the standard deviation. Due to the third power term, it is well-known that this measure can be

arbitrarily large when there are one or more outliers in the data. Thus, it can be diffi cult to judge

whether the measure is large or there exist some outliers in the data. For this reason, more robust

measures to outliers have been proposed. These measures of skewness are based on that the median

and interquantile range are more robust measures of location and dispersion than the mean and

standard deviation (Kim and White, 2004). Let Q1, Q2 and Q3 be the first, second (median) and

third quartiles of the data. In addition to the conventional measure, we report the Bowley measure:

(Q3 +Q1 − 2Q2) / (Q3 −Q1), the Groeneveld & Meeden measure: (µ−Q2) /E (|yt −Q2|) and the

Pearson mode skewness measure: (µ−Q2) /σ.
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