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DETERMINATION OF HYPER-PARAMETERS FOR KERNEL
BASED CLASSIFICATION AND REGRESSION

By Andreas Christmann1, Karsten Luebke2, Marcos Marin-Galiano3,
Stefan Rüping4

1,2,3 University of Dortmund, Department of Statistics
4 University of Dortmund, Department of Computer Science

We investigate methods to determine appropriate choices of the hyper-parameters
for kernel based methods. Support vector classification, kernel logistic regression
and support vector regression are considered. Grid search, Nelder-Mead algorithm
and pattern search algorithm are used.

1. Introduction

The optimization of the hyper-parameters of a statistical procedure or machine learning
task is a crucial step for obtaining a minimal error. Unfortunately, the optimization of
hyper-parameters usually requires many runs of the procedure and hence is very costly.
A more detailed knowledge of the dependency of the performance of a procedure on its
hyper-parameters can help to speed up this process.

In this paper, we investigate the case of kernel-based classifiers and regression estimators
which belong to the class of convex risk minimization methods from machine learning.
In an empirical investigation, the response surfaces of nonlinear support vector machines
and kernel logistic regression are analyzed and the performance of several algorithms for
determining hyper-parameters is investigated.

The rest of the paper is organized as follows: Section 2 briefly outlines kernel based
classification and regression methods. Section 3 gives details on several methods for opti-
mizing the hyper-parameters of statistical procedures. Then, some numerical examples are
presented in Section 4. Section 5 contains a discussion. Finally, all figures are given in the
appendix.

2. SVM, KLR, and SVR

In statistical machine learning the major goal is the estimation of a functional relation-
ship yi ≈ f(xi) between an outcome yi ∈ R and a vector of explanatory variables
xi = (xi,1, . . . , xi,d)′ ∈ Rd. The function f is unknown. The estimate of f is used to
get predictions of an unobserved outcome ynew based on an observed value xnew. One needs
the implicit assumption that the relationship between xnew and ynew is – at least almost –
the same as in the training data set (xi, yi), i = 1, . . . , n. Otherwise, it is useless to extract
knowledge on f from the training data set. The classical assumption in machine learning is
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that the training data (xi, yi), i = 1, . . . , n, are independent and identically generated from
an underlying unknown distribution P for a pair of random variables (Xi, Yi). In practical
applications the training data set is often quite large, high-dimensional and complex. The
quality of the predictor f(xi) is measured by some loss function L : Y × R → [0,∞) via
L(yi, f(xi)). The goal is to find a predictor fP(xi) that minimizes the expected loss, i.e.

EP L(Y, fP(X)) = min
f
EP L(Y, f(X)), (1)

where EP L(Y, f(X)) =
∫

L(y, f(x))dP(x, y) denotes the expectation of L with respect to
the distribution P.

In this paper we are interested in binary classification, where yi ∈ Y := {−1, +1}. The
straightforward prediction rule is: predict yi = +1 if f(xi) ≥ 0, and predict yi = −1
otherwise. The loss function for the classification error is given by

I(yi, f(xi)) = I(yif(xi) < 0) + I(f(xi) = 0)I(yi = −1),

where I denotes the indicator function. Inspired by the law of large numbers one might
estimate fP with the minimizer femp of the empirical classification error, that is

femp = arg min
f

1
n

n∑

i=1

I(yi, f(xi)) . (2)

To avoid over-fitting one usually has to restrict the class of functions f considered in (2).
Unfortunately, the classification function I is not convex and the minimization of (2) is
often NP-hard, cf. Höffgen et al. (1995). To circumvent this problem, one can replace
the classification error function I(yi, f(xi)) in (2) by a convex upper bound L : Y × R →
R cf. Vapnik (1998) and Schölkopf and Smola (2002). Furthermore, using Reproducing
Kernel Hilbert Spaces (RKHS) and an additional regularization term has some algorithmic
advantages and reduces the danger of over-fitting. These modifications lead to the following
empirical regularized risks:

f̂n,λ = arg min
f∈H

1
n

n∑

i=1

L(yi, f(xi)) + λ‖f‖2
H , (3)

(f̂n,λ, b̂n,λ) = arg min
f∈H, b∈R

1
n

n∑

i=1

L(yi, f(xi) + b) + λ‖f‖2
H , (4)

where λ > 0 is a small regularization parameter, H is a RKHS of a kernel k : X ×X → R,
and b ∈ R is called offset. The decision functions are sign(f̂n,λ) or sign(f̂n,λ + b̂n,λ). Note
that in practice usually (4) is solved while many theoretical papers deal with (3) since the
unregularized offset b often causes technical difficulties in the analysis.

In practice the dual problems of (3) and (4) are solved. In these problems the RKHS does
not occur explicitly, instead the corresponding kernel is involved. The choice of the kernel
k enables the above methods to efficiently estimate not only linear, but also non-linear
functions. Of special importance is the Gaussian radial basis function (RBF) kernel

k(x, x′) = exp(−γ‖x− x′‖2) , γ > 0, (5)
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which is a universal kernel on every compact subset of Rd in the sense of Steinwart (2001).
Furthermore, this kernel is a bounded kernel, as |k(x, x′)| ≤ 1 for all x, x′ ∈ Rd. Polynomial
kernels k(x, x′) = (c + 〈x, x′〉)m are also popular in practice, but are unbounded for m ≥ 1
and X = Rd. Here we restrict attention to the Gaussian RBF-kernel and omit polynomial
kernels because the Gaussian RBF-kernel in combination with a loss function with bounded
first derivative offers good robustness properties which is not true for unbounded kernels
such as polynomial ones, see Christmann and Steinwart (2004, 2005).

In this paper we consider three popular loss functions. Popular loss functions for binary
classification problems depend on y and f via v = yf(x) or t = y(f(x) + b), where b ∈ R
is an intercept term. The support vector machine (SVM) uses LSV M (y, t) = max(1− t, 0),
t ∈ R, i.e. this loss function penalizes points linearly if t < 1 and is constant and equal to
zero for t ≥ 1. Kernel logistic regression (KLR) uses the twice continuously differentiable
loss function LKLR(y, t) = ln(1 + exp(−t)), t ∈ R. Bartlett and Tewari (2004) proved
that KLR can be used to estimate all conditional probabilities P (Y = 1|X = x), x ∈ Rd,
which is not possible with SVM. For regression models, i.e. y ∈ R, we consider Vapnik’s
ε−insensitive loss function given by Lε(y, t) = max{|y − t| − ε, 0}, t ∈ R, for some value
ε > 0.

Problems (3) and (4) can be interpreted as a stochastic approximation of the minimization
of the theoretical regularized risk given in (6) or (7), respectively (Vapnik, 1998, Zhang,
2004, Steinwart, 2005):

fP,λ = arg min
f∈H

EP L(Y, f(X)) + λ‖f‖2
H , (6)

(fP,λ, bP,λ) = arg min
f∈H, b∈REP L(Y, f(X) + b) + λ‖f‖2

H . (7)

3. Determination of hyper-parameters

In this section we present different optimization methods which are used to find optimal
hyper-parameters (C, γ) or (C, γ, ε) for kernel based methods. A vast amount of strategies
and algorithms for function optimization has been proposed in the past. The target function
for evaluating the hyper-parameters at is either

• (estimated) misclassification rate (i.e. ŷ 6= y) for classification problems

• (estimated) L2 error (i.e. (ŷ − y)2) for regression problems.

Note that the estimate function f̂ ∈ H and the predictions ŷ = f̂(x) depend on the hyper-
parameters of the kernel based methods. As the derivative of both target functions on the
hyper-parameters is not known the optimal parameters have to be found numerically. We
compare five methods used to find the set of (almost) optimal parameters:

• random search

• grid search

• Nelder-Mead

• Cherkassky/Ma (for regression)

3
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• pattern search

All these methods do not need any derivatives of the objective function. While the first
three are general-purpose optimization methods the last two were proposed explicitly for
optimization of hyper-parameters in kernel based methods.

3.1 Random search

The simplest version of random search is implemented: a random point of the parameter
space is chosen and the value of the objective function is evaluated. This is repeated N
times and the best point is taken as the result. Of course, the result of this approach heavily
depends on the way the random points are chosen and how many iterations are used. The
trial points for which the objective function is evaluated are drawn from a multivariate
normal distribution with the center of the search space as the mean.

3.2 Grid search

Optimization by grid search is also very simple: after the search space is specified each search
dimension is split into ni parts. Often these splits are equidistant. The intersections of the
splits – which form a (multi-)dimensional grid – are the trial points which are evaluated.

3.3 Nelder-Mead simplex search

The Nelder-Mead (or downhill simplex) algorithm proposed by Nelder and Mead (1965)
constructs a simplex of m+1 points for an m dimensional optimization problem. In our case
we have m = 2 for the classification case and m = 3 for the regression case. The functional
values are calculated for the vertices of the simplex and the worst point is reflected through
the opposite side of the simplex. If this trial point is best, the new simplex is expanded
further out. If the function value is worse, than the second worst point of the simplex is
contracted. If no improvement at all is found, the simplex is shrunken towards the best
point. This procedure terminates if the differences in the function values between the best
and worst points are negligible.

3.4 Parameter choices by Cherkassky and Ma

One way to determine the hyper-parameters for support vector regression directly from the
data has recently been proposed by Cherkassy and Ma (2004). Their proposal is based
on both theoretical considerations and empirical results. The following suggestions for
the regularization parameter C, the width of the non-penalized tube ε and the bandwidth
parameter γ of the RBF-kernel are suited for the case that all input variables are scaled to
the interval [0, 1]. They can be easily adjusted to non-scaled data.

Regarding the regularization parameter C, Cherkassky and Ma agree with the findings
of Mattera and Haykin (1999) that C should be chosen according to the range of the values
of the response variable in the training data. Since the range is not robust against outliers,
Cherkassy and Ma (2004) use the following expression to determine C:

C = max {|ȳ − 3σy|, |ȳ + 3σy|} . (8)
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In this equation, ȳ and σy denote the mean and the standard deviation of the response
variable y in the training data, respectively.

The width of the ε tube, in which all errors are not penalized, can be chosen according
to the sample size and the noise of the data, denoted by σ. Cherkassky and Ma propose
the value

ε = 3σ

√
ln n

n
. (9)

In practice, σ will be unknown and must be estimated. To accomplish this, Cherkassy and
Ma (2004) propose a k-nearest neighbor regression with k set to a low value in the range of
3− 7. The noise will then be estimated using the residuals of this regression.

As Cherkassy and Ma (2004) base all their considerations on the RBF-kernel, the kernel
parameter γ must be determined in addition. It is chosen in dependence of the number of
input variables of the regression problem, its dimension d, as

γ =
1

2( d
√

c)2
, (10)

where c is a constant between 0.2 and 0.5, for which good SVM performance can be achieved.
The method of Cherkassy and Ma (2004) has the advantage that the parameters can be

accessed directly from the data. The authors give many numerical examples which show
the power of their approach when used on artificial data. It is not known, however, if the
heuristic choice of (C, ε, γ) always gives meaningful parameter combinations when applied
to real-life data.

3.5 Pattern search

Momma and Bennett (2002) proposed the pattern search algorithm as a directed search
method to determine the hyper-parameters for support vector machines. It examines points
in the parameter space which are arranged in a pattern around the actual optimal point.
The pattern depends on the number of parameters in the SVM. For classification SVM with
RBF-kernel using the logarithms of the parameter value, the pattern with four elements

P =
(

1 0 −1 0
0 1 0 −1

)
, (11)

can be used to construct a pattern in the parameter space (C, γ). For the three hyper-
parameters C, ε and γ in an SVR, this pattern can be expanded to

P ∗ =




1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1


 . (12)

The columns of P and P ∗ describe the change applied to a given parameter vector q =
(C, γ)T or q∗ = (C, ε, γ)T . This means that only one parameter is changed at a time. The
pattern search algorithm itself works as follows:

i) Initialization: Choose a start pattern center q(0) and compute the value of the func-
tion to be minimized f(q(0)). Furthermore, choose a factor ∆(0) which denotes the
expansion of the pattern and τ , the expansion at which the algorithm should stop.
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ii) Optimization step:

• Compute q
(k+1)
i = q(k) + ∆(k) · pi for all columns pi of P and the corresponding

f(q(k+1)
i ).

• If min f(q(k+1)
i ) < f(q(k)), set q(k+1) = arg min f(q(k+1)

i ) and ∆(k+1) = ∆(k).
Else, set q(k+1) = q(k), ∆(k+1) = ∆(k)/2 and proceed to the stopping rule.

iii) Stopping rule: If ∆(k) < τ , stop the algorithm. Otherwise, perform another optimiza-
tion step.

The algorithm searches the parameter space pattern-wise and memorizes the best hyper-
parameter combination it comes across. If the center of the pattern is optimal, the pattern
will be made smaller which corresponds to a finer grid search. If the pattern is small enough,
the algorithm will stop.

Principally the pattern search works similar to a grid search, but it only makes calculations
for a subset of the grid points. By choosing the direction of the steepest descent among
pattern points it will omit a lot of grid points which may lead to unsatisfactory results
when their respective parameter combinations are applied to the data. Furthermore, a
more exhaustive search will be automatically done in the region of interest. Whereas this
should lead to computational savings, there are also disadvantages. First, the user must
choose a starting point for the pattern search. This can be done randomly or by heuristics
like in Section 3.4. Another important drawback could be that the algorithm is in danger
to run into a local minimum.

4. Numerical examples

In this section we give some numerical results to compare the methods for hyper-parameter
determination described in the previous section.

4.1 Criteria

The main criterion in many applications is the accuracy. In a classification problem the
accuracy is measured by the misclassification rate, in a regression problem by the L2 error.

Cross validation is used to estimate the accuracy. The data set is divided into ` disjoint
sets and each set is once used as the test set whereas the other `−1 sets are put together to
form the training set. The average accuracy on the ` test sets is used as the estimator for
the accuracy of the method with the given hyper-parameters. In our study we set ` = 10.

A second criterion for optimization methods is the number of evaluations needed. Here
we counted the number of combinations of the hyper-parameters which are tested in order
to find the best combination of (C, γ) or of (C, γ, ε)

4.2 Description of data sets

We use several benchmark data sets, but we also consider some additional data sets.

6



DETERMINATION OF HYPER-PARAMETERS FOR KERNEL BASED METHODS

4.3 Data sets for classification

17 data sets of varying size and dimension were used in this investigation. 13 of the data sets
come from the UCI Machine Learning Repository, see Blake and Merz (1998) Additionally,
4 other real-word data sets were used. These data sets will be described in this section. A
short overview over the data sets can be found in the following table.

Name Size (n) Dimension (d)
balance 576 4
breast 683 9
covtype 4951 48
dermatology 184 33
diabetes 768 8
digits 776 64
ionosphere 351 34
iris 150 4
liver 345 6
mushroom 8124 126
promoters 106 228
voting 435 16
wine 178 13
b3 157 13
directmailing 5626 81
insurance 10000 135
medicine 6610 18

B3

This West German Business Cycles data (1955-1994) is analyzed by the project B3 of the
SFB475 (Collaborative Research Centre “Reduction of Complexity for Multivariate Data
Structures”), supported by the Deutsche Forschungsgemeinschaft. It consists of 13 economic
variables with 157 quarterly observations from 1955/4 to 1994/4 of the German business
cycle, see Heilemann and Münch (1996). The German business cycle is classified in a four
phase scheme: upswing, upper turning point, downswing and lower turning point. There
were 6 complete cycles in the time period. The four phases are split into six one-against-one
test situations so it is possible to investigate how the optimal hyper-parameters vary within
a data set.

Directmailing

This data set contains the demographic description of households which did or did not
answer to a direct mailing campaign of a large company.

Insurance

This data set contains simulated data with a similar structure than a huge data set from 15
German insurance companies from around 4.6 million customers described in Christmann
(2004).

7
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Medicine

This data set is based upon an application in intensive care medicine described in Morik
et al. (2000). The classification task is to predict whether the dosage of a certain drug
should be increased on the basis of vital signs of intensive care patients.

Data sets for regression

In addition to the numerous classification data sets, we also examined two regression data
sets, a real life one and an artificial one. The real life data set is the well-known Boston
Housing data set from the UCI Machine Learning Repository, see Blake and Merz (1998).
It contains the data from 506 suburbs of Boston. The task is to estimate the median value
of owner-occupied homes depending of 13 input variables like e.g. crime rate, highway
accessibility, number of teachers and air pollution.

The artificial data set is one of the problems described in Friedman (1991). For this
regression problem, we created 400 realizations of the random variables x1 − x5 which are
all uniformly distributed on [0,1]. The target variable y depends on x1 − x5 through the
functional y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + e, with e ∼ N(0, 1).

4.4 Numerical results

For safety reasons we used a very fine grid (25× 25 grid points) which is much finer than
usually used in practice. The grid values used in our research were γ = eci and C =
10ci . The coefficients ci were 25 equidistant points spreaded over the interval [−5, 5] (i.e.
−5 , −5+1 ·10/24 , . . . , −5+23 ·10/24 , 5). Therefore the performance of the grid search
should be close to the optimum and may be better than observed in real applications.

In order to plot response surfaces for SVR we constantly set ε = 0 so that the optimization
is still in two dimensions. The starting point for pattern search was (C, γ) = (1, 1) and the
starting simplex for the Nelder-Mead algorithm consisted of the points (C1, γ1) = (1, 1),
(C2, γ2) = (10, 1) and (C3, γ3) = (1, e). For the stopping rules we used τ = 10−3 for pattern
search and a relative change of 1.5 · 10−8 for the Nelder-Mead-algorithm.

The computational effort was immense due to the fine grid. Overall it took approximately
three months (!) of pure computation time on an Opteron 248 Processor with 2.2 GHz.

The main results are:

• No method performs best everytime. Based on our research, pattern search offers
a good compromise between accuracy and computational effort if an extensive grid
search can not be done.

• Sometimes the grid search could be beaten by other methods slightly, although we
used a rather fine grid.

• Often one can approximate the result of the grid search by other methods and simul-
taneously reduce the computation time by a large factor (say around 5 to 30).

• Nelder-Mead sometimes performs very good w.r.t. both criteria, but sometimes it
needs too much computation time. Fine-tuning of the parameters for inflation or
deflation of the Nelder-Mead algorithm may be helpful.

8



DETERMINATION OF HYPER-PARAMETERS FOR KERNEL BASED METHODS

SVM KLR
error rate No. Eval error rate No.Eval

Grid 0.115 625 0.115 625
Random 0.140 100 0.153 100b3

Nelder-Mead 0.140 13 0.134 756
Pattern 0.146 41 0.153 33
Grid 0.000 625 0.000 625

Random 0.010 100 0.007 100balance
Nelder-Mead 0.003 759 0.000 9

Pattern 0.000 53 0.014 21
Grid 0.028 625 0.029 625

Random 0.031 100 0.034 100breast
Nelder-Mead 0.041 7 0.031 769

Pattern 0.028 37 0.028 41
Grid 0.188 625 0.186 625

Random 0.191 100 0.187 100covtype
Nelder-Mead 0.191 44 0.185 770

Pattern 0.186 69 0.187 77
Grid 0.000 625 0.000 625

Random 0.027 100 0.038 100dermatology
Nelder-Mead 0.391 3 0.391 3

Pattern 0.000 29 0.391 5
Grid 0.224 625 0.220 625

Random 0.229 100 0.236 100diabetes
Nelder-Mead 0.286 9 0.223 27

Pattern 0.227 57 0.225 49
Grid 0.003 625 0.003 625

Random 0.043 100 0.031 100digits
Nelder-Mead 0.003 17 0.001 756

Pattern 0.003 33 0.004 45
Grid 0.037 625 0.037 625

Random 0.037 100 0.037 100directmailing
Nelder-Mead 0.037 7 0.037 3

Pattern 0.037 17 0.037 5

Table 1: Comparison of numerical results of four methods to determine useful hyper-
parameters.
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SVM KLR
error rate No. Eval error rate No. Eval

Grid 0.004 625 0.004 625
Random 0.007 100 0.012 100insurance

Nelder-Mead 0.002 756 0.002 15
Pattern 0.001 53 0.002 89
Grid 0.043 625 0.043 625

Random 0.046 100 0.048 100ionosphere
Nelder-Mead 0.046 761 0.046 760

Pattern 0.043 45 0.040 41
Grid 0.000 625 0.000 625

Random 0.000 100 0.000 100iris
Nelder-Mead 0.000 9 0.000 9

Pattern 0.007 9 0.007 17
Grid 0.270 625 0.264 625

Random 0.278 100 0.293 100liver
Nelder-Mead 0.339 34 0.261 764

Pattern 0.290 65 0.272 61
Grid 0.196 625 0.193 625

Random 0.197 100 0.196 100medicine
Nelder-Mead 0.195 786 0.193 39

Pattern 0.197 77 0.191 61
Grid 0.000 625 0.000 625

Random 0.002 100 0.003 100mushroom
Nelder-Mead 0.482 3 0.482 3

Pattern 0.000 49 0.000 57
Grid 0.123 625 0.132 625

Random 0.566 100 0.594 100promoters
Nelder-Mead 0.566 5 0.651 3

Pattern 0.566 9 0.066 73
Grid 0.032 625 0.037 625

Random 0.034 100 0.039 100voting
Nelder-Mead 0.041 23 0.037 15

Pattern 0.032 41 0.034 53
Grid 0.011 625 0.011 625

Random 0.011 100 0.028 100wine
Nelder-Mead 0.022 15 0.022 13

Pattern 0.011 37 0.011 37

Table 2: Comparison of numerical results of four methods to determine useful hyper-
parameters.
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SVM
msep No. Eval

Grid 0.0425 625
Random 0.0437 100

benchartificial Nelder-Mead 0.0422 235
Pattern 0.0427 97

Cherkassky/Ma 0.0790 1
Grid 0.1183 625

Random 0.2293 100
boston Nelder-Mead 0.1167 1573

Pattern 0.1167 81
Cherkassky/Ma 0.2367 1

Table 3: Comparison of numerical results of five methods to determine useful hyper-
parameters.

• The response surfaces (as shown in the appendix) often show plateaus for inappro-
priate choices of the hyper-parameters. This could be expected as for bad choices of
the hyper-parameters the estimated response ŷ in the classification case collapses to
a default one.

• Sometimes, the results differ grossly between SVM and KLR. Nevertheless the re-
sponse surfaces of SVM and KLR have similar shapes.

• Most often there is no single optimal choice of the hyper-parameters but a connected
region of optimal values.

• Although for every fixed combination of hyper-parameters the optimization problem
is convex the above results show that we do not have a convex optimization problem
in terms of the hyper-parameters.

• For the tested examples the response surfaces look very similar to each other with a
kind of ”J” shape.

• In most cases the level change in the target function is approximately parallel to the
input parameters. Hence pattern search often performs as good as the more flexible
Nelder-Mead method as it performs axes parallel optimization steps.

• The optimal region is always in the upper-left quadrant of the contour plot. A further
increasing of C would not change the result as long as C is larger than all Lagrangian
multipliers in the internal optimization of SVM and KLR (for details see Schölkopf
and Smola (2002) and Keerthi et al. (2004)). A further reduction of γ would not
change the result as with a small γ the kernel values converge to 1 (5).
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5. Conclusion

The response surface for optimization of hyper-parameters for convex risk minimization
methods turns out to be non-convex. No method performs best in every case but pattern
search seems to be a good compromise between accuracy and computational effort. On
the other hand grid- and random search are easily parallelized so if computational time is
important and many processors are available grid search may be the method of choice.

A promising direction for further research can be the modelling of the typical shape of the
response surface. An optimization method that exploits the typical shape of the response
surface might result in additional improvements.
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Appendix: Figures of Response Surfaces
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Figure 1: Response surface for b3 data
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Figure 2: Response surface for balance data
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Figure 3: Response surface for breast data
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Figure 4: Response surface for covtype data
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Figure 5: Response surface for dermatology data
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Figure 6: Response surface for diabetes data
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Figure 7: Response surface for digits data
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Figure 8: Response surface for directmailing data
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Figure 9: Response surface for ionosphere data
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Figure 10: Response surface for iris data
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Figure 11: Response surface for liver data
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Figure 12: Response surface for medizin data
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Figure 13: Response surface for mushroom data
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Figure 14: Response surface for promoters data
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Figure 15: Response surface for versicherung data
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Figure 16: Response surface for voting data
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Figure 17: Response surface for wine data
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Figure 18: Response surface for benchartificial data
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Figure 19: Response surface for boston data
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