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Two onneted models for varying amplitudesin BTA-deep-hole-drillingWinfried Theis, Laurie Davies and Claus WeihsSeptember 23, 2005AbstratTwo models are proposed to roughly approximate the observed be-haviour of the amplitude of the drilling torque in the BTA-deep-hole-drilling proess. It is shown that these models are losely onneted.1 IntrodutionBTA-deep-hole-drilling is a proess for the prodution of holes with a highlength to diameter proportion. In our ase the boring tool has a diameterof 60mm and the holes are 500mm long. The proess produes holes of highquality with respet to straightness and roughness of the hole-wall. Butbeause of the exibility of the boring tool/toolbar assembly the proess isvulnerable to dynami disturbanes suh as hatter and spiralling. For moredetails see e.g. Weinert et al. (2002).In this paper we fous on the modelling of hatter. We do not try to ex-pliitly model this phenomenon, but ompare di�erent approahes to desribethe phenomena observed in the drilling torque of experiments in whih hat-ter was observed. Figure 1 gives two examples of time series of the drillingtorque. From these series it an be seen that there exists more than one statein the proess.
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Figure 1: Two time series (Exp. 1 and 21a) of the drilling torque fromexperiments at the same parameters f = 0:185mm=rev, v = 90m=min and_V = 300l=minThe next �gure shows the spetrograms of the time series above. Thesespetrograms show learly that the hatter is dominated by single frequenies,whih led to the idea of modelling the variation of these frequenies.

Figure 2: The spetrograms of the time series in Figure 1To give an impression of the development of the amplitudes over time themost prominent frequenies in these spetrograms are plotted over time inFigure 3.
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Figure 3: The amplitudes of most prominent frequenies 234Hz (blak; highin the middle), 703Hz (dark grey; high in the last part) and 1182Hz (lightgrey; high in the beginning) plotted over time2 Approximating the amplitudes by a two-sided logisti modelThe main goal in this part of the analysis is to desribe the main features ofthe variation of the amplitudes. From Figure 3 it is obvious that the funtionmust allow for a very steep asent and then staying on a ertain level for sometime and then a similar steep desent. Another form observed in the data isa small jump and the a long desent. Both features had to be inluded in thefuntion to approximate the data. The basi funtional form for the modelis the following:g(x; a;m;d) = a1 + exp ��x+m1d1 �+ exp �x�m2d2 � + exp�� (d2�d1)x+d1m2�d2m1d1d2 �(1)The parameters in the funtion have the following e�ets: a determines themaximal value of the funtion if m1 � m2 whih determine the position ofthe middle of the rise or fall, resp., d1 and d2 determine the slopes in m1 andm2.Figure 4 shows two parameter settings for this funtion, whih exhibitthe requested behaviour.
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Figure 4: g(x; a;m;d) for m1 = 10, m2 = 40, and d1 = 2 = d2 on theleft-hand side, and m1;2 = 10 and d1 = 2 and d2 = 1000 on the right-handside.Sine in some experiments several hanges in the hatter frequenies wereobserved, several funtions of this form give a omplete desription of theamplitudes over time. Figure 5 shows �ts of these funtions to amplitudesfrom Figure 3.

Figure 5: Upper Panels: Fits of sums of the basi funtion to the amplitudes;Lower Panels: Observations; Left: 1182Hz from the �rst Experiment; Right:703Hz from seond Experiment.
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3 A dynami modelIn Weinert et al. (2002) the following di�erential equation was proposed asa general model for the desription of the hatter:d2M(t)dt2 + h(t)(b2 �M(t)2)dM(t)dt + !2M(t) = W (t) (2)t 2 [0;1) and 200 � ! � 2500 in our appliation, h : R ! R an integrablefuntion, b 2 R, and W (t) a white noise proess. In a �rst step, this equationis onsiderably simpli�ed, when M(t) is taken as a harmoni proess. LetM(t) := g(t) os(!t+ �):dM(t)dt = dg(t)dt os(!t+ �)� !g(t) sin(!t+ �);d2M(t)dt2 = d2g(t)dt os(!t+ �)� 2!dg(t)dt sin(!t+ �)� !2g(t) os(!t+ �)First, we note that the term !2g(t) os(!t + �) is eliminated by substitut-ing the derivations in (2). Seond, dg(t)dt does not ontain high-frequeny-omponents and thus, the following holdsZ dg(t)dt os(!t+ �)dt � 0:This means that for the solution of the di�erential equation the terms notontaining the frequeny ! have no e�et beause they are eliminated byintegration. Therefore, (2) an be replaed by�! sin(!t+ �)�2dg(t)dt + h(t)g(t)(b2 � g(t)2 os2(!t+ �))� = W (t): (3)Now os2(!t+ �) = (1� os(2!t+ 2�))=2, and os(2!t+ 2�)) has mean 0.So we get:�! sin(!t+ �)�2dg(t)dt + h(t)g(t)(b2 � g(t)22 )� = W (t): (4)Multiply (4) with sin(!t+�), and note that W (t) sin(!t+�) behaves similarto white noise. Moreover, note that sin2(!t + �) � 1=2. It follows for theamplitude that dg(t)dt + h(t)2 g(t)(b2 � g(t)22 ) = W (t)! : (5)This is the amplitude-equation for the di�erential equation in (2), if there isonly one frequeny in the proess. 5



4 Connetion of the di�erential equation tothe logisti funtionNow assume that the logisti funtion from setion 2 is the right form forg(t). Then it has to be shown that there is a funtion h(t) so that equation(5) has a solution. To show this, white noise is replaed by 0 to make thealulations more straightforward. Furthermore we redue the problem tothe upward jump in the funtion for symmetry reasons.Set g(t) := a1 + exp �� t�t0d � ;it follows dg(t)dt =  �exp �� t�t0d �d ! � a�1 + exp �� t�t0d ��2! :Inserting these formulas into (5) we get2 exp �� t�t0d � ad �1 + exp �� t�t0d ��2 +h(t) ab21 + exp �� t�t0d � � a32 �1 + exp �� t�t0d ��3! = 0Subtrating the �rst term on both sides:h(t) 2ab2 �1 + exp �� t�t0d ��2 � a32 �1 + exp �� t�t0d ��3 ! = �2 exp �� t�t0d � ad �1 + exp �� t�t0d ��2 :Beause the term in brakets on the left hand side is never 0, it is possibleto divide by it. It followsh(t) = �2 exp �� t�t0d � �1 + exp �� t�t0d ��d�b2 �1 + exp �� t�t0d ��2 � a22 �This solution is well-de�ned for t 2 R. So (g; h) is a pair of funtions, whihsolves equation (5).5 Disretisation of the amplitude equation andsimulationsThe disretisation of equation (5) is given byg(t+ 1)� g(t) = �b2h(t)2 g(t) + h(t)4 g(t)3 + "t (6), g(t+ 1) = �1� b2h(t)2 � g(t) + h(t)4 g(t)3 + "t: (7)6



Here " is a disrete white noise proess, e.g. normal white noise.The latter relation is used to estimate h(t) from the amplitudes for fre-queny 703 Hz in the experiment displayed in Figure 3 in the right-handpanel. Taking 21 suessive observations of the amplitude and omitting theubi term in (6), the slope { whih is essentially h(t) { displays the behaviourshown in Figure 6.

Figure 6: Slopes of the linear part in (6) over timeThe horizontal grey urve in Figure 6 shows the result of the loess-smoother (Cleveland et al. (1992)) inluding 75% of the data in the �t ofeah point. This urve is similar to a logisti funtion like the funtion h(t)found in the last setion. The sign hange indiated by the vertial greyline marks the turnover from stable to instable behaviour of this reursiveformula. Obviously it is a lot earlier { at about 170mm { than the atualrise of the amplitude whih does not happen until 300mm. This makes thisestimate a andidate for an alarm signal for hatter.As shown by Davies (1983) the atual shift from one state of the systemto another is postponed by noise. In Figure 7 this an be seen for simulateddata knowing that the hange point was set to t0 = 160mm ompared to7



the atual rise at t = 400mm. Furthermore, Figure 7 demonstrates that thebehaviour of the simulated data is not far from the real data although it doesnot apture the obvious trend towards the end of the proess.All these observations ombined show the appropriateness of the modeland the possibility to detet a hange in state of the system long before ittruely has an impat on the output of the system.

Figure 7: Comparison of a simulated amplitude (blak) to a real amplitude(grey)When h(t) is hanged to the funtion orresponding to the two-sidedlogisti funtion from equation (1) so that it returns below 0 after some timethe proess will return to the stable state again with a small delay as an beseen in Figure 8.
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Figure 8: Simulation of reursive formula with h(t) returning below 0; Startof instable proess t0 = 100, end t1 = 400Using the alulated (one-sided) h(t) from Setion 4 with the parametervalues estimated on the real data (again on the data from Figure 3), we gete.g. the result shown in Figure 9.
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Figure 9: Example for a result of a simulation with the alulated h(t)From Figure 9 it is obvious that the simulated data does not reah themaximal amplitude of the observed data. We tested a broad range of possiblevalues for the free parameter b in (5) between [10�6; 106℄ but did not �nd abetter result. This shows that an appropriate hoie for the parameters inthe reursive formula { and therefore in the di�erential equation { annotbe obtained by approximating the observed urve by the (one-sided) logis-ti funtion (or the funtion g(x; a;m;d) from equation (1)) and using theparameters from this approximation as estimates.A major drawbak of the �rst simulated data was its total smoothnesswhen reahing its maximum. The real data displays a lot more variationwhen the hattering state is reahed. Two ways were onsidered to inludethis feature into the simulation funtion. One way was to hange the distri-bution of the noise to a �-distribution with a hanging expeted value andvariane whih was motivated by the distribution of periodogram ordinatesdetermined in Theis (2004). This turned out to be absolutely inpreditableompared to the �rst approah with normal distributed noise. The seondapproah was to postulate that the variane is subjet to a shift, as well,when the system hanges from stable to instable.10
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Figure 10: Simulated amplitudes with time-varying variane of the noise, allfrom the same parameters of the simulation funtion.Figure 10 gives an impression of di�erent possible behaviours of data withhanging variane. The solid line displays the sought-after higher varianein the upper part but again does not reah the needed height and the otherlines show learly that this inreased variane may eliminate the e�et of thehanged state ompletely.6 ConlusionIt was shown that the hosen method for the approximation of the variationof the amplitude is diretly onneted to the proposed phenomenologialmodel.Furthermore, a possible way to estimate the time of the shift from stableto instable behaviour from the observations of the amplitudes was found byestimating the parameter of the linear part of the amplitude equation fromwindows of the observed data. The smoothed development of this parameterould be used as another alarm signal for a hattering state.11



The simulations showed that the derived amplitude equation with thealulated funtion h is not yet appropriate for the approximation of theobserved behaviour of the amplitudes. Extensions in the stohasti part ofthe model were tested to inorporate the fat that the observations display ahigher variability in the hattering state. Two ways of inlusion of this featureof the data were tested. On the one hand a �-distribution was used for thedisturbanes, whih led to an inadequate behaviour of the simulated series.On the other hand a hange in the variane parallel to the hange of thestability parameter was introdued, whih looked slightly more appropriatebut also did not reah the goal ompletely.AknowledgmentsThis work has been supported by the Collaborative Researh Centre \Re-dution of Complexity in Multivariate Data Strutures" (SFB 475) of theGerman Researh Foundation (DFG).ReferenesW.S. Cleveland, E. Grosse and W.M. Shyu (1992): Loal regressionmodels. Chapter 8 of Statistial Models in S eds J.M. Chambers andT.J. Hastie, Wadsworth & Brooks/Cole.L. Davies (1983): Bifuration in the presene of oloured noise, Vorlesun-gen aus dem Fahbereih Mathematik der Universit�at Essen, Heft 10,229-232W. Theis (2004): Modelling Varying Amplitudes, Dissertation, FB Statis-tik, Universit�at Dortmund,http://eldorado.uni-dortmund.de:8080/FB5/ls7/forshung/2004/TheisK. Weinert, O. Webber, M. H�usken, J. Mehnen, W. Theis (2002):Analysis and Predition of Dynami Disturbanes of the BTA DeepHole Drilling Proess, Proeedings of the 3rd CIRP International Sem-inar on Intelligent Computation in Manufaturing Engineering
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