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Airline Schedule Buffers and Flight Delays:
A Discrete Model

by

Jan K. Brueckner, Achim I. Czerny and Alberto A. Gaggero∗

1. Introduction

Flight delays, fueled by the historic growth in air travel, represent a substantial problem

for passengers and airlines worldwide. Flight times are influenced by many random daily

factors, including weather, mechanical issues, and unanticipated congestion. Airline scheduling

practices address these random influences through the use of “schedule buffers,” which include

flight buffers (denoted “block-time buffers” in the industry) and ground buffers. A buffer is the

amount added to minimum feasible flight or ground time to get the scheduled flight or ground

time. Flight buffers reduce the chance that an individual flight is late, and flight and ground

buffers jointly address the problem of delay propagation, where a late inbound flight leads to

late departure of the subsequent flight and then its late arrival. According to USDOT data,

a late inbound aircraft is the primary cause of a subsequent arrival delay.1 Ground buffers,

which add extra time between flights, are especially well suited to addressing this problem.

Brueckner, Czerny and Gaggero (2020) (hereafter BCG) presented a stylized analysis of the

choice of schedule buffers, using a model where the random shocks affecting flight durations

are continuous random variables. They also offered empirical tests of some of the model’s

predictions. Because of its continuous formulation, their theoretical analysis was complex,

although it yielded a number of intuitive conclusions. The purpose of the present short paper

is to revisit the buffer-choice problem in a simpler model where the random shocks influencing

flight times are discrete. In addition to providing greater transparency, the analysis yields

closed-form solutions for the buffers as well as full comparative-static results, neither of which

were available in the earlier paper. The study thus provides a fuller insights into a conceptually

intriguing optimization problem.

∗ We thank Kangoh Lee for comments, but the usual disclaimer applies.
1 See Brueckner, Czerny and Gaggero (2020) for details of the Department of Transportation data.
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Previous theoretical work on the buffer-choice problem can be found in papers by Desh-

pande and Arikan (2012), Arikan, Despande and Sohoni (2013), and Kafle and Zou (2016),

which also have empirical components. Studies by Hao and Hansen (2014) and Kang and

Hansen (2017), which analyze the choice of scheduled flight times, are closely related. See

BCG for additional references.

The analysis in section 2 of the paper presents a model with just a single flight, which

serves as a benchmark for the main two-flight model developed in section 3. Section 4 presents

extensions of the two-flight model by assuming that the random shocks to flight durations are

correlated rather than independent and considering stochastic ground times. Section 5 offers

conclusions.

2. Single-Flight Model

Consider first a model with just a single flight, denoted 1. The duration of an undisrupted

flight is f1 = m, with a random amount ε1 ≥ 0 added to m to generate the actual flight

time. With probability 1 − p, no flight disruption occurs, so that ε1 = 0. With probability

p, the flight is disrupted, with ε1 taking a value e > 0 that reflects the influences of weather,

mechanical issues and other factors. Therefore, the flight duration equals m with probability

1 − p and m + e with probability p.

Because of the possibility of a flight disruption, the airline sets the scheduled duration of

the flight to be longer than m by use of a flight buffer b1 > 0. With departure at time zero,

the scheduled arrival time is then given by ta1 = m + b1. If there is no flight disruption, with

the duration then equal to m, the flight arrives b1 minutes early. If a disruption occurs, then

the flight arrives e − b1 minutes late if b1 < e, while it arrives b1 − e minutes early if b1 > e.

Passengers dislike being late or early, with the parameters x and y capturing lateness and

earliness costs, which depend on the squares of the times late or early.2 For example, with no

flight disruption, the early cost is yb2
1, whereas a flight disruption when b1 < e leads to a late

cost of x(e− b1)
2. Since the inconvenience of a late flight is greater than that of an early flight,

2 Using squared values generates the required nonlinearity in the optimization problem.
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x > y is assumed. The expected early/late cost is given by

(1 − p)yb2
1 +

{

px(e − b1)
2 if b1 < e

py(b1 − e)2 if b1 ≥ e.
(1)

In addition to the expected value in (1), the airline considers other costs in choosing the

magnitude of the flight buffer. These elements are the cost of operating the flight, which include

expenditures on fuel and crew salaries, and the cost of ground time, which consists mainly of

gate rental costs. To facilitate comparison with the two-flight model, where ground time is

present, the single-flight model also includes ground time, as follows. Suppose that the airline

has leased the aircraft for a fixed period T that more than covers the flight time. Scheduled

flight time is m+ b1 and scheduled ground time following the flight equals T − (m+ b1) > 0, so

that the airline’s lease leaves “excess capacity.” The leasing cost is fixed, but with cf denoting

the cost per minute of scheduled flight time and cg denoting the cost of scheduled ground time,

total operating costs are cf (m+b1)+cg(T −(m+b1)), which equals a constant plus (cf −cg)b1.

Realistically, the analysis assumes that flight time is more expensive than ground time, so that

cf > cg, an assumption that also eliminates some complexity.

The profit-maximizing airline chooses b1 to minimize the sum of (1) and (cf −cg)b1.
3 Since

this expression is increasing in b1 when b1 ≥ e (in which case the second line of (1) applies),

the airline will not set b1 at or above e, instead choosing b1 < e. The first-order condition for

b1, which makes use of the first line of (1), is then

2(1 − p)yb1 − 2px(e − b1) + cf − cg = 0, (2)

which yields the solution4

b∗1 =
px

px + (1 − p)y
e −

cf − cg

2[px + (1 − p)y]
. (3)

3 Letting v denote the fixed benefit from air travel, a passenger’s willingness-to-pay for a ticket equals v
minus (1), or travel benefit minus expected late/early cost, which equals the airfare F . Normalizing the flight’s
passenger capacity to unity, revenue is then F , and profit equals v minus (1) minus (cf − cg)b1 minus the
constant (cf − cg)m. Choosing b1 to minimize (1) plus (cf − cg)b1 thus maximizes profit. Note that since this

objective function represents social cost, a planner would make the same choice as the airline.
4 Since (2) is increasing in b1, the solution represents a minimum.
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Parameter values are assumed to take values that make this b∗1 solution positive, an as-

sumption that pertains to all subsequent buffer solutions. Note that the solution in (3) sets b1

equal to a fraction of e minus a positive term involving cf and cg. Since b∗1 < e, the buffer is

then chosen so that the flight arrives late with probability p. From (3), b∗1 is naturally increasing

in e and decreasing in cf − cg. Since it is easily seen that the factor multiplying e is increasing

in x and p, and since the ratio involving cf − cg is decreasing in x and decreasing in p (given

cf > cg), it follows that b∗1 increases with x and p as well (the buffer also decreases with y).5

Thus, the buffer naturally rises with lateness cost and the probability of a flight disruption,

and falls with earliness cost. Summarizing yields6

∂b∗1
∂e

> 0,
∂b∗1
∂cf

< 0,
∂b∗1
∂cg

> 0,
∂b∗1
∂x

> 0,
∂b∗1
∂y

< 0,
∂b∗1
∂p

> 0. (4)

Noting that the variance of the flight disruption equals p(1 − p)e2, (4) implies that a higher

variance, whether its source is a higher p or a higher e, raises b∗1 (this conclusion requires that

p is realistically less than 1/2).7

3. Two-Flight Model

3.1. The setup

The aircraft in the single-flight model is now assumed to make a second flight, carrying a

different group of passengers from flight 1’s destination city to a second destination. Note that,

with the passenger groups on the two flights being separate, connecting passengers are absent.

However, a group of passengers whose trips require a flight connection could be incorporated

with only minor changes in the analysis.

The second flight has the same undisrupted duration as flight 1, with f2 = m, so that

actual flight time equals m + ε2, where ε2 equals e with probability p and zero otherwise.

The random terms ε1 and ε2 are assumed to be independent, so that the forces leading to

5 The last conclusion follows from factoring out the common term in the denominators of (3), which is
decreasing in y, and noting that the remaining expression is positive when b1 > 0.

6 The effects of x, y, cf and cg on b1 in the model of BCG take the same signs as in (4).
7 The variance is Eε2

1
− (Eε1)

2 = pe2 − (pe)2, yielding the expression in the text.
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flight disruptions are not common across the flights (the correlated case is considered below).8

Despite this independence, a late arrival of flight 1 can cause a late departure and possibly

a late arrival for flight 2, leading to delay propagation. The resulting linkage between the

performance of the two flights is central to the analysis.

The aircraft’s scheduled ground time between the flights is denoted tg, and it must be

at least as large as the minimum feasible turnaround time for the aircraft, denoted tg. This

minimum time equals the interval required for the deplaning and boarding of passengers as

well as the cleaning and refueling of the plane. The ground buffer is the difference between tg

and tg, which equals the extra scheduled ground time beyond the minimum required, and it is

denoted by bg = tg − tg. The ground buffer is an instrument for reducing delay propagation,

as seen in the following analysis.

The scheduled departure time of flight 2, denoted td2, equals the scheduled arrival time of

flight 1 plus the scheduled ground time, or td2 = m + b1 + tg. If ε1 = 0, so that flight 1 is

not delayed, instead arriving early, then flight 2 departs on time. However, if flight 1 arrives

late, then flight 2’s departure may be delayed. Late departure occurs if the earliest possible

departure of flight 2, which equals flight 1’s arrival time plus the minimum turnaround time,

exceeds td2, flight 2’s scheduled departure time. In other words, late departure occurs if

m + e + tg > m + b1 + tg = td2. (5)

Recalling bg = tg − tg and rearranging, (5) reduces to

b1 + bg < e. (6)

Thus, if flight 1 is delayed, flight 2 departs late when b1 and bg satisfy (6), departing on time

otherwise.

8 Since flight 1’s destination airport is flight 2’s origin, weather at this airport could affect both flights, in
which case ε1 and ε2 would be positively correlated. While this possibility is incorporated in the analysis in
section 4, other sources of disruption are likely to be independent across the flights.
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The focus of flight 2’s passengers, however, is on their arrival time, not their departure

time. If flight 2 departs on time, then the analysis of its arrival time follows the single-flight

case. The expected late/early cost for its passengers is given by the expression that pertains

to the single-flight case, equal to (1) with b2 in place of b1.

If flight 2 departs late, then derivation of its arrival time is more involved. Flight 2’s

scheduled arrival time is ta2 = m + b1 + tg + m + b2, with the last two terms capturing the

scheduled duration of flight 2. When flight 2 departs late, its actual arrival time is equal to

the departure time m + e + tg plus m + ε2. When ε2 = 0, late arrival occurs when

m + e + tg + m + 0 > m + b1 + tg + m + b2 = ta2, (7)

or when

b1 + b2 + bg < e, (8)

with early arrival occurring when the inequality (8) is reversed. When ε2 equals e instead of

0, the zero on the LHS of (7) is replaced by e, and the condition (8) for late arrival of flight 2

is replaced by

b1 + b2 + bg < 2e. (9)

Early arrival of flight 2 when ε2 = e occurs when the inequality in (9) is reversed.

Table 1 shows how all this information can be used to build the airline’s objective function

for choosing b1, b2, and bg. The first column of the table shows the different combinations of the

random terms ε1 and ε2, with the second column showing the probabilities of the combinations.

The third column shows the late/early cost for flight 1 passengers. The single-flight expression

in (1) can be generated from the table by just focusing on flight 1. The different expressions

in the “Flt. 1 Early/Late Cost” column would be multiplied by their associated probabilities

and summed, an exercise that leads to (1). To incorporate flight 2, the expressions in the

“Flt. 2 Early/Late Cost” column would also be weighted by their associated probabilities and

summed, with the resulting expression added to (1) to get expected late/early cost for both

flights.9 While (1) itself is fairly simple, the resulting composite expression is much more

9 Note that “Early/Late Cost” expressions for flights 1 and 2 that appear in the same row of Table 1 have
no relation to one another aside from their appearance in the same “Random Outcome” block of the table.
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complicated, involving many more conditional statements of the type b1 + bg > e, etc. But

the same approach used in excluding the second line of (1) can be applied more broadly to

generate a set of solutions for all three buffers.

To better understand the entries in the “Flt. 2 Late/Early Cost” column, observe that

in rows 1–3, ε1 = 0 means that flight 2 departs on time (noted in the next column), which

in turn implies that the early/late cost expressions for flight 2 are the same as those in the

single-flight case. In row 4, ε1 = e, but with b1 + bg ≥ e assumed, flight 2 departs on time, and

since ε2 = 0 in these rows, flight 2 is early, with early cost of yb2
2. For the next two entries (in

rows 5 and 6), b1 + bg < e is assumed, so that Flight 2 departs late. Then, late/early arrival is

governed by (8) and the reverse inequality, with late time equal to e− (b1 + b2 + bg) and early

time the negative of this expression. In rows 7 and 8, ε2 = e, but flight 2 departs on time, so

that the single-flight expressions apply for flight 2. In rows 9 and 10, flight 2 departs late, and

late/early arrival is governed by (9), with the late/early times adjusted accordingly.

3.2. Derivation of b∗1 and b∗2 solutions

Excess capacity is absent in the two-flight model,10 so that the cost of scheduled flight and

ground time is cf(b1 + b2) + cgbg plus the constant cf (2m). The airline’s goal is to minimize

expect late/early cost plus the first of these expressions. It is useful to consider the first-order

condition for bg first. Differentiating the relevant expressions in Table 1, this condition is11

− 2p(1 − p)x(e − (b1 + b2 + bg)) if b1 + bg < e and b1 + b2 + bg < e

+ 2p(1 − p)y(b1 + b2 + bg − e) if b1 + bg < e and b1 + b2 + bg > e

− 2p2x(2e − (b1 + b2 + bg)) if b1 + bg < e and b1 + b2 + bg < 2e

+ 2p2y(b1 + b2 + bg − 2e) if b1 + bg < e and b1 + b2 + bg > 2e

+ cg = 0. (10)

10 BCG explore the effects of changing the current excess-capacity assumptions by adding it to the two-flight
model, so that extra ground time exists after flight 2. In the current setting the buffers would then be set to
eliminate the chance of late arrival for flight 2, as in BCG. The effect of removing excess capacity from the
single-flight model can also be investigated.
11 Since the bg-derivative of (10) is positive, the second-order condition is satisfied.
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While (10) is not immediately useful in solving for bg, it can be used to solve for b1 and b2,

eventually leading to a bg solution. In differentiating the flight-2 components of the objective

function with respect to b1, the derivative contains the first four lines of (10), as can be seen

from differentiating the expressions in rows 5–6 and 9–10 of Table 1 with respect to b1. But from

(10) itself, the sum of the first four lines of (10) must equal −cg at the optimum. Therefore, the

derivative of the flight-2 components of the objective function with respect to b1 equals −cg.

With the derivative of the above cost function equal to cf , it remains to add the derivative

of the flight-1 components of the objective function. As noted above, these components equal

the single-flight expression (1), which means that the derivative is equal to the first two terms

in (2). Adding cf − cg, the first-order condition is then identical to the condition (2) from the

single-flight model.12 Therefore, the optimal value of b1 in the two-flight model is the same as

the solution b∗1 in the single-flight model.

This result also emerges in the analysis of BCG. The implication is that flight 1’s buffer,

being the same as in the single-flight model where delay propagation is absent, plays no role in

addressing delay propagation in the two-flight model. As a result, delay propagation is dealt

with entirely by flight 2’s buffer and the ground buffer. The intuitive explanation is that,

while a lengthening of flight 1’s buffer to address delay propagation would distort its role in

balancing early and late costs for flight 1, the ground buffer offers a superior, nondistorting

instrument for addressing propagation. Therefore, reliance on flight 1’s buffer is inefficient.

From the solution in (3), b∗1 is less than e. It is easy to see that b∗1 + b∗g must also be less

than e, using (10). To proceed, suppose to the contrary that b∗1 + b∗g ≥ e. Then none of the

conditions in the first four lines is satisfied, so that the derivative of the objective function

with respect to bg equals cg. With the function thus increasing in bg when b1 + bg ≥ e, values

that satisfy this inequality cannot be optimal, so that the optimum must satisfy b∗1 + b∗g < e.

As a result, under the optimal ground buffer, flight 2 departs late when flight 1 arrives late,

otherwise departing on time. Note that the costliness of ground time means that it is not

optimal to eliminate the chance of late departure for flight 2. The ground buffer, however,

reduces the extent of the departure’s lateness. While flight 1 arrives e− b∗1 minutes late, flight

12 The second-order condition is again satisfied here and in the choice of b2 below.
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2 departs e − b∗1 − b∗g minutes late, a smaller value.

In differentiating the objective function with respect to b2, satisfaction of b∗1 + b∗g < e rules

out the flight-2 cases in rows 4, 7, and 8 of Table 1, leaving only the cases where flight 2 departs

late. As with b1, the b2 derivative of the flight-2 components in lines 5–6 and 9–10 is the same

as the first four lines of (10). With bg chosen optimally, this derivative is then again equal to

−cg. Initially assuming b2 ≥ e and differentiating the remaining flight-two components in rows

1 and 3, the result is then added to cf (the b2-derivative of the cost term) minus cg, yielding

2(1 − p)2yb2 + 2(1 − p)py(b2 − e) + cf − cg. Positivity of this expression means that b2 < e

must instead be optimal, and using rows 1 and 2 then yields the first-order condition

2(1 − p)2yb2 − 2(1 − p)px(e − b2) + cf − cg = 0. (11)

and the solution

b∗2 =
px

px + (1 − p)y
e −

1

1 − p

cf − cg

2[px + (1 − p)y]
. (12)

This solution is the same as the single-flight solution on the RHS of (3) except for the

1/(1 − p) term in the second expression. This term, being larger than 1, makes the solution

smaller than the RHS of (3). Therefore, the optimal value of b2 in the two-flight model is

smaller than the single-flight value. To understand this conclusion, recall that flight 2’s buffer

and the ground buffer are together responsible for addressing early/late arrival of flight 2.

When flight 2 departs late, b2 and bg are in fact perfect substitutes in this task, given that

they appear in summation form in lines 5–6 and 9–10 in Table 1. But since cf > cg, b2 is a

more expensive instrument than bg, making usage of the ground buffer preferable and pushing

b2 toward zero. However, b2 still plays a role in addressing flight 2’s late arrival when the flight

departs on time, as seen in lines 1-3 of Table 10. Therefore, b2 is not set at zero, but downward

pressure from the late-departure case makes it optimal to set b2 below the single-flight value.

The effects of the parameters on b∗2 are the same as the effects on b∗1 with the exception

of the effect of p, which is ambiguous. The reason for this ambiguity is that the increase

in 1/(1 − p) when p rises offsets the decrease in the last ratio in (12), leaving the net effect

9



unclear.13 Summarizing yields

∂b∗2
∂e

> 0,
∂b∗2
∂cf

< 0,
∂b∗2
∂cg

> 0,
∂b∗2
∂x

> 0,
∂b∗2
∂y

< 0,
∂b∗2
∂p

> (<) 0. (13)

In contrast to (13), the model of BCG, because of its greater complexity, was unable to generate

any comparative-static results at all for b∗2.

3.3. Solving for b∗g

To solve for b∗g, the first step is to note that the inequalities b∗2 < e and b∗1 + b∗g < e imply

b∗1 +b∗2 +b∗g < 2e. This inequality means that the buffers take values smaller than the ones that

would completely eliminate the chance of late arrival for flight 2 when it departs late. Note

that satisfaction of b∗1 + b∗2 + b∗g ≥ 2e would also imply b∗1 + b∗2 + b∗g ≥ e, so that neither of the

conditions (8) and (9) for lateness of flight 2 when it departs late would hold.

Next, observe that b∗1 + b∗2 + b∗g < 2e allows the case in the fourth line of (10) to be ruled

out. The bg solution still depends, however, on whether b∗1 + b∗2 + b∗g is smaller or larger than

e. In the first case, the second line of (10) is excluded, leaving the first, third and fifth lines.

The first-order condition for bg is then

−2p(1 − p)x(e − (b1 + b2 + bg)) − 2p2x(2e − (b1 + b2 + bg)) + cg = 0. (14)

Solving for b1 + b2 + bg then yields

b∗1 + b∗2 + b∗g = (1 + p)e −
cg

2px
< e. (15)

Alternatively, when b∗1 + b∗2 + b∗g ≥ e holds, solving using the second, third and fifth lines of

(10) yields

b∗1 + b∗2 + b∗g =

[

1 +
px

px + (1 − p)y

]

e −
cg

2p[px + (1 − p)y]
≥ e. (16)

13 If cf − cg is small, this ambiguous effect will be dominated by the positive p effect from the first term in

(12), making ∂b∗
2
/∂p > 0.
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By inspection, the inequality b∗1+b∗2+b∗g < 2e is validated by the solutions in (15) and (16).

But in addition, the solutions in (15) (in (16)) must actually be less than (greater than or equal

to) e. From inspection, the RHS of (15) is less than e when e < cg/2p
2x, and rearrangment

shows that the RHS of (16) is greater than or equal to e when the reverse of the previous

inequality holds. Using this condition along with (15) and (16), the solution for bg can then

be written

b∗g =











(1 + p)e − cg/2px − b∗1 − b∗2 if e < cg/2p
2x

[

1 + px
px+(1−p)y

]

e −
cg

2p[px+(1−p)y]
− b∗1 − b∗2 if e ≥ cg/2p

2x,
(17)

with b∗1 and b∗2 given by (3) and (12).14

Turning to comparative-static effects, since an increase in x raises the first two terms in the

solutions in (17) while also raising b∗1 and b∗2, the net effect on b∗g is unclear. Since b∗1 and b∗2 are

decreasing in y, the first b∗g solution is increasing in y, although y’s effect on the second solution

in (17) is unclear given the ambiguous reponse of the first part of the solution. Because b∗1

and b∗2 are decreasing in cf , b∗g increases with cf . Moreover, because b∗1 and b∗2 increase with cg

and the second terms in (17) decrease with cg, b∗g is decreasing in cg. The effects of cf and cg

thus conform to intuition. Finally, because the effect of p on b∗2 is ambiguous, b∗g also responds

ambiguously to an increase in p. Summarizing yields

∂b∗g
∂cf

> 0,
∂b∗g
∂cg

< 0,
∂b∗g
∂x

< (>) 0,
∂b∗g
∂y

> (<) 0,
∂b∗g
∂p

> (<) 0. (18)

The effect of the parameter e remains to be considered. Focusing just on the e terms in

the solutions from (17) and using (3) and (12), the e term from the first line equals

(1 + p)e − 2
px

px + (1 − p)y
e =

(1 − p)((1 + p)y − px)

px + (1 − p)y
e. (19)

14 While the inequality b∗
1

+ b∗
2

+ b∗g < 2e is validated by the solutions in (15)–(16) and conditions for
b∗
1

+ b∗
2

+ b∗g < (≥) e have been given, whether the inequality b∗
1

+ b∗g < e is validated by the actual solutions
remains to be checked. Using the first line of (17) to solve for b∗

1
+b∗g when e < cg/2p2x, the condition b∗

1
+b∗g < e

reduces to a complicated inequality involving all of the model’s parameters, which is assumed to hold. When
e ≥ cg/2p2x, the inequality b∗

1
+ b∗g < e reduces to the condition pcf < cg, which must then hold along with

the maintained assumption cf > cg .
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The factor multiplying e is negative (positive) as x > (<) ((1 + p)/p)y, so that the effect of

e on b∗g can take either sign (recall that x > y is assumed). For the second solution in (17),

the e effect is positive.15 Therefore, the derivative ∂b∗g/∂e can take either sign, indicating that

the ground buffer can be either increasing or decreasing in the size of the flight disruption, as

measured by e. Since this somewhat counterintuitive result appeared in a comparative-static

simulation in the more complex model of BCG, its appearance here as well is noteworthy.

Evidently, the positive responses of b∗1 and b∗2 to a higher e obviate the need for an unambiguous

similar response in e. Despite this common conclusion, BCG’s analysis produced no general

comparative-static results for b∗g, in contrast to the cf and cg effects in (18).

Even though the comparative statics for b∗g are mostly ambiguous, parameter effects on the

sum of the buffers are more often determinate. The b∗1 + b∗2 + b∗g solutions in (15) and (16) are

increasing in p, e, x, decreasing in cg, independent of cf and either unaffected or ambiguously

affected by y. Thus, letting S∗ denote b∗1 + b∗2 + b∗g,

∂S∗

∂e
> 0,

∂S∗

∂cf
= 0,

∂S∗

∂cg
< 0,

∂S∗

∂x
> 0,

∂S∗

∂y
> (<) 0,

∂S∗

∂p
> 0. (20)

With S∗ effectively capturing the airline’s overall effort to address early/late arrivals and delay

propagation via schedule buffers, it is natural that S∗ increases with the size e and probability p

of a flight disruption and with the cost x of lateness. Since the three buffers combined involve

both flight and ground time, the effects of cf and cg on S∗ are unclear a priori, although

determinate effects are seen in (20).

As a final exercise, it is useful to compute the probability of late arrival for flight 2, making

use of the preceding results. Consider first the case where e < cg/2p
2x. When flight 2 departs

on time, with ε1 = 0, it arrives late when ε2 = e, events that have probability (1 − p)p.

The flight also arrives late when ε1 = e (implying late departure) and ε2 = 0, given that

b∗1 + b∗2 + b∗g < e holds when e is small (these events have probability p(1 − p)). In addition,

flight 2 arrives late when ε1 = e and ε2 = e since b∗1 + b∗2 + b∗g < 2e holds, events that have

15 The e expression equals the bracketed term in the second line with the second term in (19) again subtracted
off. This difference equals e times (1 − p)y/(px + (1 − p)y).
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probability p2. Therefore, the probability of late arrival for flight 2 when e is small equals

(1 − p)p + p(1 − p) + p2 = p(2 − p) > p. When e is large, satisfying e ≥ cg/2p
2x, flight 2

arrives on time when ε1 = e and ε2 = 0 since b∗1 + b∗2 + b∗g > e then holds. The middle term in

the previous probability sum is then replaced with zero, while the other two terms remain the

same, so that the sum becomes (1−p)p+p2 = p. Thus, the probability of late arrival for flight

2 exceeds (equals) p when e is small (large), so that the probability across the two e cases is at

least as large flight 1’s probability p of late arrival, a natural conclusion given that flight 2 is

subject to delay propagation. Note, however, the flight 2’s probability of late arrival is larger

when e is small than when e is large, a counterintuitive conclusion that is presumably related

to the unexpected effects of e on the ground buffer.

4. Extensions

This section considers two extensions to the model that were not present in BCG’s anal-

ysis. The first is correlation in the random shocks affecting flight durations and the second is

stochastic ground times.

4.1. Correlation between ε1 and ε2

While the random factors affecting flight 1’s and 2’s durations have so far been assumed to

be independent, it is useful to investigate the case where ε1 and ε2 are correlated. To this end,

let R denote the covariance between ε1 and ε2, which will be positive when common factors

affect the durations of flights 1 and 2. For example, because flight 1’s destination airport is

flight 2’s origin, bad weather at that airport will add to the durations of both flights.

When the ε’s are correlated, it can be shown that Prob(ε1 = e, ε2 = e) = p2 + R, where

p is now defined by E(εi) = pe.16 In addition, Prob(ε1 = 0, ε2 = 0) = (1 − p)2 + R and

Prob(ε1 = 0, ε2 = e) = Prob(ε1 = e, ε2 = 0) = p(1 − p) − R.17

Substituting these probabilities in the probability column of Table 1, new buffer solutions

can be computed. It is easy to see that the b1 solution remains the same as before, given by

16 In the uncorrelated case, the expected value of εi also equalled pe, but p was defined as Prob(εi = 0), a
probability that is not relevant in the correlated case.
17 See https://math.stackexchange.com/questions/2329573/joint-probability-distribution-of-

two-bernoulli-r-v-with-a-correlation-r.
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(3). The b2 solution is now given by18

b∗2 = e

(

1 +
(1 − p)2 + R

(1 − p)p − R

y

x

)−1

−
1

1 − p

cf − cg

2[px + (1 − p)y − (x− y)R/(1 − p)]
. (21).

Inspection of (21) shows that b∗2 is decreasing in R, so that moving from the independent

case (R = 0) to the positive-covariance case, where R > 0, reduces flight 2’s buffer, with

∂b∗2/∂R < 0. While it is natural that b∗1 is unaffected by R, a higher R raises the likelihood

that both ε’s are positive, making late departure and arrival for flight 2 more likely relative

to the case where the flight departs on time (which occurs when only ε2 is positive). As a

result, the downward pressure on b2 that arises in the late departure case (as discussed above)

is strengthened, causing the buffer to fall as R increases.19

These forces are further revealed in the solution for the sum of the buffers, which is given

by

b∗1 + b∗2 + b∗g =















(p + 1 + R/p)e − cg/2px if e <
cg

2x(p2+R)

e

(

1 +
[

1 + (1−p)p−R
p2 +R

y
x

]

−1
)

− 1
p

cg

2[px+(1−p)y+(x−y)R/p]
if e ≥

cg

2x(p2+R)
.

(22)

Inspection of (22) shows that the buffer sum is increasing in R, so that a greater covariance

raises the airline’s overall buffer-driven effort to address early/late arrivals and delay propaga-

tion. This conclusion, combined with b∗1’s independence of R and b∗2’s inverse relationship, then

implies that b∗g must increase with R, so that ∂b∗g/∂R > 0. Note that these kinds of conclusions

were well beyond the reach of BCG’s analysis, given the greater complexity of their model.

Returning to the assumption of independent ε’s, it also possible to investigate the effect of

flight-specific p values, p1 and p2. Flight 1’s buffer is naturally independent of p2, while if x

18 It is easily seen by rearrangement that the first expression in (21) reduces to the analogous expression in
(12) when R = 0.
19 Note that a positive R also increases the probability that both ε’s are zero, an outcome under which a

small b2 is favored, so as to reduce earliness cost. Observe also that, if y were greater than x, the effect of R
on b2 would become ambiguous. Evidently, x > y is needed for a determinate effect because more weight is
then placed on the late-arrival as opposed to early-arrival outcomes.

14



is sufficiently close to y, an increase in p2 raises b∗2 without affecting b∗g, an intuitively sensible

conclusion.

4.2. Random ground time

Suppose that instead of flight durations being random, aircraft ground time is stochastic,

a result of unforeseen factors that slow the turnaround time between flights. Flight durations

are now equal to m, but the minimum turnaround time equals tg + eg with probability q and

tg with probability 1− q, where eg > 0. With a flight disruption absent for flight 1, a buffer is

unneeded, which means that its scheduled and actual arrival time is m. Flight 2’s scheduled

departure time is m+ tg, and it departs late if m plus the disrupted minimum turnaround time

exceeds this value, or if m + tg + eg > m + tg, which reduces to bg < eg.

With a flight buffer potentially optimal, flight 2’s scheduled arrival time is m+ tg +m+ b2.

When no turnaround disruption occurs, flight 2’s arrival time is m + tg + m, making it b2

minutes early and yielding a cost of yb2
2, which occurs with probability 1 − q.

When a turnaround disruption occurs and bg ≥ eg holds, flight 2 departs on time and

arrives early, leading again to an early cost of yb2
2, which occurs with probability q. Adding

(1 − q)yb2
2, qyb2

2 and the buffer costs cf b2 + cgbg, overall expected cost is increasing in both b2

and bg, ruling out optimality of the case where bg ≥ eg.

Thus, eg > bg must hold, so that flight 2 departs late when a turnaround disruption occurs.

Flight 2’s actual arrival time is then m + tg + eg + m, and this time is greater than (less than

or equal to) the scheduled arrival time as m + tg + eg + m > (≤) m + tg + m + b2, or as

bg + b2 < (≥) eg, yielding late (early) minutes equal to eg − bg + b2 (bg + b2 − eg). Adding

buffer costs and earliness cost when no flight disruption occurs, overall expected cost is then

cf b2 + cgbg + (1 − q)yb2
2 +

{

qx(eg − (bg + b2))
2 if bg + b2 < eg

qy(bg + b2 − eg)
2 if bg + b2 ≥ eg.

(23)

Since (23) is increasing in bg and b2 when bg + b2 ≥ eg, the first line of the expression is

relevant. Differentiating and solving for the buffers yields a negative solution for b∗2, which is

inadmissible. Therefore, b∗2 is optimally set at zero, in which case

b∗g = eg −
cg

2qx
. (24)
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The ground buffer is increasing in the size eg and probability q of the turnaround disruption

and decreasing in cg.

It makes intuitive sense that the potential turnaround disruptions are addressed entirely by

the ground buffer. The explanation of this outcome is similar to that underlying the magnitude

of b∗2 in the basic model, and it can be seen by considering the first line of (23) while ignoring

the (1 − q)yb2
2 term. While the two buffers are perfect substitutes in reducing lateness cost

(appearing as a sum), the flight buffer is more expensive. As a result, the ground buffer is

favored, and this force is further amplified when the earliness-cost term (1 − q)yb2
2 is also

considered, making b2 = 0 optimal.

5. Conclusion

This paper has provided a simplified version of the schedule-buffer analysis of Brueckner,

Czerny and Gaggero (2020), using a more transparent model that generates closed-form so-

lutions and comparative-static results. This approach helps to generate fuller insights into a

conceptually intriguing optimization problem while allowing exploration of several extensions

not considered by BCG. Future work could perhaps build on this simpler approach by including

more than two flights or two competing airlines.20

Beyond its theoretical interest, the analysis has real-world relevance. Some of its predic-

tions are confirmed by the empirical results of BCG, which rely on voluminous USDOT data

on the daily flight operations of individual aircraft to compute flight and ground buffers. For

example, the results show that a higher flight-time variance (measured for the same flight in

the previous year) raises flight buffers, consistent with the impacts of e and p in (3) and (12).

In addition, mixed evidence shows that the variance’s effect on ground buffers is sometimes

positive and sometimes negative, consistent with (19). Flight buffers also rise with airport

congestion, another factor that may increase flight-time variability. Therefore, the paper’s

theoretical analysis (like that of BCG) is closely linked to actual outcomes.

20 To incorporate two carriers, the approach of Brueckner and Flores-Fillol (2007) could be used.
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