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Abstract

This paper analyses the complexity of rule selection for supervised
learning in distributed scenarios. The selection of rules is usually
guided by a utility measure such as predictive accuracy or weighted
relative accuracy. Other examples are support and confidence, known
from association rule mining. A common strategy to tackle rule selec-
tion from distributed data is to evaluate rules locally on each dataset.
While this works well for homogeneously distributed data, this work
proves limitations of this strategy if distributions are allowed to devi-
ate. To identify those subsets for which local and global distributions
deviate may be regarded as an interesting learning task of its own,
explicitly taking the locality of data into account. This task can be
shown to be basically as complex as discovering the globally best rules
from local data. Based on the theoretical results some guidelines for
algorithm design are derived.

1 Introduction

The induction of interesting rules from classified examples has been studied
extensively in the Machine Learning literature throughout the last decades.
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A variety of metrics like predictive accuracy, precision, or the binomial test
function have been suggested to formalise the notions of interestingness and
usefulness of rules. [5] gives an overview of different metrics and illustrates
the differences by means of ROC isometrics. There are several learning tasks
that can be formulated as optimisation problems with respect to a specific
metric. Classifier induction and subgroup discovery are two examples. Usu-
ally it is assumed that all the available data is accessible to a single learner.
In this case the metrics allow to identify a set of patterns that maximise the
selected utility function. The amount of data necessary to identify the best
rules with high probability can be considered as an indicator of complexity
from an information theoretic point of view. Different sample bounds have
been proven for different commonly applied metrics [9].

There are several learning scenarios with restricted access to the available
data. In the domain of knowledge discovery in databases, for example, the
data is often split to different sites and may not be communicated at the
level of single examples. Among the reasons are privacy issues and costs.

Learning tasks can be adopted to distributed scenarios in various ways.
The objective of this work is to analyse the corresponding increase in com-
plexity, compared to non-distributed learning. To this end distributed vari-
ants of rule selection are investigated. Due to its generality the task of
subgroup discovery fits nicely into this framework. It allows to specify the
utility function used for pattern selection as a parameter [6]. Each subgroup
is usually represented by a Horn logic rule, so utility functions are specific
kinds of rule selection metrics. This paper investigates in which situations
a local evaluation of rules may help to identify globally best rules, and how
corresponding learning tasks are related to each other.

The remainder of this paper is organised as follows. Section 2 repeats
the formal definition of non-distributed subgroup discovery. This task is ex-
tended to distributed data in section 3, assuming a homogeneous distribution
at all sites. In section 4 this assumption is weakened in two ways, which are
both shown to increase computational complexity to find a set of approxi-
mately best rules in the worst case. Additionally, a bound for the maximum
deviation of commonly used utility functions is proved. This motivates the
task of relative local subgroup discovery, which is introduced and analysed
in section 5. Section 6 discusses how the presented tasks are related to dis-
tributed boosting and distributed frequent itemset mining. After discussing
some practical considerations towards specific algorithmic solutions, section 7
summarises and concludes.
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2 Standard subgroup discovery

This sections discusses the formal background for non-distributed supervised
learning, especially for subgroup discovery. Given is a set of m classified
examples E := 〈x1, y1〉, . . . , 〈xm, ym〉 from X×Y , where X defines the instance
space and Y the set of labels. The representation language (H) used in
this work contains logical rules, denoted as A → C. Each antecedent A is
identified with its corresponding subset of X (or E , respectively), while each
conclusion C consists of a label from Y .

Formally rules are evaluated with respect to a distribution function over X .
This work confines itself to descriptive learning, so given a single database
or example set E it is often appropriate to assume a uniform distribution D
over E .

The next definitions provide the building blocks for utility functions.

Definition 1 The coverage (Cov) of a rule A → C under distribution D
is defined as the probability that the rule is applicable for an example 〈x, y〉
randomly sampled ∼ D :

CovD(A → C) := Pr〈x,y〉∼D [x ∈ A]

Definition 2 The bias of a rule A → C, C ∈ Y under D is defined as the
difference between the conditional probability of C given A and the default
probability (class prior) of C:

BiasD(A → C) := Pr〈x,y〉∼D [y = C | x ∈ A] − Pr〈x,y〉∼D [y = C]

These two definitions allow to state a very general class of utility functions.

Definition 3 A function f : H×D → IR satisfying the following constraint
for all r, r′ ∈ H is called a utility function:

(CovD(r) ≥ CovD(r′)) ∧ (BiasD(r) ≥ BiasD(r′) > 0)

⇒ f(r, D) ≥ f(r′, D)

Additionally, if one of the inequalities is strict, then f(r, D) > f(r′, D).

The most commonly used class of utility functions in the scope of subgroup
discovery [6] is given by the following definition.
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Figure 1: α = 1/2
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Figure 2: α = 1
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Figure 3: α = 2

Definition 4 For a given parameter α and distribution D the utility (or

quality) q
(α)
D of a rule r ∈ H is defined as

q
(α)
D (r) := CovD(r)α · BiasD(r).

The parameter α allows for a data- and task-dependent trade-off between
coverage and bias. Definition 4 covers metrics which are factor-equivalent
to the binomial test function (α = 0.5), weighted relative accuracy (α = 1),
and a function commonly used to put higher emphasis on coverage (α = 2).
Fig. 1-3 show the corresponding isometrics in ROC space [4]. Each point in
the plot refers to a false positive (x-axis) and a true positive rate (y-axis),
which reflect the fractions of correctly and incorrectly covered examples. A
line in a ROC diagram consist of performances for which the metric yields
the same score.

Definition 3 is broad enough to also cover predictive accuracy, which is
equivalent to q

(1)
D for binary prediction tasks with equal default probabilities

for both classes, and which is still monotone in Cov and Bias, otherwise.
The similarity between rule selection metrics for different skew ratios is dis-
cussed in [3]. In association rule mining [1] rules are filtered (or pruned) by
their support (Cov) and confidence. The latter is monotone in the Bias,
although the default probability is usually ignored. When support and con-
fidence are combined (respecting monotonicity) to find a ranking of most
interesting rules, then this problem can also be considered as a specific case
of subgroup discovery.

For a specific choice of the utility function, the goal of subgroup discovery
is to identify a set of n best or approximately best rules. One algorithm
solving this problem exactly is MIDOS [10]. It works on relational data and
searches the hypothesis space exhaustively, except for safe pruning.
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3 Homogeneously distributed data

A first extension towards distributed subgroup discovery is to assume that
several sets of data are available, which all obey a common underlying prob-
ability distribution. One can think of the different sets as generated by boot-
strapping from a single, global dataset. In such a case local and global sub-
groups are basically identical. However, due to statistical deviations caused
by bootstrapping and the smaller size of example sets, some of the rules with
lower global utility might be found among the n best subgroups evaluated
locally at each site.

Choosing q(1) (Def. 4), the probability that the utility function deviates
locally from the true (global) value by more than a fixed constant ε ∈ IR+

can be bounded by Chernoff’s inequality. This probability decreases ex-
ponentially with a growing number of examples. Sample bounds have been
proven for different utility functions [9], especially for q(α) with α ∈ {.5, 1, 2}.
As a brief summary one can state that the estimates behave well for reason-
ably large sample sizes, a constraint which is e.g. safely met in the context of
distributed databases. Accordingly, the n-best subgroups problem has been
adopted to a probabilistic scenario, in which utility functions are evaluated
using i.i.d. samples [9]:

Definition 5 Let δ ∈ (0, 1) denote a given minimum confidence and ε ∈ IR+

denote a given maximal error. Then the approximate n-best hypotheses
problem is to identify a set G of n hypotheses from a hypothesis space H,
such that with confidence 1 − δ

(∀h′ ∈ H \ G) : q(h′) ≤ min
g∈G

(q(g) + ε)

The results reported for this problem directly apply to homogeneously dis-
tributed datasets. For large local datasets the probability of missing a sub-
group that is globally much better than the locally best ones is reasonably
small.

It is worth to note, that there are also some practically relevant evalua-
tion metrics that do not allow to tackle the approximate n-best hypotheses
problem by adaptive sampling. One example is the chi-square test function,
for which sampling-based utilities estimates can be arbitrarily far from the
true utilities [9]. For these utility functions distributed subgroup discovery

from local data is intractable. The following sections focus on functions q
(α)
D .
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4 Inhomogeneously distributed data

Subgroup discovery for homogeneously distributed data can be tackled and
analysed using the same techniques as in the non-distributed setting. This
section addresses the situation in which data is split to different sites, but no
distributional assumption can be made. First of all the notation for different
databases is introduced.

The example set E is composed of k subsets E1, . . . , Ek that were sampled
from different probability distributions. Let Di denote the distribution at
site i for the corresponding example set Ei ⊆ E , and let D denote the global
distribution over E . D is a weighted average of the local distributions.

The local Cov and Bias of a rule A → C at site i can be expressed in
terms of definition 1 and 2, replacing D by Di. For example

BiasDi
(A → C) := Pr〈x,y〉∼Di

[y = C | x ∈ A] − Pr〈x,y〉∼Di
[y = C]

refers to the local Bias at site i. Accordingly, a local utility function evaluates
each rule A → C by

q
(α)
Di

(A → C) = [CovDi
(A → C)]α · BiasDi

(A → C)

The first task stated in this setting is to find subgroups that globally perform
well, given a discovery procedure that evaluates rules locally. If for instance
the globally best rule appears poor at any site, then it obviously needs to
perform even better at some other. For this reason one could expect that
the globally best rules are easily found at the local sites, even if the local
distributions differ. A similar property eases frequent itemset mining from
distributed data, because it allows for safe pruning in the case of skewed
data [2].

In the case of homogeneously distributed data as discussed in section 3,
the marginal distributions over X and the conditional probabilities of the
target given x ∈ X were identical at all sites. In order to quantify by how
much each of these assumptions is weakened the following definitions are
useful.

Definition 6 Two distributions D1, D2 : X → IR+ are called factor-similar
up to γ for an A ⊂ X and γ > 1, if

(∀x ∈ A) : γ−1 ≤ Di(x)

D(x)
≤ γ.
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Definition 7 For an A ⊆ X two joint distributions D1, D2 : X × Y → IR+

are called conditionally similar up to ε, ε > 0, if

(∀〈x, y〉 ∈ A × Y) :

∣∣∣∣D1(x, y)

D1(x)
− D2(x, y)

D2(x)

∣∣∣∣ ≤ ε.

Please recall that utility functions are defined based on distributions under-
lying the example sets. For this reason definitions 6 and 7 do not require the
same set of examples to be observable at all sites to allow for finite bounds.

The following theorem shows, that if the assumption of homogeneously
distributed data made in section 3 is weakened at all, then it is possible
to obtain drastically different sets of best rules when evaluating a quality
function globally and locally.

Theorem 1 Let Gi denote the set of n best rules for each site i ∈ {1, . . . k}
(k ≥ 2), given an arbitrary utility function. Let G denote the set of n best
rules with respect to the global distribution. Then it is possible in the general
case, that every x ∈ X is covered by at most one ruleset from {G, G1, . . . , Gk},
where a ruleset is said to cover x if one of its elements does. This statement
even holds in the following two cases:

1. The global and local marginal distributions of X are equivalent, and
global and local joint distributions of X × Y are conditionally similar
up to an arbitrarily small b > 0.

2. For all local sites i ∈ {1, . . . , k} the conditional distributions of X × Y
are identical, and each local marginal distribution of X is factor-similar
to the global one up to an arbitrarily small γ > 1 for any subset of X .

Proof
It is sufficient to generically construct an example for both specific cases. The
following proofs apply to all utility functions, but require some assumptions
about the set H of possible hypotheses. These assumptions are met for the
logical rules commonly used to characterise subgroups.

First the theorem is proved for the case of equal marginal distributions.
The idea is to “prepare” for each site i ∈ {1, . . . , k} a set Si of n disjoint
subsets of X : Si = {Ri,1, . . . , Ri,n}. For the global view a separate set
S0 = {R0,1, . . . , R0,n} of n rules is prepared. Let the common marginal
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distribution D assign equal weight to each subset, so that all rules with
antecedent R ∈ ⋃k

i=0 Si have the same coverage Cov. All reasonable utility
functions increase monotonically with the Bias in this case. Let C denote an
arbitrarily chosen class and b and ε small, strictly positive real values. The
joint distribution Di : X × Y → IR+ at site i is constructed so that

BiasDi
(Rp,j → C) =




b/k + ε, for p = 0 (global)
b , for p = i (local)
0 , for p 6∈ {0, i}

for all 1 ≤ j ≤ n. The joint global distribution D : X ×Y → IR+ is computed
as the average of the joint local distributions, since the marginal distributions
are assumed to be equivalent. Hence the Bias of every “local rule” Ri,j → C,
i > 0 is b/k under D, that of the “global rules” R0,j → C is b/k + ε at all
sites and when evaluated globally. As a consequence, under Di the n rules
constructed from Ri are ranked highest by all reasonable utility functions,
but globally the rules corresponding to R0 have a higher utility.

It remains to be shown, that a distribution as described above exists.
An additional constraint is that no other rule in H may reach higher utility
scores, neither at any local site nor globally. The following construction
is possible if H contains only single rules A → C with each A being a
conjunction of literals. For k sites and n rules to be selected let

z := dlog2(k + 1)e · dlog2(2n)e.

For at least one set of z atomic formulas {a1, . . . , an} it is assumed that

{l1 ∧ . . . ∧ lz → C | li ∈ {¬ai, ai} for 1 ≤ i ≤ z} ⊆ H.

For all considered rules literal li refers to the same atomic formula, but it may
be positive or negative. Each of the rules may be represented as a boolean
vector of length j, where the ith bit refers to the sign of literal i. In turn,
each vector v of length j represents a rule (Av → C) ∈ H , and for two such
vectors vi 6= vj it is Avi

∩ Avj
= ∅.

Now the bit representations can be used to define the sets Ri,j for 0 ≤ i ≤ k
and 1 ≤ j ≤ n from above: Set the first dlog2(k + 1)e to the binary encoding
of the corresponding site number i, and let the subsequent dlog2(n)e bits en-
code the rule number j. Each combination of i and j covers two subsets now,
since there is one more bit/literal. The subset defined by an even number of
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positive literals is defined as positive (R+
i,j), the other one as negative (R−

i,j).
The following equalities imply a common marginal distribution:∫

x∈R+
i,j

D(x)dx =

∫
x∈R−

i,j

D(x)dx =
1

(k + 1)2n

D(x) = D(x′) if x, x′ ∈ R+
i,j or x ∈ R+

i,j ∧ x′ ∈ R−
i,j.

D(x) = 0 if x /∈
k⋃

i=0

n⋃
j=1

(
R+

i,j ∪ R−
i,j

)

For two classes and a default probability of p0 the joint distribution at site
i ∈ {1, . . . , k} is defined as

Di(x, C) = D(x) ·




p0 + b/k + ε , for x ∈ R+
0,j

p0 − b/k − ε , for x ∈ R−
0,j

p0 + b , for x ∈ R+
i,j

p0 − b , for x ∈ R−
i,j

p0 , otherwise

for 1 ≤ j ≤ n. The positive subsets refer to the original rules, which thus
have the desired properties stated earlier1. Any rule that covers more than
one positive subset will inevitably also cover the negative counterparts. This
is a consequence of the syntactical structure of H and the fact that the bit
vectors for positive subsets all have a Hamming-distance of at least two. The
Bias will be zero in this case. Specialising rules reduces coverage without
any increase in Bias.

The second part of the theorem can be proved similarly. Let the same
subsets of X be associated to R+

0,1 . . . , R−
k,n as before. It is possible to con-

struct a distribution for which all rules have an identical Bias, but which
allows to achieve a similar situation as in the first case by locally adjusting the
marginal distributions. To this end, let the local marginal distributions D′

i(x)
for 1 ≤ i ≤ k be defined using the previously defined function D : X → IR+,
which assigns equal weight to all subsets, and which is uniform within each

1If log(k + 1) or log(n) are no integers, then some subsets of X are not related to any
rule. This has no effect on the validity, since these subsets receive no weight under any of
the distributions.
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subset:

D′
i(x) = D(x) ·




1 − εm/3 , for x ∈ R
+/−
0,j (global rule)

1 , for x ∈ R
+/−
i,j (local rule for site i)

1 − εm , for x ∈ R
+/−
p,j , p 6∈ {0, i} (local rule, other site)

0 , otherwise (unused subset)

with R
+/−
(·),j := R+

(·),j ∪ R−
(·),j . The local joint distributions D′

i : X × Y → IR+

can now be constructed for all sites 1 ≤ i ≤ k using site-independent factors:

D′
i(x, C) = D′

i(x) ·



p0 + b, if x ∈ R+
i,j, 1 ≤ j ≤ n

p0 − b, if x ∈ R−
i,j, 1 ≤ j ≤ n

p0 , otherwise (Bias = 0)

All rules have the same Bias b at all sites, and thus globally. The global
Cov values are

CovD′(R0,j → C) =
k(1 − εm/3)

k
= 1 − εm

3
(global rules)

CovD′(Ri,j → C) =
1 + (k − 1)(1 − εm)

k
≤ 1 − εm

2
(local rules)

As required the “global rules” are ranked highest regarding the global dis-
tribution D′. At each local site i the corresponding “local rules” R+

i,(·) have

the highest Cov regarding D′
i and are thus ranked highest. More general

rules, subsuming several of the positive subsets of X , will have to cover the
negative subsets, as discussed in the proof of the first part. Analogously, a
specialisation of rules leads to a reduced Cov without increasing the Bias.
Choosing εm so that γ = (1 − εm)−1 completes the proof. �

Theorem 1 implies that rules globally performing best are not necessarily
among the n locally best rules at any site. Even for arbitrarily unskewed
data, formalised in terms of definitions 6 and 7, the best rules collected from
all sites, including the globally best rules, may be completely disjoint, in the
sense that no example is covered twice. Please note that unlike for the case
of homogeneously distributed data this is not a problem of misestimation.
Theorem 1 applies to arbitrarily large sample sizes.

Although finding the globally best rules from local data is not possible
in the worst case, finding approximately best rules might still be tractable.
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The following theorem gives a tight bound on the difference between locally
and globally evaluated utilities, for simplicity assuming positive utilities and
common default probabilities.

Theorem 2 Let D : X × Y → IR+ denote a global distribution which is
a weighted average of k local distributions Di, all sharing the same default
probability of classes. Considering a rule A → C ∈ H, let the marginal
distributions of D and a local distribution Di (i ∈ {1, . . . , k}) be factor-
similar up to γ for A, and let the joint distributions D and Di be conditionally
similar up to ε for the rule. Then the difference between global and local
utilities of q(α) is bounded by

max

(
0,

q
(α)
Di

(A → C)

γα
− ε

γα
CovDi

(A → C)α

)

≤max
(
0,q

(α)
D (A → C)

)
≤max

(
0, γαq

(α)
Di

(A → C) + ε [γCovDi
(A → C)]α

)
For valid choices of ε these bounds are tight in the general case.

Proof
A local marginal probability of an antecedent differs by at most a factor
of γ±1 from the corresponding global probability. Similarly, the conditional
probability differs by at most an additive constant of ±ε. This implies

q
(α)
D (A → C) = CovD(A → C)αBiasD(A → C)

≤ γαCovDi
(A → C)α · (BiasDi

(A → C) + ε)

= γαq
(α)
Di

(A → C) + εγαCovDi
(A → C)α

if all terms are positive. The lower bound is shown analogously.
Given that ε is chosen as a valid Bias with respect to the default proba-

bility of the target class it is trivial to construct cases for which the bounds
are strict. �

For similarly distributed data, e.g. if γ ≤ 1.1 and ε ≤ 0.05, the bounds are
tight enough to allow for estimates with bounded uncertainty. This is illus-
trated by figures 4-6, showing the bounds for a rule with a global Cov of
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Figure 4: q(1) vs. ε, γ ≤ 1.1
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Figure 5: q(1) vs. γ, ε ≤ 0.05

0.25 and a global Bias of 0.4. For γ ≤ 1.1 figure 4 shows upper and lower
bounds for q(1) with ε at the x-axis. Figure 5 and 6 depict bounds for dif-
ferent values of γ, assuming distributions that are conditionally similar up
to an ε ≤ 0.05. Qualitatively the curves for utility function q(1) (figure 5)
and q(1/2) (figure 6) are similar, but the latter is less sensitive to deviating
marginal distributions.

Please note that theorem 2 allows to exploit different estimates for each
antecedent A ⊂ X under consideration. Hence, the theorem is not restricted
to learning tasks in which conditional or marginal distributions are known
to be very similar. It also allows to collect rule-specific bounds from various
sites. Possible sources of rule-dependent bounds on γ and ε range from
background knowledge over density estimates to previously cached queries.

The question which rules do not allow to compute their utilities suffi-
ciently well by techniques related to theorem 2 motivates a new extension of
the learning task, discussed in section 5, that explicitly takes the locality of
data into account.

5 Relative local subgroup mining

As motivated in the last section, inhomogeneously distributed data allows
to define subgroups as subsets of local example sets2 Ei that follow different
distributions of the target attribute than E does. This definition of sub-
groups has a natural interpretation that might be of practical interest in
several domains. The corresponding rules could help to point out the char-

2More precisely, these definitions refer to the weight of subsets with respect to D and
Di. These weights are of course estimated based on the example sets.
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Figure 6: q(1/2) vs. γ, ε ≤ 0.05

acteristics of a single supermarket in contrast to the average supermarket,
for example. For the specific case of distributed frequent itemset mining
an algorithm for mining exceptional patterns taking the locality of data into
account has recently been presented [12]. A corresponding extension to the
task of rule discovery is lacking. The following function captures the idea of
locally deviating rules.

Definition 8 For r ∈ H the utility function rq
(α)
Di

at a site i is defined as

rq
(α)
Di

(r) := CovDi
(r)α · (BiasDi

(r) −BiasD(r))

The rules maximising this function are referred to as relative local subgroups.

Please note that only the global conditional distribution is required in this
context, since Cov is evaluated locally. Exploiting that Cov differs by at
most a factor of γ it is possible to restate theorem 2, again assuming common
default probabilities.

Corollary 1 For a given target class C let

rq(α)
max := max{rq

(α)
Di

(r) | r ∈ H, r predicts C} and

rq
(α)
min := min{rq

(α)
Di

(r) | r ∈ H, r predicts C}
denote the maximal and minimal utilities of relative local subgroups. Then
for all rules r′ ∈ H the difference between local and global utility is bounded
by

γ−α ·
(
q

(α)
Di

(r′) − rqmax

)
≤ q

(α)
D (r′) ≤ γα ·

(
q

(α)
Di

(r′) − rqmin

)
if all terms are positive.
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Corollary 1 allows to translate the utility of local subgroups into global scores
with bounded uncertainty for any rule-dependent γ. The special case of a
common marginal distribution is obtained by setting γ = 1.

Corollary 2 For γ = 1 the three utility functions for local, relative local,
and global subgroup discovery complete each other:

q
(α)
D (A → C) = q

(α)
Di

(A → C) − rq
(α)
Di

(A → C)

Obviously, the tasks of discovering relative local subgroups and that of ap-
proximating the global conditional distribution are of similar complexity in
this case. Corollary 2 shows how to detect global subgroups searching lo-
cally, given precise estimates of rq

(α)
Di

, and how to compute rq
(α)
Di

from q
(α)
D

for γ = 1.

6 Practical considerations

This section relates the subtasks to known learning strategies. One can dis-
tinguish between three kinds of strategies, applying trained models, searching
exhaustively, and sampling with respect to the global distribution. After dis-
cussing these issues it is exemplarily illustrated in this section, how theorem 2
allows to translate local utilities into global ones.

6.1 Model-based search

The idea of a model-based search is to first train a model that approximates
the global conditional distribution of the target attribute. If the model yields
precise estimates, then rq

(α)
Di

(Def. 8) can directly be computed from the local
data, which allows to discover the relative local subgroups in the next step.
For a common marginal distribution of X (γ = 1) this also allows to discover
the global subgroups by applying corollary 2. In the general case bounded
estimates for global rule utilities can be given (Cor. 1).

A simple learner that allows to approximate the conditional distribution
is Näıve Bayes. It can easily be applied to distributed data, because the
global model can be obtained by collecting the counts from all sites. A more
complex technique that usually comes with higher accuracy is distributed
boosting. An algorithm similar to confidence-rated versions of AdaBoost [8]
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has been presented in [7]. Please note that skewed data is a known source of
failure in the scope of distributed boosting.

Another problem with the model-based strategy is that even if the model
is precise, it can hardly be expected to reach 100% accuracy in practice. This
means that some of the relative local subgroups may not be found, since it
is unknown for which subsets the predictions of the model are poor. Hence,
it is a heuristic rather than a probabilistic search strategy.

6.2 Searching exhaustively

The fact that an approximation of the conditional distribution does not help
to find global subgroups reliably in the general case justifies to address rel-
ative local and global subgroup discovery by exhaustively searching the hy-
pothesis space.

For frequent itemset mining efficient distributed strategies exist [11], ba-
sically exchanging itemsets and counts. Some of the pruning strategies allow
to generate candidates for relative local subgroups, since the pruning based
on counts received from other sites affects itemsets that are locally more
frequent than globally. Local and global subgroups are finally obtained by
applying the utility function to the results. The disadvantage is that there
will usually be many more frequent itemsets than subgroups, because the
pruning performed during itemset mining does not take into account the
specific choice of a utility function.

Applying the pruning strategy of MIDOS [10] allows to safely discard
specialisations of a rule with small Cov, if these cannot contain improve-
ments on the best n subgroups found so far. Additionally, since global counts
generally need to be collected from all sites, more specific pruning techniques
sometimes allow to stop the evaluation of a rule after receiving the counts of
some of the sites, already.

6.3 Sampling from the global distribution

As discussed in the introduction it is often not possible to collect all the data
at a single site. If the reasons are communication costs rather than privacy,
then it may still be cheaper to learn directly with respect to the global
distribution than to address a hard learning task using distributed approaches
that do not come with any guarantees. Applying the adaptive sampling
techniques proposed in [9], one can hope that probabilistic guarantees can
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Figure 7: Visualisation of 5 best subgroups

be given after transferring just a small fraction of the data to a central node
for the data mining step.

6.4 Estimating Utilities with Bounded Uncertainty

This subsection describes a first experiment that illustrates some of the pre-
sented ideas. Due to a lack of publicly available datasets for distributed Data
Mining, synthetic data was used. As an advantage, this allows to control the
different kinds of skews.

To prepare the data, a decision tree for a domain of 10 boolean attributes
has been constructed at random. For each inner node the probability of
the tested attribute being 1 was fixed to a value randomly drawn from
N(0.5, 0.25). The same was done for the distribution of the boolean target
label at the leaves. For all examples unspecified attributes were simply com-
pleted by drawing truth values uniformly. The examples were distributed to
5 sites by explicitly assigning a separate γ- and ε-skew to each leaf for each
site. The skew-parameters were selected uniformly within the previously
used intervals: γ ∈ [0, 1.1], ε ∈ [0, 0.05]. Based on this randomly constructed
tree 10.000 examples were generated as an input to the following subgroup
discovery experiments.

The MIDOS algorithm, part of the Kepler toolbox, was applied to
the data, in order to select 5 best subgroups according to q(1). In figure 7
these subgroups are visualised by circles. The colours reflect the conditional
distributions of the target, while the sizes represent coverage. Each dot in
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Figure 8: Global vs. local evaluation.

figure 8 compares the global utility of a rule (x-axis) to the corresponding
local utilities at all sites (y-axis). Dots close to the diagonal represent similar
utilities, which are useful for estimating the global utilities from local ones
with bounded uncertainty. Table 1 lists the bounds that could be derived
based on the local estimates, exploiting γ ≤ 1.1 and ε ≤ 0.05. It is interesting
to note, that only for the largest subgroup (a5 = 1, Cov ≈ 0.35) the bounds
are useless, because for large subgroups the utility can easily be estimated
from samples, instead. In contrast, the smallest of the 5 selected subgroups
has a Cov of below 2%. This illustrates why generating all frequent itemsets
is often an inefficient approach to subgroup discovery.

Subgroup global q(1) Lower b. Upper b.

a5=1, a6=0, a8=0 0.0249 0.0231 0.0292
a5=1, a8=0 0.0260 0.0235 0.0316
a1=1, a5=1 0.0087 0.0083 0.0105

a5=1 0.0365 0.0191 0.0573
a1=1, a4=0, a5=0 0.0176 0.0164 0.0180

Table 1: Bounds due to theorem 2.
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7 Conclusion

The behaviour of different rule selection metrics, their similarity for various
skews and how well they may be estimated from samples has been investi-
gated in the recent years. What is lacking is an investigation of how these
metrics behave in the scope of distributed learning. This paper is a first step
into this direction. First of all it has been shown that the utility measures
common in the literature on subgroup discovery can be applied to homo-
geneously distributed data in the same way as to a single example set. If
the different sites do not share a single underlying distribution generating
the data, however, then even precise estimates may yield completely disjoint
rulesets at all sites, none of which contains a single one of the best n rules.
For the general case a tight bound for the difference between global and local
rule utilities has been proven, which allows to translate local rule utilities into
global ones with bounded uncertainty. For the task of discovering rules that
have a higher local than global utility it has been shown that it is at least
as hard as approximating the global conditional distribution of the target
attribute. For a common marginal distribution one problem can be solved
locally, given a solution for the other one.

The results indicate that distributed subgroup discovery is a hard prob-
lem, since it requires precise estimates of both, the global marginal and
the global conditional distribution. The former may e.g. be obtained by
distributed variants of frequent itemset mining, the latter by means of dis-
tributed boosting. As discussed there are good reasons, however, to tackle
the problem by exhaustively searching the hypothesis space, applying specific
pruning strategies wherever possible.

Future work will compare concrete implementations empirically, using
synthetic and real-world data in combinations with different ways to dis-
tribute examples.
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