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Abstract  
The issue of suitable similarity measures for a particular kind of genetic 

data – so called SNP data – arises from the GENICA (Interdisciplinary 

Study Group on Gene Environment Interaction and Breast Cancer in 

Germany) case-control study of sporadic breast cancer. The GENICA study 

aims to investigate the influence and interaction of single nucleotide 

polymorphic (SNP) loci and exogenous risk factors. A single nucleotide 

polymorphism is a point mutation that is present in at least 1 % of a 

population. SNPs are the most common form of human genetic variations. 

In particular, we consider 65 SNP loci and 2 insertions of longer sequences 

in genes involved in the metabolism of hormones, xenobiotics and drugs as 

well as in the repair of DNA and signal transduction. Assuming that these 

single nucleotide changes may lead, for instance, to altered enzymes or to a 

reduced or enhanced amount of the original enzymes – with each alteration 

alone having minor effects – we aim to detect combinations of SNPs that 

under certain environmental conditions increase the risk of sporadic breast 

cancer. 
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The search for patterns in the present data set may be performed by a variety 

of clustering and classification approaches. We consider here the problem of 

suitable measures of proximity of two variables or subjects as an 

indispensable basis for a further cluster analysis.  

Generally, clustering approaches are a useful tool to detect structures and to 

generate hypothesis about potential relationships in complex data situations. 

Searching for patterns in the data there are two possible objectives: the 

identification of groups of similar objects or subjects or the identification of 

groups of similar variables within the whole or within subpopulations. 

Comparing the individual genetic profiles as well as comparing the genetic 

information across subpopulations we discuss possible choices of similarity 

measures, in particular similarity measures based on the counts of matches 

and mismatches. New matching coefficients are introduced with a more 

flexible weighting scheme to account for the general problem of the 

comparison of SNP data: The large proportion of homozygous reference 

sequences relative to the homo- and heterozygous SNPs is masking the 

accordances and differences of interest.  

 

 

KEY WORDS: GENICA, single nucleotide polymorphism (SNP), sporadic 

breast cancer, similarity, Matching Coefficient, Flexible Matching 

Coefficient, Pearson's Corrected Coefficient of Contingency, cluster analysis 
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1. Introduction 

The issue of the appropriate choice of measures of proximity arises from the 

GENICA (Interdisciplinary Study Group on Gene Environment Interaction 

and Breast Cancer in Germany) case-control study of sporadic breast cancer. 

In Germany almost 50 000 women develop breast cancer each year, that are 

7 to 10 % of all women developing this disease during their life-time. 

Though genetic factors have been discovered for hereditary breast cancer – 

variations of the genes BRCA1 and BRCA2 in about 3 % of all cases – for 

the majority of the breast cancer cases such understanding of the genetic 

mechanisms and potential interactions with exogenous risk factors remains 

unclear.  

The GENICA study aims to investigate these supposed genetic and gene-

environment interactions associated with sporadic breast cancer. With 

respect to the genetic data the GENICA study group considers in particular 

single nucleotide polymorphisms (SNPs) – the most common genetic 

variation – in genes involved, for instance, in the metabolism of hormones 

and of xenobiotics and drugs, as well as of signal transductors.  

The search for patterns in the present data set may be performed by a variety 

of clustering and classification approaches. We consider here the problem of 

suitable measures of proximity of two variables or subjects as an 

indispensable basis for a further cluster analysis. This is also important for 

several classification approaches such as k Nearest Neighbours for non-

metric dissimilarity measures (Zhang & Srihari, 2002). 

The appropriate choice of measures of similarity requires a consideration of 

the concept of similarity and dissimilarity in the context of the particular 
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data situation. That means to ascertain that candidate measures correspond 

to the scale of the data, that they are able to handle the specific difficulties of 

the data set, and, moreover, that the chosen measures reflect our believe 

about the nature of our data. For instance, measures based on the χ²-statistic 

regard objects as dissimilar if they are independent and similar if they are 

dependent in the sense that certain combinations of categories occur more 

often than expected under the hypothesis of independence. These prominent 

combinations need not to be those of equal entries for each of the two 

objects. The latter is the concept of similarity underlying the matching 

coefficients. This group of measures will be considered in particular due to 

their flexibility and their suitability for the present problem. Besides the 

usual matching coefficients new ones are introduced that may account for 

biological background knowledge or hypothesis due to their flexible 

weighting scheme. Furthermore they are able to handle a special feature of 

SNP data: The proportion of homo- or heterozygous SNPs is usually rather 

small compared to the proportion of homozygous reference sequences, i.e. 

loci that contain no sequence variation. So in comparing two variables or 

subjects there is a huge amount of common homozygous reference 

sequences, which we denote as 0-0-matches, masking the interesting 

differences or similarities: the small amount of common or mismatching 

homo- and heterozygous polymorphisms.  

 

The most common genetic data are actually microarray data measuring gene 

expression levels of thousands of genes simultaneously and there are 

numerous publications dedicated to the issue of clustering this type of data 
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on the basis of measures of proximity, e.g. Brazma & Vilo (2000), Eisen et 

al. (1998), Hastie et al. (2001), Tibshirani et al. (2001). Roughly speaking, 

gene expression levels give a measure of the activity of the considered genes 

on a continuous scale, in contrast to SNPs data, where the information about 

the inherited variants of these genes is considered. Thus, for gene expression 

data measures of proximity for qualitative data based on the concept of 

correlation as well as metrics, the Euclidean distance, for instance, can be 

used.  

SNP data are qualitative data providing information about the genotype at a 

specific locus of a gene. To be more precisely, a SNP (single nucleotide 

polymorphism) is a point mutation present in more that 1 % of a population. 

A point mutation is a substitution of one base pair or a deletion, which 

means the respective base pair is missing, or an addition of one base pair. 

Though several different sequence variants may occur at each considered 

locus usually one specific variant of the most common sequence is found, an 

exchange from adenine (A) to guanine (G), for instance. Thus, information 

is basically given in form of categories denoting the combinations of base 

pairs for the two chromosomes, e.g. A/A, A/G, G/G, if the most frequent 

variant is adenine and the single nucleotide polymorphism is an exchange 

from adenine to guanine.  

 

The result of such a variation of one base pair may be, for instance, a change 

of one amino acid in the amino acid chain of an enzyme or the switch from 

an amino acid coding triplet to a stop codon leading to a shortened amino 

acid chain. So, what we have to compare with respect to their similarity are 
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present or absent alterations of certain base pairs of the DNA and the 

consequences of the altered genetic code with respect to the related 

metabolic processes. 

Hence, the question is, how to assign a numerical value measuring the 

proximity – similarity or dissimilarity – of two SNP loci or of the genetic 

profile of two persons?  

There are plenty of potential similarity or distance measures for this attempt 

(see e.g. Cox & Cox, 2001). After an introduction to the biological 

background of the GENICA study we will give an overview over possible 

approaches. The conventional matching coefficients are extended to a new 

class of more flexible matching coefficients. Chapter 5 gives some of the 

results for these Flexible Matching Coefficients. A detailed comparison of 

the introduced coefficients of similarity is given by Müller et al. (2005).  

 

 

2. Background 

 

The problem of measuring the proximity of genetic data arises in many 

studies as for example in the GENICA study of sporadic breast cancer. 

GENICA is part of the German Human Genome Project (DHGP) and is 

dedicated to the investigation of genetic interactions and gene-environment 

interactions leading to sporadic breast cancer.  
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2.1 Sporadic breast cancer 

In Germany almost 50 000 women develop breast cancer each year, that are 

7 to 10 % of the female population developing this disease during their life-

time. Breast cancer is the most frequent cancerous disease in women with 

about 26 % of all newly detected cancers. About one third of all patients are 

younger than 60 years while a tendency towards a more frequent 

development of breast cancer is reported generally and especially for 

younger women (ZTG, 2004). 

Though genetic factors have been discovered for hereditary breast cancer – 

variations of the genes BRCA1 and BRCA2 in about 3 % of all cases – for 

the majority of the breast cancer cases such understanding of the genetic 

mechanisms and potential interactions with exogenous risk factors remains 

unclear. Several exogenous risk factors seem to influence the risk of 

sporadic breast cancer. It is supposed that combinations of a number of low 

penetrant susceptibility genes may augment the risk of breast cancer in 

presence of certain exogenous risk factors. One of these factors seems to be 

the long term use of the Hormone Replacement Therapy as it was confirmed 

by the British Million Woman Study (Beral, 2003).  

Identification of interacting sequence variants and exogenous risk factors 

which affect the individual susceptibility is a major challenge for 

understanding the mechanisms contributing to the development of sporadic 

breast cancer (see also Garte, 2001). 

This is important not only for future developments of therapeutic approaches 

but also for prevention and earlier diagnosis and, hence, for a better 

prognosis. Thus, identification of high risk combinations of genetic and 
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exogenous factors would facilitate prevention and permit intensification of 

medical check-ups for women with high risk profiles. 

For the genetic basis of cancer in general and sporadic breast cancer in 

particular, see, for instance, Snustad & Simmons (1999) and Rabe (2004).  

 

2.2 Genetic terms 

The genetic information of all living organisms, except some viruses, is 

stored in DNA (deoxyribonucleic acid). Generally, nucleic acids are 

macromolecules composed of repeating subunits, the so called nucleotides. 

Each nucleotide is composed of a phosphate group, a five-carbon sugar or 

pentose and a cyclic nitrogen-containing base. In DNA (deoxyribonucleic 

acid), the sugar is 2-deoxyribose and in RNA (ribonucleic acid), the sugar is 

ribose. The four bases in DNA are: adenine (A), guanine (G), cytosine (C), 

and thymine (T). The bases in RNA are the same except that RNA contains 

uracil (U) instead of thymine (T). Adenine and guanine are double-ring 

bases called purines. Cytosine, thymine and uracil are single-ring bases 

called pyrimidines. Thus, DNA and also RNA are composed of four 

different nucleotides, two purines and two pyrimidines, which are joined 

together in long chains. RNA is usually found as a single stranded polymer 

whereas DNA is organised as a double-stranded helix. The two strands of a 

DNA double helix are said to be complementary because of the specific 

base-pairing: adenine is always paired with thymine, and guanine is always 

paired with cytosine (see Figure 1). Thus, all base pairs consist of one purine 

and one pyrimidine. The DNA macromolecules are organised in 

chromosomes. In humans the diploid set of chromosomes is 46: two 
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homologous sets – one maternal and one paternal – of 22 autosomes and one 

sex chromosome.  

 

 

Figure 1. DNA double helix. 

 

The expression of the genetic information involves mainly two steps: 

transcription and translation (see Figure 2). First, one strand of the DNA is 

used as a template to synthesize a complementary strand of RNA: the gene 

transcript. This process is called transcription and occurs in the nucleus of 

the cell. Transcription is initialised at specific nucleotides sequences called 

promoters which are located before the transcription start point. The 

efficiency of a promoter is influenced by nearby enhancer sequences.  
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Figure 2. Transmission of the genetic information from DNA to protein. 

 

Most genes that code for proteins are so called split genes. That means they 

contain coding sequences – exons – and non-coding sequences – introns. 

The biological significance of the latter remains unclear. Each intron must 

be removed from the RNA transcript of a gene before translation. This 

process is called splicing and has to be very precise to assure that codons in 

exons may be read correctly during translation. Multiple introns of a gene 

can be removed separately or in combination depending on how the splicing 

machinery interacts with the RNA. Joint excision of two introns means that 

also the exon in between will be removed. Thus, the coding sequence of an 

RNA can be modified by deleting some of its exons. This phenomenon of 

splicing an RNA transcript in different ways, called alternate splicing, 

makes it possible for a gene to encode different polypeptides (Snustad and 

Simmons, 1999).  
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After RNA transcript processing the so called mRNA (messenger RNA) is 

transferred to the cytoplasm. During translation the sequence of nucleotides 

in the RNA transcript is converted into the sequence of amino acids in the 

polypeptide gene product.  

This conversion is conducted by the genetic code: the specification of the 20 

amino acids by nucleotides triplets called codons. Each but three of the 64 

triplets codes for a specific amino acid, the three further are polypeptide 

chain termination – or stop – codons (see Table 1). Most amino acids are 

specified by more than one codon, with similar amino acids being specified 

by related codons. The first and the second nucleotide of a codon are the 

most important 'letters' for amino acid specification as many base 

substitutions at the third position do not change the specified amino acid. 

Moreover, amino acids with similar chemical properties have codons that 

differ from each other by only one base. Thus, many single base pair 

substitutions will result in gene products that minimize the effect of 

mutations (see Tables 1 and 2).  
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Table 1. The genetic code according to Snustad and Simmons (1999). ‘Stop’ 

denotes a terminator. Abbreviations are given in table 2.  

2nd letter  
U C A G 

 

UUU UCU UAU UGU U 
UUC 

Phe 
UCC UAC 

Tyr 
UGC 

Cys 
C 

UUA UCA UAA Ochre 
(stop) 

UGA Opal 
(stop) A U 

UUG 
Leu 

UCG 

Ser 

UAG Amber 
(stop) 

UGG Trp G 

CUU CCU CAU CGU U 
CUC CCC CAC 

His 
CGC C 

CUA CCA CAA CGA A 
C 

CUG 

Leu 

CCG 

Pro 

CAG 
Gln 

CGG 

Arg 

G 
AUU ACU AAU AGU U 
AUC ACC AAC 

Asn 
AGC 

Ser 
C 

AUA 
Ile 

ACA AAA AGA A A 

AUG Met 
(initiator) ACG 

Thr 

AAG 
Lys 

AGG 
Arg 

G 

GUU GCU GAU GGU U 
GUC GCC GAC 

Asp 
GGC C 

GUA GCA GAA GGA A 

1st
 (

5'
) 

le
tt

er
 

G 

GUG 

Val 

GCG 

Ala 

GAG 
Glu 

GGG 

Gly 

G 

3
rd  (3') letter 

 

Table 2. Abreviations and groups of amino acids according to Snustad and 

Simmons (1999).  

Hydophobic or nonpolar side groups Hydrophilic or polar side groups 
Gly Glycine Ser L-Serine 
Ala L-Alanine Thr L-Threonine 
Val L-Valine Tyr L-Tyrosine 
Leu L-Leucine Asn L-Asparagine 
Ile L-Isoleucine Gln L-Glutamine 
Pro L-Proline Basic side groups 
Phe L-Phenylalanin Lys L-Lysine 
Met L-Methionine Arg L-Arginine 
Trp L-Tryptophan His L-Histidine 
Cys L-Cystein 

Acidic side groups 
Asp L-Aspartic acid 
Glu L-Glutamic acid 
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The expression of genes is regulated via regulation of the transcription of 

genes, via processing regulation that involves alternate splicing or via 

regulation of the translation involving mRNA stability.  

 

The human genome consist of about 3 billion base pairs and about 30 000 

genes. We share about 99.9% of our DNA. Thus, about 3 million sequence 

differences can be detected comparing two individuals. Genetic variations 

include mutations and polymorphisms. A polymorphism is a genetic 

variation that is present in at least 1% of a population. The most common 

form of genetic variation – about 90% – are so called single nucleotide 

polymorphisms (SNPs) that are expected to occur every 1000 base pairs.  

To be precise, a SNP (single nucleotide polymorphism) is a point mutation 

that is present in more that 1 % of a population. A point mutation is a 

change of one base pair with respect to the most frequent variant, or a 

deletion that means the respective base pair is missing, or an addition of one 

base pair (see Figure 3).  

 

Figure 3. Possible point mutations. 
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Though several different sequence variants may occur at each considered 

locus usually one specific variant of the most common sequence is found, an 

exchange from adenine (A) to guanine (G), for instance. The most frequent 

variant is also called major allele or reference sequence, the less frequent 

minor allele or variant. The most frequent point mutation is the transition, 

the substitution of one purine (A, G) base by the other one or the 

substitution of one pyrimidine base (C, T) by the other one, respectively. 

The transversion, that means the substitution of a purine base by a 

pyrimidine base or vice versa, as well as deletions or additions occur less 

frequently.  

 

The result of such a variation of one base pair may be, for instance, a change 

of one amino acid in the amino acid chain of an enzyme (non-synonymous 

exchange) or the switch from an amino acid coding triplet to a stop codon 

leading to a shortened amino acid chain (Figure 2). The impact of such an 

alteration of the amino acid chain depends on its position, for example if an 

exchange of one amino acid occurs in a functional region of an enzyme. 

Though some of the SNPs do not result in an amino acid exchange 

(synonymous exchange) an effect is not always deniable. With respect to 

SNPs that are located in non-coding regions single alterations of the 

sequence may have an impact on gene regulation, for instance.  

 

Though most of these polymorphisms are supposed to have generally a 

minor impact, under certain environmental conditions some have indeed an 

effect contributing, for instance, to the development of a disease. A 
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prominent example is the genetic variation of N-acetyltransferase-2 (NAT2) 

where single nucleotide polymorphisms of the gene result in phenotypically 

slow acetylator types which in turn are more susceptible to environmental 

and industrial carcinogens. For instance, slow acetylators are at higher risk 

of developing bladder cancer due to occupational exposure to aromatic 

amines than fast acetylators as the detoxification of these substances is less 

effective (Thier et al., 2003).  

 

 

3. Data 

 

The present data set consists of a selection of SNP loci of the GENICA 

study of sporadic breast cancer. The GENICA study is a population-based 

age-matched case-control study assessing genotypes of over 120 SNP loci 

and exogenous risk factors of the reproductive history, hormone use, life 

style factors, occupational history, family history of cancer, etc. of 1100 

cases and 1100 healthy controls.  

The GENICA network is a cooperation between researchers from the 

Research Institute for Occupational Medicine of the Institutions for Satutory 

Accident Insurance and Prevention (BGFA) in Bochum, the Dr.-Margarete-

Fischer-Bosch Institute for Clinical Pharmacology (IKP) in Stuttgart, the 

German Cancer Research Center (DKFZ) in Heidelberg, the Medical 

Polyclinic at the University of Bonn, and the Institute for Occupational 

Physiology at the University of Dortmund (IfADo).  
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Actually the available data set comprises 65 SNP loci and 2 loci where the 

variant sequence is an insertion of 306 and 16 base pairs, respectively, of 

610 cases of sporadic breast cancer and of 650 age-matched healthy controls 

from the first phase of recruitment.  

The SNP data are given in form of both detected bases at a specific locus, 

specifying the reference base and the variant, and are transformed to denote 

the single or double absence of the reference base pair at a defined point of a 

certain gene. In particular, we denote 0 as the homozygous reference 

sequence (reference/reference, no SNP), 1 as the heterozygous genotype 

(reference/variant, 1 SNP) and 2 as the homozygous variant sequence 

(variant/variant, 2 SNPs). 

Furthermore, we know which loci belong to the same gene and to which 

pathways the genes belong to. Additionally, we know for most loci if they 

are located in a coding or in a non-coding region and in case of the coding 

SNP loci if they cause a change in the amino acid chain. Several genes are 

observed at more than one SNP locus and the pathway information is given 

for all genes. Pathway means the field where a gene-product plays a role 

within the human metabolism, e.g. the pathway of xenobiotics and drug 

metabolism. Table 3 gives the considered pathways and the corresponding 

genes. Note that a gene may participate in more than one pathway. 
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Table 3. Assignment of the considered genes to their pathways and number 

of investigated loci per pathway 

Pathway Gene 
Number of 

SNPs 

Metabolism of 
xenobiotics and drugs 

12, 14, 17, 18, 19, 23, 27, 79, 
CYP1A1, CYP1B1, CYP2E1, GST, 

NAT, ADH2 
30 

Metabolism of steriod 
hormones 

23, 34, 53, 58, 100, 101, 102, 105, 
CYP1A1, CYP1B1 

12 

DNA repair 24, 25, 55, 72, 74 7 

Nutrition relevant 
factors 

32, 45, 62 6 

Signal transduction 33, 64, 75, 76, 77, 78, 80, 81 9 

Growth factors 70 2 

Oncogene 31 2 

Transporter 38 3 

Detoxification 41 1 

Control of cell cycle 103, 104 4 

 

Part of the locus names are coded due to their origin from different 

institutes.  

The data set comprises 47 transitions – 27 exchanges of guanine and 

adenine, 20 exchanges of cytosine and thymine, 22 transversions – the most 

frequent exchange was between cytosine and guanine with 11 loci, 3 

deletions and 2 insertions.  

 

 

4. Methods 

Searching for patterns in the data there are two possible objectives: a 

comparison of variables or a comparison of subjects. In the first case we aim 

to detect major differences in the clustering of two variables between cases 

and controls as well as a general structure of genetic and or exogenous 
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variables. A different point of view is the comparison of subjects with 

respect to their genetic information with the aim of finding high and low risk 

groups. Depending on the different objectives we have to define a measure 

of proximity suitable for the hypothised concept of similarity and the scale 

of the data.  

 

There are lots of measures of proximity representing different concepts of 

similarity and different assumptions with respect to the data. Introducing 

first the general concepts of proximity for the particular situation of SNP 

data we then give a short summary of the definition and properties of 

similarity measures. A general problem of SNP data is the huge amount of 

common occurrence of homozygous reference types which is supposed to 

mask the relevant information of genetic alterations. In section 4.3 we 

present different classes of measures of similarity and discuss their 

appropriateness for the present data structure. A new family of matching 

coefficients – the Flexible Matching Coefficients - which accounts for the 

special features of SNP data set and biological assumptions is introduced in 

section 4.3.1.  

 

4.1 Concepts of proximity 

Focusing on the similarity of the genetic variables the basic question is: 

What does similarity of two SNP loci mean and how to measure it?  

The present data base contains genotypes and some additional information 

about the SNP loci. So, basis of a search for patterns is a comparison of 

genotypes of different loci in the same or different genes.  
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One possibility is to consider the similarity of loci with respect to their joint 

occurrence of similar genotypes. In a first step we here need to assess the 

number of persons carrying the respective combination for each combination 

of genotypes, e.g. the number of persons who are heterozygous at locus A 

and show the homozygous reference sequence at locus B (see Figure 4).  

 

 

Figure 4. Comparison of two SNP loci. The SNP loci are indicated by a 

black bar in case of the reference base pair and by a grey star in case of the 

variant.  

 

The second step is to determine which genotypes of the two loci we regard 

as similar. A similar combination is obviously the joint occurrence of 

homozygous reference types. For all other combinations of genotypes at two 

loci it is not that obvious which ones are similar and raises the question of 

the consequences of a homo- or heterozygous SNP at a particular locus 

compared with the reference sequence.  
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Thus the general idea is to consider the potential deviations of the gene 

products from their most frequent variant to which each of the investigated 

loci contribute.  

Comparing the genotypes of two SNP loci with respect to their impact on 

the metabolism would mean that we have to assess first a numerical value to 

each hetero- and homozygous variant characterising their effect compared to 

the homozygous reference variant, e.g. their contribution to risks, beneficial 

effects, influence on gene-regulation, ensuring that these numerical values 

may be compared across all loci. Hence, concepts of similarity based on 

correlation or deviation from independence would be the appropriate 

approach to search for patterns of SNP loci. 

Thus considering the rather 'rough' standardised information about the 

hetero- or homozygous deviation from the reference sequence, interpreting 

these data as information about the amount of 'original gene-dose' and thus 

drawing conclusions about the potential impact is a reasonable approach. 

Anyway, considering specific measures of similarity it is possible to 

incorporate further biological assumptions, potential benefits of 

heterozygosity, for instance, or the existence of at least one reference copy 

of a gene that may code for the 'most common' enzyme variant. Similarity 

may be considered then in terms of agreement or in terms of dependence.  

Agreement means to consider two loci as similar if the majority of subjects 

owns a combination of similar genotypes at these loci. Two loci would be 

considered as dissimilar if the majority of subjects has a combination of 

dissimilar genotypes. Matching coefficients and measures of correlation, for 

instance, would correspond to this concept of similarity.  
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The concept of dependence encompasses the first in so far as a frequent 

occurrence of similar genotypes would also be regarded as similarity. But it 

also allows generally for further combinations of genotypes – perhaps a 

priori judged as dissimilar – to contribute to the label ‘similar’ for two SNP 

loci if they occur more frequent than expected. So, dependence would be 

regarded as similarity and independence as dissimilarity. This concept is 

represented, for instance, by squared correlation coefficients and measures 

based on the χ²-statistic.  

 

Focussing on the comparison of objects or subjects (observed persons in our 

example) means to assess the similarity of the individual genotypes at each 

locus and to draw conclusions about the overall similarity of all considered 

loci. Generally, two subjects can be considered as similar if they share 

similar genotypes at most loci. They are dissimilar if most considered loci 

show dissimilar combinations of genotypes (see Figure 5). This raises again 

the question of similarity of the observed genotypes but here the similarity 

of genotypes at a single locus.  
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Figure 5. Comparison of two persons at two loci. The SNP loci are 

indicated by a black bar in case of the reference base pair and by a grey 

star in case of the variant.  

 

Considering first the similarity of genotypes at a particular gene locus 

implies to consider the consequences of sequence alterations – homo- and 

heterozygous – with respect to their reference, for instance the loss of 

function of an enzyme in the drug metabolism. Unless the potential 

consequences of single alterations encompass a broad range of effects – as 

stated above – we have to concentrate primarily on the information about the 

sequence variants. In a further step it is possible to incorporate knowledge 

about inheritance, basic information about the relevance of homo- and 

heterozygosity of the alterations and assumptions about the relevance of loci 

and genes using different weighting schemes.  

 

Generally, two persons can be considered as similar if they share the same 

genotype at most loci. Thus similarity means here accordance or agreement. 
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The concept of dependence is less adequate. Imagine that two persons are 

compared by means of a measure based on the χ²-statistic. Then they would 

be regarded as similar if the observed cell counts deviate from the expected 

ones. This means not necessarily that they share the same genotype at most 

loci. We would obtain the same result if they share the same genotype at 

notably few loci - in contrast to our believe about similarity in this situation. 

So, in this particular situation measures based on the concept of agreement 

should be preferred to those based on dependence. 

 

4.2 Similarity and distance 

Measures of similarity or distance may be defined as functions of variables 

or as functions of objects or subjects. We introduce here functions of 

variables. For the corresponding notations of the functions of objects 

replace IRVVS →×: , with V being the set of variables by IROOS →×: , 

with O being the set of objects. 

 

DEFINITION 1. Similarity 

Let O = {O1, . . ., On} be a set of n objects observed at a set of m variables 

V = {V1, . . ., Vm}. Then a measure of similarity of two variables Vk ∈ V and 

Vl ∈ V, is given by IRVVS →×:  with  

(A1) ( ) ( )mklk VVSVVS ,, > , ∀ Vk, Vl, Vm ∈ V, with Vk 

being more similar to Vl 

than to Vm and Vl ≠Vm 

 comparability 

(A2) ( ) ( )kllk VVSVVS ,, = ,  ∀ Vk, Vl ∈ V  symmetry 

(A3) ( ) ( )lkkk VVSVVS ,, ≥ , ∀ Vk, Vl ∈ V  natural order 
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REMARK 1. Restriction to [0,1] 

Often it is useful to assume that S ∈ [0,1], i.e.,  

(A4) ( ) 0, ≥lk VVS , ∀ Vk, Vl ∈ V  positivity 

(A5) ( ) 1, =kk VVS , ∀ Vk, ∈ V  normality 

 

Measures of distance or dissimilarity can be defined similarly. 

 

DEFINITION 2. Distance 

Let O = {O1, . . ., On} be a set a set of n objects observed at a set of m 

variables V = {V1, . . ., Vm}. Then a measure of distance of two variables Vk 

∈ V and Vl ∈ V, is given by IRVVD →×:  with  

(B1) ( ) ( ),,, mklk VVDVVD > , ∀ Vk, Vl, Vm ∈ V, with 

Vk being more dissimilar 

to Vl than to Vm and Vl 

≠Vm 

 comparability 

(B2) ( ) ( )kllk VVDVVD ,, = , ∀ Vk, Vl ∈ V  symmetry 

(B3) ( ) ( )lkkk VVDVVD ,, ≤ , ∀ Vk, Vl ∈ V.  natural order 

 

REMARK 3. Restriction to [0,1] 

Often it is useful to assume that D ∈ [0,1], i.e., 

(B4) ( ) 1, ≤lk VVD ,  ∀ Vk, Vl ∈ V  positivity 

(B5) ( ) 0, =kk VVD , ∀ Vk ∈ V.  normalit

y 
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REMARK 4. Metric 

If D satisfies (B2),  

(B6) ( ) 0, =lk VVD , if and only if k = l, ∀ Vk, 

Vl ∈ V 

 normality 

(B7) ( ) ( )
( ),,

,,

mk

mllk

VVD

VVDVVD

≥
+

 
∀ Vk, Vl, Vm ∈ V and Vl ≠Vm  triangle 

inequality 

then D is a metric.  

 

Note, that (B6) is a stronger assumption than (B5). Furthermore, D is not 

restricted to [0,1].  

In practice, the interest is focussed more on distances, especially on metric 

measures of distances. If S ∈ [0,1] then D = 1 – S otherwise S can be 

converted into a distance as follows: 

 

TRANSFORMATION 1.  

Let S be a similarity measure satisfying (A1)-(A3) and let ( ) 0,min <lk VVS . 

Then the transformation  

(T1) ( ) ( )
( )lk

lk
lk

VVS

VVS
VVD

,max

,
1,

*
''

*

'' −= ,  ∀ Vk’, Vl’ ∈ V and ∀Vk, Vl ∈ V, 

where ( ) ( ) ( )lklklk VVSVVSVVS ,min,, ''''
* += , ∀ Vk’, Vl’ ∈ V and 

∀Vk, Vl ∈ V, 

yields the corresponding measure of distance [ ]1,0: →×VVD .  

If S also satisfies (A4) the transformation from S to S* can be skipped 

and (T1) can be performed directly with S. 

If S in addition satisfies (A5) the transformation  
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(T2)  ( ) ( )lklk VVSVVD ,1, −= , ∀ Vk, Vl ∈ V, 

yields the corresponding measure of distance [ ]1,0: →×VVD .  

 

4.3 Measures of proximity 

Choosing appropriate measures of proximity for a particular problem does 

not only mean to regard the nature of similarity and dissimilarity but also to 

consider the scale of the data and special characteristics of the data set. This 

section considers the different scales of data and gives an overview over the 

corresponding measures of proximity for each concept of similarity: 

agreement and dependence, as well as measure for quantitative data based 

on a geometric interpretation of proximity (distance). We relate the different 

situations to the present problem introducing new measures developed for 

this particular data situation. 

 

4.3.1 Nominal scale  

A special case of nominal scaled data is binary data, for instance the 

presence or absence of a trait. As many measures for categorial data are 

derived from the binary case and the transformation of data to a binary scale 

is a common approach we introduce first measures of agreement for this 

particular kind of data. We continue with the general case of p ≥ 2 categories 

and extend the usual matching coefficients to a more general family of 

matching coefficients: Flexible Matching Coefficients. Measures of 

dependence which are able to cope with different numbers of categories are 

introduced generally for both cases: binary data and p ≥ 2 categories.  
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Measures of agreement – Special case: Binary data 

Considering the present data situation the information about the SNP loci 

might be transformed to a binary scale by introducing for each locus two 

new variables denoting  

i. the occurrence of at least one SNP and  

ii. the occurrence of at least one reference sequence. 

Thus, a homozygous reference would result in ‘0’ for the first variable and 

‘1’ for the second variable and vice versa in case of a homozygous SNP. 

Heterozygosity would then be denoted by ‘1’ for both variables. Assuming 

that one of these two variables is rather less informative, for instance if 

homo- and heterozygous references are considered as quite similar, one may 

omit one of these two variables reducing the information to two categories. 

A binary representation may be used for both: a comparison of variables and 

a comparison of subjects. 

A special problem of the present data situation is the huge amount of 

homozygous reference types. Thus comparing two variables or subjects the 

proportion of combinations of homozygous references, further called 0-0-

matches, is rather high compared with the remaining combinations and 

might be supposed to mask the interesting effects. The term 0-0-matches 

arises from matching coefficients for binary data, where the number of 

common presence – 1-1-matches – and common absence – 0-0-matches – of 

a trait is related to the number of mismatching combinations, i.e. one 

absence and one presence of a trait.  
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Denote Vk and Vl being two variables that should be compared with respect 

to their similarity and m00, m01, m10, m11 as given by Table 4. The case of 

two objects that should be compared substitute Vk and Vl by Ok and Ol, 

respectively.  

 

Table 4. Contingency table of Vk and Vl, mi and mij denoting the respective 

numbers of combinations of categories i and j. 

    Vl 
Vk 

0 1 

0 m00 m01 

1 m10 m11 

 

Hence, all of the following measures can be derived from the corresponding 

table of contingency. 

 

Most measures of agreement can be generalized to (Steinhausen & Langer, 

1977)  

( )01100011

0011,

mmmm

mm
S

+++
+

=
δλ
λδλ      (1) 

where λ = 1, if the measures does not make any difference between 0-0- and 

1-1-matches and λ = 0, if the measure treats the 0-0-matches as an 

uninformative absence of a trait not contributing to the similarity or 

dissimilarity of two variables or objects. Furthermore matches and 

mismatches are weighted differently depending on the value of δ > 0.  

An overview over common matching coefficients is given in Table 5, see 

also Anderberg (1973) and Cox and Cox (2001) for details and for further 

matching coefficients.  
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Table 5. Matching coefficients for binary data. 

Symbol Coefficient Name 

Measures of Similarity including the 0-0-matches 

1,1
MS  

01100011

0011

mmmm

mm

+++
+

 Simple Matching 

2/1,1
SoSnS  ( )01102

1
0011

0011

mmmm

mm

+++
+

 Sokal & Sneath 

2,1
1RTS  ( )01100011

0011

2 mmmm

mm

+⋅++
+

 Rogers & 
Tanimoto I 

1KS  
0110

0011

mm

mm

+
+

 Kulczynski I 

1HS  
( )

01100011

01100011

mmmm

mmmm

+++
+−+

 Hamman I 

PhiS  ( ) ( ) ( ) ( )[ ] 2
1

0100100001111011

01100011

mmmmmmmm

mmmm

+⋅+⋅+⋅+
⋅−⋅

 

Phi 

QS  
01100011

01100011

mmmm

mmmm

⋅+⋅
⋅−⋅

 Yule Q 

YS  
01100011

01100011

mmmm

mmmm

⋅+⋅
⋅−⋅

 Yule Y 

 Measures of Similarity excluding the 0-0-matches 

1,0
JS  

011011

11

mmm

m

++
 Jaccard 

2/1,0
DS  ( )01102

1
11

11

mmm

m

++
 Dice 

2,0
2RTS  ( )011011

11

2 mmm

m

+⋅+
 Rogers & Tanimoto II 

2KS  
0110

11

mm

m

+
 Kulczynski II 

2HS  
( )

011011

011011

mmm

mmm

++
+−

 Hamman II 

OS  ( ) ( )[ ] 2
1

01111011

11

mmmm

m

+⋅+
 Ochiai 

 

Measures that can be derived from eq. (1) are restricted to [0,1] (see 

Remark 5). The measures of Hamman, Phi and both coefficients of Yule 
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may result in negative values. Except the coefficients of Kulczynski all 

measures of similarity shown in table 5 do not exceed 1.  

 

Measures of agreement for categorically scaled data 

Consider the general case of Vk and Vl with categories k, l =0, 1, …, p being 

two variables that should be compared with respect to their similarity. The 

case of Ok and Ol is analogous. It is reasonable to assume that the matching 

categories are all combinations i-j with i = j, i, j =0, 1, …, p.  

In the particular situation of SNP data this means that we compare either 

loci or persons with the matching combinations  

0-0 homozygous reference- homozygous reference, 

1-1 heterozygous-heterozygous and 

2-2 homozygous variant- homozygous variant. 

Extensions are possible and considered in detail in the next section. 

Hence, most measures for binary data can be extended to more than two 

categories without any problems. The special role of the 0-0-matches 

persists extending the binary case to the p categorical case (see also 

Steinhausen & Langer, 1977).  

So, let Vk and Vl with categories i, j =0, 1, …, p being two variables and let 

mij as given in Table 6.  
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Table 6. Contingency table of Vk and Vl. 

 

 

 

 

 

For facilitation, let  

∑
=

+ =
p

i
iimm

0

 be the number of matches and    (2) 

ji

p

i

p

j
ijmm

≠
= =

− ∑∑=
0 0

be the number of mismatches.    (3) 

Most measures of agreement have the general form  

( )
( ) −+

+

+−−
−−

=
mmm

mm
S

δλ
λδλ

0

0,

1

1
,      (4) 

with λ = 1 if the 0-0-matches are treated as normal matches, λ = 0 if the 0-0-

matches denote the common absence of a trait and are excluded from the 

calculation of the similarity between two variables or objects and δ > 0 

denoting the weight of the mismatches. 

In the special case of SNP data with 3 categories this is  

( )011002201221012

012,

mmmmmmmmm

mmm
S

++++++++
++

=
δλ

λδλ . (5) 

An overview over the most common measures is given in Table 7.  

 

     Vl 

Vk 
0 1 2 … p 

0 m00 m01 m02 …  m0p 

1 m10 m11 m12 …  m1p 

2 m20 m21 m22 …  m2p 

… …  …  …  …   

p mp0 mp1 mp2 …  mpp 
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Table 7. Matching Coefficients for categorial data with p ≥ 2 categories 

Symbol Coefficient Name 

Measures of Similarity including the 0-0-matches 

1,1
MS  

−+

+

+ mm

m
 Simple Matching 

2/1,1
SoSnS  −+

+

+ mm

m

2
1

 Sokal & Sneath 

2,1
1RTS  

−+

+

⋅+ mm

m

2
 Rogers & Tanimoto I 

1KS  
−

+

m

m
 Kulczynski I 

1HS  
−+

−+

+
−

mm

mm
 Hamman I 

 Measures of Similarity excluding the 0-0-matches 

1,0
JS  −+

+

+−
−

mmm

mm

0

0  Jaccard 

2/1,0
DS  −+

+

+−
−

mmm

mm

2
1

0

0  Dice 

2,0
2RTS  −+

+

⋅+−
−

mmm

mm

20

0  Rogers & Tanimoto II 

2KS  
−

+ −
m

mm 0  Kulczynski II 

2HS  −+

−+

+−
−−

mmm

mmm

0

0  Hamman II 

 

As in the binary case measures that can be derived from Eq. (4) are 

restricted to [0,1]. The measures of Hamman may result in negative 

similarities but do not exceed 1 whereas the coefficients of Kulczynski are 

nonnegative but may have values > 1.  
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Flexible Matching Coefficients 

A first step to generalise the usual measures of agreement as given by Eq. 

(4) is to allow for λ ≥ 0.  

For instance, λ = ¾ yields a similarity measure called Quarterprop also 

investigated by Müller (2004). Thus, it is possible to include the 0-0-

matches in the assessment of similarity but assigning them lower importance 

as the remaining matches.  

In the particular situation of SNP data with 3 categories this leads to  

( )011002201221001122

001122,

mmmmmmmmm

mmm
S

++++++++
++

=
δλ

λδλ ,  

with λ ≥ 0 and δ > 0.   

The next step towards a generalisation is to permit different weights for 

different groups of matches and mismatches  

( ) ( ) ( )211212100101200202000111222

000111222,,

mmmmmmmmm

mmm
S iiflex

++++++++
++

=−

δδδλλλ
λλλδλ   (6) 

with λi ≥ 0, i = 0, 1, 2, δj ≥ 0, j = 02, 01, 12, ∑ >
i

i 0λ , ∑ >
j

j 0δ .  

Thus, it is possible to stress the importance of the least frequent 2-2-

matches, i.e. common occurrence of a homozygous SNP, and to consider, 

for instance, homozygous references and heterozygous types as less different 

as homozygous references and variants. So, it is reasonable to assume that 

0012 ≥≥≥ λλλ  stressing the importance of the common occurrence of 

homozygous variants and 00102 >≥ δδ  and 01202 >≥ δδ  so that 

homozygous variants and references are set to be most dissimilar.  

A further extension consists in an extended definition of agreement. Assume 

that a common occurrence of at least one SNP is rather a similar genotype 
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combination than a dissimilar one. Thus, the respective numbers of 

combinations may be treated as matches but perhaps with a lower weight: 

( )
( ) ( ) ( )100101200202211212000111222

211212000111222,,12

mmmmmmmmm

mmmmm
S flex

++++++++
++++

=−

δδλλλλ
λλλλδλ   (7) 

with λi ≥ 0, i = 0, 1, 2, 12, δj ≥ 0, j = 02, 01, ∑ >
i

i 0λ , ∑ >
j

j 0δ .  

 

Similar to (7) the presence of at least one reference copy might be regarded 

as contributing to the similarity of two variables or subjects.  

( )
( ) ( ) ( )211212200202100101000111222

100101000111222,,01

mmmmmmmmm

mmmmm
S flex

++++++++
++++

=−

δδλλλλ
λλλλδλ   (8) 

with λi ≥ 0, i = 0, 1, 2, 01, δj ≥ 0, j = 02, 12, ∑ >
i

i 0λ , ∑ >
j

j 0δ .  

 

Eq. (6)-(8) can easily be generalised to the p categorical case and a further 

extension of the definition of matches and mismatches: 

∑∑
∑

∈∈

∈−

+
=

Jj
jj

Ii
ii

Ii
ii

IJflex

mm

m
S

δλ

λ
δλ ,, ,       

where ∑
∈Ii

iimλ  is the weighted sum of matches and ∑
∈Jj

jj mδ  is the 

weighted sum of mismatches, I is the index set for similar categories and J is 

the index set for dissimilar categories. For convenience and to assure the 

symmetry of the corresponding similarity matrix for all variables or objects 

the indices kl and lk are pooled together to one index kl, k≤l. Note that 

lkklkl mmm ''+= , ∀k, l = 1, … , p, k≤l, is the sum over all numbers of 

categories k and l.  
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DEFINITION 3. Flexible Matching Coefficient 

Let O = {O1, . . ., On} be a set n objects observed at a set of m variables 

V = {V1, . . ., Vm}. Then Sflex-IJ,λ,δ: V×V → IR, and Sflex-IJ,λ,δ: O×O → IR, 

respectively, is given by  

∆+Λ
Λ=− :,, δλIJflexS ,       (9) 

with ∑
∈

=Λ
Ii

iimλ: , ∑
∈

=∆
Jj

jj mδ: , 

I = {i=kl, k≤l, k, l = 0, 1, … , p|all combinations of category k and l are similar}, 

J = {j=kl, k≤l, k, l = 0, 1, … , p|all combinations of category k and l are dissimilar}. 

We denote by λ the vector of weights λi, i ∈ I, of the matches and by δ  the 

vector of weights δj, j ∈ J, of the mismatches. Furthermore, Iii ∈∀≥ ,0λ , 

∑
∈

>
Ii

i 0λ , Jjj ∈∀≥ ,0δ , 0>∑
∈Jj

jδ , and Iimi ∈∀≥ ,0 , Jjm j ∈∀≥ ,0 , 

0>+ ∑∑
∈∈ Jj

j
Ii

i mm  with mi denoting the number of entries of all 

combinations of matching categories contributing to i and mj denoting the 

number of entries of all combinations of dissimilar categories contributing 

to j. In particular, lkklkl mmm ''+=  is the sum of the number of (k, l) and (l, k) 

pairs. 

 

REMARK 5. Measure of Similarity 

∆+Λ
Λ=− δλ ,,IJflexS  is a measure of similarity satisfying (A1)-(A5). 

 

PROOF: see Appendix. 
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REMARK 6. Special cases 

Equations (6) – (8) are special cases of (9) with I = {0, 1, 2} and 

J = {02, 01, 12} for Eq. (6), I = {0, 1, 2, 12} and J = {02, 01} for Eq. (7) 

and I = {0, 1, 2, 01} and J = {02, 12} for Eq. (8). 

In particular, these similarity measures satisfy (A1) – (A5).  

 

Considering the function δλ ,,IJflexS −  with respect to its dependence on the 

parameters λi and δj we use the following abbreviations: 

∑
∈

− =−Λ=Λ
}{\ '

'':
iI i

iiii
i mm λλ ,  ''

', : iiii
ii mm λλ −−Λ=Λ−   (10) 

∑
∈

− =−∆=∆
}{\'

'':
jJj

jjjj
j mm δδ , ''

', : jjjj
jj mm δδ −−∆=∆−   (11) 

So, δλ ,,IJflexS −  has the following properties.  

 

THEOREM 1. Properties of ),|(,,
lki

IJflex VVS λλλλδδδδλλλλ−−−−  

Let δλ ,,IJflexS −  be a measure of similarity as given by Definition 3 and let 

0>∆+Λ−i  and mi > 0. Then ),|(,,
lki

IJflex VVS λδλ−  has the following 

properties for all λi, i ∈ I. 

i. 
∆+Λ

Λ== −

−
−

i

i

lki
IJflex VVS ),|0(,, λδλ  

ii. 
∆+Λ

Λ= −

−
−

→ + i

i

lki
IJflex VVS

i

),|(lim ,,

0
λδλ

λ
 

iii. 1),|(lim ,, =−

∞→ lki
IJflex VVS

i

λδλ

λ
 

iv. ( ) 0),|(
2

,, ≥
∆+Λ+

∆
=

∂
∂

−

−

i
ii

i
lki

IJflex

i m

m
VVS

λ
λ

λ
δλ  
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v. ( ) 0),|0(
2

,, >
∆+Λ

∆
==

∂
∂

−

−

i

i
lki

IJflex

i

m
VVS λ

λ
δλ , ∀ mi and ∆ > 0 

vi. ( ) 0
2

),|(
3

2
,, ≤

∆+Λ+

∆−
=

∂∂
∂

−

−

i
ii

i
lki

IJflex

ii m

m
VVS

λ
λ

λλ
δλ  

vii. ( ) 0
2

),|0(
3

2
,, <

∆+Λ

∆−
==

∂∂
∂

−

−

i

i
lki

IJflex

ii

m
VVS λ

λλ
δλ , ∀ mi and ∆ > 0. 

 

PROOF: see Appendix.  

 

This means that ),|(,,
lki

IJflex VVS λδλ−  is a continuous monotonically 

increasing function approximating 1 for λi → ∞ with minimum 

∆+Λ
Λ= −

−
−

i

i

lk
IJflex VVS ),|0(,, δλ  but no inflexion point (see Figures 6 and 7 

for illustration). 
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Figure 6. ),|( 212
,, vvS IJflex λδλ−  for different contingency tables T1, T2, and 

T3. 
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Figure 7. ),|( 212
,, vvS IJflex λδλ−  for different contingency tables T1, T2, and 

T3. 

 

The values of ),|( 212
,, vvS IJflex λδλ− are calculated using λ1 = 1, λ0 = 0.5, 

δ02 = 2, δ01 = δ12 = 1 and three different contingency tables T1, T2 and T3, 

where T1 represents a rather balanced contingency table with 

m+ = m0+m1+m2 = 90+100+80 = 270 and m–

 = m01+m10+m02+m20+m12+m21 = 70+65+35+85+50+40 = 345. Table T2 

represents the current situation with the SNP data with 

m+ = 300+100+20 = 420 and m–= 20+30+35+15+40+25 =165 and table T3 

is a rather balanced table with few matches m+ = 25+10+5 = 40 and m–

 = 90+160+150+130+100+95= 725 mismatches.  

 

THEOREM 2. Properties of ),|,( '
,,

lkii
IJflex VVS λλλλλλλλδδδδλλλλ−−−−  

Let δλ ,,IJflexS −  be a measure of similarity as given by Definition 3 and let 

0', >∆+Λ− ii  and 0'>+ ii mm . Then ),|,( '
,,

lkii
IJflex VVS λλδλ−  has the 

following properties for all λi, λi’ , i, i’  ∈ I, i ≠ i’ : 



 39 

i. 
∆+Λ

Λ= −

−
−

',

',
,, ),|0 ,0(

ii

ii

lk
IJflex VVS δλ  

ii. 
∆+Λ

Λ= −

−
−

→
→

+

+ ',

',

'
,,

0
0

),|,(lim

'

ii

ii

lkii
IJflex VVS

i

i

λλδλ

λ
λ

 

iii. 1),|,(lim '
,,

'

=−

∞→
∞→ lkii

IJflex VVS
i

i

λλδλ

λ
λ

. 

 

PROOF: see Appendix.  

 

So ),|,( '
,,

lkii
IJflex VVS λλδλ−  is continuous in (λi,λi’) = (0,0) with minimum 

∆+Λ
Λ= −

−
−

',

',
,, ),|0 ,0(

ii

ii

lk
IJflex VVS δλ  and approximates 1 for λi → ∞, λi’  → ∞.  

 

Now, we consider the dependence of δλ ,,IJflexS −  on the weights of the 

mismatches δj. 

 

THEOREM 3. Properties of ),|(,,
lkj

IJflex VVS δδδδδδδδλλλλ−−−−  

Let [ ]1,0 : 0
,, →+− IRS IJflex δλ  be a measure of similarity as given by 

Definition 3 and let 0>∆+Λ − j  and 0>jm . Then ),|(,,
lkj

IJflex VVS δδλ−  has 

the following properties for all δj, j ∈ J. 

i. 
jlk

IJflex VVS −
−

∆+Λ
Λ=),|0(,, δλ  

ii. 
jlkj

IJflex VVS
j

−
−

→ ∆+Λ
Λ=

+
),|(lim ,,

0
δδλ

δ
 

iii. 0),|(lim ,, =−

∞→ lkj
IJflex VVS

j

δδλ

δ
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iv. ( ) 0),|(
2

,, ≤
+∆+Λ

Λ−
=

∂
∂

−

−

jj
j

j
lkj

IJflex

j m

m
VVS

δ
δ

δ
δλ  

v. ( ) 0),|0(
2

,, <
∆+Λ

Λ−
==

∂
∂

−

−

j

j
lkj

IJflex

j

m
VVS δ

δ
δλ , ∀ mj and Λ > 0 

vi. ( ) 0
2

),|(
3

2

,, ≥
+∆+Λ

Λ
=

∂∂
∂

−

−

jj
j

j
lkj

IJflex

jj m

m
VVS

δ
δ

δδ
δλ  

vii. ( ) 0
2

),|0(
3

2

,, >
∆+Λ

Λ
==

∂∂
∂

−

−

j

j
lkj

IJflex

jj

m
VVS δ

δδ
δλ , ∀ mj and Λ > 0. 

 

PROOF: see Appendix.  

 

This means that ),|(,,
lkj

IJflex VVS δδλ−  is a continuous monotonically 

decreasing function approximating 0 for δj → ∞ with maximum 

jlk
IJflex VVS −

−

∆+Λ
Λ=),|0(,, δλ  but no inflexion point (see Figure 8 for 

illustration). 
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Figure 8. ),|( 2102
,, vvS IJflex δδλ−  for different contingency tables T1, T2, and 

T3. 
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The values of ),|( 2102
,, vvS IJflex δδλ− are calculated using λ2 = 2, λ1 = 1, 

λ0 = 0.5, δ01 = δ12 = 1 and three different contingency tables T1, T2 and T3 

as described above. 

 

THEOREM 4. Properties of ),|,( '
,,

lkjj
IJflex VVS δδδδδδδδδδδδλλλλ−−−−  

Let [ ]1,0 : 00
,, →× ++− IRIRS IJflex δλ  be a measure of similarity as given by 

Definition 3 and let 0', >∆+Λ − jj  and 0'>+ jj mm . Then 

),|,( '
,,

lkjj
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PROOF: see Appendix.  

 

So ),|,( '
,,

lkjj
IJflex VVS δδδλ−  approximates 

', jj−∆+Λ
Λ

 in (δj,δj’) = (0,0) and 

approximates 0 for δj → ∞, δj’  → ∞.  

 

Now, we consider the joint dependence of Sflex –IJ,λ,δ on the weights of the 

matches λi and on the weights of the mismatches δj. 
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THEOREM 5. Properties of ),|,(,,
lkji
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Let [ ]1,0 : 00
,, →× ++− IRIRS IJflex δλ  be a measure of similarity as given by 

Definition 3 and let 0>∆+Λ −− ji  and 0>+ ji mm . Then 
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PROOF: see Appendix.  

 

So, ),|,(,,
lkji

IJflex VVS δλδλ−  ∈ [0, 1] approximates 
ji

i

−−

−

∆+Λ
Λ

. in 

(λi,δj) = (0,0). Figure 9 illustrates the behaviour of δλ ,,IJflexS −  depending on 

λ2 and δ02 for the contingency table T1. 
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Figure 9. ),|,( 21022
,, vvS IJflex δλδλ−  for contingency table T1. 

 

The values of ),|,( 21022
,, vvS IJflex δλδλ− are calculated using λ2 = 2, λ1 = 1, 

λ0 = 0.5, δ02 = 2, δ01 = δ12 = 1 and contingency table T1 as described above. 

 

Measures of dependence 

In case of nominally scaled data most measures based on the concept of 

dependence are functions of the χ²-statistic and handle the problem of the 

dependence of this statistic on the table size differently (Anderberg, 1973, 

Hartung, 1991).  

We consider here Pearson’ s Corrected Coefficient of Contingency  

mqp

qp
SPC +

⋅
−

=
²

²

1),min(

),min(

χ
χ

,      (12) 

where p and q are the numbers of categories of the variables or objects, 
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= =

=
p

i

p

j
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1 1

 is the total number of observations contributing to χ², 
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1
),min(

1),min(

²

²
0 <−≤

+
=≤

qp

qp

m
C

χ
χ

 is Pearson’ s Contingency Coefficient 

and the factor 
1),min(

),min(

−qp

qp
is used to eliminate the dependence of C on 

the table size.  

 

Members of this class of measures include also Cramèr’ s C (see for example 

Müller et al., 2005).  

Pearson’ s Corrected Coefficient of Contingency is a useful tool to compare 

categorial variables. It allows for different numbers of categories and we are 

able to compare variables which are not similar be nature, e.g. the genotypes 

at a SNP locus in a gene coding for NAT2 and the number of children 

recorded in categories 0, 1, 2, 3-4, >4.  

 

 4.3.2 Ordinal scale 

In case of ordinal scaled data we can assess the proximity of two variables 

or objects using measures based on the concept of correlation or on the 

concept of dependence. The latter can be obtained from correlation 

coefficients by squaring them. Coefficients of correlation have to be suitable 

for ordinal scaled data, Spearman rank correlation coefficient or Kendall’ s τ, 

for instance, and it would be reasonable to account for ties.  

Considering proximity in terms of correlation means to regard a positive 

correlation as similarity and a negative correlation as dissimilarity. 

Correlation coefficients are restricted to [-1,1], so transforming them into a 

measure of distance transformation T1 has to be applied.  
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Considering a correlation – positive or negative – as similarity and 

independence as dissimilarity suitable measures of proximity may easily be 

derived from correlation coefficients for ordinal data by using the square of 

these coefficients. Hence, the resulting measures of proximity are already 

standardised to [0,1]. Note, that the applied coefficients of correlation 

should also be corrected for ties.  

In the special case of SNP data it is possible to define an order in the 

determined genotypes in terms of the amount of the original gene dose: To 

interpret the homozygous reference type as double presence of the reference 

sequence (set to 2 or 1), the heterozygous type as single presence of the 

reference sequence (set to 1 or 0.5) and the homozygous variant type as 

absence of the reference sequence (set to 0).  

Hence, coefficients of correlation may be used as a measure of similarity 

comparing subjects or variables and squared coefficients of correlation may 

be used additionally for a comparison of variables. The difficulty with this 

approach is that we have only three possible categories for 1200 

observations comparing the variables or three possible observations for over 

60 observations for a comparison of subjects. This means that we have three 

tied groups that are quite large at the best.  

So this approach would be useful only in case of more than three categories 

that can be ordered and if the size of the tied groups is not too big.  
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 5. Results 

The calculation of the similarity matrices as well as the cluster analysis were 

performed using the software packages R.2.0.1 and R.1.8.0. For the cluster 

analysis the average linkage algorithm was applied (Kornrumpf, 1986); see 

also Sitterberg (1978), and Ostermann & Degens (1984) for properties of the 

average linkage algorithm).  

We display here a selection of dendrograms to illustrate the effect of the 

choice of parameters and index sets of the Flexible Matching Coefficients as 

given by Definition 3. In particular we consider the special case of 

Equation 6 with I = {0, 1, 2} and J = {02, 01, 12}, Equation 7 with I = {0, 1, 

2, 12} and J = {02, 01} and Equation 8 with I = {0, 1, 2, 01} and 

J = {02, 12} for clustering variables.  

Figure 10 to 22 result from different index sets and choices of parameters. 

Figures 13, 14, 18 and 19 show the results for cases and controls. See also 

Table 8 for an overview.  

 

Table 8. Case-control status and parameters of Fig. 12 - 24. Eq. denotes the 

respective equation.  

Figure status λ2 λ1 λ0 λ12 λ01 δ12 δ02 δ01 Eq.  
10 control 1 1 0.5 - - 0.5 1 1 (6) 
11 control 2 1 0.5 - - 0.5 1 0.5 (6) 
12 control 2 1 0 - - 0.5 2 1 (6) 
13 case 2 1 0.66 - - 0.33 1 0.33 (6) 
14 control 2 1 0.66 - - 0.33 1 0.33 (6) 
15 control 1 1 0 1 - - 1 1 (7) 
16 control 1 1 1 1 - - 1 1 (7) 
17 control 2 1 0.5 0.5 - - 2 1 (7) 
18 case 2 1 0.66 0.33 - - 2 1 (7) 
19 control 2 1 0.66 0.33 - - 2 1 (7) 
20 control 1 1 0 - 1 1 1 - (8) 
21 control 1 1 1 - 1 1 1 - (8) 
22 control 4 1 0.5 - 0.5 1 4 - (8) 
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Figure 10. Dendrogram of the flexible matching coefficients of the control 

group with I = {2, 1, 0}, J = {12, 02, 01}, λ = (1, 1, 0.5), δ = (0.5, 1, 1). 

 

 

Figure 11. Dendrogram of the flexible matching coefficients of the control 

group with I = {2, 1, 0}, J = {12, 02, 01}, λ = (2, 1, 0.5), δ = (0.5, 1, 0.5). 
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Figure 12. Dendrogram of the flexible matching coefficients of the control 

group with I = {2, 1, 0), J = {12, 02, 01}, λ = (2, 1, 0), δ = (0.5, 2, 1). 

 

 

Figure 13. Dendrogram of the flexible matching coefficients of the case 

group with I ={2, 1, 0}, J ={12, 02, 01}, λ =(2, 1, 0.66), δ =(0.33, 1, 0.33). 
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Figure 14. Dendrogram of the flexible matching coefficients of the control 

group with I = {2, 1, 0), J = {12, 02, 01}, λ =(2, 1, 0.66), δ =(0.33, 1, 0.33). 

 

Considering the 1-2-combinations as matches and applying the coefficients 

of Jaccard, i.e. excluding the 0-0-matches, and Simple Matching , i.e. 

including the 0-0-matches, leads to Figures 15 and 16.  
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Figure 15. Dendrogram of the flexible matching coefficients of the control 

group with I = {2, 1, 0, 12}, J = {02, 01}, λ =(1, 1, 0, 1), δ =(1, 1). 

 

 

Figure 16. Dendrogram of the flexible matching coefficients of the control 

group with I = {2, 1, 0, 12}, J = {02, 01}, λ =(1, 1, 1, 1), δ =(1, 1). 

 

Figure 17. Dendrogram of the flexible matching coefficients of the control 

group with I = {2, 1, 0, 12}, J = {02, 01}, λ =(2, 1, 0.5, 0.5), δ =(2, 1). 
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Figure 18. Dendrogram of the flexible matching coefficients of the case 

group with I = {2, 1, 0, 12}, J = {02, 01}, λ =(2, 1, 0.66, 0.33), δ =(2, 1). 

 

 

Figure 19. Dendrogram of the flexible matching coefficients of the control 

group with I = {2, 1, 0, 12}, J = {02, 01}, λ =(2, 1, 0.66, 0.33), δ =(2, 1). 
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Considering the 0-1-combinations as matches and applying the coefficients 

of Jaccard, i.e. excluding the 0-0-matches, and Simple Matching , i.e. 

including the 0-0-matches, leads to Figures 20 and 21. 

 

Figure 20. Dendrogram of the flexible matching coefficients of the control 

group with I = {2, 1, 0, 01}, J = {01, 02}, λ =(1, 1, 0, 1), δ =(1, 1). 

 

Figure 21. Dendrogram of the flexible matching coefficients of the control 

group with I = {2, 1, 0, 01}, J = {01, 02}, λ =(1, 1, 1, 1), δ =(1, 1). 
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Figure 22. Dendrogram of the flexible matching coefficients of the control 

group with I = {2, 1, 0, 01}, J = {01, 02}, λ =(4, 1, 0.5, 0.5), δ =(1, 4). 
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5.1 Conclusions 

Summarising the results for the conventional and the new matching 

coefficients as well as for measures based on the χ²-statistic the usual 

matching coefficients form two groups depending on their consideration or 

ignorance of the 0-0-matches. Within each group the weight δ of the 

mismatches is of minor importance and has no impact on the structure of the 

dendrogram. For the present data set these measures yield poorly structured 

dendrograms similar to the results for I = {2, 1, 0, 01} and J = {12, 02} as 

shown in figures 20 and 21 where subgroups of variables cannot be detected 

and the dendrograms have the form of a stair resulting from the addition of 

one variable after the other to the sole big cluster. As shown in figures 10-22 

Flexible Matching Coefficients yield more structured dendrograms as, for 

instance, Figures 13, 14 (cases, controls) and 18, 19 (cases, controls) with 

I = {2, 1, 0}, J = {12, 02, 01}, λ = {2, 1, 0.66}, δ = {0.33, 1, 0.33} and 

I = {2, 1, 0, 12}, J = {02, 01}, λ = {2, 1, 0.66, 0.33}, δ = {2, 1}, 

respectively. The weights for the matches and mismatches have a small but 

clear impact on the clustering though the general structure remains unless 

the 0-0-matches are not excluded from the analysis (figures 12 and 15). 

Comparing the clustering from a number of variations of I, J, λ and δ  a 

stable group of loci can be identified that shows minor variations between 

the different matching coefficients in cases as well as in controls. This group 

can also be found using the Corrected Contingency Coefficient of Pearson. 

Hence, this particular group of variables may be neglected for a further 

analysis. Applying a further cluster analysis to the remaining variables 

enables more insight into the differences between cases and controls. 
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Classification procedures may use representatives of the stable group instead 

of all of them reducing the amount of competing models.  

Furthermore several small groups of two or three loci, some of the same, 

others of different genes, appear independently from the applied measure of 

similarity, for instant, the three investigated loci 1, 2 and 3 of gene 104, two 

of the three investigated loci 7 and 10 of gene 38 as well as the loci 24.1 and 

25.3.  

The general problem with all measures of similarity based on the χ²-statistic 

occurs if the contingency table of two variables contains empty lines or 

columns so that one of the variables is treated as a constant. This may 

happen, for instance, if the data set contains monomorphic SNPs or if all 

variants of one variable are compared to the missing values of the other one.  

 

 

6. Discussion 

The present approach is a promising tool to detect a general structure in SNP 

data as well as to find potential differences between cases and controls, i.e. 

variables and especially groups of variables that might be relevant for the 

assumed differences between cases and controls. A more detailed 

comparison of the conventional matching coefficients, further similarity 

coefficients and specific Flexible Matching Coefficients is presented in 

Müller et al. (2005) and Müller (2004). The addition of new variables seems 

to have minor impact on the general structure of the dendrogram so that the 

applied measures seem to result in a conserved structure. The latter can also 
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be observed considering the clusterings resulting from Pearson’ s Corrected 

Coefficient of Contingency.  

In section 4.1 we discuss the development of measures which enable a 

comparison of the genotypes at the investigated loci with respect to their 

impact on the metabolism. As the effect or – more likely – multiple effects 

of each SNP plus synergistic effects of several SNPs, of the same gene, for 

instance, remain elusive for most of the considered loci, the development of 

such comparable measures of effects of point mutations remains a matter of 

future research.  

The cluster analysis presented in Chapter 5 concentrates on the comparison 

of variables. The comparison of persons is omitted here as we focus on the 

performance of the similarity measures. Such an attempt that is rather 

difficult considering over 1200 subjects. There it is difficult to detect 

subgroups and structures in the resulting dendrograms using only the genetic 

variables.  

Due to the nature of the problem we cannot restrict the analysis solely to the 

SNP data but have to account for further, exogenous factors. So the next 

step is a joint analysis of SNP data and exogenous risk or beneficial factors. 

This raises the problem of appropriate measures for different types of data, 

especially of differently scaled variables. This aspect is considered in detail 

by Selinski (2005) where mixed measures for clustering subjects as well as 

mixed measures and strategies for clustering variables of different scale and 

interpretation are presented.  

 



 57 

In general, cluster analysis can help to gain insight into the data but 

especially in complex data sets it is reasonably combined with further 

approaches. For the detection of interactions between gene loci and between 

gene loci and exogenous factors there are a plethora of further approaches. 

Classification approaches as, for instance, classification trees, ensemble 

methods, SVM (Schwender et al., 2004), multi-dimensionality reduction 

(MDR) and logic regression (Rabe, 2004) aim to identify those 

combinations of traits which yield the ‘best’  prediction of the case-control 

status. The difficulty with these approaches for SNP data is usually a high 

misclassification rate due to the heterogeneity of the case-group, the low 

penetrance of the relevant genetic variants and, hence, the amount of 

competing models.  

So combining cluster and classification approaches – for instance, by a pre-

selection of variables or by joint hints towards of potential impact factors by 

several approaches –help to gain more insight and to develop biological 

hypotheses. 

 

 

Acknowledgements 

The financial support of the Deutsche Forschungsgemeinschaft (SFB 475, 

"Reduction of complexity in multivariate data structures") is gratefully 

acknowledged.  

The authors thank all partners within the GENICA (Interdisciplinary Study Group 

on Gene Environment Interaction and Breast Cancer in Germany) research 

network (represented by C. Justenhoven, Stuttgart, H. Brauch, Stuttgart, 

S. Rabstein, Bochum, B. Pesch, Bochum, V. Harth, Bonn/Bochum, U. Hamann, 

Heidelberg, T. Brüning, Bochum, Y. Ko, Bonn) for their cooperation. 



 58 

References 

 

Anderberg MR (1973). Cluster analysis for applications. Academic Press, 

New York. 

Beral, V (2003). Breast cancer and hormone-replacement therapy in the 

Million Women Study. The Lancet 362, pp. 419-427. 

Brazma A, Vilo J (2000). Gene expression data analysis. FEBS Letters 480, 

pp. 17-24.  

Cox TF, Cox MAA (2001). Multidimensional Scaling, 2nd ed. Chapman & 

Hall /CRC, Boca Raton, Florida, USA.  

Eisen MB, Spellman PT, Brown PO, Botstein D (1998). Cluster analysis and 

display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 

USA 95, pp. 14863-14868.  

Garte S (2001). Metabolic susceptibility genes as cancer risk factors: Time 

for a reassessment? Cancer Epidemiology, Biomarkers & Prevention 

10, pp. 1233-1237. 

Hartung J, Elpelt B, Klösner K-H (1991). Statistik. 8th ed. R. Oldenbourg 

Verlag, München.  

Hastie T, Tibshirani R, Botstein D, Brown P (2001). Supervised harvesting 

of expression trees. Genome Biology 2, pp. 1-12.  

Kornrumpf J (1986). Hierarchische Klassifikation einer Objektmenge. Peter 

Lang, Frankfurt a.M.  

Müller T (2004). Clusteranalyse von SNP Daten: Verschiedene 

Ähnlichkeitsmaße im Vergleich. Diploma thesis, University of 

Dortmund.  

Müller T, Selinski S, Ickstadt K (2005). Cluster analysis: A comparison of 

different similarity measures for SNP data. Technical Report 14/05, 

University of Dortmund.  

Ostermann R, Degens PO (1984). Eigenschaften des Average-Linkage-

Verfahrens anhand einer Monte-Carlo-Studie. In: H.-H. Bock (Ed.): 

Anwendungen der Klassifikation: Datenanalyse und numerische 

Klassifikation. Indeks Verlag, Frankfurt, pp. 108-114.  



 59 

Rabe C (2004). Identifying interactions in high dimensional SNP data using 

MDR and Logic Regression. Diploma Thesis, University of 

Dortmund. 

Selinski S (2005). Similarity measures for clustering SNP and 

epidemiological data. Technical Report, University of Dortmund (in 

prep.). 

Sitterberg G (1978). Zur Anwendung hierarchischer Klassifikations-

verfahren. Statistische Hefte 19, pp. 231-246. 

Snustad DP and Simmons MJ (1999). Principles of genetics. 2nd ed., Wiley, 

New York. 

Steinhausen D & Langer K (1977). Clusteranalyse. Walter de Gruyter, 

Berlin.  

Thier R, Brüning T, Roos PH, Rihs HP, Golka K, Ko Y and Bolt HM 

(2003). Markers of genetic susceptibility in human environmental 

hygiene and toxicology: the role of selected CYP, NAT and GST 

genes. Int. J. Hyg. Environ. Health 206, pp. 149-71. 

Tibshirani R, Walther G, Hastie T (2001). Estimating the number of clusters 

in a dataset via the gap statistic. J. Royal Stat. Soc. B 63, pp. 411-

423. 

Zhang B and Srihari SN (2002). A fast algorithm for finding k-Nearest 

Neighbors with non-metric dissimilarity. Proceedings of the Eighth 

International Workshop on Frontiers in Handwriting Recognition 

(IWFHR'02).  

ZTG Zentrum für Telematik im Gesundheitswesen GmbH (2004). 

Landesgesundheitsportal NRW – Brustkrebs.  

www. gesundheit.nrw.de. 



 60 

Appendix 

 

PROOF of REMARK 5:  

Let mikl, mikk and mikm be the values of the matching category i ∈ I of the 

variables Vk, Vl , Vk, Vk and Vk, Vm respectively. Let mjkl, mjkk and mjkm be the 

values of mismatching categories j ∈ J, of the variables Vk, Vl, Vk, Vk and Vk, 

Vm respectively. Furthermore, let ∑
∈
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jkljkl mδ: . The 

terms Λkk, Λkm, ∆kk and ∆km are defined analogous.  

To proof (A1) assume that Vk is more similar to Vl than to Vm, Vl ≠ Vm. 
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as mikl=milk, mjkl=mjlk, ∀ i ∈ I, j ∈ J.  

To proof (A3) consider Vk, Vl ∈ V. Then  
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as ∆kl ≥ 0 ∀ Vk, Vl ∈ V. 

(A4) ( ) 0, ≥lk VVS  is true as λi ≥ 0, δj ≥ 0, mikl ≥ 0 and mjkl ≥ 0 by definition 

and so Λi ≥ 0, ∀ i ∈I, and ∆j ≥ 0, ∀ j ∈J. Hence,  

( ) 0, ≥
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λ
,∀ Vk, Vl ∈ V. 

To proof (A5) recall that ∆kk = 0 ∀ k. Hence,  
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i. trivial 
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iii. Let α,β and n >0, a and b ≥ 0. Then,  
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PROOF of THEOREM 3 

i., iv. – vii.  trivial 
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PROOF of THEOREM 4 

i. trivial 
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PROOF of THEOREM 5:   

i. trivial 
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