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knowledge transfer from researchers to policy makers. The wiiw Balkan Observatory
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Robust Analysis of Income Inequality Dynamics in Russia:  

t-Statistic Based Approaches 

 

Marat Ibragimov1, Rustam Ibragimov2, Jovlon Karimov1, Galiya Yuldasheva3 4 

Abstract 

Empirical analyses on inequality measurement and those in other fields in economics and 

finance often face the difficulty that the data is correlated, heterogeneous or heavy-tailed in some 

unknown fashion. The paper focuses on analogues and modifications of the recently developed 

t-statistic based robust inference methods that are applicable in the analysis of income and wealth 

distributions and inequality measures. The methods can be used under general conditions appropriate 

for real-world markets and have several advantages over other inference approaches available in the 

literature. We illustrate the use of the robust inference approaches in the study of important problems 

with pronounced complications for alternative econometric procedures focusing on the analysis of 

income distribution and inequality in the Russian economy where heterogeneity, outliers and crisis 

effects are expected to be present. 

 Among other results, the paper provides robust confidence intervals for the Gini coefficient in 

Russia in the periods before and after the beginning of the on-going crisis. The results considerably 

complement the point estimates of the Gini coefficient for the Russian economy available in the 

literature. They further point out to significant changes in income inequality and redistribution of 

income in Russia prompted by the beginning of the on-going crisis in 2008. 

 In addition to the above results, we also present characterizations of the whole income 

distribution in Russia using double Pareto models recently introduced to the field. The empirical 

results for double power-law models for Russian income distribution point out to its significant 

heavy-tailedness and provide further motivation for the development and applications of robust 

approaches to inference on income distributions, inequality measures and their dynamics and 

structural changes, both in emerging and transition economies and developed markets. 
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1. Introduction 

1.1.Income inequality measures and robustness 

The main goal of the paper is two-fold. First, it focuses on analogues and modifications of the 

recently developed robust inference methods that are applicable in the analysis of income and wealth 

distributions and inequality measures. The methods have a number of appealing properties and 

advantages over other approaches available in the literature and can be used under general conditions 

appropriate for real-world markets. Second, it illustrates the use of the robust inference approaches in 

the study of important problems with pronounced complications for alternative econometric 

procedures focusing on the analysis of income distribution and inequality in the Russian economy 

where heterogeneity, outliers and crisis effects are expected to be present. The development and 

applications of the robust inference approaches in the context of the analysis of income distributions 

and inequality in the paper overcome several methodological problems. In addition, the estimates and 

comparisons of inequality and income distribution parameters for different time periods (e.g., before 

and after the beginning of the on-going crisis) in the paper provide a robust assessment of their 

structural changes due to crises and other external shocks. Among other results, the paper provides a 

robust analysis of statistical significance of the obtained estimates of inequality measures and income 

distribution parameters in the Russian economy and their changes due to the current economic and 

financial crisis. The empirical analysis qualitatively differs from the previous studies on the topic both 

in terms of the focus on the on-going crisis and the use of recently developed robust inference methods. 

Income and wealth inequality was the focus of numerous studies in economics starting with its 

formation as a scientific discipline (see, among others, the reviews in Milanovic, 2005, Marshall, 

Olkin and Arnold, 2011, and Milanovic, 2011). Among others, Milanovic (2005, 2011) provides a 

comprehensive review of the dynamics of inequality over time in different countries of the World. 

Empirical analyses on inequality measurement and those in other fields in economics and 

finance often face the difficulty that the data is correlated, heterogeneous or heavy-tailed in some 

unknown fashion. For instance, as has been documented in numerous studies, observations on many 

variables of interest, including income, wealth and financial returns, typically exhibit heterogeneity, 

dependence and heavy tails in the form of commonly observed Pareto or power laws (see, among 

others, the discussion and reviews in Section 1.2 of the paper, Embrechts, Klüppelberg & Mikosch, 

1997, Mandelbrot, 1997, Atkinson, 2008, Gabaix, 2008, 2009, Ibragimov, 2009, Milanovic, 2011, and 

references therein).  

Emerging and transition economic and financial markets are more volatile than their developed 

counter-parts and are subject to more extreme external and internal shocks. Heterogeneity and 
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heavy-tailedness properties are usually even more pronounced for income and wealth distributions, 

exchange rates and other important economic and financial variables in these markets (see, for 

instance, Ibragimov, Ibragimov & Kattuman, 2011, Ibragimov, Ibragimov & Khamidov, 2011). In 

addition, heterogeneity and outliers in observations are typical for the periods of crises and other 

external shocks. 

Applicability of many commonly used inequality measures becomes problematic under 

heterogeneity, heavy-tailedness and correlation in the data generating process. Several recent works in 

the literature, for instance, have emphasized robustness as an important aspect in the choice of 

measures used in assessing economic inequality and poverty and estimation and inference methods for 

them (see, among others, Cowell & Flachaire, 2007, Davidson & Flachaire, 2007, Zandvakili, 2008, 

and references therein). In particular, Cowell & Flachaire (2007) and Davidson & Flachaire (2007) 

advocate the use of computationally expensive alternatives to asymptotic inference methods on 

income inequality that are based on different parametric and semiparametric bootstrap procedures.  

The standard approaches to inequality inference based on asymptotic normality of empirical 

income inequality measures typically have poor finite sample properties, in part due to outliers and 

heterogeneous observations generated by heavy-tailed income and wealth distributions. These 

problems are especially pronounced in periods with structural changes, crises and other external 

economic shocks. They are also typical for transition and emerging economies with volatile economic 

indicators and data availability and quality problems. Many studies on the analysis of income 

inequality across countries and over time often provide only point estimates of inequality measures. 

Their conclusions may need to be modified following an assessment of standard errors and statistical 

significance of the reported empirical results. 

Recently, Ibragimov & Müller (2010) developed a simple general approach to robust inference 

about a scalar parameter of interest when the data is potentially heterogeneous and correlated in a 

largely unknown way. Following the approach, one conducts robust large sample inference as follows: 

partition the data into q ≥ 2 groups, estimate the model for each group, and conduct a standard t-test 

with the resulting q parameter estimators of interest. This results in valid and in some sense efficient 

inference when the groups are chosen in a way that ensures the parameter estimators to be 

asymptotically independent, unbiased and Gaussian of possibly different variances. Ibragimov & 

Müller (2010) provide a number of examples of how to apply this approach to time series, panel, 

clustered and spatially correlated data. 

The data on income distributions in transition and emerging economies affected by the on-going 

crisis provide natural areas for applications of robust inference approaches due to typical problems of 

heterogeneity, heavy tails, small sample size and dependence. The present study develops new 
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analogues and modifications of the robust t-statistic based inference approaches that can be used in the 

analysis of income distributions and inequality under the above complications. It further provides the 

first applications of the approaches in inequality measurement and related areas, focusing on the 

important case of the Russian economy affected by the on-going crisis and other external shocks. 

As discussed in Ibragimov & Müller (2010), in applications of the t-statistic inference 

approach, the asymptotic Gaussianity of group estimators of a certain parameter of interest (e.g., an 

income inequality measure for a country), typically follows from the same reasoning as the asymptotic 

Gaussianity of the full sample estimator (the empirical inequality measure calculated for the full 

sample of income observations). The argument for the asymptotic independence of the group 

estimators, on the other hand, depends on the choice of groups and the details of the application. In the 

context of inference on income inequality, the independence condition presents methodological 

problems for direct applications of the t-statistic based approach. The straightforward group choices 

such as grouping of income by geographical regions are likely to produce asymptotically correlated 

estimators of income inequality due to (spatial and common shock) dependence among the 

observations in different groups. The present study proposes a solution to these problems based on 

randomization of the initial samples of income observations. In the randomization stage, each of the 

observations is randomly assigned to one of the q groups j=1, ...,q with equal probability 1/q. The 

t-statistic based approach is then applied to the q groups of consecutive observations in the randomized 

sample of incomes. That is, the observation i in the randomized sample is an element of group j if  

(j1)N/q < i  jN/q, where N is the sample size of observations. The group estimators of income 

inequality computed for the randomized sample are independent by construction, and both the 

conditions for validity of the t-statistic based inference using the group estimators are thus satisfied. 

The randomization-based modifications of the t-statistic robust inference approach proposed in the 

paper may also prove to be useful in other problems with inherent dependence among the group 

estimators dealt with. 

Among other results, the results obtained in the paper shed light on changes in the income 

distribution and inequality in the Russian economy due to the on-going crisis and other external 

shocks. Naturally, crises and other shocks to an economy often lead to structural changes in key 

economic indicators, including income and wealth distributions and inequality measures. In turn, as 

discussed in many studies (see, among others, the reviews in Ibragimov & Ibragimov, 2007, Quadrini 

2008, Ibragimov, Ibragimov & Kattuman, 2011, and references therein), the shifts in income and 

wealth inequality greatly affect economic growth, consumer demand, market equilibrium and different 

economic variables, thus contributing to their changes due to the crisis. 
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1.2. Extreme observations, outliers, heavy-tailedness and heterogeneity of income and 

wealth distributions 

As discussed above, an important motivation for the use of robust inference methods is provided 

by the presence of extreme observations and outliers in the data on important economic and financial 

variables, including income and wealth. In turn, the analysis of the likelihood of occurrence of outliers 

and extreme observations in data on income and wealth is directly related to the study of the behavior 

of distributions of these variables in the upper tails and to estimation of their tail indices.  

In models involving a heavy-tailed random variable (r.v.) Y>0 it is usually assumed that the 

distribution of Y has power tails: 

 CyyYP ~)(                                     (1) 

as y , with the tail index ζ > 0 (here and throughout the paper, f(y) ~ g(y) means that 

))1(1)(()( oygyf  as y ). The tail index ζ characterizes the heaviness (the rate of decay) 

of the tails of power law distribution (1). An important property of r.v.’s Y satisfying a power law with 

the tail index ζ is that the moments of Y are finite if and only if their order is less than ζ: )( pYE  if 

and only if p < ζ. Heavy-tailedness (the tail index ζ ) of the variable Y (e.g., income, wealth, risk, 

financial return or foreign exchange rate) governs the likelihood of observing outliers and large 

fluctuations in the variable. The smaller values of the tail index ζ correspond to a higher degree of 

heavy-tailedness in Y and, thus, to a larger likelihood of observing outliers and large fluctuations in 

the realizations of this variable. Important examples of power laws are given by Pareto (C8) and 

double Pareto (D1)-(D3) distributions discussed in Appendices C and D where (1) holds as equality 

for all y’s greater than some threshold. 

Empirical studies of income and wealth indicate that distributions of these variables in 

developed economies typically satisfy power laws (1) with the tail index ζ that varies between 1.5 and 

3 for income and is rather stable, perhaps around 1.5, for wealth (see, among others, Atkinson and 

Piketty, 2007, Atkinson, Piketty and Saez, 2011, Gabaix, 2008, 2009, and references therein). This 

implies, in particular, that the mean is finite for income and wealth distributions (since ζ > 1). 

However, the variance is infinite for wealth (since ζ 1.5 <2 ) and may be infinite for income (if ζ ≤ 2). 

In addition, since their tail indices are smaller than 3, income and wealth distributions have infinite 

third and higher moments. The problem of infinite variance in income and wealth distributions is 

important because, as indicated above, it may invalidate or make problematic direct applicability of 

standard inference approaches, including regression analysis and least squares methods. In a similar 

fashion, infinite fourth moments for these variables need to be taken into account in regression and 
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other models involving their volatilities or variances, e. g., in the analysis of permanent and transitory 

components of income variability and their cross-country comparisons (see Gorodnichenko, Peter and 

Stolyarov, 2010) and the study of autocorrelation properties of financial time series (see Cont, 2001, 

and references therein).  Finiteness of first moments is important because it points out to optimality of 

diversification and robustness of a number of economic models for the variables considered (see 

Ibragimov, 2009, and Ibragimov, Jaffee and Walden, 2009).5 

In addition to the tail behavior analysis, it is also of great importance to characterize the whole 

distribution of income or wealth, including its behavior in the left tails (poor population) and for the 

middle range of incomes and wealth levels, in part since income and wealth distributions in different 

parts of their support affect the overall inequality, economic, economic conditions and social stability. 

In this direction, in addition to the robust analysis of income distribution and inequality in 

Russia, the paper focuses on characterization of the whole income distribution in the country using 

double power laws recently introduced to the field by Toda (2012). The empirical results for double 

Pareto models for Russian income distribution point out to its significant heavy-tailedness. These 

results further motivate the development and use of robust approaches to inference on income 

distributions, inequality measures and their dynamics and structural changes, both in emerging and 

transition economies and developed markets. 

 

1.3. Organization of the paper 

 The paper is organized as follows. Section 2 reviews the data used in the study. Section 3 

describes the new analogues and modifications of the t-statistic based robust inference approaches 

used in the empirical analysis in the paper. Section 4 presents and discusses the main empirical results 

obtained. Section 5 makes some concluding remarks. Appendix A provides tables and diagrams on the 

estimation results. Appendix B discusses the definitions and basic properties of several widely used 

income inequality measures that are considered in the paper. Appendix C.1 reviews the general 

t-statistic based approach to robust inference under heterogeneity, correlation and heavy tails in 

Ibragimov & Müller (2010). Appendix C.2 provides the numerical results on finite sample 

performance of the approach in inference on widely used measures of income inequality comparing to 

alternative methods. We also present, in Appendix C.3, new theoretical results that indicate the 

                                                           
5 Many recent studies argue, using the data for developed economies, that the tail indices ζ typically lie in the interval (2, 4) for many 
financial returns and exchange rates. For instance, among other results, Gabaix, Gopikrishnan, Plerou & Stanley (2006) present and 
discuss empirical estimates that support heavy-tailed distributions with tail indices ζ ≈3 for financial returns on many stocks and stock 
indices in developed markets. These results imply that, in contrast to income and wealth distribution, financial returns have finite 
variance (since ζ >2). Similar to the case of income and wealth distributions, financial returns have infinite fourth moments (ζ <4) and 
may have infinite moments of order 3 (if ζ ≤ 3). 
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connection of the small sample conservativeness properties of t-statistics used in the robust inference 

approaches to income inequality measures and other important economic indicators. Appendix D 

reviews the definition and properties of double Pareto distributions used in modeling double power 

law behavior of income in Russia. 

 

2. Data 

The study of income distribution and inequality dynamics in Russia in this paper is based on 

quarterly household budget survey results from the beginning of 2003 to the end of 2009 in this 

country provided by the Rosstat (the Federal State Statistics Service of Russian Federation, 

http://www.micro-data.ru ). The household survey results provided by the Rosstat contain microdata 

on a number of variables, including household income, disposable resources, consumption and 

detailed expenditures. The dataset thus contains the total of 28 quarterly observations on various 

household budget indicators for 45,000-53,000 households in Russia (see Table 1 for household 

sample sizes in the dataset). 

The analysis in the paper focuses on household total incomes (disposable resources) that, in 

addition to money resources of households, also include their natural receipts of foodstuffs and in-kind 

subsidies and benefits. Thus, comparing to the levels of households’ monetary income and disposable 

income, the volumes of their total income better reflect the households’ real opportunities for personal 

consumption and savings. 

Table 1 in Appendix A presents the main descriptive statistics for quarterly data on total 

income of Russian households in 2003-2009 (see the data on the above Microdata Household Budget 

Surveys in Russia at http://www.micro-data.ru). Table 2 and Figure 1 in the appendix provide the 

quarterly Gini coefficients calculated for distribution of income among Russian households. To 

illustrate the degree of inequality in the lower and upper tails of Russian income distribution, we also 

present, in Table 2 and Figure 1, the Gini coefficients for household income levels that are less than the 

modal value and for those that are greater than the mode. 

 

3. Methodology: Randomization-based analogues and modifications of t-statistic based 

robust inference approaches for income distributions and inequality 

One of the main focuses of the empirical analysis in the paper is on applications of the new 

t-statistic based correlation and heterogeneity robust inference approaches recently developed in 

Ibragimov & Müller (2010). These approaches are reviewed in detail, in the general case of inference 
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about an arbitrary scalar parameter, in Appendix C.1.  

For an illustration of the t-statistic based approach to robust income inequality measurement, 

consider the problem of statistical inference on an income inequality measure ࣦ (for instance, the 

Gini coefficient or Theil index, see the review and discussion in Appendix B). As is common in 

income inequality analysis, let the data generating processes exhibit heavy tails, heterogeneity or 

dependence. The t-statistic based robust test of level α < 5% of the hypothesis H0: ࣦ=ࣦ଴ against the 

alternative Нa: ࣦ ് ࣦ଴ is performed as follows: partition the sample I1, I2,..., IN of observations on 

incomes into q2 groups, estimate the income inequality measure ࣦ for each group thus obtaining the 

group empirical income inequality measures መࣦ௝, j = 1,...,q, and reject H0 in favor of Ha when |ࣦݐ| 

exceeds the (1α/2)-percentile ݐ of the Student-t distribution with q1 degrees of freedom, where ࣦݐ 

is the usual t-statistic ࣦݐ ൌ ඥݍ
መࣦ̅ିࣦబ
௦ መࣦ

 with  መࣦ ̅ ൌ
∑ መࣦೕ
೜
ೕసభ

௤
 and ݏ መࣦ

ଶ ൌ
∑ ቀ መࣦೕି መࣦ̅ቁ

మ೜
ೕసభ

௤ିଵ
 (the (1α/2)-quantile tα 

satisfies ܲሺห ௤ܶିଵห ൐   is a random variable that has the Student-t distribution with	ఈ)= α, where ௤ܶିଵݐ

q  1 degrees of freedom). As follows from Ibragimov & Müller (2010), the above procedure results in 

asymptotically valid and in some sense efficient inference when the groups are chosen in a way that 

ensures the group empirical income inequality measures መࣦ௝ , j=1,...,q, to be asymptotically 

independent, unbiased and Gaussian of possibly different variances. Furthermore, the asymptotic 

validity of the t-statistic based inference approach continues to hold even when the group estimators 

መࣦ௝ of ࣦ converge (at an arbitrary rate) to independent but potentially heterogeneous mixed normal 

distributions, such as the family of stable symmetric distributions, or to conditionally normal variates 

which are unconditionally dependent through their second moments. In particular, the t-statistic based 

robust inference on ࣦ can thus be applied under heavy tails, extremes and outliers in observations and, 

among others, dependence structures that include models with multiplicative common shocks and their 

convolutions (see Ibragimov, 2009). 

As discussed in Ibragimov & Müller (2010), in applications of the t-statistic inference 

approach, the asymptotic Gaussianity of group estimators ߚመ௝, j=1,...,q, of a certain parameter of 

interest β (e.g., income inequality measure ࣦ  for a country), typically follows from the same 

reasoning as the asymptotic Gaussianity of the full sample estimator ߚመே (the empirical inequality 

measure ࣦே computed for the full sample I1, I2,..., IN of income observations). The argument for the 

asymptotic independence of the group estimators ߚመ௜ and ߚመ௝ for i=j, on the other hand, depends on the 

choice of groups and the details of the application. In the context of inference on income inequality, 

the asymptotic independence condition presents methodological problems for direct applications of 
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the t-statistic based approach. The straightforward group choices such as grouping of income by 

geographical regions are likely to produce asymptotically correlated estimators መࣦ௝  of income 

inequality due to (spatial and common shock) dependence among the observations in different groups. 

The present study proposes a solution to these problems based on randomization of the initial samples 

I1, I2,..., IN of income observations. In the randomization stage, each of the observations Ii, i = 1, ...,N, 

is randomly assigned to one of the q groups j = 1, ...,q with equal probability 1/q. The t-statistic based 

approach is then applied to the q groups of consecutive observations in the randomized sample of 

incomes ܫሚଵ, ,ሚଶܫ … ,  ሚே. That is, the observation i in the randomized sample is element of group j ifܫ

(j1)N/q < i  jN/q. The group estimators of income inequality calculated for the randomized sample 

are independent by construction, and both the conditions for validity of the t-statistic based inference 

using the estimators are thus satisfied. The randomization-based modification of the t-statistic robust 

inference approach proposed in the paper may also prove to be useful in other problems with inherent 

dependence among the group estimators dealt with. 

It is important to note that, in the standard way, the above results on the t-statistic based robust 

tests on the measure ࣦ (e.g., the Gini coefficient for Russian income distribution as in the next 

section) allow one to construct robust confidence intervals for this indicator. In particular, given the q 

group estimators መࣦ௝ , j=1,...,q (e.g., the group empirical Gini coefficients computed for the 

randomized sample as described), the (1)-confidence interval for ࣦ is given by ሺ መࣦ̅ െ ݏఈݐ መࣦ , መࣦ̅ ൅

ݏఈݐ መࣦ), where, as before, ݐఈ denotes the (1/2)-quantile of the Student-t distribution with q1 degrees 

of freedom. For instance, the 95% confidence interval for ࣦ is given by ሺ መࣦ̅ െ ݏ଴.଴ହݐ መࣦ , መࣦ̅ ൅ ݏ଴.଴ହݐ መࣦ), 

where t0.05 is the 0.975-quantile of the Student-t distribution with q1 degrees of freedom: ܲሺห ௤ܶିଵห ൐

 .଴.଴ହ)=0.05ݐ

 Robust estimates and confidence intervals for indicators of interest over time periods before 

and after the beginning of a crisis (or another structural break date) allow one to provide an assessment 

of their changes due to this shock (see the next section for the analysis of changes in the Gini 

coefficient for the distribution of income in the context of the on-going crisis). 

The numerical results on t-statistic based approach to robust inequality measurement in 

Appendix C.2 indicate its appealing finite sample properties and applicability to many widely used 

income inequality measures, including the Gini coefficient; Theil index, mean logarithmic deviation 

and generalized entropy measures. Appendix C.3 further presents several theoretical results that imply 

a strong link between the t-statistic based robust inference methods and stochastic analogues of 

majorization conditions that are usually imposed on inequality measures related to self-normalized 

sums or their transforms, as in the case of the coefficient of variation. 
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As discussed in Section 1, in addition to the robust analysis of income inequality in Russia, we 

further present estimation results for heavy-tailed double Pareto models for income distribution in this 

country (see Appendix D). These results provide further motivation for applications of the robust 

inference approaches discussed in this section and throughout the paper. 

 

4. Empirical results 

 Importantly, the results in Table 1 on descriptive statistics for income distribution among 

Russian households indicate extremely large values for kurtosis of the distribution that point out to its 

heavy-tailedness. According to Table 2 on quarterly Gini coefficients for the whole distribution of 

income among households in Russia and its parts on the left and the right from the mode, in the second 

half of 2007 and in 2008, the Gini coefficient in Russia has achieved its maximum in the considered 

period from the beginning of 2003 to the end of 2009. The Gini coefficient has started declining after 

2008.The Gini coefficient for the left part of income distribution (among households with income 

levels less than the mode) has not been significantly affected by the on-going crisis. The Gini 

coefficient for the right part of income distribution (households with income levels greater than the 

mode) has increased in 2008. However, the Gini coefficient for this part of the distribution has returned 

to its pre-crisis level already by the first quarter of 2009. 

 Table 3 and Figure 2 provide the maximum likelihood estimates of the left and right tail index 

(shape) parameters k1 and k2 for the double Pareto and the truncated double Pareto distributions 

discussed in Appendix D. As discussed in the appendix, in the case of the truncated double Pareto 

distribution, the truncation bound b is estimated by the maximal income level in the sample  

Y={y1,…, yn} of observations on household incomes: ෠ܾ ൌ maxଵஸ௜ஸ௡  ௜. Importantly, in 2009, oneݕ

observes a decrease in the degree of heavy-tailedness of household income distribution in Russia 

comparing to 2008. This can be seen from an increase in the tail index  ൌk2 in double Pareto model 

(D1)-(D3) for the income distribution. 

 

 Most of the estimates for the right tail index coefficient ݇ଶ (that is, the upper tail index  ൌ ݇ଶ 

in (1)) of the income distribution in Russia in Table 3 are considerably less than the benchmark values 

 ∈(1.5, 3) that are typically obtained for the tail indices of income distributions in developed 

economies (see Section 1.2 in the paper, Gabaix, 2008, 2009, and references therein). They are further 

considerably smaller than the estimates of the upper tail index ݇ଶ for the double Pareto family fitted to 

the personal income distribution in the US in 1968-1993 conditional on education and experience in 

Toda (2012). In particular, most of the estimates of the upper tail index  ݇ଶ for the double Pareto 
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family fitted to the Russian income distribution in Table 3 are considerably smaller than the threshold 

value  ൌ 2 implying infinite variances.  

 The above differences of the estimates of the tail index ݇ଶ for Russian income distribution 

from the results in Toda (2012) for the US may be due to pre-crisis datasets considered in that paper 

(the data for 1968-1993) and conditioning, but may also be indicative that heavy-tailedness properties 

and the likelihood of observing extreme observations and outliers are significantly more pronounced in 

income distribution in Russia comparing to the US and other developed economies. The latter 

conclusion joins and complements those for exchange rates in emerging markets in Ibragimov, 

Ibragimov & Kattuman, 2011, where, qualitatively similar to this paper, the estimates obtained also 

point out to smaller tail index values and significantly more pronounced heavy-tailedness properties 

comparing to the tail indices ሺ2, 4ሻ for financial returns and exchange rates in developed markets 

reported in the literature (see Gabaix, 2008, 2009, Ibragimov, 2009, and references therein). As 

discussed in Section 1, the observed empirical facts on heavy-tailedness, extreme observations and 

outliers in key variables in emerging and transition economies like Russia, such as income, exchange 

rates and financial returns, provide further motivation for applications of robust inference methods, 

e.g., the t-statistic based robust inference approaches like in this paper, in their analysis. 

 

Table 4 and Figures 3 and 4 provide the confidence intervals for the Gini coefficient for income 

distribution in Russia constructed using the t-statistic based robust inference approach with q=4 and 

q=8 equal-sized groups applied to (randomized) income data as described in Section 3 and Appendix 

C.1. According to the Table 4, the robust 95% confidence intervals for the Gini coefficient for income 

distribution in Russia in the 4th quarters of 2003-2009 constructed using the t-statistic approach with 

q=8 are as follows: ܫܥଶ଴଴ଷ ଶ଴଴ସܫܥ ,[0.390 ,0.380]= ଶ଴଴ହܫܥ ,[0.397 ,0.386]= =[0.394, 0.409], 

 .ଶ଴଴ଽ=[0.378, 0.390]ܫܥ ଶ଴଴଼=[0.396, 0.421] andܫܥ ,ଶ଴଴଻=[0.414, 0.431]ܫܥ ,ଶ଴଴଺=[0.400, 0.413]ܫܥ

It is important to note that these and other results on confidence intervals for quarterly Gini 

coefficients in Russia in Table 4 considerably complement the point estimates of Gini coefficients for 

Russia and other economies available in the literature and are largely in accordance with them. In 

particular, Milanovic (2005, 2011) discusses the Gini percentage points in the mid-twenties for Nordic 

European countries that are the most egalitarian, and around 30 to 35% for Western and Central 

Europe, Australia, Canada, New Zealand and a number of Asian economies (India, Japan and Taiwan). 

As discussed in Milanovic (2005, 2011), the Gini percentage points are in the lower 40s for the US and 

Russia, in excess of 40 for China, in the 50s for countries in Latin America and Africa, and are almost 
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60 for some countries like Brazil, South Africa or Botswana.6 Table 5 in Appendix A provides the 

official values of Gini coefficients for income distribution in Russia in 1995-2009 from the Federal 

State Statistics Service of Russian Federation (Rosstat, see also Section 2). According to the table, the 

official values of the Gini coefficient for the whole income distribution in Russia increased from about 

0.3 in 1992 to relatively stable values about 0.4 in 1995-2009. Gorodnichenko et al. (2010) present a 

detailed analysis of Russian income inequality dynamics using a panel micro data set from the Russia 

Longitudinal Monitoring Survey (RLMS) for 1994–2005 (see also Kislitsyna, 2003, for a review of 

the dynamics of income inequality in Russia in the 1990s). The authors argue that, after an initial rise 

in the early 1990s, the measures of income inequality in Russia stayed relatively high during 

1994-1998 and then started falling during 2000-2005. According to the estimates in the paper, the 

Gini coefficient for earnings in Russia increased from 0.28 in 1985 and 0.32 in 1990 to 0.48 in 1995 

and then declined to 0.41 in 2005 (see also Kislitsyna, 2003). As discussed in the paper, the latter 

value of the Gini coefficient in 2005 is just slightly higher than the mean value of Gini coefficients 

for after-tax household income in upper middle income countries.  

Furthermore, the analysis of the confidence intervals points out to several important 

conclusions on the dynamics of the Gini coefficient in Russia and the effects of the on-going crisis on 

income distribution and inequality in that country. Importantly, for the number of groups q=8, the 

confidence interval ܫܥଶ଴଴଻=[0.414, 0.431] for the Gini coefficient in Russia in the 4th quarter of 2007 

does not intersect with the confidence intervals ܫܥଶ଴଴ଷ ଶ଴଴ସܫܥ ,[0.390 ,0.380]= =[0.386, 0.397], 

௜ܫܥ  :ଶ଴଴ଽ=[0.378, 0.390]ܫܥ ଶ଴଴଺=[0.400, 0.413] andܫܥ ,ଶ଴଴ହ=[0.394, 0.409]ܫܥ 	∩  ,ଶ଴଴଻ for i=2003ܫܥ

..., 2006 and i=2009. More precisely, the confidence interval ܫܥଶ଴଴଻ for the Gini coefficient in the 4th 

quarter of 2007 lies on the right of the latter confidence intervals ܫܥ௜		for i=2003, ..., 2006 and i=2009. 

This implies that the difference between the Gini coefficient in Russia at the end of 2007 and the Gini 

coefficients in that country at the end of 2003, 2004, 2005 and 2006 and, most importantly, at the end 
                                                           
6 See also the World Bank’s World Development Indicators (WDI) database (http://databank.worldbank.org) for Gini coefficients in 
different countries of the World from 2002 to 2010. The All the Ginis database (http://econ.worldbank.org/projects/inequality) provides 
a compilation of Gini coefficients for different countries and time periods from five databases, including the World Institute for 
Development Research WIDER dataset (see http://www.wider.unu.edu/wiid/wiid.htm and links to other datasets on income distributions 
and Gini coefficients therein) and the World Income Distribution (WYD) dataset used in Milanovic (2005). The website at 
http://econ.worldbank.org/projects/inequality also contains the Global Income Inequality database with the aggregate data on household 
surveys in the countries of the World in approximate 5 year intervals from 1988 to 2005 used in Milanovic (2005, 2011) (see also the 
Decomposing World Income Distribution and Globalization and Income Distribution datasets available at the website). The Online 
Household Expenditure and Income Data for Transitional Economies (HEIDE) database available at the latter website contains the 
(disaggregated) data on household expenditure and income from surveys conducted in five post-Soviet countries (Russia, 1993-94; 
Armenia, 1994; Estonia, 1995; Kyrgyz Republic, 1993; and Latvia, 1997-98) and four countries in Eastern Europe (Bulgaria, 1995; 
Hungary, Poland and Slovak Republic, 1993). Related data on the results of household surveys in different countries and time periods is 
available from the Living Standards Measurement Study at the World Bank website at http://econ.worldbank.org/projects/inequality . 
The website at https://www.cpc.unc.edu/projects/rlms-hse contains the results of the Russia Longitudinal Monitoring Survey – Higher 
School of Economics (RLMS-HSE, see also Gorodnichenko et al., 2010). Among a number of other variables, the RLMS-HSE project 
provides the data on household income, assets and expenditures in Russia collected in 18 rounds of the study from 1992 to 2009. 
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of 2009 is statistically significant (at the 5% significance level). More precisely, the Gini coefficient 

for income distribution in Russia at the end of 2007 was statistically significantly greater (at the 2.5% 

level) than the Gini coefficients for the income distribution at the end of 2003, 2004, 2005, 2006 and at 

the end of 2009, the year after the beginning of the on-going crisis in 2008. This conclusion suggests 

that, apparently, there were significant changes in income distribution and redistribution of income in 

Russia prompted by the beginning of the on-going crisis in 2008.7 

At the same time, in contrast to the above, the confidence intervals ܫܥଶ଴଴ଷ, ܫܥଶ଴଴ସ, ܫܥଶ଴଴ହ, 

 ଶ଴଴ଽ for the Gini coefficient in Russia in the 4th quarters of 2003-2006 and 2009 doܫܥ ଶ଴଴଺ andܫܥ

intersect. This means that the Gini coefficients for income distribution among Russian households at 

the end of 2003-2006 and 2009 are not statistically different from each other (at the 5% significance 

level). Similar comparisons of robust confidence intervals in Table 4 and conclusions on statistical 

significance or its lack for differences between Gini coefficients in Russia can be obtained for other 

time periods before and after the beginning of the current crisis. Furthermore, in a similar fashion, 

robust confidence intervals can be constructed for other important economic indicators, with 

applications to the analysis of their structural changes over time and due to the on-going crisis. 

 

5. Conclusion and further research 

Empirical analyses on inequality measurement and those in other fields in economics and 

finance often face the difficulty that the data is correlated, heterogeneous or heavy-tailed in some 

unknown fashion. In particular, as has been documented in numerous studies, observations on many 

variables of interest, including income, wealth and financial returns, typically exhibit heterogeneity, 

dependence and heavy tails in the form of commonly observed Pareto or power laws. 

Emerging and transition economic and financial markets are more volatile than their developed 

counter-parts and are subject to more extreme external and internal shocks. Heterogeneity and 

heavy-tailedness properties are usually even more pronounced for income and wealth distributions, 

exchange rates and other key economic and financial variables in these markets, especially in the 

                                                           
7 Somewhat qualitatively similar conclusions are also obtained for the dynamics and the upper tail inequality of wealth distribution in 

Russia. Unreported results on estimation of the tail index  in (1) for wealth distribution among Russian billionaires using the 
modifications of log-log rank-size regressions with optimal shifts in ranks and correct standard errors developed in Gabaix and 
Ibragimov (2011) (see Ibragimov, Ibragimov and Khamidov, 2011, for applications of the regression approaches to estimation of tail 
indices for the World wealth distribution) provide the following confidence intervals for the tail index in 2008-2011: 
ଶ଴଴଼ሺ0.67, 1.24ሻ, ଶ଴଴ଽ(0.71, 2.08), ଶ଴ଵ଴(0.68, 1.42), ଶ଴ଵଵ(0.75, 1.31). The comparison of the confidence intervals indicates 

some increase in the tail index  for the wealth distribution in Russia following the beginning of the on-going crisis in 2008, implying a 
decrease in the degree of heavy-tailedness of the distribution and the corresponding decrease in the upper tail wealth inequality (see 
Atkinson, 2008, Atkinson, Piketty and Saez, 2011, and Ibragimov, Ibragimov and Khamidov, 2011, for a discussion of the relation of the 

tail index   to income and wealth concentration and inequality among the rich). 
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periods of crises and other external shocks. 

The paper focuses on randomization-based analogues and modifications of t-statistic based 

robust inference methods recently developed in Ibragimov & Müller (2010) that are applicable in the 

analysis of income and wealth distributions and inequality measures. The methods can be used under 

general conditions appropriate for real-world markets and have a number of appealing properties and 

advantages over other inference approaches available in the literature. We illustrate the use of the 

robust inference approaches in the study of important problems with pronounced complications for 

alternative econometric procedures focusing on the analysis of income distribution and inequality in 

the Russian economy where heterogeneity, outliers and crisis effects are expected to be present. The 

development and applications of the t-statistic based robust inference approaches in the context of the 

analysis of income distributions and inequality in the paper overcome several methodological 

problems related to the condition of asymptotic independence of group empirical inequality measures. 

Among other results, the paper provides robust confidence intervals for the Gini coefficients 

for income distribution in Russia in the periods before and after the beginning of the on-going crisis. 

The results considerably complement the point estimates of the Gini coefficients for Russian and other 

economies available in the literature. They further point out to statistically significant changes in 

income inequality and redistribution of income in Russia prompted by the beginning of the on-going 

crisis in 2008. 

 In addition to the above results, we also present characterizations of the whole income 

distribution in Russia using double Pareto models. The empirical results for double power-law models 

for Russian income distribution point out to its significant heavy-tailedness and provide further 

motivation for the development and applications of robust approaches to inference on income 

distributions, inequality measures and their dynamics and structural changes, both in emerging and 

transition economies and developed markets. 

 As follows from the on-going work in progress by R. Ibragimov and U. K. Müller, 

conservativeness properties similar to those for t-statistics also hold for Behrens-Fisher statistics for 

testing equality of means: that is, for commonly used significance levels, the Behrens-Fisher tests 

remain conservative for underlying observations that are independent and Gaussian with heterogenous 

variances. These small sample conservativeness results provide the basis for the development of 

asymptotic robust inference procedures using Behrens-Fisher statistics in the latter work and their 

applications in a number important problems including tests for structural breaks and the analysis of 

treatment effects. Similar to the t-stastistic based approach, the large sample inference in the 

Behrens-Fisher case, e.g., robust tests for changes in a parameter of interest (for instance, an income 

inequality measure), can be conducted as follows: partition the data into some number of groups, 
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estimate the parameter for each group (e.g., calculate the group empirical income inequality 

measures), and then conduct the standard Behrens-Fisher test on equality of parameters (the no-change 

hypothesis for the inequality measure or the no-break hypothesis of equality of pre- and post-break 

parameters) with the resulting group estimators. Applications of the Behrens-Fisher statistic based 

approaches and their analogues to robust tests for structural breaks in inequality measures and the 

parameters of income and wealth distributions, together with other applications of the robust inference 

methods based on conservativeness of test statistics, are currently under way by the authors. 
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APPENDICES 

A. Tables and figures on estimation results 

Table 1. Income distribution among Russian households: Descriptive statistics 

Quarter 
Sample 

size 
Mode Median Mean 

Standard 
deviation

Max Skewness Kurtosis

2003,1 53149 8480 14730 18447 15839 892095 8.5 260.6
2003,2 46364 10600 14770 18977 18724 967437 12.1 396.7
2003,3 46364 8700 15827 20534 19835 629594 7.9 146.6
2003,4 46364 8700 17627 22622 21309 790397 8.3 170.9
2004,1 46364 12800 17154 21989 22244 1536014 18.9 902.6
2004,2 46364 10500 17642 22626 22924 1355377 16.0 669.1
2004,3 46364 11200 18726 24430 24762 1315907 11.3 329.1
2004,4 46341 13400 20640 26889 28773 1882243 17.5 748.5
2005,1 46974 12800 20405 26299 26607 1433427 13.3 429.7
2005,2 53132 11100 21860 28603 32241 1890178 17.1 668.4
2005,3 53129 13800 23182 30911 34780 1916806 14.2 480.1
2005,4 53135 16200 25893 34167 35610 1354797 9.9 212.6
2006,1 53093 18200 25705 33271 36992 2156332 18.1 731.8
2006,2 53094 16700 26302 34806 42660 2908380 20.0 854.4
2006,3 53089 15100 27817 37340 43694 2012054 13.9 402.6
2006,4 53072 16600 30969 41122 50145 3781912 24.8 1403.1
2007,1 50589 20400 30567 40094 47450 2302600 15.6 466.9
2007,2 49884 17100 32095 43063 53991 2900069 19.2 741.3
2007,3 53104 19500 35259 48342 66240 4389955 20.7 842.4
2007,4 53096 19100 40335 54716 78176 4707872 20.4 734.7
2008,1 51288 27500 41076 54064 67347 3477145 18.4 632.6
2008,2 51296 20000 43470 58714 79701 3388236 16.6 475.4
2008,3 51292 19800 47478 64568 88027 6542704 19.7 855.6
2008,4 51300 32200 51853 68868 131174 21001918 90.8 13172.4
2009,1 51285 32400 48876 61993 68908 5297012 22.2 1120.4
2009,2 45094 32600 50119 63934 64592 4755511 17.4 872.2
2009,3 51300 26700 52577 67864 66677 3163979 9.4 219.3
2009,4 51309 37200 55569 70907 73460 3143475 11.1 248.9
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Table 2. Gini coefficients for income distribution among Russian households  

(Column 2: all households; Column 3: household income levels less than the modal value;  

Column 4: household income levels greater than the modal value) 

Quarter Income Income<mode Income >mode 
1 2 3 4 

2003,1 0.37 0.15 0.31 
2003,2 0.38 0.17 0.30 
2003,3 0.39 0.15 0.33 
2003,4 0.39 0.14 0.34 
2004,1 0.38 0.17 0.29 
2004,2 0.38 0.15 0.32 
2004,3 0.39 0.16 0.33 
2004,4 0.39 0.16 0.32 
2005,1 0.38 0.16 0.31 
2005,2 0.40 0.14 0.35 
2005,3 0.41 0.16 0.34 
2005,4 0.40 0.17 0.33 
2006,1 0.39 0.17 0.31 
2006,2 0.40 0.16 0.33 
2006,3 0.41 0.16 0.35 
2006,4 0.41 0.15 0.35 
2007,1 0.40 0.17 0.32 
2007,2 0.41 0.15 0.35 
2007,3 0.43 0.16 0.36 
2007,4 0.42 0.14 0.37 
2008,1 0.40 0.17 0.33 
2008,2 0.42 0.14 0.37 
2008,3 0.42 0.14 0.38 
2008,4 0.41 0.17 0.34 
2009,1 0.38 0.16 0.30 
2009,2 0.38 0.16 0.31 
2009,3 0.39 0.15 0.34 
2009,4 0.38 0.17 0.31 
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Table 3. Maximum likelihood estimates of the parameters of double Pareto and truncated double 

Pareto distributions (Appendix D) for income distribution among Russian households 

Quarter n n1 Mode 

Parameters of 
double Pareto 
distribution 

Truncation 
bound, b 

Parameters of 
truncated 

double Pareto 
distribution 

k1 k2 k1 k2 
Q1,2003 53149 10787 8480 3.4307 1.1895 892095 3.4357 1.1888
Q2,2003 46364 14352 10600 2.7309 1.8796 967437 2.7310 1.8796
Q3,2003 46364 8889 8700 3.4249 1.1179 629594 3.4356 1.1166
Q4,2003 46364 7380 8700 3.8122 1.0366 790397 3.8262 1.0354
Q1,2004 46364 15336 12800 2.4653 1.4251 1536014 2.4661 1.4248
Q2,2004 46364 10631 10500 3.1066 1.1929 1355377 3.1100 1.1924
Q3,2004 46364 10784 11200 3.0320 1.1804 1315907 3.0359 1.1797
Q4,2004 46341 12478 13400 2.7580 1.2541 1882243 2.7599 1.2537
Q1,2005 46974 11841 12800 2.9221 1.2348 1433427 2.9251 1.2342
Q2,2005 53132 8998 11100 3.6847 1.0520 1890178 3.6912 1.0514
Q3,2005 53129 12620 13800 2.8804 1.1504 1916806 2.8840 1.1498
Q4,2005 53135 13867 16200 2.7051 1.1930 1354797 2.7099 1.1919
Q1,2006 53093 16520 18200 2.4990 1.3477 2156332 2.5003 1.3473
Q2,2006 53094 14118 16700 2.7311 1.2197 2908380 2.7328 1.2194
Q3,2006 53089 11094 15100 3.0718 1.0688 2012054 3.0779 1.0680
Q4,2006 53072 10680 16600 3.1727 1.0665 3781912 3.1763 1.0660
Q1,2007 50589 14660 20400 2.5770 1.2707 2302600 2.5791 1.2702
Q2,2007 49884 10025 17100 3.2125 1.0624 2900069 3.2177 1.0618
Q3,2007 53104 11682 19500 2.9239 1.0700 4389955 2.9272 1.0696
Q4,2007 53096 8668 19100 3.5902 0.9787 4707872 3.5967 0.9782
Q1,2008 51288 14825 27500 2.6033 1.2788 3477145 2.6050 1.2783
Q2,2008 51296 7496 20000 3.9397 0.9708 3388236 3.9506 0.9701
Q3,2008 51292 6324 19800 4.1975 0.9005 6542704 4.2069 0.9000
Q4,2008 51300 13112 32200 2.7403 1.1967 21001918 2.7407 1.1966
Q1,2009 51285 14022 32400 2.7706 1.3091 5297012 2.8922 1.2113
Q2,2009 45094 12129 32600 2.7657 1.2735 4755511 2.8944 1.5179
Q3,2009 51300 8831 26700 3.5878 1.0498 3163979 3.5971 1.0490
Q4,2009 51309 14476 37200 2.6868 1.3089 3143475 2.6894 1.3081

Note: n is the sample size of households and n1 is the number of observations on household income 

levels less than the modal value. 
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Table 4. Robust t-statistic based 95% confidence intervals for the Gini coefficients for  

income distribution among Russian households in 2003-2009 

Quarters 

Sampl
e 

size, 
n 

q=4 q=8 

ഥࡳ ൌ
∑ ࢏ഥࡳ
ࢗ
ୀ૚࢏

ࢗ
 95% CI ࡳഥ ൌ

∑ ࢏ഥࡳ
ࢗ
ୀ૚࢏

ࢗ
 95% CI 

2003:1 53149 0.3668 [0.3603, 0.3734] 0.3668 [0.3629, 0.3707] 
2003:2 46364 0.3802 [0.3729, 0.3875] 0.3802 [0.3746, 0.3858] 
2003:3 46364 0.3878 [0.3793, 0.3963] 0.3878 [0.3822, 0.3934] 
2003:4 46364 0.3852 [0.3826, 0.3877] 0.3852 [0.3804, 0.3899] 
2004:1 46364 0.3790 [0.3696, 0.3884] 0.3790 [0.3743, 0.3838] 
2004:2 46364 0.3841 [0.3758, 0.3924] 0.3841 [0.3772, 0.3910] 
2004:3 46364 0.3923 [0.3833, 0.4014] 0.3923 [0.3862, 0.3985] 
2004:4 46341 0.3915 [0.3858, 0.3972] 0.3915 [0.3858, 0.3971] 
2005:1 46974 0.3847 [0.3699, 0.3994] 0.3846 [0.3766, 0.3926] 
2005:2 53132 0.3954 [0.3921, 0.3986] 0.3954 [0.3906, 0.4002] 
2005:3 53129 0.4069 [0.4006, 0.4132] 0.4069 [0.4030, 0.4109] 
2005:4 53135 0.4019 [0.3910, 0.4127] 0.4018 [0.3942, 0.4093] 
2006:1 53093 0.3905 [0.3843, 0.3968] 0.3905 [0.3850, 0.3960] 
2006:2 53094 0.4042 [0.3869, 0.4214] 0.4042 [0.3961, 0.4122] 
2006:3 53089 0.4137 [0.4126, 0.4148] 0.4137 [0.4084, 0.4190] 
2006:4 53072 0.4065 [0.3974, 0.4157] 0.4065 [0.3997, 0.4133] 
2007:1 50589 0.4010 [0.4004, 0.4017] 0.4010 [0.3959, 0.4061] 
2007:2 49884 0.4132 [0.4029, 0.4235] 0.4131 [0.4020, 0.4243] 
2007:3 53104 0.4270 [0.4142, 0.4397] 0.4268 [0.4180, 0.4357] 
2007:4 53096 0.4226 [0.4110, 0.4343] 0.4226 [0.4141, 0.4310] 
2008:1 51288 0.4025 [0.3911, 0.4139] 0.4025 [0.3967, 0.4083] 
2008:2 51296 0.4177 [0.4079, 0.4276] 0.4177 [0.4112, 0.4241] 
2008:3 51292 0.4229 [0.4115, 0.4343] 0.4229 [0.4153, 0.4304] 
2008:4 51300 0.4088 [0.3923, 0.4252] 0.4086 [0.3962, 0.4210] 
2009:1 51285 0.3785 [0.3645, 0.3926] 0.3785 [0.3714, 0.3856] 
2009:2 45094 0.3821 [0.3711, 0.3931] 0.3822 [0.3762, 0.3881] 
2009:3 51300 0.3887 [0.3824, 0.3950] 0.3887 [0.3829, 0.3945] 
2009:4 51309 0.3840 [0.3774, 0.3906] 0.3840 [0.3780, 0.3900] 

 
 

Table 5. The official Gini coefficient for income inequality among Russian households 

Year 1992 1995 2000 2004 2005 2006 2007 2008 2009 
Gini coefficient 0.289 0.387 0.395 0.409 0.409 0.416 0.423 0.422 0.422 

Source: Rosstat, the Federal State Statistics Service of Russian Federation. 
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Figure 1. Gini coefficients for income distribution among Russian households  

and its parts on the left and the right from the mode 

 

 

Figure 2. Maximum likelihood estimates of the parameters (k1, k2) of the double  

Pareto model and the parameters (ktr1, ktr2) of the truncated double Pareto model for  

income distribution among Russian households 
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Figure 3. Average ̅ܩ ൌ
∑ ீ̅೔
೜
೔సభ

௤
 of the group empirical Gini coefficients and the robust t-statistic 

based 95% confidence intervals (q=4) for the Gini coefficients for income distribution among  

Russian households, 4th quarters of 2003-2009 

 
 

Figure 4. Average ̅ܩ ൌ
∑ ீ̅೔
೜
೔సభ

௤
 of the group empirical Gini coefficients and the robust 

t-statistic based 95% confidence intervals (q=8) for the Gini coefficients for income  

distribution among Russia households, 4th quarters of 2003-2009
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B. Inequality measures 

As usual, throughout the appendices, given a r.v. (e.g., income level or its logarithm) I, we 

denote by ߤூ= E[I] and ߪூ
ଶ ൌ ܫሺܧ െ  ,ூሻଶ its mean and variance, respectively. In addition, as usualߤ

for a sample I1 ,...,Iq, ܫ ̅ ൌ ଵିݍ ∑ ௝ܫ
௤
௝ୀଵ  will denote the sample mean of the observations Ij’s and 

ூݏ
ଶ ൌ ሺݍ െ 1ሻିଵ ∑ ௝ܫሺܧ െ ሻ̅ଶ௤ܫ

௝ୀଵ  will denote their sample variance. 

In this appendix, we review the definitions of the risk, inequality, poverty and concentration 

measures considered in the paper. The detailed discussions of the properties of these and other 

measures are available, for instance, in Section 13.F in Marshall et al., 2011, Cowell & Flachaire, 

2007, Davidson & Flachaire, 2007, and references therein. 

Variance: The variance ߪூ
ଶ and the sample variance ݏூ

ଶ are standard examples of population and 

empirical measures of dispersion or spread of I around its mean ߤூ. 

Coefficient of variation: The population coefficient of variation is the normalized standard deviation 

defined by CVI =ߪூ/ߤூ. The commonly used natural estimator of the coefficient CVI is given by 

the empirical coefficient of variation ܥ෢ܸூ ൌ
ூݏ
௤̅ܫ	
ൗ . 

Variance and coefficient of variation of logarithms and logarithmic variance: The variance and 

the coefficient of variation of logarithms have the form ߪ௒
ଶ ൌ ሺܻܧ െ ,ሻଶܻܧ ܥ ௒ܸ ൌ

௒ߪ ௒ൗߤ , where 

Y = log(I). The commonly used estimators of these measures are provided by the sample 

variance ݏ௒
ଶ  and the empirical coefficient of variation ܥ෢ܸ௒ ൌ

௒ݏ
	 തܻ௤
ൗ 	for the logarithms	 ௝ܻ ൌ

 ௝. A related measure is the logarithmic variance defined byܫ ௝) of observationsܫሺ݃݋݈

ࣦ௅௏ ൌ ܧ ൤݈݃݋ ൬
ܫ

ܫ
൰൨

2

ൌ ሺܻ2ሻܧ െ ൫ூ൯൧݃݋݈ൣ+൯ܫ൫݃݋2ܻ݈
ଶ
. 

Generalized entropy (GE) measures,  0,1: 

ࣦா
ఈ ൌ ଵ

ఈሺఈିଵሻ
ቀாூ

ഀ

ఓ಺
െ 1ቁ.                                    (B1) 

Mean logarithmic deviation (MLD) is a limiting case of GE measures as 0: 

ܦܮܯ ൌ ࣦா
଴ ൌ logሺߤூሻ െ  ூ.                                  (B2)ߤ

Theil measure is a limiting case of GE indices as 1: 

ࣦா
ଵ ൌ ாሾூ	୪୭୥ሺூሻሿ

ఓ಺
െ logሺߤூሻ.                                   (B3) 

Gini coefficient: The Gini coefficient has the form GiniI = E[|I – I’|], where I’ is an independent copy 

of I. The empirical Gini coefficient is calculated using the formulas 
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ଓ݊ଓ෣ூܩ ൌ
1

ܫଶݍ2 ̅
෍෍หܫ௜ െ ௝หܫ ൌ 1 െ

1
ܫଶݍ2 ̅

෍෍min൫ܫ௜, ௝൯ܫ ൌ 1 ൅
1
ݍ
െ

௤

௝ୀଵ

௤

௜ୀଵ

௤

௝ୀଵ

௤

௜ୀଵ

1
ܫଶݍ2 ̅

෍ ሾ௜ሿܫ݅

௤

௝ୀଵ

, 

where I[1]  ...   I[q] are the components of (I1,…, Iq) arranged in non-increasing order. 

 

C. t-statistic based correlation and heterogeneity robust inference 

C.1. Description of the approach 

Suppose we want to do inference on a scalar parameter  of an econometric model in a large 

data set with n observations. For a wide range of models and estimators ߚመ  it is known that 

√݊൫ߚመ െ ൯ߚ →ௗ ܰሺ0,  ଶ) as n , where “→ௗ” denotes convergence in distribution. Suppose furtherߪ

that the observations exhibit correlations of largely unknown form. If such correlations are pervasive 

and pronounced enough, then it will be very challenging to consistently estimate ߪଶ, and inference 

procedures for  that ignore the sampling variability of a candidate consistent estimator ߪොଶ will have 

poor finite sample properties. 

Ibragimov & Müller (2010) propose the following general approach to robust inference about 

the parameter  under heterogeneity and correlation of a largely unknown form. Consider a partition 

the original data set into q2 groups, with nj observations in group j, and ∑ ௝݊
௤
௝ୀଵ ൌ ݊. Denote by ߚመ௝ 

the estimator of  using observations in group j only. Suppose the groups are chosen such that 

√݊൫ߚመ௝ െ ൯ߚ →ௗ ܰሺ0, ௝ߪ
ଶ ) for all j, and, crucially, such that √݊൫ߚመ௜ െ ൯ߚ  and √݊൫ߚመ௝ െ 	൯ߚ are 

asymptotically independent for i  j : this amounts to the convergence in distribution 

√݊൫ߚመଵ െ …,ߚ , መ௤ߚ െ ൯	ߚ
′
→ௗ ܰሺ0, diagሺߪଵ

ଶ, … , ௤ଶ)),    maxଵஸ௝ஸ௤ߪ ௝ߪ
ଶ ൐ 0,          (C1) 

and ൛ߪ௝
ଶൟ
௝ୀଵ

௤
 are, of course, unknown. The asymptotic Gaussianity of √݊൫ߚመ௝ െ  ,൯, j = 1,…, qߚ

typically follows from the same reasoning as the asymptotic Gaussianity of the full sample estimator 

መߚ . The argument for asymptotic independence of ߚመ௜ and ߚመ௝ for i  j, on the other hand, depends on 

the choice of groups and the details of the application (see Section 4 in Ibragimov & Müller 2010 for 

the discussion of such arguments for a number of important econometric models, including time series, 

panel, clustered and spatially correlated settings, and Section 3 in the paper for the case of inference on 

income inequality measures). 

As discussed in Ibragimov & Müller (2010), one can perform an asymptotically valid test of 

level , 0.05 of H0: 0ߚ = ߚ against H1: ߚ  0ߚ by rejecting H0 when หݐఉห exceeds the (1/2) 

percentile of the Student-t distribution with q1 degrees of freedom, where ݐఉ is the usual t-statistic 
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ఉݐ ൌ ඥݍ
ఉ෡ഥିఉబ
௦෡ഁ

                                      (C2) 

with ߚመ̅ ൌ ଵିݍ ∑ መ௝ߚ
௤
௝ୀଵ , the sample mean of the group estimators ߚመ௝ , j = 1,..., q, and ݏఉ෡

ଶ ൌ ሺݍ െ

1ሻିଵ ∑ ሺߚመ௝ െ መ̅ሻଶ௤ߚ
௝ୀଵ , the sample variance of ߚመ௝,  j = 1,..., q. 

In other words, the usual t-tests can be used in the presence of asymptotic heteroskedasticity in 

group estimators as long the level of the tests is not greater than the typically used 5% threshold. As 

discussed in Ibragimov & Müller (2010), the t-statistic approach provides a number of important 

advantages over the existing methods. In particular, it can be employed when data are potentially 

heterogeneous and correlated in a largely unknown way. In addition, the approach is simple to 

implement and does not need new tables of critical values. The assumptions of asymptotic normality 

for group estimators in the approach are explicit and easy to interpret, in contrast to conditions that 

imply validity of alternative procedures. Furthermore, as shown in Ibragimov & Müller (2010), the 

t-statistic based approach to robust inference efficiently exploits the information contained in these 

regularity assumptions, both in the small sample settings (uniformly most powerful scale invariant test 

against a benchmark alternative with equal variances) and also in the asymptotic frameworks. It is 

important to emphasize that the asymptotic efficiency results for t-statistic based robust inference 

further imply that it is not possible to use data dependent methods to determine the optimal number of 

groups q to be used in the approach when the only assumption imposed on the data generating process 

is that of asymptotic normality for the group estimators ߚመ௝ . The numerical results presented in 

Ibragimov & Müller (2010) demonstrate that, for many dependence and heterogeneity settings 

considered in the literature and typically encountered in practice for time series, panel, clustered and 

spatially correlated data, the choice q = 8 or q = 16 leads to robust tests with attractive finite sample 

performance. 

One should also note that, as discussed in Ibragimov & Müller (2010), the t-statistic approach 

described provides a formal justification for the widespread Fama-MacBeth method for inference in 

panel regressions with heteroskedasticity (see Fama & MacBeth 1973). In the approach, one estimates 

the regression separately for each year, and then tests hypotheses about the coefficient of interest using 

the t-statistic of the resulting yearly coefficient estimates. The Fama-MacBeth approach is a special 

case of the t-statistic based approach to inference, with observations of the same year collected in a 

group. 

In addition, the same approach remains valid under deviations from normality as in the case of 

heavy-tailed models, as long as the estimators ߚመ௝,	 j = 1,..., q, are asymptotically independent and 

converge (at an arbitrary rate) to scale mixtures of normals. Namely, the approach is asymptotically 
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valid if 

൛݉௡ሺߚመ௝ െ ሻൟߚ
௝ୀଵ

௤
→ௗ ൛ ௝ܼ ௝ܸൟ௝ୀଵ

௤
                               (C3) 

for some real sequence mn, where ௝ܼ ~ i.i.d. N(0,1), the random vector ൛ ௝ܸൟ௝ୀଵ
௤

 is independent of the 

vector ൛ ௝ܼൟ௝ୀଵ
௤

 and max௝ห ௝ܸห>0 almost surely. The class of limiting scale mixtures of normals in (C3) 

is a rather large class of distributions: it includes, for instance, the Student-t distributions with arbitrary 

degrees of freedom (including the Cauchy distribution), the double exponential distribution, the 

logistic distribution and all symmetric stable distributions that typically arise as distributional limits of 

estimators in econometric models under heavy-tailedness with infinite variances. 

The robust approach to asymptotic inference proposed in Ibragimov & Müller (2010) relies on 

the following powerful result on small sample properties of the t-statistic in heterogeneous normal 

observations due to Bakirov & Székely (2005) (see also the independent proof of the result in the 

working paper version of Ibragimov & Müller, 2010). 

Let Xj,  j=1,…, q, with q  2, be independent Gaussian random variables with common mean 

E[Xj]=µ and variances V[Xj] =ߪ௝
ଶ. Consider the usual t-statistic for the hypothesis test H0: µ = 0 

against the alternative Ha : µ  0: 

ݐ ൌ ඥݍ
௑ത

௦೉
.                                        (C4) 

If the variances ߪ௝
ଶ are the same: ߪ௝

ଶ ൌ  ଶ for all j, by definition, the critical value cv of |t| is given byߪ

the appropriate percentile of the distribution of a Student-t distributed random variable Tq1 with q1 

degrees of freedom. 

The case of equal variances is extremal for the t-statistic in (1) in the following sense (see 

Bakirov & Székely, 2005, and Theorem 1 in Ibragimov & Müller, 2010). Let cvq() be the critical 

value of the usual two-sided t-test of H0 against Ha of level   0.05: P(|Tq1| > cvq())=. Then, for all 

q2, 

sup൛ఙభమ,…,ఙ೜మൟ ܲሺ|ݐ|>cvq()|H0) = ܲሺ|ݐ| ൐ ,଴ܪ|௤ሺሻݒܿ ଵଶߪ ൌ ⋯ ൌ  ௤ଶሻ=P(|Tq1| > cvq()).   (C5)ߪ

The conservativeness result in (C5) does not hold for 10% level with  = 0.1. 

The conservativeness properties of t-statistic given by (C5) imply analogous results for the tail 

probabilities of self-normalized sums 

ܵ௤ ൌ
∑ ௝ܺ
௤
௝ୀଵ

ቀ∑ ௝ܺ
ଶ௤

௝ୀଵ ቁ
ଵ/ଶ൙                           (C6) 

and their squares using the equality (see, for instance, Edelman, 1990) 
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ܲሺ|ݐ| ൐ ሻݕ ൌ ܲ ቀݏ௤ଶ ൐
௤௬మ

௬మା௤ିଵ
ቁ                          (C7) 

for all у > 0. 

 

C.2. Finite sample properties and comparisons with alternative inference procedures 

This section provides numerical results on finite sample performance of the t-statistic based 

approach to robust inference on commonly used inequality measures in comparison with the 

alternative procedures. In particular, we focus on the comparison of the error in rejection probabilities 

(ERP) of the t-statistic based tests on inequality indices with those of the standard asymptotic and 

bootstrap tests for inequality and non-standard bootstrap inference procedures, including the m out of n 

bootstrap (also known as the moon bootstrap) and a semiparametric bootstrap (see Cowell & Flachaire, 

2007 and Davidson & Flachaire, 2007). We also provide analogous comparisons of the finite sample 

properties of methods discussed in the paper with those of asymptotic tests based on semiparametric 

estimation of the income distribution (semiparametric inequality measures) discussed in Cowell & 

Flachaire (2007). As indicated in Cowell & Flachaire (2007), outliers and heavy-tailedness in income 

distribution have dramatic effects on performance of empirical inequality measures, even when the 

standard bootstrap procedures are employed. According to the results presented in Cowell & Flachaire 

(2007), semiparametric inference approaches, such as asymptotic tests based on semiparametric 

inequality measures and semiparametric bootstrap, can greatly improve the performance of many 

commonly used empirical inequality indices. 

As in the case of non-parametric and semiparametric asymptotic and bootstrap procedures 

considered in Cowell & Flachaire (2007), the data used in the analysis of the ERP reported in this 

section are simulated using the Singh-Maddala, Pareto and log-normal cdf’s that are widely used in 

modeling observed income distributions (see the discussion and references in Cowell & Flachaire, 

2007, and Davidson & Flachaire, 2007). 

R.v.’s I (e.g., income or wealth) with Singh-Maddala distribution satisfy P(I > y) =	 ଵ

ሺଵା௔௬್ሻ೎
 , 

y>0 with parameters a, b, c> 0 and thus follow power law (1) with the tail index ߞ = bc. The true 

values of the GE measures for Singh-Maddala income distributions are obtained using definition (B1) 

and the following formulas for moments of r.v.’s I with such distributions (see Section 2.1 in Cowell & 

Flachaire 2007): E[ܫఈሿ ൌ ܽିఈ/௕
Г൫ଵାఈ௕షభ൯Гሺ௖ିఈ௕షభሻ

Гሺ௖ሻ
 , where Г(y)=׬ ௬ିଵݐ expሺെݐሻ ݕ			,ݐ݀ ∈ ܀

∞

଴ , is the 

Gamma function (in particular, E(I ሻ ൌ ܽିଵ/௕
Г൫ଵା௕షభ൯Гሺ௖ି௕షభሻ

Гሺ௖ሻ
	 ). The true values of the mean 

logarithmic deviation and the Theil measure for Singh-Maddala distribution are found from (B2) and 
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(B3), together with the following formulas:  

E[I log(I)] = E[I]	ܾିଵሾߛሺܾିଵ ൅ 1ሻ െ ሺܿߛ െ ܾିଵሻ െ logሺܽሻሿ, 

E[log(I)]=	ܾିଵሾߛሺ1ሻ െ ሺܿሻߛ െ log	ሺܽሻሿ, 

where ߛሺݕሻ ൌ ଵ

ሺ௬ሻ
ௗ୪୭୥ሺГሺ௬ሻሻ

ௗ௬
 is the digamma function. 

R.v.’s I with Pareto distributions satisfy (1) with the exact equality for y  y0, where y0=ܥଵ/఍:  

P(I>y) = 
஼

௬അ
 , y y0.                                    (C8) 

The Theil index ࣦଵ	and the mean logarithmic deviation ࣦ଴	for Pareto income distribution are 

given by ࣦଵ ൌ ଵ

ିଵ
൅ log ቀ఍ିଵ

఍
ቁ and ࣦ଴ ൌ െ ଵ

఍
െ log ቀ఍ିଵ

఍
ቁ  (see Section 4 in Cowell & Flachaire 

2007). 

The density of the log-normal distribution is given by  
ଵ

√ଶగఙ௬
exp	 ቂെ ଵ

ଶఙమ
ሺlogሺݕሻ െ  ሻଶቃ. Theߤ

tails of log-normal distributions are thinner than those of power laws (1): in particular, all power 

moments of r.v.’s I with log-normal distributions are finite: E[|I|p]<  for all p > 0. However, similar 

to power laws, the moment generating function of I is infinite in any neighborhood of zero: E[exp(cI)] 

=  for all с > 0. In part because of this reason, log-normal distributions are difficult to distinguish 

from power laws in empirical applications (see the discussion in Perline, 2005). The Theil index and 

the mean logarithmic deviation for log-normal income distribution are both equal to ࣦଵ ൌ ࣦ଴ ൌ

 .ଶ/2ߪ

In simulations presented below, we use the same parameters for Singh-Maddala, Pareto and 

log-normal distributions as in Section 4 of Cowell & Flachaire (2007). The parameters for the 

Singh-Maddala distributions are a = 100, b = 2.8, and с = 0.7, 1.2, 1.7.8 The corresponding tail indices 

 implying finite) 1.96 = ߞ ,bc in asymptotic relation (1) for these distributions equal to, respectively=ߞ

first moments and infinite variances), 3.36 = ߞ (finite variances and infinite fourth moments) and ߞ = 

4.76 (finite fourth moments but infinite moments of order greater than ߞ). For the above choice of the 

parameters a = 100, b = 2.8 and с = 1.7 as in Section 3 in Cowell & Flachaire (2007) and Table C.1 in 

this section, the true values of the inequality measures are given by (see Cowell & Flachaire 2007) 

ࣦா
ଶ = 0.1620, ࣦா

ଵ  = 0.1401, ࣦா
଴.ହ= 0.1397, ࣦா

଴ = 0.1460, ࣦா
ିଵ= 0.1898, ࣦா

ିଶ  = 0.3866, ࣦ௅௏  = 

0.3321 and ࣦீ௜௡௜= 0.2887.  

The simulations for Pareto distributions (C8) use the threshold value y0 = 0.1 and the tail index 

parameters ߞ  equal to ߞ  = 1.5 and 2 (finite means and infinite variances) and ߞ  = 2.5 (finite 
                                                           
8 As indicated in Cowell & Flachaire (2007), the choice of the parameter values a = 100, b = 2.8 and с = 1.7 is motivated by the fact that 
the Singh-Maddala distribution with these parameters closely approximates the net income distribution of German households, up to a 
scale factor. 
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variances and infinite fourth moments).9  

The simulations for log-normal distributions use µ=2 and  =1, 0.7, 0.5.  

As in Cowell & Flachaire (2007), we first focus on the analysis of performance of the t-statistic 

based tests on inequality measures under Singh-Maddala income distributions with parameters a = 

100, b = 2.8 and с = 1.7. Table C.1 presents the ERP of the t-statistic based tests with q = 2,4 at 

nominal level 0.05, that is, the difference between the actual and nominal probabilities of rejection, for 

different GE measures, the Gini index and the logarithmic variance.  

The comparison of the results on the of ERP of the t-statistic based tests on inequality measures 

reported in Table C.1 with those in Figure 7 in Cowell & Flachaire (2007) indicates that the size 

properties of the t-statistic based robust tests with q = 2 and q = 4 in small size are uniformly better 

than those of the asymptotic tests. 

Table C1. ERP of the t-statistic based robust tests on inequality measures: 

Singh-Maddala income distribution with the parameters a = 100, b = 2.8 and с = 1.7 

N 
Generalized entropy (GE) खࡱ

 ࢻ
Gini 

Logarithmic 
variance α= 1 α=0 α=0.5 α=1 α=2 

q=2 
500 0.0073 0.0029 0.0028 0.0026 0.0156 0.0004 0.0035
1000 0.0008 0.0019 0.0012 0.0008 0.0043 0.0011 0.0028
2000 0.0024 0.0011 0.0025 0.0009 0.0051 0.0061 0.0005
3000 0.0016 0.0023 0.0017 0.0025 0.0022 0.0018 0.0005
4000 0.0004 0.0005 0.0001 0.0017 0.0088 0.0020 0.0018
5000 0.0006 0.0001 0.0024 0.0006 0.0009 0.0008 0.0004
6000 0.0008 0.0022 0.0034 0.0002 0.0053 0.0034 0.0017
7000 0.0028 0.0014 0.0000 0.0014 0.0010 0.0028 0.0011
8000 0.0004 0.0033 0.0006 0.0006 0.0047 0.0005 0.0002
9000 0.0041 0.0052 0.0037 0.0031 0.0074 0.0004 0.0025
10000 0.0001 0.0013 0.0025 0.0013 0.0048 0.0012 0.0036

q=4 
500 0.0154 0.0093 0.0076 0.0182 0.0580 0.0080 0.0080
1000 0.0098 0.0050 0.0076 0.0048 0.0416 0.0032 0.0018
2000 0.0045 0.0024 0.0037 0.0093 0.0274 0.0033 0.0004
3000 0.0035 0.0017 0.0032 0.0060 0.0213 0.0060 0.0014
4000 0.0096 0.0041 0.0043 0.0009 0.0258 0.0003 0.0000
5000 0.0015 0.0016 0.0040 0.0011 0.0210 0.0010 0.0040
6000 0.0010 0.0060 0.0008 0.0046 0.0178 0.0011 0.0015
7000 0.0076 0.0002 0.0036 0.0008 0.0187 0.0015 0.0033
8000 0.0012 0.0005 0.0002 0.0024 0.0154 0.0016 0.0030
9000 0.0050 0.0011 0.0001 0.0048 0.0191 0.0021 0.0023
10000 0.0007 0.0003 0.0038 0.0036 0.0094 0.0018 0.0021

                                                           
9 The corresponding values of the constant С = ݕ଴

఍ in (C8) equal to, respectively, С = 0.0316, 0.01 and С = 0.0032. 
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In addition, the finite sample properties of the t-statistic based tests on inequality measures, especially 

that with q = 2, are at least comparable to and in many cases dominate the size properties of the 

computationally expensive alternatives, including the standard and non-standard bootstrap methods, 

as well as those of the asymptotic tests based on semiparametric inequality measures and 

semiparametric boostrap (see Figures 8-11 in Cowell & Flachaire 2007 and the discussion in Section 2 

therein). 

Similar to the analysis of the alternative inference procedures in Cowell & Flachaire (2007), 

the following Tables C2 and C3 provide the results on finite sample performance of the t-statistic 

based robust tests on inequality for different parameters in the Singh-Maddala distributions for 

incomes as well as Pareto and log-normal distributions. As in Cowell & Flachaire (2007), the results 

are provided for the ERP of the t-statistic based tests on the Theil and mean logarithmic deviation 

(MLD) measures (that is, the generalized entropy measures with  = 1 and  = 0, respectively). 

Comparison of the ERP of the t-statistic based tests on the Theil measure and the mean 

logarithmic deviation in Tables C2 and C3 with the corresponding results in Tables 5 and 6 in Cowell 

& Flachaire (2007) for the alternative procedures leads to the following conclusions. In essentially all 

choices of the sample sizes and the parameter values for the distributions considered, the finite sample 

properties of the t-statistic based tests with q = 2 and q = 4 on the Theil index and the mean 

logarithmic deviation are much better than those of the alternative procedures, including the 

asymptotic inference methods (where the better finite sample performance of the t-statistic based 

robust tests is especially pronounced), standard, moon and semiparametric bootstrap tests as well as 

the asymptotic tests with semiparametric inequality measures. In addition, according to the results in 

Tables C2 and C3, the choice of the smaller number of blocks q = 2 is to be preferred, in terms of the 

finite sample size performance of the t-statistic based tests, to q = 4. According to the unreported 

simulation results, the choice of q = 2 leads to better performance of the t-statistic based tests 

comparing to the number of blocks greater than 4 in the samples considered. The above conclusions on 

the number of blocks complement those in Ibragimov & Müller (2010) where, as discussed in 

Appendix C.1, the numerical results indicate the best finite sample performance for the number of 

groups q = 8 or q = 16 for many dependence and heterogeneity settings considered in the literature and 

typically encountered in applications for time series, panel, clustered and spatially correlated data. 
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Table C2. ERP of the t-statistic based tests on the MLD measure (GE measure with α = 0): 

Singh-Maddala income distributions with the parameters a = 100, b = 2.8 and с;  

Pareto income distributions with the parameters y0 =1 and ζ ; and  

log-normal income distributions with the parameters µ=2 and  

N 
Singh-Maddala Pareto Log-normal 

c=0.7 c=1.2 c=1.7 ζ =1.5 ζ =2 ζ =2.5  =1  =0.7  =0.5 
q=2 

500 0.0144 0.0018 0.0025 0.0416 0.0145 0.0124 0.0037 0.0027 0.0040 
1000 0.0141 0.0041 0.0031 0.0387 0.0099 0.0091 0.0004 0.0045 0.0044 
2000 0.0114 0.0023 0.0003 0.0283 0.0080 0.0067 0.0004 0.0006 0.0026 
3000 0.0066 0.0004 0.0002 0.0293 0.0075 0.0011 0.0022 0.0031 0.0014 
4000 0.0081 0.0004 0.0022 0.0310 0.0055 0.0018 0.0007 0.0027 0.0034
5000 0.0012 0.0004 0.0006 0.0266 0.0035 0.0035 0.0004 0.0016 0.0006

q=4 
500 0.0684 0.0125 0.0131 0.1754 0.0835 0.0516 0.0114 0.0084 0.0084 
1000 0.0519 0.0091 0.0053 0.1553 0.0637 0.0301 0.0050 0.0015 0.0058 
2000 0.0369 0.0066 0.0018 0.1282 0.0448 0.0232 0.0037 0.0037 0.0004 
3000 0.0344 0.0030 0.0004 0.1201 0.0387 0.0181 0.0014 0.0017 0.0019
4000 0.0312 0.0030 0.0029 0.1093 0.0361 0.0177 0.0045 0.0010 0.0008
5000 0.0316 0.0026 0.0007 0.1115 0.0321 0.0182 0.0012 0.0008 0.0017

 

Table C3. ERP of the t-statistic based test on the Theil measure (GE measure with α = 1): 

Singh-Maddala income distributions with the parameters a = 100, b = 2.8 and с;  

Pareto income distributions with the parameters y0 =1 and ζ; and  

log-normal income distribution with the parameters µ=2 and  

N 
Singh-Maddala Pareto Lognormal 

c=0.7 c=1.2 c=1.7 ζ =1.5 ζ =2 ζ =2.5  =1  =0.7  =0.5 
q=2 

500 0.0502 0.0138 0.0037 0.1211 0.0475 0.0221 0.0033 0.0033 0.0020
1000 0.0387 0.0069 −0.0021 0.1033 0.0362 0.0191 0.0018 0.0055 0.0013
2000 0.0301 0.0053 0.0016 0.0960 0.0298 0.0114 0.0038 0.0010 0.0009
3000 0.0322 0.0060 0.0000 0.0858 0.0293 0.0136 0.0008 0.0022 0.0000
4000 0.0264 0.0041 0.0006 0.0898 0.0231 0.0110 0.0028 −0.0020 0.0001
5000 0.0244 0.0040 −0.0026 0.0827 0.0183 0.0065 0.0016 0.0018 −0.0010

q=4 
500 0.2103 0.0480 0.0186 0.4415 0.1948 0.1160 0.0428 0.0178 0.0119
1000 0.1647 0.0348 0.0138 0.3841 0.1605 0.0945 0.0227 0.0111 0.0043
2000 0.1437 0.0228 0.0030 0.3532 0.1368 0.0669 0.0153 0.0055 −0.0004
3000 0.1288 0.0187 0.0052 0.3325 0.1260 0.0601 0.0044 0.0016 0.0001
4000 0.1201 0.0168 0.0067 0.3149 0.1186 0.0555 0.0077 0.0051 −0.0040
5000 0.1080 0.0127 0.0013 0.3187 0.1055 0.0414 0.0038 0.0035 −0.0003
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C.3. Small sample properties of inequality indices based on self-normalized sums 

This section presents some theoretical results that indicate the connection of the small sample 

conservativeness properties of t-statistics discussed in Appendix C.1 to income inequality measures 

and other economic indicators such as the coefficient of variation. 

Consider a sample of observations (e.g., income levels) X 1 , . . . , X q , q2 .  Let, as in Section 2 

and Appendix C.1, cvq() denote the (1/2)-quantile of Student-t distribution with (q  1) degrees of 

freedom: P(|Tq1|>cvq()) = . 

Representations similar to t-statistic t = ඥݍ തܺ/ݏ௑, and self-normalized sums Sqൌ
∑ ௑ೕ
೜
ೕసభ

ට∑ ௑ೕ
మ೜

ೕసభ

 in 

(C4) and (C6) hold for a number of variables of interest in economics and finance, including, for 

instance, one of the widely used inequality measures, the empirical coefficient of variation ܥ෢ܸ ൌ ௦೉
௑ത
ൌ

ඥݐ/ݍ . 10  These representations, together with the conservativeness results for t-statistics and 

self-normalized sums given by (C5) and (C7) imply similar results for the tail probabilities of the 

empirical coefficient of variation ܥ෢ܸ , and a number of other important indicators in economics and 

finance. The conservativeness results for the empirical inequality measures such as ܥ෢ܸ  and their 

analogues for transformations (such as logarithms) of the observations Xj provide comparisons 

between the tail probabilities and the cdf’s of these measures under heterogeneity and heavy-tailedness 

and those in the standard homogeneous Gaussian case. 

Below, Yj = log(Ij), j=1, …, q, denote the logarithms of observations on income levels 

I 1 , . . . , I q >0. In addition, ෨ܻଵ, … , ෨ܻ௤ denote the i.i.d. standard normal r.v.’s: ෨ܻ j ~ N(0,1). 

 

Proposition 1. If Y1,...,Yq are independent heterogenous normal r.v.’s Yj ~ N(0, ௝ଶ) (so that the 

income levels Ij are log-normal with =0 and heterogeneous parameters ௝ ሻ or are scale mixtures 

of normals (for instance, independent not necessarily identically distributed stable r.v.’s), then 

P(0 < ܥ෢ܸ Y < y )   P(0<ܥ෢ܸ௒෨< y)                               (C9) 

P(|ܥ෢ܸ Y|< y )    P(|ܥ෢ܸ௒෨ |<y)                                (C10) 

for all y<1/(cvq1(0.05)ඥݍ). In general, inequalities (C8), (C9) do not hold for у<1/(cvq1(0.1)	ඥݍ). 

 
                                                           
10 Similar representations also hold for the estimators of Sharpe ratio SR for excess returns Xj, j = 1,...,q. In addition, this is the case for 

the Herfindahl-Hirschman Index of market concentration that has the form HHI = ∑ ௝ܺ
ଶ௤

௝ୀଵ /൫∑ ௝ܺ
௤
௝ୀଵ ൯

ଶ
 and is, thus, the inverse of the 

square of the self-normalized ratio in (C6) for firm sizes Xj, j = 1,..., q. The representations also hold, for instance, for commonly used 
sample split prediction test statistics employed in testing for time series stationarity (see Loretan & Phillips 1994, and references 
therein). 



34 
 

Inequalities (C9)-(C10) imply that homogeneity and thin-tailedness (such as normality) are 

likely to reduce the inequality and disparity, as measured by the coefficient of variation, in the region 

of their small values. However, in general, this does not hold, that may be viewed as an indicator that 

the coefficient of variation is a poor measure of inequality for some parts of the income or wealth 

distribution, including the middle and high income and wealth ranges. 

 

D. Double Pareto distribution and truncated double Pareto distribution 

The pdf of double Pareto distribution (see Toda, 2012) has the form  

݂ሺݕሻ ൌ ൞				

௞భ௞మ
௞భା௞మ

ଵ

ெ
ቀ௬
ெ
ቁ
௞భ	ିଵ

,							ሺ0 ൑ ݕ ൏ ,ሻܯ

௞భ௞మ
௞భା௞మ

ଵ

ெ
ቀ௬
ெ
ቁ
ି௞మିଵ

,													ሺݕ ൒ ,ሻܯ
                      (D1) 

where M > 0 is the location parameter (the mode) and k1,  k2> 0  are the shape parameters. 

The cdf of a r.v. Y with double Pareto density (D1) is 

ሻݕሺܨ ൌ Pሺܻ ൑ ሻݕ ൌ ൞				

௞మ
௞భା௞మ

ቀ௬
ெ
ቁ
௞భ
, ሺ0 ൑ ݕ ൏ ,ሻܯ

1 െ ௞భ
௞భା௞మ

ቀ௬
ெ
ቁ
ି௞మ	

,													ሺݕ ൒ .ሻܯ
																															(D2) 

Thus, the tail probabilities of the double Pareto distribution are given by, for ݕ ൒  ,ܯ

	ܲሺܻ ൐ ሻݕ ൌ
௞భ

௞భା௞మ
ቀ
௬

ெ
ቁ
ି௞మ	

,                         (D3) 

and, consequently, the double Pareto distribution follows power law (1) with the tail index ߞ= k2. 

Furthermore, as is easy to see, the conditional tail probability P(Y>y|Y>M) is Pareto (C8) with ߞ= k2, 

y0=M and the equality in (1) for у  M : P(Y > y |Y  >M) = ቀ௬
ெ
ቁ
ି௞మ

. 

 The expectation of a r.v. Y with double Pareto distribution (D1)-(D2) is finite for k2 >1 (see the 

discussion of general power laws in Section 1.2) and, in that case, is given by the formula 

ߤ ൌ ሾܻሿܧ ൌ ܯ ௞భ௞మ
௞భା௞మ

ቂ׬ ௞భݕ
ଵ
଴ ݕ݀ ൅ ׬ ௞మିݕ

ஶ
ଵ ቃݕ݀ ൌ ௞భ௞మ

ሺ௞భାଵሻሺ௞మିଵሻ
  .ܯ

 The median of Y equals to		݉݁ ൌ ܯ ൬ ට
ଶ௞భ

௞భା௞మ

ೖమ
൰.  

The Gini coefficient of the double Pareto distribution is 

ܩ ൌ ଵ

ఓ
׬ ሻ൫1ݕሺܨ െ ݕሻ൯݀ݕሺܨ
ஶ
଴ ൌ ଶ௞భ

మାଶ௞భ௞మାଶ௞మ
మା௞భି௞మ

ሺ௞భା௞మሻሺଶ௞భାଵሻሺଶ௞మିଵሻ
 . 

 Let us now introduce a truncated analogue of the double Pareto distribution concentrated on the 

interval [0, b], where b≥M is a truncation bound. The cdf of the truncated double Pareto distribution is 
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given by ܨ௕ሺݕሻ ൌ
ிሺ௬ሻ

ிሺ௕ሻ
ൌ ிሺ௬ሻ

ଵି ೖభ
ೖభశೖమ

ቀ್
ಾ
ቁ
షೖమ	

ൌ ௞భା௞మ

௞భା௞మି௞భቀ
್
ಾ
ቁ
షೖమ

,ሾ0ݕ ,ሻݕሺܨ ܾሿ, or 

ሻݕ௕ሺܨ ൌ

ە
ۖ
۔

ۖ
ۓ
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ಾ
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,												ሺܯ ൑ ݕ ൑ ܾሻ	
. 

The corresponding pdf is 

௕݂ሺݕሻ ൌ

ە
ۖ
۔

ۖ
ۓ

				

௞భ௞మ

ெቆ௞భା௞మି௞భቀ
್
ಾ
ቁ
షೖమ

ቇ
ቀ௬
ெ
ቁ
௞భିଵ

, ሺ0 ൑ ݕ ൏ ሻܯ

௞భ௞మ

ெቆ௞భା௞మି௞భቀ
್
ಾ
ቁ
షೖమ

ቇ
ቀ௬
ெ
ቁ
ି௞మିଵ
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.                (D4) 

The mean of the distribution with the bounded support [0, b] is finite for all values of the shape 

parameters k1,  k2> 0  and is given by the formula 

௕ߤ ൌ ׬ ݕ
௕
଴ ௕݂ሺݕሻ݀ݕ ൌ

௞భ௞మெ

ሺ௞భାଵሻሺ௞మିଵሻ
∙
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್
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್
ಾ
ቁ
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್
ಾ
ቁ
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. 

The median of the truncated double Pareto distribution equals ݉݁௕ ൌ ቌܯ ඨ
ଶ௞భ

௞భା௞మା௞భቀ
್
ಾ
ቁ
షೖమ

ೖమ ቍ. 

 Therefore, for given mode Mb, median meb and the mean µb of the truncated double Pareto 

distribution, its parameters k1 and k2 can be calculated using the formulas 
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Consider the Gini coefficient of the distribution ܩ௕ ൌ
ଵ

ఓ್
׬ ሻ൫1ݕ௕ሺܨ െ ݕሻ൯݀ݕ௕ሺܨ
௕
଴ . 

 Denote ܣ ൌ ݇ଵ ൅ ݇ଶ െ ݇ଵ ቀ
௕

ெ
ቁ
ି௞మ

.	Then the following relations hold:  
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Maximum likelihood estimation of the parameters k1 and k2 of the double Pareto distribution 

 Consider a sample Y={y1,…, yn} of observations on household incomes. Suppose that the 

population distribution of the income variable I is double Pareto with the parameters k1 and k2 and the 

pdf ݂ሺݕ|݇ଵ, ݇ଶ	ሻ  in (D1). The likelihood function for the sample Y is ሚ݂ሺݕଵ, … ,௡|݇ଵݕ ݇ଶሻ ൌ

∏ ݂ሺݕ௜|݇ଵ, ݇ଶሻ
௡
௜ୀଵ . The maximum likelihood estimates ෠݇1 and ෠݇2 of the parameters k1 and k2 are thus 

solutions to the problem 

൫ ෠݇ଵ	, ෠݇ଶ	൯ ൌ argmax௞భ,௞మ ሚ݂ሺݔଵ, … ,௡|݇ଵݔ ݇ଶሻ. 

or, equivalently, 

൫ ෠݇ଵ	, ෠݇ଶ	൯ ൌ argmax௞భ,௞మ ∑ ln	ሾ݂ሺݕ௜|݇ଵ, ݇ଶሻሿ.
௡
௜ୀଵ                       (D5) 

Let n1 be the number of observations in the sample such that yi<M, i=1,…, n1. Then problem (D5) is 

reduced to maximization of the following function: 

,ሺ݇ଵܮ ݇ଶሻ ൌ ∑ ln௡భ
௜ୀଵ ൤ ௞భ௞మ

௞భା௞మ

ଵ

ெ
ቀ௬
ெ
ቁ
௞భ	ିଵ

൨ ൅ ∑ ln௡
௜ୀ௡భାଵ ൤ ௞భ௞మ

௞భା௞మ

ଵ

ெ
ቀ௬
ெ
ቁ
ି௞మିଵ

൨. 

The function ܮሺ݇ଵ, ݇ଶሻ can be transformed to  

,ሺ݇ଵܮ ݇ଶሻ ൌ ଵ݇ܣ ൅ ଶ݇ܤ ൅ ݊ ∙ ln ቀ ௞భ௞మ
௞భା௞మ

ቁ െ  ,ܥ

where the constants A, B and C for the sample Y={y1,…, yn} are defined as follows: 

ܣ ൌ ∑ ln	ሺ௡భ
௜ୀଵ ௜ሻݕ െ ݊ଵln	ሺܯሻ,  ܤ ൌ ሺ݊ െ ݊ଵሻln	ሺܯሻ െ ∑ ln	ሺ௡

௜ୀ௡భାଵ ܥ  ,௜ሻݕ ൌ ∑ ln	ሺ௡
௜ୀଵ  .௜ሻݕ

Consequently, problem (D5) is reduced to solving the system of equations  ቐ

డ௅ሺ௞భ,௞మሻ

డ௞భ
ൌ 0;

డ௅ሺ௞భ,௞మሻ

డ௞మ
ൌ 0,

 where 

డ௅ሺ௞భ,௞మሻ

డ௞భ
ൌ ܣ ൅ ௡௞మ

௞భሺ௞భା௞మሻ
 and 

డ௅ሺ௞భ,௞మሻ

డ௞మ
ൌ ܤ ൅ ௡௞భ

௞మሺ௞భା௞మሻ
. The solution to the system of equations 

ቐ
ܣ ൅ ௡௞మ

௞భሺ௞భା௞మሻ
ൌ 0;

ܤ ൅ ௡௞భ
௞మሺ௞భା௞మሻ

ൌ 0,
 that maximizes the likelihood function ሚ݂ሺݕଵ, … ,௡|݇ଵݕ ݇ଶሻ	 is given  by the 

vector ൫ ෠݇ଵ	, ෠݇ଶ	൯ ൌ ቀ ௡

√஺஻ି஺
, ௡

√஺஻ି஻
ቁ. 

 

Maximum likelihood estimation of the coefficients k1 and k2 of the truncated double Pareto distribution 

Consider, as before, a sample Y={y1,…, yn} of observations on household incomes. Suppose 

now that the population distribution of the income variable Y is truncated Pareto with the shape 

parameters k1 and k2, the truncation bound b and the pdf ݂ሺݕ|݇ଵ, ݇ଶ, ܾ	ሻ in (D4).  

It is easy to see that the maximum likelihood estimator ෠ܾ of the truncation parameter b is given 

by the maximal income level in the sample Y: ෠ܾ ൌ maxଵஸ௜ஸ௡  ௜. For y1,…, yn  b, the log-likelihood ofݕ

the sample Y is given by 
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,ሺ݇ଵܮ ݇ଶሻ ൌ ∑ ln௡భ
௜ୀଵ ቎ ௞భ௞మ

ெቆ௞భା௞మି௞భቀ
್
ಾ
ቁ
షೖమ

ቇ
ቀ௬೔
ெ
ቁ
௞భ	ିଵ

቏ ൅ ∑ ln௡
௜ୀ௡భାଵ ቎ ௞భ௞మ

ெቆ௞భା௞మି௞భቀ
್
ಾ
ቁ
షೖమ

ቇ
ቀ௬೔
ெ
ቁ
ି௞మିଵ

቏. 

The log-likelihood function ܮሺ݇ଵ, ݇ଶሻ	can be transformed to 

,ሺ݇ଵܮ ݇ଶሻ ൌ ݊ ∙lnሺ݇ଵ݇ଶሻ െ ݊ ∙ ln ൬݇ଵ ൅ ݇ଶ െ ݇ଵ ቀ
௕

ெ
ቁ
ି௞మ

൰ ൅ ଵ݇ܣ ൅ ଶ݇ܤ െ  ,ܥ

where the constants A, B and C for the sample Y={y1,…, yn} are defined as follows: 

ܣ ൌ ∑ ln௡భ
௜ୀଵ ሺݕ௜ሻ െ ݊ଵln	ሺܯሻ,  ܤ ൌ ሺ݊ െ ݊ଵሻln	ሺܯሻ െ ∑ ln	ሺ௡

௜ୀ௡భାଵ ܥ  ,௜ሻݕ ൌ ∑ ln	ሺ௡
௜ୀଵ  .௜ሻݕ

The partial derivatives of the function  ܮሺ݇ଵ, ݇ଶሻ are given by 
డ௅ሺ௞భ,௞మሻ

డ௞భ
ൌ ܣ ൅ ௡௞మ

௞భቆ௞భା௞మି௞భቀ
್
ಾ
ቁ
షೖమ

ቇ
, 

డ௅ሺ௞భ,௞మሻ

డ௞మ
ൌ ܤ	 ൅

௡௞భቆଵିቀ
್
ಾ
ቁ
షೖమ

ି௞మ
మቀ್
ಾ
ቁ
షೖమషభ

ቇ

௞మቆ௞భା௞మି௞భቀ
್
ಾ
ቁ
షೖమ

ቇ
. Consequently, the maximum of the function ܮሺ݇ଵ, ݇ଶሻ is 

achieved at the solutions of the following system of equations: 

ە
ۖ
۔

ۖ
ۓ

௡௞మ

௞భቆ௞భା௞మି௞భቀ
್
ಾ
ቁ
షೖమ

ቇ
ൌ െܣ;

௡௞భቆଵିቀ
್
ಾ
ቁ
షೖమ

ି௞మ
మቀ್
ಾ
ቁ
షೖమషభ

ቇ

௞మቆ௞భା௞మି௞భቀ
್
ಾ
ቁ
షೖమ

ቇ
ൌ െܤ.

                        (D5) 

System of equations (D5) is equivalent to 

ە
ۖ
۔

ۖ
ۓ ݇ଵ

ଶ ൌ ஻௞మ
మ

஺ቆଵିቀ್
ಾ
ቁ
షೖమ

ି௞మ
మቀ್
ಾ
ቁ
షೖమషభ

ቇ
;

௡௞భቆଵିቀ
್
ಾ
ቁ
షೖమ

ି௞మ
మቀ್
ಾ
ቁ
షೖమషభ

ቇ

௞మቆ௞భା௞మି௞భቀ
್
ಾ
ቁ
షೖమ

ቇ
ൌ െܤ.

. The solution to the latter 

system of equation that maximizes the likelihood function is given by the vector ൫ ෠݇ଵ	, ෠݇ଶ	൯ such that 

෠݇
ଵ ൌ ට஻

஺

௞෠మ	

ඨଵିቀ್
ಾ
ቁ
షೖ෡మ	

ି௞෠మ
మቀ್
ಾ
ቁ
షೖ෡మషభ

,  

and ෠݇ଶ is the solution of the following equation: 

1 െ ൬
ܾ
ܯ
൰
ି௞మ

െ ݇ଶ
ଶ ൬

ܾ
ܯ
൰
ି௞మିଵ

െ
݇ଶ
݊
቎ඨܤܣ ቆ1 െ ൬

ܾ
ܯ
൰
ି௞మ

െ ത݇
ଶ
ଶ ൬

ܾ
ܯ
൰
ି௞మିଵ

ቇ െ ܤ ൅ ܤ ൬
ܾ
ܯ
൰
ି௞మ

቏ ൌ 0. 

 


