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Abstract

I evaluate German export growth and import growth forecasts published by eight profes-
sional forecasters for the years 1971 to 2019. The focus of the evaluation is on the weak
and strong efficiency as well as the unbiasedness of the forecasts. To this end, I use a novel
panel-data set and estimate fixed-effects models taking into account panel-corrected stan-
dard errors. For the full time period, I find that both export and import growth forecasts
are weakly but not strongly efficient. Unbiasedness depends on the forecast horizon being
analyzed, with longer-term four-quarter-ahead forecasts being biased. I, furthermore, check
for a possible change in forecasting behavior after incisive economic events in recent Ger-
man history. I find that the strong efficiency of the forecasts did not change substantially
over time. However, there is a change in forecasting behavior regarding the weak form of
efficiency after the financial crisis 2008/2009.
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1 Introduction

Economic recessions greatly influence international trade flows and trade policy. World trade

is typically more severely affected by economic crises than GDP growth (see, among others,

Freund, 2009; Levchenko et al., 2010; Berman and Martin, 2012; Chor and Manova, 2012, for

documentations of the decline in world trade after the financial crisis in 2008/2009). One reason

is, that often protectionist measures gain in popularity after strong economic recessions (Evenett,

2009; Kee et al., 2013). Durusoy et al. (2015), for instance, find that the number of export and im-

port quotas and tariffs in the EU have substantially increased after 2008. Other authors find that

the strong decline in trade after economic crises is caused by trade frictions (Behrens et al., 2013;

Eaton et al., 2016) or the disruption of international production chains (Bems et al., 2010). As

one of the world’s largest exporters, Germany heavily relies on international trade. It is, there-

fore, crucial for policy and investment decisions that professional forecasters publish reliable,

i.e., efficient and unbiased (Mincer and Zarnowitz, 1969; Holden and Peel, 1990), trade forecasts

for Germany. I, therefore, analyze the efficiency and unbiasedness of German export and import

growth forecasts for the years 1971 to 2019, published by eight professional forecasters.

The evaluation of macroeconomic forecasts for Germany has been the topic of numerous stud-

ies focusing on forecaster rankings (Sinclair et al., 2016), forecast revisions (Kirchgässner and

Müller, 2006), the underlying assumptions of forecasts (Engelke et al., 2019), the economic value

of forecasts (Döpke et al., 2018), forecast accuracy (Heilemann and Stekler, 2013), or forecast

efficiency (Behrens et al., 2018a, 2020). The vast majority of the studies analyze GDP growth

and inflation forecasts. The literature on the evaluation of trade forecasts, in contrast, is scarce,

despite the importance of international trade for the German economy. Behrens (2019, 2020)

analyzes German trade forecasts by means of machine learning techniques and finds evidence

against the efficiency of some German forecasters. Rather than evaluating forecasters indepen-

dently, I pool the data over all eight forecasters and focus on analyzing overall export growth and

import growth forecasts for Germany over time, since 1970.

To this end, I build on earlier literature on the change of forecasting behavior over time. This

1



literature has especially focused on forecasting behavior before and after the financial crisis of

2008/2009. This literature has considered different causes of forecasting-behavior changes, such

as changes in the individuals responsible for the forecasts (Capistrán, 2008), changes in the loss

function (Wang and Lee, 2014), or changes in the expectation-formation process of the forecast-

ers (Frenkel et al., 2011; Pain et al., 2014). By means of a survey of German professional fore-

casters, Döpke et al. (2019b) find that forecasters tend to form more conservative forecasts after

the financial crisis of 2008/2009. In a quantitative approach Döpke et al. (2019a) find only small

differences in the forecasting behavior of German professional forecasters after the financial cri-

sis. Again, the vast majority of the relevant literature analyzes GDP and inflation forecasts. In

order to check for a possible change in forecasting behavior regarding trade forecasts, I evaluate

subsamples after incisive economic events in recent German history, namely the oil price shocks

in the early and late 1970s, German reunification, and the financial crisis of 2008/2009.

Keane and Runkle (1990) argue in an early application of panel-regressions to forecast evaluation

that pooling forecasts results in a more efficient evaluation of forecast rationality. Hence, I build

on research by Döpke and Fritsche (2006) and Döpke et al. (2019a), who analyze German GDP

and inflation forecasts by means of fixed-effects-panel regressions. To this end, I follow Döpke

et al. (2019a) and use Beck and Katz (1995) panel-corrected standard errors (PCSE), which have

better finite sample properties for time-series cross-sectional data than the also common feasible

generalized least squares (FGLS) estimator developed by Parks (1967).

I structure the remainder of the paper as follows: I present the data in Section 2. The empir-

ical analysis in Section 3 consists of a brief description of the estimation technique and tests

for efficiency as well as unbiasedness of the forecasts for the full sample and for subsamples

corresponding to incisive economic events in recent German history. In Section 4 I conclude.

2 Data

I use a modified version of a novel data set, which has recently been analyzed in nonparametric

forecast-evaluation studies by Behrens (2019, 2020). It consists of annual export growth and
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import growth forecasts for the years 1971 to 2019 published by seven German economic re-

search institutes and one collaboration of economic research institutes. Five of the forecasters

are among the largest politically and economically independent German economic research insti-

tutes, namely (in alphabetical order): Deutsches Institut für Wirtschaftsforschung Berlin (DIW),

Hamburgisches Weltwirtschaftsarchiv/-institut (HWWI)1, ifo Institut für Wirtschaftsforschung

Munich (ifo), Institut für Weltwirtschaft Kiel (IfW), and Rheinisch-Westfälisches Institut für

Wirtschaftsforschung Essen (RWI).2 Two of the forecasters receive funding from interest groups,

i.e., Institut für Makroökonomie und Konjunkturforschung Düsseldorf (IMK), which is financed

by labor unions, and Institut der deutschen Wirtschaft Köln (IW), which is financed by em-

ployer’s associations. In addition, the list of forecasters comprises a collaboration of the leading

economic research institutes in Germany, the so called joint forecast or Gemeinschaftsdiagnose

(GD).

The research institutes publish forecasts midyear and at the turn of a year. The former forecasts

have a forecast horizon of two quarters and predict trade aggregates for the respective current

year, whereas the latter have a forecast horizon of four quarters and predict trade aggregates for

the respective upcoming year. The the total number of forecasts as well as the exact publication

dates vary across forecasters, resulting in a possible information advantage of forecasters who

publish their forecasts at later dates. I follow Döpke and Fritsche (2006) and Döpke et al. (2019a)

and account for this issue by means of a fixed-effects-panel regression (see Section 3.1). In order

to compute forecast errors, I use realized values of German export and import growth, as pub-

lished by the German statistical office.3 I use initial release national accounts data to minimize

the effects of data revisions. Furthermore, I adjust the reference time-series for every forecaster,

as the economic research institutes switch from forecasts for West-Germany to forecasts for re-

unified Germany at different points in time between 1992 and 1993. Following Behrens et al.

1HWWI became a privately funded institute in 2006.

2The sixth main German economic research institute (Institut für Wirtschaftsforschung Halle) is omitted, because
it has only been publishing forecasts since German reunification.

3Data taken from ”Wirtschaft und Statistik“ publications: ❤tt♣s✿✴✴✇✇✇✳❞❡st❛t✐s✳❞❡✴❊◆✴P✉❜❧✐❝❛t✐♦♥s✴
❲✐rts❝❤❛❢t❙t❛t✐st✐❦✴❲✐rts❝❤❛❢t❙t❛t✐st✐❦✳❤t♠❧
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Table 1: Descriptive Statistics of Trade Forecast Errors

Institute Forecast N ME RMAE RMSE e < 0 N ME RMAE RMSE e < 0

Two-Quarters-Ahead Four-Quarters-Ahead

DIW

Exports

38 0.218 1.348 2.272 0.45 49 -0.631 1.977 5.027 0.59
HWWI 33 -0.091 1.321 2.369 0.58 44 0.216 1.910 4.721 0.48
ifo 43 0.107 1.314 2.222 0.49 45 -0.349 1.891 4.653 0.58
IfW 42 0.188 1.344 2.437 0.40 47 -0.740 1.818 4.135 0.55
RWI 23 0.598 1.250 2.681 0.48 24 0.021 1.728 3.731 0.50
IMK 12 -0.592 1.228 2.082 0.50 42 -0.369 1.955 4.821 0.55
IW 19 -0.139 1.491 2.970 0.47 36 0.043 1.912 4.981 0.53
GD 48 -0.448 1.708 3.727 0.54 49 -0.017 2.001 5.265 0.53

Pooled 258 0.001 1.410 2.710 0.49 336 -0.257 1.912 4.743 0.54

Two-Quarters-Ahead Four-Quarters-Ahead

DIW

Imports

38 0.650 1.410 2.824 0.42 49 -0.094 1.737 3.863 0.53
HWWI 33 0.236 1.421 2.696 0.39 43 0.509 1.765 3.946 0.42
ifo 43 0.021 1.264 2.214 0.42 45 0.036 1.632 3.384 0.49
IfW 42 0.521 1.358 2.319 0.38 47 0.294 1.663 3.399 0.49
RWI 23 0.867 1.447 3.400 0.39 24 0.592 1.676 3.955 0.50
IMK 12 -0.108 1.255 2.179 0.50 42 0.005 1.692 3.623 0.50
IW 19 0.274 1.467 2.711 0.42 28 -0.159 1.713 3.360 0.50
GD 49 0.076 1.527 3.101 0.47 47 0.242 1.788 4.186 0.49

Pooled 259 0.320 1.404 2.718 0.42 325 0.166 1.711 3.782 0.49

Notes: N: Number of observations. Mean error: ME = 1
T ∑

T
t=1 et . Root mean absolute error: RMAE =

√

1
T ∑

T
t=1 |et | . Root mean squared error:

RMSE =
√

1
T ∑

T
t=1 et

2. e < 0: Share of negative forecast errors.

(2018b), I compute forecast errors by subtracting the realized values for German export or import

growth from the forecasted value of a given year, such that:

ei,t(h) = ŷi,t(h)− yt . (1)

Here, ei,t(h) denotes the forecast error made by economic research institute i for the year t =

1971− 2019 at a forecast horizon of h = 2,4 quarters and ŷi,t(h) denotes the export growth or

import growth forecast published by institute i in year t, which also depends on the forecast

horizon, h. Finally, yt denotes the realized value of German export or import growth for year t

for which the forecast was formed.

Table 1 reports descriptive statistics of the analyzed forecast errors. There are more observations

available for the longer-term forecasts than for the shorter two-quarter-ahead forecasts. IMK con-

tributes the fewest observations, namely 12, for both trade aggregates at the two quarter forecast
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horizon, whereas most observations are available for DIW, namely 49 for the longer-term fore-

cast horizon for both trade aggregates. The pooled datasets contain 258 (259) observations for the

two-quarters-ahead export (import) growth forecasts and 336 (325) for the four-quarters-ahead

export (import) growth forecasts. As is to be expected, the root mean absolute error (RMAE)

and the root mean squared error (RMSE) statistics are higher for the longer-term forecast hori-

zon. Furthermore, all error statistics are generally higher than the values observed in the more

common studies of GDP and inflation forecasts (see, among others, Döpke et al., 2017; Behrens

et al., 2018a). This is due to the fact that trade aggregates are among the most volatile com-

ponents of German national accounts statistics and are, therefore, harder to predict (Döhrn and

Schmidt, 2011). The share of negative forecast errors should equal 0.5 if the forecasters, on av-

erage, do not overestimate or underestimate. For the four-quarter-ahead export growth forecasts

and the two-quarters-ahead import growth forecasts, the value deviates the most (i.e., by 0.06

and 0.08 percentage points) from the 0.50 value, hinting at a possible bias. This can also be

observed in Figure 1, which depicts boxplots of the data. The boxplots depict the distribution of

export and import growth forecast errors at both forecast horizons. For the two-quarters-ahead-

forecasts, denoted by EXq2 and IMq2, the forecast errors are more closely distributed around the

mean, resulting in more narrow boxplots. A longer forecast horizon causes a larger deviation

from the mean and hence broader boxplots. Furthermore, the boxplot for the four-quarters-ahead

export growth forecasts, EXq4, is shifted for a larger part below zero, again hinting at a possible

underestimation bias.

In order to model the information set of the economic research institutes at forecast formation, I

use typical trade variables as well as other macroeconomic variables commonly used to predict

economic growth. All variables enter the list of predictors in normalized form. In doing so,

I build on research by D’Agostino et al. (2017), who show that incorporating both types of

macroeconomic aggregates improve trade forecasts for the euro area. In order to minimize the

effects of data revisions, I use a backward-looking moving average of order 12 (see also, Behrens

et al., 2020). Based on a study by Drechsel and Scheufele (2012), I, furthermore, take publication

lags of the variables into account. In general, I assume that when a forecast is published, for
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Figure 1: Boxplots of Pooled Trade Forecast Errors
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instance, in January, it is based on information available in December (Behrens et al., 2018b).

The list of predictors to proxy the forecasters’ information set includes:

• Industrial Orders: The year-on-year rate of change of the industrial orders received for

Germany indicates demand fluctuations (see, among others, Döpke et al., 2017, on using

industrial orders, inter alia, to predict German recessions).

• Unemployment rate: The monthly German unemployment rate in percent of civilian labor

is included following Behrens (2020) who finds evidence, using nonparamteric techniques,

that the unemployment rate might not be efficiently incorporated in German trade forecasts

(see also, D’Agostino et al., 2017, on improving trade forecasts by means of macroeco-

nomic variables such as the unemployment rate).

• Business climate: The monthly ifo tendency survey for German manufacturing enters the

list of predictors. Studies by Frale et al. (2010) and Lehmann (2015) suggest that survey

data is essential for the forecasting of exports in Europe.

• Production Germany: Year-on-year rate of change of the monthly German total manufac-

turing output. I follow Behrens et al. (2018a,b) who evaluate the efficiency of German

GDP growth and inflation forecasts by means of machine learning techniques.

• Production G7: The year-on-year rate of change of the monthly total manufacturing output

of the G7 is added as a leading indicator of the economic development of Germany’s main

trading partners, which is a crucial information for forecasters as Campos et al. (2019)

show that international business cycles are oftentimes synchronized (see also, Guichard

and Rusticelli, 2011, on improving trade forecasts by means of industrial production in-

dices).

• Oil price: Year-on-year rate of change of the monthly crude oil price (WTI) in dollars per

barrel. I follow Döpke et al. (2019a) in using the oil price as a proxy for input prices.
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• Leading Indicator: The monthly OECD composite leading indicator for Germany enters

the set of predictors. Heinisch and Scheufele (2018) use the OECD leading indicator for

Germany, inter alia, to forecast the German GDP.

• Real effective exchange rate (REER): Year-on-year rate of change of the monthly narrow

effective exchange rate for Germany (CPI-based). The REER serves as a measure of the

international price competitiveness of Germany (Grimme et al., 2018; Lehmann, 2015).

• Trade Policy Uncertainty Index (TPU): Monthly measure of media4 attention to news re-

lated to trade policy uncertainty. The TPU, developed by Caldara et al. (2019), is included

as a measure of uncertainty regarding international trade.

3 Empirical Analysis

3.1 Forecast Efficiency and Unbiasedness Tests

In order to test for weak and strong efficiency as well as unbiasedness of German export and

import growth forecasts, I follow Döpke et al. (2019a), who build on research by Keane and

Runkle (1990) as well as Döpke and Fritsche (2006), and implement the Holden and Peel (1990)

approach to testing forecast efficiency and unbiasedness by means of a fixed-effects panel-

regression. Holden and Peel (1990) define a strong and weak form of efficiency, where the

former holds if the forecast error cannot be explained by information available to a forecaster at

the time of forecast formation. The latter form of efficiency holds if a forecast error cannot be

explained by its preceding forecast error (see also, Öller and Barot, 2000; Timmermann, 2007;

Behrens et al., 2020). I implement tests for weak and strong efficiency as well as unbiasedness

of the export and import growth forecasts by means of the following regression model:

ei,t(h) = β0 +β1ei,t(h)−1 +β jX j,i,t(h)−h +αi +λt(h)+ui,t(h). (2)

4For the construction of the trade policy uncertainty index, electronic archives of 7 leading U.S. newspapers
discussing trade policy uncertainty, namely Boston Globe, Chicago Tribune, Guardian, Los Angeles Times, New
York Times, Wall Street Journal, and Washington Post, are analyzed by means of automated text-search (for details
on the construction of the index, see Caldara et al., 2019).
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Here, ei,t(h) again denotes the forecast error made by economic research institute i for the year

t = 1971−2019 with forecast horizon h = 2,4 quarters. X j,i,t(h)−h is the vector of j predictors,

available to institute i in period t(h)− h, when the forecast was formed, which depends on the

forecast horizon. λt(h) and αi are time and entity fixed effects. ei,t(h)−1 is the error of the forecast

of the previous year and ui,t(h) is the statistical error term.5

As in Holden and Peel (1990), a forecast is considered as unbiased if the coefficient of the

intercept is not statistically significantly different from zero, i.e., if the null hypothesis, H0 :

β0 = 0, cannot be rejected. Strong efficiency of forecasts holds if the predictors do not have

statistically significant explanatory power for the forecast error, i.e., if the null hypotheses H0 :

β2 = 0,β3 = 0, ...,β j = 0 cannot be rejected. Analogously, a forecast is weakly efficient if the

null hypothesis H0 : β1 = 0 cannot be rejected, i.e., if the lagged forecast error is uncorrelated to

the forecast error.

I use both time and entity fixed effects in the regression model. In doing so, I control for effects

that equally affect all entities (i.e., economic research institutes) but change over time, such as oil

price shocks in the 1970s, as well as effects that are stable over time but change across entities,

such different forecast models or economic theories of the institutes. The former time fixed

effects, λt(h), can be interpreted as the element of surprise of a given year, which should have

strong influence on the forecast error when a crisis hits the economy for the first time. The latter

entity fixed effects, αi, in contrast, control for slightly differing forecast horizons due to different

publication dates of the economic research institutes (see also Döpke and Fritsche, 2006; Döpke

et al., 2019a).

Keane and Runkle (1990) argue that, when one analyzes the efficiency of forecasts by means of

a panel-regression model, the model needs to account for heteroskedasticity. A common way to

address this issue is to use the feasible generalized least squares estimator (Parks, 1967; Kmenta,

1986), which is sometimes referred to as the Parks estimator. However, Beck and Katz (1995)

5I roughly follow the notation used by Stock and Watson (2007).
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introduced the so called panel-corrected standard-errors estimator and showed that it performs

significantly better than the Parks estimator for finite samples. The PCSE estimator takes into ac-

count non-spherical errors, i.e., it is robust to unit heteroskedasticity as well as contemporaneous

correlation across units. The latter characteristic is especially crucial for this study, as it is reason-

able to assume that forecast errors are correlated across economic research institutes. The PCSE

estimator is similar to other heteroskedasticity consistent estimators, such as the ones brought

forward by Huber (1967), White (1980) or MacKinnon and White (1985), yet it is specifically

designed for time-series-cross-section (TSCS) data, having more observations along the time-

series dimension than the cross-section dimension (i.e., T > N). I, therefore, follow Döpke et al.

(2019a) and implement the PCSE estimator by Beck and Katz (1995) in my empirical analy-

sis. Due to the T > N-nature of the data, it is not necessary to control for a possible Nickell-bias

(Nickell, 1981; Arellano and Bond, 1991), even though the lagged dependent variable is included

in the estimation equation (Eq. 2), as was shown by Gaibulloev et al. (2014).

I use the R programming environment for statistical computing (R Core Team, 2020) to esti-

mate the fixed effects model, and I use the add-on package “pcse” (Bailey and Katz, 2011) to

compute Beck and Katz (1995) panel-corrected standard errors. Tables 2 and 3 present results

of efficiency tests for the full sample of export and import growth forecasts, respectively. Re-

garding two-quarter-ahead export growth forecasts (Table 2, top panel), I find evidence against

the strong form of efficiency. The predictors business climate, OECD leading indicator, and real

effective exchange rate have statistically significant explanatory power for the forecast error. The

forecasts are unbiased as, for all but one specification, the coefficients of the intercept terms are

insignificant. Furthermore, the coefficient of the lagged forecast error is not significant in any

specification, indicating that the two-quarters-ahead export growth forecasts are weakly efficient.

Tables 2 and 3 also show adjusted R2-statistics for the analyzed regression models (Eq. 2) with

time and entity fixed effects as well as for regression models using only entity fixed effects.6

For two-quarter-ahead export growth forecasts, the adjusted R2-statistics of the standard specifi-

6Detailed results of the regression models using only entity fixed effects are not reported but are available from
the author upon request.
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Table 2: Efficiency Tests of Export Growth Forecasts for Germany - Full Sample

Dependent Variable: Export Growth Forecast Error (Two-Quarters-Ahead)

Intercept
2.255 2.011 1.617 1.054 1.388 1.356 1.752 3.962** 1.422 1.394

(1.512) (7.605) (1.371) (1.495) (1.419) (1.424) (1.255) (1.668) (1.431) (1.417)

Industr. Orders
0.955

(0.665)

Unemp. Rate
0.328

(3.979)

Busin. Climate
0.571**
(0.243)

Production GER
0.093

(0.156)

Production G7
0.684

(0.781)

Oil Price
-0.228
(0.446)

Leading Indic.
2.125***
(0.760)

REER
-1.731**
(0.686)

TPU
0.043

(0.276)

et−1
-0.049 -0.057 -0.050 -0.056 -0.051 -0.059 -0.057 -0.024 -0.055 -0.059
(0.065) (0.065) (0.065) (0.065) (0.066) (0.066) (0.063) (0.064) (0.066) (0.066)

Observations 258 258 258 258 258 258 258 258 258 258
Adjusted R2 0.784 0.780 0.786 0.781 0.781 0.780 0.792 0.789 0.780 0.781

Adjusted R2 0.001 -0.017 -0.014 0.015 0.037 -0.005 -0.017 0.049 0.005 -0.013
(w/o time FE)

Dependent Variable: Export Growth Forecast Error (Four-Quarters-Ahead)

Intercept
-4.157 9.514** -0.950** -2.365*** -1.489*** -0.774** -0.910** -0.627 -0.930**
(0.438) (4.433) (0.439) (0.811) (0.491) (0.429) (0.449) (1.026) (0.450)

Industr. Orders
2.116***
(0.480)

Unemp. Rate
5.566

(2.347)

Busin. Climate
0.800***
(0.191)

Production GER
1.142**
(0.553)

Production G7
1.206**
(0.525)

Oil Price
0.725***
(0.193)

Leading Indic.
1.898***
(0.287)

REER
-0.145
(0.409)

TPU
0.058

(0.270)

et−1
0.000 0.006 -0.003 -0.013 -0.009 0.009 0.022 -0.005 -0.006 -0.006

(0.041) (0.041) (0.041) (0.041) (0.041) (0.040) (0.039) (0.042) (0.042) (0.042)

Observations 336 336 336 336 336 336 336 336 336 336
Adjusted R2 0.944 0.941 0.944 0.941 0.941 0.944 0.948 0.940 0.940 0.940

Adjusted R2 0.003 0.001 0.115 0.021 0.000 0.014 0.035 0.002 0.007 0.003
(w/o time FE)

Notes: Results are computed by means of an entity and time fixed effects regression with panel-corrected standard errors (PCSE, Beck and Katz,
1995). PCSE in parentheses. Entity and time fixed effects are excluded to save journal space. W/o time FE: Model specification using only entity
fixed effects. ***, **, * denote statistical significance at the 1, 5, 10 %-level.
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cation vary around approximately 0.78, whereas the adjusted R2-statistics of the model without

time fixed effects range between -0.017 and 0.046. This indicates that a large part of the ex-

planatory power of the forecast error is linked to time fixed effects, i.e. the year for which a

forecast was formed. The time fixed effects can be interpreted as the element of surprise of a

given year. The results show the importance of using a time and entity fixed regression model,

when analyzing trade forecast errors.

The same holds for the four-quarters-ahead export growth forecasts, for which the adjusted R2-

statistics of the standard specification vary around approximately 0.94, whereas the adjusted R2-

statistics of the model without time fixed effects range between 0 and 0.115. Furthermore, these

forecasts are weakly efficient since the lagged forecast errors do not have significant explanatory

power for the forecast error. However, for the four-quarters-ahead forecast horizon, the forecasts

are biased, as was already indicated by the boxplot shown in Figure 1. The coefficients of the

intercepts are statistically significant for all specifications except for the regressions using the

real effective exchange rate and industrial orders. There is also evidence against the strong form

of forecast efficiency, as the coefficients of several predictors have significant explanatory power

for the forecast error, namely the coefficients of the predictors industrial orders, business climate,

German and G7 production, oil price, and OECD leading indicator.

Next, I turn to two- and four-quarters-ahead import growth forecasts for Germany, which are

reported in the top and bottom panel of Table 3. The forecasts with a shorter forecast horizon

are unbiased and weakly efficient, as neither the coefficients of the intercepts nor of the lagged

forecast errors are statistically significant. Yet, I reject the strong form of efficiency, as the

shorter-term import growth forecast error is linked to industrial orders, business climate, G7

production, the OECD leading indicator, and the real effective exchange rate. When comparing

the adjusted R2-statistics of the standard specification and the adjusted R2-statistics of the model

without time fixed effects, I again find that forecast errors are explained to a large part by time

fixed effects, as the former R2-statistics vary around 0.79, whereas the latter range between -0.02

and 0.046.
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Table 3: Efficiency Tests of Import Growth Forecasts for Germany - Full Sample

Dependent Variable: Import Growth Forecast Error (Two-Quarters-Ahead)

Intercept
1.173 -2.284 0.171 -0.551 0.007 0.003 0.465 1.873 0.071 0.012

(1.300) (6.901) (1.213) (1.303) (1.225) (1.255) (1.090) (1.529) (1.266) (1.248)

Industr. Orders
1.265**
(0.586)

Unemp. Rate
-1.221
(3.601)

Busin. Climate
0.376*
(0.226)

Production GER
0.794

(0.643)

Production G7
1.153*
(0.689)

Oil Price
-0.247
(0.409)

Leading Indic.
2.006***
(0.698)

REER
-1.219*
(0.625)

TPU
0.086

(0.251)

et−1
-0.006 -0.014 -0.010 -0.016 -0.009 -0.015 0.022 0.004 -0.012 -0.013
(0.070) (0.071) (0.070) (0.070) (0.070) (0.071) (0.071) (0.070) (0.071) (0.071)

Observations 259 259 259 259 259 259 259 259 259 259
Adjusted R2 0.800 0.790 0.793 0.792 0.794 0.790 0.801 0.795 0.790 0.791

Adjusted R2 -0.018 -0.020 0.046 0.001 0.005 0.025 0.001 0.031 -0.014 -0.016
(w/o time FE)

Dependent Variable: Import Growth Forecast Error (Four-Quarters-Ahead)

Intercept
-1.570*** -4.300 -2.077*** -3.219*** -2.439*** -1.990*** -2.032*** -0.717 -2.117*** -2.083***

(0.462) (4.113) (0.462) (0.738) (0.494) (0.463) (0.467) (0.981) (0.476) (0.458)

Industr. Orders
1.768***
(0.449)

Unemp. Rate
-1.175
(2.173)

Busin. Climate
-0.152
(0.195)

Production GER
0.942*
(0.483)

Production G7
0.853*
(0.485)

Oil Price
0.326

(0.199)

Leading Indic.
1.521***
(0.312)

REER
-0.076
(0.264)

TPU
-0.118
(0.215)

et−1
-0.034 -0.051 -0.048 -0.045 -0.045 -0.044 -0.039 -0.041 -0.049 -0.049
(0.046) (0.046) (0.046) (0.046) (0.046) (0.046) (0.044) (0.046) (0.046) (0.046)

Observations 325 325 325 325 325 325 325 325 325 325
Adjusted R2 0.915 0.911 0.911 0.912 0.912 0.912 0.917 0.912 0.911 0.912

Adjusted R2 0.024 -0.006 0.159 0.059 0.004 0.030 0.034 -0.011 -0.011 -0.008
(w/o time FE)

Notes: Results are computed by means of an entity and time fixed effects regression with panel-corrected standard errors (PCSE, Beck and Katz,
1995). PCSE in parentheses. Entity and time fixed effects are excluded to save journal space. W/o time FE: Model specification using only entity
fixed effects. ***, **, * denote statistical significance at the 1, 5, 10 %-level.
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The four-quarters-ahead import growth forecast errors, reported in the bottom panel of Table

3, are biased just as their export growth counterparts. There is strong statistical significance of

the coefficients of the intercept terms in all but two specifications. I reject the strong form of

efficiency due to statistically significant dependency of the forecast error on industrial orders,

German and G7 production, as well as the OECD leading indicator. The weak form of efficiency

cannot be rejected, because the lagged forecast errors do not have explanatory power for the

forecast error. The forecast error is, however, explained to a large part by time fixed effects as is

indicated by the large difference of the adjusted R2-statistics of the regression models with and

without time fixed effects.

3.2 Crises Subsamples

In the spirit of the literature on the change of forecasting behavior after economic recessions

and especially the financial crisis of 2008 (Frenkel et al., 2011; Döpke et al., 2019a,b), on the

one hand, and the literature on the severe effects of economic recessions on international trade

and protectionist measures (Levchenko et al., 2010; Chor and Manova, 2012; Kee et al., 2013;

Eaton et al., 2016), on the other hand, I define several subsamples of the dataset. In doing so, I

capture possible changes in forecasting behavior in different periods of recent German history.

In contrast to the time fixed effects in the estimation equation (Eq. 2), which capture the effects

of a single year on the forecast errors, the sample split captures broader time trends.
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I split the data based on Figure 2, which plots German export growth and import growth forecast

errors over time. Forecast errors produced by longer-term forecasts are depicted in dark grey,

whereas those errors produced by two-quarter-ahead forecasts are depicted in light grey. The first

subsample comprises forecast errors for the years 1971 to 1981. It is the smallest of the analyzed

subsamples, and it is characterized by relatively high and scattered forecast errors. Due to the two

oil price shocks in that period, I will refer to it as the “oil crises” subsample. The next subsample

spans from 1982 until 1992, and it is characterized by less widespread forecast errors than the

time period before. This subsample will be referred to as “West Germany”. The subsample after

all forecasters switched from forecasts for West Germany to forecasts for reunified Germany until

the financial crisis, i.e., 1994 to 2008, will be referred to as “reunified Germany”. Finally, the last

subsample, referred to as the “post financial crisis” subsample, contains forecast errors for the

years 2010 to 2019 and is the shortest subsample. The forecast errors for the years 1993 and 2009

are omitted as all forecasters produce very large forecast errors of up to 15 percentage points,

due to high uncertainty after German reunification and the financial crisis of 2008 (see also,

Döpke et al., 2019a, for a similar approach regarding forecast errors after the financial crisis).

All subsamples continue to be of the T > N-type, such that Equation (2) can still be estimated

by means of PCSE by Beck and Katz (1995). Tables 4 and 5 report results of efficiency and

unbiasedness tests for all subsamples for four-quarter-ahead export and import growth forecasts,

respectively.

Beginning with the export growth forecasts, it can be assessed that the results of the subsamples

do not differ severely from the ones computed by means of the full sample. For the “oil crises”

subsample, the results are very similar to the full sample, as forecasts are biased but weakly

efficient and there is evidence against the strong form of efficiency. Regarding the forecast errors

for the years 1982 to 1992, there continues to be evidence against the unbiasedness of export

growth forecasts. I reject the strong form of efficiency and, different from previous samples, I

find some evidence against the weak form of efficiency. This finding also holds for the subsample

“reunified Germany”, for which some of the coefficients of the lagged forecast error are also

statistically significant. Furthermore, there is less evidence against the unbiasedness of forecasts

16



Table 4: Efficiency Tests of Four-Quarters-Ahead Export Growth Forecasts for Germany - Sub-
samples

Subsample: Oil Crises (1971 - 1981)

Intercept
-0.791* 5.823 -0.943** -0.989 -0.980* -1.038** -0.965** -1.682* -1.151** -0.966**
(0.403) (7.574) (0.350) (1.154) (0.485) (0.461) (0.383) (0.987) (0.454) (0.374)

Industr. Orders
0.675

(0.960)

Unemp. Rate
3.617

(4.036)

Busin. Climate
0.674**
(0.316)

Production GER
0.019

(0.860)

Production G7
0.032

(0.629)

Oil Price
-0.330
(1.217)

Leading Indic.
0.949**
(0.379)

REER
0.314

(0.404)

TPU
-0.395
(0.498)

et−1
0.007 0.012 -0.014 0.008 0.008 0.009 0.010 0.007 0.005 0.008

(0.035) (0.034) (0.036) (0.035) (0.035) (0.035) (0.034) (0.035) (0.036) (0.035)

Observations 56 56 56 56 56 56 56 56 56 56
Adjusted R2 0.985 0.985 0.986 0.985 0.985 0.985 0.987 0.985 0.985 0.985

Adjusted R2 -0.047 0.056 0.159 -0.071 -0.071 0.260 -0.052 -0.070 -0.071 -0.049
(w/o time FE)

Subsample: West Germany (1982 - 1992)

Intercept
5.898*** 6.523*** 4.015** 7.547*** 5.342** 4.121** 8.119*** 4.516 4.008** 3.969**
(1.810) (2.340) (1.669) (2.009) (2.047) (1.637) (2.412) (3.628) (1.650) (1.647)

Industr. Orders
0.502**
(1.063)

Unemp. Rate
5.763

(3.533)

Busin. Climate
0.051

(0.304)

Production GER
3.381***
(1.175)

Production G7
1.417

(1.274)

Oil Price
0.325

(0.517)

Leading Indic.
3.882**
(1.604)

REER
0.182

(0.979)

TPU
0.246

(0.669)

et−1
0.280* 0.253 0.231 0.272* 0.277* 0.239 0.191 0.231 0.234 0.233
(0.157) (0.160) (0.164) (0.152) (0.165) (0.162) (0.156) (0.161) (0.163) (0.163)

Observations 79 79 79 79 79 79 79 79 79 79
Adjusted R2 0.923 0.921 0.918 0.925 0.920 0.919 0.924 0.918 0.918 0.920

Adjusted R2 -0.001 0.050 0.342 -0.106 0.079 -0.010 0.169 0.260 -0.111 -0.095
(w/o time FE)

Continued on next page.
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Continued from previous page.

Subsample: Reunified Germany (1994 - 2008)

Intercept
0.197 -3.301 -2.537** 0.814 -1.452 -2.735*** 0.071 -1.062 -2.613** -2.644***

(1.535) (2.406) (0.931) (1.253) (1.084) (1.010) (1.220) (1.423) (1.055) (0.957)

Industr. Orders
1.827**
(0.761)

Unemp. Rate
1.103

(3.846)

Busin. Climate
0.608

(0.400)

Production GER
1.523

(1.089)

Production G7
1.647

(1.095)

Oil Price
-0.154
(0.422)

Leading Indic.
2.195***
(0.708)

REER
-1.201*
(0.716)

TPU
-0.029
(0.589)

et−1
-0.129 -0.156* -0.137 -0.155* -0.144* -0.166* -0.108 -0.133 -0.162* -0.162*
(0.085) (0.087) (0.086) (0.086) (0.086) (0.087) (0.085) (0.084) (0.088) (0.087)

Observations 111 111 111 111 111 111 111 111 111 111
Adjusted R2 0.882 0.876 0.880 0.879 0.879 0.877 0.885 0.880 0.876 0.878

Adjusted R2 0.171 0.306 0.112 0.125 0.103 0.231 0.162 0.103 0.107 0.111
(w/o time FE)

Subsample: Post Financial Crisis (2010 - 2019)

Intercept
-1.235 -3.930 -5.121*** -0.728 0.104 -5.191*** -4.837*** -4.934*** -4.912*** -4.933***
(2.515) (4.294) (1.008) (2.120) (2.706) (1.312) (1.012) (1.093) (1.065) (1.080)

Industr. Orders
0.816

(0.560)

Unemp. Rate
-2.231
(8.455)

Busin. Climate
0.258

(0.466)

Production GER
0.840**
(0.338)

Production G7
1.005**
(0.495)

Oil Price
-0.120
(0.242)

Leading Indic.
0.451

(0.418)

REER
-0.803
(0.895)

TPU
0.128

(0.176)

et−1
-0.226** -0.232** -0.202* -0.265*** -0.252*** -0.202* -0.182* -0.235* -0.219** -0.221**
(0.090) (0.113) (0.105) (0.096) (0.094) (0.107) (0.105) (0.096) (0.090) (0.091)

Observations 76 76 76 76 76 76 76 76 76 76
Adjusted R2 0.933 0.931 0.931 0.935 0.934 0.931 0.932 0.932 0.932 0.932

Adjusted R2 0.328 0.656 0.311 0.349 0.508 0.339 0.300 0.362 0.358 0.311
(w/o time FE)

Notes: Results are computed by means of an entity and time fixed effects regression with panel-corrected standard errors (PCSE, Beck and Katz,
1995). Dependent variable: Export growth forecast error (four-quarters-ahead). PCSE in parentheses. Entity and time fixed effects are excluded
to save journal space. W/o time FE: Model specification using only entity fixed effects. ***, **, * denote statistical significance at the 1, 5, 10
%-level.
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in this and the subsequent subsample. Yet, I still reject the strong form of efficiency. After

the financial crisis of 2008 I find only little evidence against the strong form of efficiency (see

the predictor industrial orders), however, I strongly reject the weak form of forecast efficiency

for this subsample in contrast to previous subsamples. Due to a large difference between the

adjusted R2-statistics of the standard specifications and the adjusted R2-statistics of the models

without time fixed effects, the results of the subsample analysis also suggest a strong influence

of time fixed effects on the export growth forecast error. It is striking that in the subsample

“post financial crisis” the R2-statistics of the model without time fixed effects are comparatively

high. This indicates that the element of surprise of a given year is less important in explaining

the forecast error than in previous samples, possibly because the forecast errors are the least

scattered in this subsample (see Figure 2).

Regarding the subsamples of the four-quarter-ahead import growth forecasts, reported in Table

5, a similar picture emerges for the adjusted R2-statistics. However, in contrast to their export

growth counterparts, I neither find a change in weak nor in strong efficiency of these forecasts

over time. Regarding unbiasedness, I find less evidence against the unbiasedness of forecasts of

the “reunified Germany” subsample. After the financial crisis of 2008 forecasters again form

biased forecasts. An explanation might be that the financial crisis led to more conservative

forecasts and a tendency of underestimation among the economic research institutes (see Döpke

et al., 2019b, for evidence of more cautious behavior of German professional forecasters after

the financial crisis). In all subsamples German four-quarter-ahead import growth forecasts are

weakly efficient, and I find evidence against the strong form of efficiency. The subsamples

differ with respect to the predictors which have statistically significant explanatory power of

the forecast error. In most cases the coefficients of the predictors industrial orders and leading

indicator are significant. The only predictor which is insignificant in all subsamples is the trade

policy uncertainty index.

Overall forecasting behavior does not change substantially over the subsamples. Yet, after the

financial crisis 2008/2009, I find stronger evidence, compared to antecedent subsamples, against

weak efficiency of export growth forecasts and against unbiasedness of import growth forecasts,
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Table 5: Efficiency Tests of Four-Quarters-Ahead Import Growth Forecasts for Germany - Sub-
samples

Subsample: Oil Crises (1971 - 1981)

Intercept
-1.651*** 0.993 -2.316*** -2.612 -2.371*** -2.457*** -2.298*** -1.450 -2.478*** -2.243***

(0.570) (12.251) (0.601) (1.757) (0.791) (0.676) (0.547) (1.425) (0.709) (0.600)

Industr. Orders
2.495*
(1.361)

Unemp. Rate
1.709

(6.467)

Busin. Climate
0.628

(0.669)

Production GER
0.285

(1.320)

Production G7
0.233

(1.013)

Oil Price
-1.139
(1.526)

Leading Indic.
2.181***
(0.382)

REER
-0.328
(0.605)

TPU
-0.481
(0.672)

et−1
-0.128 -0.108 -0.140 -0.119 -0.120 -0.106 -0.127 -0.104 -0.117 -0.115
(0.099) (0.101) (0.106) (0.097) (0.099) (0.097) (0.088) (0.092) (0.100) (0.098)

Observations 55 55 55 55 55 55 55 55 55 55
Adjusted R2 0.900 0.893 0.895 0.893 0.893 0.894 0.917 0.894 0.894 0.896

Adjusted R2 0.048 0.070 0.302 0.097 0.095 0.358 0.037 0.008 0.056 0.028
(w/o time FE)

Subsample: West Germany (1982 - 1992)

Intercept
3.260*** 1.383 1.756*** 4.917*** 2.737*** 1.681*** 1.260 1.370 1.745*** 1.750***
(0.549) (1.200) (0.397) (0.763) (0.708) (0.353) (1.692) (2.201) (0.333) (0.331)

Industr. Orders
2.541***
(0.767)

Unemp. Rate
-0.896
(1.822)

Busin. Climate
0.007

(0.250)

Production GER
3.343***
(0.758)

Production G7
1.400

(0.898)

Oil Price
-0.200
(0.308)

Leading Indic.
1.260

(1.419)

REER
-0.121
(0.737)

TPU
-0.059
(0.550)

et−1
-0.047 -0.054 -0.054 -0.054 -0.031 -0.058 -0.049 -0.054 -0.053 -0.054
(0.099) (0.108) (0.108) (0.097) (0.109) (0.106) (0.107) (0.108) (0.109) (0.108)

Observations 79 79 79 79 79 79 79 79 79 79
Adjusted R2 0.924 0.912 0.912 0.928 0.916 0.913 0.912 0.912 0.912 0.914

Adjusted R2 0.017 0.067 0.371 -0.083 -0.004 0.251 0.201 0.102 -0.085 -0.076
(w/o time FE)

Continued on next page.
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Continued from previous page.

Subsample: Reunified Germany (1994 - 2008)

Intercept
-0.288 -1.564 -3.505*** -0.676 -1.920 -3.401*** -1.179 -1.726 -3.359*** -3.496***
(1.715) (2.573) (1.069) (2.768) (1.319) (1.099) (1.431) (1.527) (1.244) (1.063)

Industr. Orders
2.075**
(0.864)

Unemp. Rate
-3.325
(4.236)

Busin. Climate
-0.101
(0.431)

Production GER
1.896*
(1.134)

Production G7
2.281**
(1.133)

Oil Price
0.194

(0.484)

Leading Indic.
1.842**
(0.799)

REER
-1.355*
(0.800)

TPU
-0.109
(0.554)

et−1
-0.060 -0.101 -0.095 -0.074 -0.065 -0.086 -0.060 -0.065 -0.093 -0.092
(0.075) (0.081) (0.082) (0.078) (0.078) (0.081) (0.076) (0.076) (0.081) (0.080)

Observations 109 109 109 109 109 109 109 109 109 109
Adjusted R2 0.885 0.879 0.878 0.882 0.883 0.879 0.885 0.882 0.878 0.880

Adjusted R2 0.198 0.497 0.007 0.111 0.000 0.087 0.069 0.033 0.026 0.007
(w/o time FE)

Subsample: Post Financial Crisis (2010 - 2018)

Intercept
-4.058 -11.862** -5.879*** -6.640*** -6.648** -6.204*** -4.566*** -5.649*** -5.827*** -5.778***
(3.210) (3.621) (0.772) (2.095) (3.067) (0.869) (0.711) (0.998) (0.842) (0.832)

Industr. Orders
0.391

(0.803)

Unemp. Rate
14.981*
(8.599)

Busin. Climate
0.978**
(0.413)

Production GER
-0.196
(0.533)

Production G7
-0.188
(0.732)

Oil Price
0.499**
(0.232)

Leading Indic.
1.386***
(0.356)

REER
0.465

(1.050)

TPU
-0.129
(0.286)

et−1
-0.137 -0.141 -0.127 -0.144 -0.188 -0.132 -0.118 -0.147 -0.139 -0.141
(0.117) (0.108) (0.111) (0.115) (0.732) (0.108) (0.108) (0.119) (0.111) (0.112)

Observations 69 69 69 69 69 69 69 69 69 69
Adjusted R2 0.847 0.850 0.855 0.847 0.847 0.851 0.855 0.847 0.847 0.850

Adjusted R2 0.400 0.360 0.161 0.428 0.583 0.215 0.136 0.140 0.128 0.142
(w/o time FE)

Notes: Results are computed by means of an entity and time fixed effects regression with panel-corrected standard errors (PCSE, Beck and Katz,
1995). Dependent variable: Import growth forecast error (four-quarters-ahead). PCSE in parentheses. Entity and time fixed effects are excluded
to save journal space. W/o time FE: Model specification using only entity fixed effects. ***, **, * denote statistical significance at the 1, 5, 10
%-level.
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indicating a change in forecasting behavior.

4 Concluding Remarks

I have built on the literature evaluating German trade forecasts (Behrens, 2020, 2019) by means

of panel regressions (Döpke and Fritsche, 2006, who evaluate GDP and inflation forecasts).

Furthermore, I have contributed to the literature on the effects of economic recessions on pro-

fessional forecasters (Frenkel et al., 2011; Döpke et al., 2018, 2019a). I have followed Döpke

et al. (2019a), who analyze German GDP and inflation forecasts, and have estimated a fixed ef-

fects panel regression using Beck and Katz (1995) panel-corrected standard errors. To this end, I

have used a novel data set on German trade forecasts for the years 1971 to 2019 of eight leading

German professional forecasters. To analyze possible changes in forecasting behavior, I have es-

timated the fixed effects model for subsamples after incisive economic events in recent German

history, namely the oil price shocks in the early and late 1970s, German reunification, and the

financial crisis of 2008/2009.

I find that all analyzed German trade forecasts in the full sample, i.e., export and import growth

as well as two- and four-quarter-ahead, are in line with the concept of weak efficiency. In other

words, the lagged forecast error does not have explanatory power for the current forecast error.

Furthermore, the shorter-term forecasts are not biased, whereas I find evidence against the un-

biasedness for both types of longer-term trade forecasts. I reject the strong form of efficiency

for all forecasts in the full sample. Predictors with explanatory power in most specifications are

mainly the OECD leading indicator and industrial orders for Germany. Time fixed effects, which

can be interpreted as the element of surprise of the year for which a forecast was formed, play a

crucial role in explaining the forecast errors.

Overall, the results for the subsamples with respect to strong efficiency resemble the ones for

the full sample, which is in line with recent research on possible changes in the behavior of

professional forecasters after the financial crisis (Döpke et al., 2019a). However, there are dif-

ferences regarding the weak form of efficiency of the export growth forecasts. Especially after
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the financial crisis, I strongly reject weak efficiency of these forecasts. Regarding import growth

forecasts, a bias is less of an issue after German reunification and before the financial crisis. Be-

fore and after this time period, I find strong evidence against the unbiasedness of the longer-term

import growth forecasts. In summary, I find changes in forecasting behavior of trade forecasters

after the financial crisis, namely regarding weak efficiency and unbiasedness. A possible expla-

nation is a tendency to more conservative forecasts after the financial crisis 2008/2009 as has

been reported by Döpke et al. (2019b).

In future research, it will be interesting to further analyze this change of forecasting behavior

and the reported bias of the longer-term trade forecasts. The latter effect could be explained by

further analyses of a possible asymmetry of the forecasters’ loss functions (building on research

by Behrens, 2019) or of possible behavioral biases in trade forecasts (see, e.g., Ito, 1990, on

wishful expectations). It will also be interesting to see, if the change in forecasting behavior

after the financial crisis can be confirmed for other macroeconomic aggregates as well as for the

period after the Covid-19 pandemic and the associated economic crisis.
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