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Abstract

Support Vector Machines (SVMs) have become a popular legraligorithm,
in particular for large, high-dimensional classificatiaolgems. SVMs have been
shown to give most accurate classification results in a tyaoapplications. Sev-
eral methods have been proposed to obtain not only a cladgific but also an
estimate of the SVMs confidence in the correctness of theigieetllabel. In this
paper, several algorithms are compared which scale the S&@idn function
to obtain an estimate of the conditional class probabilkynew simple and fast
method is derived from theoretical arguments and emplyicaimpared to the ex-
isting approaches.

1 Introduction

Support Vector Machines (SVMs) have become a popular legralgorithm, in par-
ticular for large, high-dimensional classification prahke SVMs have been shown to
give most accurate classification results in a variety ofiappons. Several methods
have been proposed to obtain not only a classification, batal estimate of the SVMs
confidence in the correctness of the predicted label.

Usually, the performance of a classifier is measured in tefnagcuracy or some
other performance measure based on the comparison of #sifigles predictiory of
the true clasg. But in some cases, this does not give sufficient informatfeor ex-
ample in credit card fraud detection, one has usually muafe megative than positive
examples, such that the optimal classifier may be to the Hefagative classifier. But
then, still one would like to find out which transactions arestprobably fraudulent,
even if this probability is small. In other situations e.rformation retrieval, one could
be more interested in a ranking of the examples with respebtir interestingness in-
stead of a simple yes/no-decision. Third, one may be iniedds integrate a classifier
into a bigger system, for example a multi-classifier learflercombine and compare
the SVM prognosis with that of other learners, one would kkeomparable, well-
defined confidence estimate. The best method to achieve alenoé estimate that
allows to rank the examples and gives well-defined, intégpte values, is to estimate



the conditional class probabilit#(y|z). Obviously, this is a more complex problem
than finding a classificationl/(z) € {—1,1}, as it is possible to get a classification
function by comparing®(y|z) to the threshold.5, but not vice versa.

For numerical classifiers, i. e. classifiers of the type) = sign(f(z)) with a
numerical decision functiorf, one usually tries to estimation the conditional class
probability from the decision functio®(y|z) = P(y|f(z)). This reduces the prob-
ability estimation from a multi-variate to a one-dimensbproblem, where one has
to find a scaling functiom such thatP(Y = 1|z) = o(f(x)). The idea behind this
approach is that the classificatiaiiz) of examples that lie close to the decision bound-
ary {z|f(z) = 0} can easily change when the examples are randomly pertugbad b
small amount. This is very hard for examples with very higtvery low f(z) (this
argument requires some sort of continuity or differentigbconstraints on the func-
tion f). Hence, the probability that the classifier is correct $thdne higher for larger
absolute values of. As was noted by Platt [10], this also means there is a straiog p
for selecting a monotonic scaling functien

The rest of the paper is organized as follows: In the nexia@ctve will shortly
present the Support Vector Machine and Kernel Logistic Begjon algorithm, as far
as it is necessary for this paper. In Section 3, existing odor probabilistic scaling
of SVM outputs will be discussed and a new, simple scalindoetvill be presented.
The effectiveness of this method will be empirically evahin Section 4.

2 Algorithms
2.1 Support Vector Machines

Support Vector Machines are a classification method bas&dadistical Learning The-
ory [12]. The goal is to find a functiofi(x) = w * z + b that minimizes the expected
Risk

RIf) = / / L(y, f(x))dP(y|z)dP(z)

of the learner by minimizing the regularized rifieg f], which is the weighted sum
of the empirical risk with respect to the ddt&, y;):—1..., and a complexity terrjw||?

Rred /] = 3llull* +C Y 1 = yif (el @

where|¢|; = max(¢,0). This optimization problem can be efficiently solved in its
dual formulation

n n
_% Z QGOGYY T * T+ Z ; — min (2)
i,j=1 i=1
n
w.r.t. Z a;y; =0
i=1
Vi:0<a; <C



2.2 TheKernd Trick

The inner product; * z; in Equation 2 can be replaced by a kernel funciofx;, ;)
which corresponds to an inner product in some space, caldife space. That is,
there exists a mapping : X — X such thatk'(z,z') = ®(x) * ®(z'). This allows
the construction of non-linear classifiers by an essepti@éar algorithm.

The resulting decision function is given by

flx) = wx®(x)+b

n
Z yio; K (x, ) + b.
i=1

The actual SVM classification is given Bygn(f(z)). It can be shown that the SVM
solution depends only on its support vectors SYaz|«; # 0}. See [12, 2] for a more
detailed introduction on SVMs.

2.3 Kernd Logistic Regression

Kernel Logistic Regression [13, 5, 14, 11] is the kernelizetsion of the well-known
logistic regression technique. The optimization probleiinilar to the SVM problem
in Equation 1 except that an exponential loss function islusstead of the L1 loss:

1 . .
§|\w\|2 +C Y g(—yi(w *z; — b)) - min

where
9(€) = log(1 + ¢*)
As for the SVM, the problem can be solved in its dual formwalaf6]:

1
5 Z aiajK(azi,a:j) + ng(&) — min.
65 i

In contrast to the SVM, Kernel Logistic Regression direatigdels the conditional
class probability, i. eP(Y = 1|z) can be estimated via

1

P(ylz) = PpnpeEED

The drawback of KLR is that typically alk; are nonzero, as all examples play a
role in estimating the conditional class probability, wées in the SVM only a small
number of support vectors are needed to classify the examigence, KLR is compu-
tationally much more expensive than the SVM.

3 Probabilistic Scaling of Support Vector M achines

One can easily see that the SVM decision functfgn) = w * ®(z) + b gives the
feature space distance of the transformed exambfitg to the hyperplane defined by



(w,b). Assuming thatP(Y = 1|z) is continuous inz, it seems reasonable that ex-

amples lying closer to the hyperplane have a larger proibabil being misclassified

than examples lying far away (the closer the example is thyperplane, the smaller

changes have to be to produce a different classificationphceleit seem suitable to

model the conditional class probabiliB(y|z) as a function of the value of the SVM

decision function, i. eP(Y = 1|z) = o(f(x)) with an appropriate scaling functian
There are several ad-hoc scaling functions, e. g. the safsceler

1
Osoftmax?) = 1+e 227

which monotonously maps the decision functions value f(z) to the interval0, 1].
The scaler assumes that for the decision function is of thedyyn(z) and hence for
z = 0 the classifiers class decision is smallest such4hsimapped to the conditional
class probability).5. This allows to viewrggsimax 2) as a probability. However, this
mapping is not very well founded, as the scaled values arpistified from the data.

To justify the interpretatio®(Y = 1|z) = o(f(z)), it is better to use data to
calibrate the scaling. One can use a subset of the data whilndt been used for
training (or use a cross-validation-like approach) andhoige the scaling functioa to
minimize the error between the predicted class probakilitf(x)) and the empirical
class probability defined by the class valyei the new data. There are two error
measures which are usually used, cross-entropy and mearesigrror. Cross-entropy
is defined by

CRE = Zyilog(zi) + (1 - yi)log(l — z)

(wherez; = o(f(z;))), which is the Kullback-Leibler distance between the presti
and the empirical class probability. For comparison ofatéht data sets it is better
to divide the cross-entropy by the number of examples an#t wish the mean cross-
entropy mCRE. The mean squared error is defined by

1

i

It is an appropriate error measure because for a binary mndoiableY” € {0,1},
the expected value dft’ — p)? is minimized byp = P(Y = 1). Hence, the task
of estimating the conditional class probability becomesgression task. The open
question is, what types of scaling functions should be fittetthe data.

Motivated by an empirical analysis, Platt [10] uses scalimgctions of the form

1

0ab(2) = Ty

with ¢ > 0 to obtain a monotonically increasing function. The pararst and
b are found by minimization of the cross-entropy error oveest set(x;, y;) with
z; = f(x;). For an efficient implementation, see [8].

Garczarek [4] proposes a method which scales classificatilues by

0(2) = Boi g1 Bar g1 (2)
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whereB,, s is the Beta distribution function with parametersnd3. The parameters
al, 1, a2 and 32 are selected such that over a test(sgty;)

1. the average value of( f(x)) for each class is identical to the classification per-
formance of the classifief in this class and

2. the mean square err@y — o(f(x)))? is minimized.

Originally, the algorithm is designed for multiclass prefs and computes an indi-
vidual scaler for each predicted class. For binary probjdimis better to modify
this approach such that only one scaler is generated. Thisisadiscontinuities in
P(Y = 1|z) when the prediction changes from one class to the other.

Binning has also been applied to this problem [3]. The denisialues are dis-
cretized into several bins and one can estimate the the thmmaliclass probability by
counting the class distribution in the single bins. Othesrencomplicated approaches
also exists, see e. g. [7] or [12], Ch. 11.11.

3.1 Theoretical Limitations

Bartlett and Tewari [1] show that there is a tradeoff betwsgarseness of a classifier
and the ability to estimate conditional probabilities. Frresult says, in short, that
if one is able to estimat® (Y = 1|z) on some interval, sparseness is lost in that
region. Hence, the question arises in how far the decisioation of the SVM, which
generally produces sparse classifiers, can approximateuteonditional density or
the estimate of the non-sparse KLR, respectively.

The problem can be seen in Equation 1. To obtain a maximatlyrate classifier,
the SVM containsl —y; f(x;)|+ in its objective function, i. e. the classifier is punished
if y;f(x;) < 1 (it becomes a support vector). In this case, this forces darrg on
the valuesy; f(x;) where the value is the higher, the more similar the example is
the rest of the examples in its class in feature space. Caersdy, an estimation of
P(y;|x;) can be constructed fromy f(z;). When the example is classified correctly
with sufficient margin, i. ey; f (z;) > 1, this example generates no loss and hence no
specific order is enforced on these examples. For the SVMhalexamples on the
right side of the margin have the same probabiftfy|z). This behavior can be seen
in Figure 1.

What can be said about the support vectors? In the previati®seaeve already
saw that minimizing the mean squared error between the astimfunctiono (f(z))
andy gives a proper estimate @ (y|x), as for a fixedz the MSE is minimized for
o(f(x)) = P(Y = 1]z). However, the error criterion in the SVM is the absolute
error, not the squared error, and one can show that for a fixthe absolute error is
minimized ato (f(z)) = 1iff P(Y = 1|z) > 0.5 ando(f(z)) = 0 otherwise. What
comes to the rescue is thitz) is not determined for eachindependently, but for alt
together. Hence, if not overfitting occurs, at least a vafug(@) = 0 is an indicator of
P(Y = 1|z) = 0.5 and it seems plausible thi{x) contains some useful information
aboutP(y|x).
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Figure 1: One-dimensional comparison of SVM and KLR praditd. Negatives ex-
amples are drawn from N(0,1) (dots at y=-1), positive exasftom N(2,1) (dots at
y=1). Both methods find the class border at x=1, but the SVMiipt®n is essentially
constant for y outside [-1,1]. KLR correctly estimates t@glkonfidences for points
nearer to class centers.

3.2 A SimpleEstimation Method

From the previous discussion we know that decision funci@oe with|f(z)| > 1
are unreliable for estimating the conditional class pragbValues with|f(x)| < 1
directly optimize the order of the examples with resped(g|z). Hence, the question
arises if it is possible to estimafé(Y” = 1|z) by the following trivial procedure

Py iff f () > 1
oor(f(x)) = ¢ 5L+ f(2) ifff(z) € [-1,1]
p_ iff f(z) < -1

wherep, is the fraction of positive examples wilf{z) > 1 andp_ is the fraction of
positive examples wittf (z) < —1. For f(z) € [-1,1], the SVM function is simply
linearly scaled tdo, 1]. Similarly, one can definepp by clipping f(z) atp_ andp
instead of) and1.

The advantage of this method compared to the existing appesas that it requires
almost work when training or applying the classifier, exaapinting the probabilities
p+ andp_ and still gives reasonable, empirically founded probgbdistimates.

4 Experiments

The experiments were conducted on 11 data sets, includirsgarsets from the UCI

Repository [9] (covtype, diabetes, digits, digits, ionlosge, liver, mushroom, promot-
ers) and 4 other real-world data sets: a business cyclessg@soblem (business), an
analysis of a direct mailing application (directmailing)data set from a life insurance



company (insurance) and intensive care patient monitatatg (medicine). Prior to
learning, nominal attributes were binarised and the aieibwere scaled to expectancy
0 and variance 1. Multi-class-problems were converted mdlass problems by ar-
bitrarily selecting two of the classes (covtype and digitstombining smaller classes
into a single class (business, medicine). For the covtype skt, al% sample was
drawn. The following table sums up the description of thedats:

Name Size Dimension
covtype 4951 48
diabetes 768 8
digits 776 64
ionosphere 351 34
liver 345 6
mushroom 8124 126
promoters 106 228
business 157 13
directmailing 5626 81
insurance 10000 135
medicine 6610 18

Experiments were made with Support Vector Machines and édragistic Re-
gression with both linear and radial basis kernel. The patara of the algorithms
were selected in a prior step to optimize accuracy. The vatlg algorithms were
compared in the experiments:

KLR: Kernel Logistic Regression, used as the baseline.
SVM-Platt: SVM using Platt’s scaling.

SVM-Beta: SVM using Garczarek’s beta scaling.
SVM-Beta-2: SVM using binary beta scaling.

SVM-Bin: SVM and binning.

SVM-Softmax: SVM and softmax scaling.

SVM-01: SVM and outputf(z) clipped between 0 and 1.

SVM-PP: SVM and outputf(z) clipped betwee(Y = 1|f(z) < —1) andP(Y =
1f(z) > 1).

All reported results were 10-fold cross-validated. Forlihear SVM and KLR, the
following results were obtained:



Method MSE mCRE

KLR 0.1000 0.0332
SVM-Platt 0.0912 0.0291
SVM-Beta 0.5966 ¢
SVM-Beta-2 0.0915 0.0301

SVM-Bin (10 bins) 0.1201 0.0384
SVM-Bin (50 bins) 0.1301 0.0415

SVM-Softmax 0.0975 0.0343
SVM-01 0.0970 0.0317
SVM-PP 0.0933 0.0296

With respect to the mean squared error, we get the follonamging: SVM-Platt
< SVM-Beta-2< SVM-PP < SVM-01 < SVM-Softmax< KLR < SVM-Bin-10 <
SVM-Bin-50 << SVM-Beta. Sorting by mean cross-entropy, SVM-Beta-2 antSV
PP change places, as well as SVM-Softmax and Bin-10.

The RBF kernel gave the following results:

Method MSE mCRE
KLR 0.0748 0.0242
SVM-Platt 0.0770 0.0250
SVM-Beta 0.6009 ¢
SVM-Beta-2 0.0819 0.0278

SVM-Bin (10 bins) 0.0939 0.0305
SVM-Bin (50 bins) 0.1106 0.0356

SVM-Softmax 0.0946 0.0327
SVM-01 0.0916 0.0307
SVM-PP 0.0904 0.0289

This gives the following ranking for MSE: KLR: SVM-Platt < SVM-Beta-2<
SVM-PP < SVM-01 < SVM-Bin-10 < SVM-Softmax< SVM-Bin-50 << SVM-
Beta.

A close inspection reveals that these results do not givauthgicture, as the error
measures reach very different values for the individush dats. E. g. , the MSE for
Kernel Logistic Regression with radial basis kernel rurs fri0—7 (mushroom) to
0.191 (liver). To allow for a better comparison, the methods wairgked according to
their performance for each data set. The following tablegihe average rank of each
of the methods for the linear kernel:



avg. rank from

Method MSE mCRE
KLR 3.18 3.09
SVM-Platt 3.18 3.45
SVM-Beta 9.00 9.00
SVM-Beta-2 3.27 3.45

SVM-Bin (10 bins) 5.18 5.55
SVM-Bin (50 bins) 6.55  6.45

SVM-Softmax 5.18 5.36
SVM-01 491 5.09
SVM-PP 3.45 3.55

The corresponding table for the radial basis kernel:

avg. rank from

Method MSE mCRE
KLR 1.82 155
SVM-Platt 2.82 2.64
SVM-Beta 9.00 9.00
SVM-Beta-2 427 4.27

SVM-Bin (10 bins) 4.82  4.36
SVM-Bin (50 bins) 6.73  6.73

SVM-Softmax 573 5.91
SVM-01 5.36 5.64
SVM-PP 3.64 473

To validate the significance of the results, a paired t-test (0.05) was run over the
cross-validation runs. The following table shows the corigoa of the cross-entropy
for the linear kernel of the best five of the scaling algorighntach row of the table
shows how often the hypothesis that the estimation in thatisdetter than the esti-
mation in the corresponding column was rejected. E. g. , tineife last row and first
column shows that the hypothesis that softmax scaling tebtan KLR was rejected
for 6 of the data sets. The contrary hypothesis was rejeate?] data sets (first row,
last column).

KLR Platt Beta2 PP Binl0 Soft
KLR 0 2 2 2
Platt 4
Beta2 4
PP 6
7
6

Bin10
Soft
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These are the results for cross-entropy and the radial besiel:



KLR Platt Beta2 PP Binl0 Soft
KLR 0 0 0
Platt
Beta2
PP
Bin10
Soft
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0
1
4
0
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0
1
2
0
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The corresponding tables for MSE show similar results.
Summing up, we see that

¢ Kernel Logistic Regression give the best estimation of tredional class prob-
ability (with some outliers in the linear case).

e The best scaling for the SVM is obtained by Platt's method biméry Beta
Scaling.

e The trivial PP-scaling performs comparable to the much moraplicated tech-
nigues.

e Multiclass Beta scaling gives by far the worst results (Whi@s expected from
the non-continuicity of its method of scaling each prediatiass on its own).

5 Summary

The experiments in this paper showed that a trivial meth@sdtimating the conditional
class probabilityP(y|z) from the output of a SVM classifier performs comparably to
much more complicated estimation techniques.
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