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Learning Feature Extra
tion for Learning fromAudio DataIngo Mierswa, Katharina Morik1University Dortmund, Computer S
ien
e Department, LS VIIIfmierswa,morikg�ls8.
s.uni-dortmund.de,http://www-ai.
s.uni-dortmund.deAbstra
t. Today, large 
olle
tions of digital musi
 plays are available.These audio data are time series whi
h need to be indexed and 
lassi-�ed for diverse appli
ations. Indexing and 
lassi�
ation di�ers from timeseries analysis, in that it generalises several series, whereas time seriesanalysis handles just one series a time. The 
lassi�
ation of audio data
annot use similarity measures de�ned on the raw data, e.g. using timewarping, or generalise the shape of the series. The appropriate similar-ity or generalisation for audio data requires feature extra
tion before
lassi�
ation 
an su

essfully be applied to the transformed data. Meth-ods for extra
ting features that allow to 
lassify audio data have beendeveloped. However, the development of appropriate feature extra
tionmethods is a tedious e�ort, parti
ularly be
ause every new 
lassi�
ationtask requires to tailor the feature set anew. Hen
e, we 
onsider the 
on-stru
tion of feature extra
tion methods from elementary operators itselfa �rst learning step. We use a geneti
 programming approa
h. After thefeature extra
tion, a se
ond pro
ess learns a 
lassi�er from the trans-formed data. The pra
ti
al use of the methods is shown by two types ofexperiments: 
lassi�
ation of genres and 
lassi�
ation a

ording to userpreferen
es.1 Introdu
tionSin
e musi
 has be
ome distributed via the internet and is stored in digital form,there is a need for the management and retrieval of audio data. How 
an we indexlarge numbers of audio re
ords? How 
an we stru
ture musi
 databases a

ordingto genre(e.g., 
lassi
, pop, hip hop) or o

asions(e.g., dinner, party, wedding)?How 
an a system automati
ally re
ommend users musi
 re
ords whi
h theymight like? Information retrieval has started several e�orts to automati
 indexing[11℄ and retrieval (e.g., querying by humming [2℄). For 
lassi�
ation, ma
hinelearning en
ounters a new 
hallenge of s
alability, when 
onfronted with musi
data:{ Musi
 databases store millions of re
ords.{ Given a sampling rate of 44100 Hz, a three minute musi
 re
ord has thelength of about 8 � 106 values.



Moreover, 
urrent approa
hes to time series indexing and similarity measuresrely on a more or less �xed time s
ale [7, 8℄. Musi
 plays, however, di�er 
onsid-erably in length. More general, time series similarity is determined with respe
tto some (
exible and generalized) shape of 
urves [18, 6℄. However, the shapeof the audio 
urve does not express the 
ru
ial aspe
t for 
lassifying genres orpreferen
es. The i-th value of a favourite song has no 
orresponden
e to thei-th value of another favourite, even if relaxed to the (i�n)-th value. The de
i-sive features for 
lassi�
ation have to be extra
ted from the original data. Someapproa
hes extra
t features from musi
 in form of Midi data, i.e. a trans
rip-tion a

ording to the 12 tone system [13℄ 1. This allows to in
lude ba
kgroundknowledge from musi
 theory. The data are given, however, in the form of {possibly 
ompressed { waves re
ords, the audio data. Hen
e, feature extra
tionfrom audio data has be
ome a hot topi
 re
ently [12, 19, 3, 16℄. Several spe
ial-ized extra
tion methods have shown their performan
e on some task and dataset. It is now hard to �nd the appropriate feature set for a new task and data set.In parti
ular, di�erent 
lassi�
ation tasks ask for di�erent feature sets. It is notvery likely that a feature set delivering ex
ellent performan
e on the separationof 
lassi
al and popular musi
 works well for the separation of te
hno and hiphop musi
, too. Classifying musi
 a

ording to user preferen
es even aggravatesthe problem. If there were a 
on
ise set of feature extra
tion methods, one 
ouldadopt the wrapper approa
h [10℄ in order to sele
t the subset of features whi
h iswell suited for the given 
lassi�
ation task. However, su
h a 
on
ise set does notexist and if it would, it would be extremely large. Therefore, we propose anotherpro
edure. Given some elementary operators, geneti
 programming 
onstru
tsmethods whi
h are (nested) sequen
es of operators.In this paper, we illustrate some operators and how they are 
ombined tobe
ome extra
tion methods in Se
tion 2. Se
tion 3 des
ribes the geneti
 program-ming approa
h to learning the feature extra
tion methods. The sear
h within theuniverse of methods is guided by a �tness fun
tion. Here, we embed a 
lassi�
a-tion learner: the better the learning result using the transformed data, the higherthe �tness of the feature set (i.e., the extra
tion method). Geneti
 programmingputs together the building blo
ks of feature extra
tion operators a

ording to thetargeted 
lassi�
ation task and data set. It outputs a feature extra
tion method.Applying the method to the given audio data delivers a transformed data set,i.e., the examples rewritten by the 
orresponding feature set. This be
omes theinput to a se
ond learning step, namely 
lassi�er learning. Figure 1 shows theoverall pro
ess with the two learning steps, one using geneti
 programming, theother using the support ve
tor ma
hine mySVM [15℄ for 
lassi�er learning.The approa
h is tested on the learning tasks of genre 
lassi�
ation and userpreferen
es (Se
tion 4).1 For an overview, see [14℄. 2
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Fig. 1. The overall pro
ess of automati
 feature 
onstru
tion for 
lassi�
ation2 Operators and methods for feature extra
tionAudio data are time series, where the y-axis is the 
urrent amplitude 
orrespond-ing to a loudspeaker's membrane and the x-axis 
orresponds to the time. Theyare univariate, �nite, and equidistant. We may generalize the type of series whi
hwe want to investigate to value series. Ea
h element xi of the series 
onsists oftwo 
omponents. The �rst is the index 
omponent, whi
h indi
ates a position ona straight line (e.g., time). The se
ond 
omponent is a m-dimensional ve
tor ofvalues whi
h is an element of the value spa
e.De�nition 1 (Value series) A value series is a mapping x : IN ! IR � ICmwhere we write xn instead of x(n) and (xi)i2f1;:::;ng for a series of length n.This general de�nition 
overs time series as well as their transformations. Allthe methods under 
onsideration here refer to value series. They are not onlyappli
able to audio data, but to value series in general. All that is required isthe de�niton of a s
alar produ
t for the spa
e.We stru
ture the set of elementary operators as follows:Basis transformations map the data from the given ve
tor spa
e into anotherspa
e, e.g. frequen
y spa
e, fun
tion spa
e, phase spa
e. The most populartransformation is the Fouries analysis.Filters transform elements of a given series to another lo
ation within the samespa
e. Moving average or exponential smoothing are examples of �lters.Mark-up of intervals 
orresponds to the mark-up of text fragments in that itannotates segments within a value series.Generalized windowing is required by many methods for feature extra
tion.We separate the windowing from the fun
tions appli
able to values withinthe windows.Fun
tions 
al
ulate a single value for a value series. Typi
al examples are av-erage, varian
e, and standard deviation.Let us give some examples of the operators. Sin
e the group of mark-upoperators is newly introdu
ed, a de�nition is given.3



(a) Series (b) Value intervals
(
) Index intervals (d) ResultFig. 2. The pro
ess of �nding intervals in a series (a), �rst in the value dimension (b),then proje
ted on the index dimension (
), delivering (d).De�nition 2 (Mark-up) A mark-up M : S ! C assigns a 
hara
teristi
 C toa segment S.De�nition 3 (Interval) An interval I : S ! C is a mark-up within one di-mension. The segment S = (d; s; e) is given by the dimension d, the startingpoint s, and the end point e. The 
hara
teristi
 E = (t; %) indi
ates a type t anda density %.Operators �nding intervals in the value dimension of a value series 
an be 
om-bined with the mark-up of intervals in the time (i.e. indexing) dimension. Forinstan
e, whenever a interval 
hange in the value dimension has been found, the
urrent interval in the index dimension is 
losed and a new one is started. Figure2 illustrates this 
ombination.Many known operators on times series involve windowing. Separating thenotion of windows over the index dimension from the fun
tions applied to thevalues within the window segment allows to 
onstru
t many operators of thekind.De�nition 4 (Windowing) Given the series (xi)i2f1;:::;ng, a transformationis 
alled windowing, if it shifts a window of width w using a step size of s and
al
ulates in ea
h window the fun
tion F :yj = F ((xi)i2fj�s;:::;j�s+wg)All yj together form again a series (yj)j2f1;:::;(n�w)=s+1g.De�nition 5 (General windowing) A windowing whi
h performs an arbi-trary number of transformations in addition to the fun
tion F is 
alled a generalwindowing. 4



The fun
tion F summarizes values within a window and thus prevents generalwindowing from enlarging the data set too mu
h. Sin
e the size of audio datais already rather large, it is ne
essary to 
onsider 
arefully the number of datapoints whi
h is handled more than on
e. The overlap of a general windowingwith step size s and width w is de�ned as g = w=s. Only for windowings withoverlap g = 1 the fun
tion 
an be omitted. Su
h a windowing only performstransformations for ea
h windows and is 
alled pie
ewise �ltering. Combininggeneral windowing with the mark-up of intervals allows to 
onsider ea
h intervalbeing a window. This results in an adaptive window width w and no overlap. Of
ourse, this speeds up pro
essing 
onsiderably.The elementary operators 
an be 
ombined so that methods of feature extra
-tion are expressed. For audio data, the spe
tral 
atness measure or the spe
tral
rest fa
tor 
an be expressed as an arithmeti
 
ombination of simple fun
tions[5℄. The mel-frequen
y 
epstral 
oeÆ
ients 
an be 
onstru
ted as a general win-dowing, where the frequen
y spe
trum of the window is 
al
ulated, its logarithmis determined, a psy
hoa
ousti
 �ltering is performed, and the inverse Fouriertransformation is applied to the result. Figure 3 shows how the operators forfeature extra
tion are put together to form the 
epstral 
oeÆ
ients. From these
oeÆ
ients additional features 
an be extra
ted. It is seen how easily new, sim-ilar methods 
an be generated, e.g., repla
ing the frequen
y spe
trum and itslogarithm by the gradient of a regression line.
 Root

Windowing

value kfiltering
mel−scaled

inv. FFTFFTHamming

LowPass

Fig. 3. Constru
ting the 
epstral method from elementary extra
tion operators
3 Automati
 
onstru
tion of method treesThe elementary operators des
ribed above are 
ombined in order to 
onstru
tmethods that extra
t features for 
lassi�
ation tasks. Figure 3 already showedhow elementary operators 
an be used for the re
onstru
tion of known 
omplexfeature extra
tion methods. In addition, an example of a similar method 
om-bining di�erent elements was given. There are many 
omplex feature extra
tionmethods whi
h 
an be built using the operators. For instan
e, the general win-dowing may apply a Fourier transformation so that the peaks of the transformed5




an be related with windows in time:yj = maxindex(FT (fxigi2fj�s;:::;j�s+wg)))The result is a value series, where the value of yj denotes the highest frequen
yfor ea
h window. From this series, the average and varian
e is built, yielding agood feature for the separation of te
hno and pop musi
 { the varian
e is greaterin pop musi
.
automatic feature extraction (GP)

fitness evaluation: mySVM
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Fitness
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raw data

transformed data
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Fig. 4. Automati
 feature extra
tion using geneti
 programming.It is rather 
umbersome to �nd su
h 
ombinations that perform well for a
lassi�
ation task. We are looking for 
hains of method appli
ations. Moreover,there might be some windowing within whi
h su
h 
hains are applied. Thissear
h spa
e is too large to be inspe
ted manually. Hen
e, geneti
 programmingis applied in order to look for the best 
ombination of methods [4℄. The result isa 
omplex method. Its use for the 
lassi�er learning will be shown in Se
tion 4.In order to stru
ture the huge sear
h spa
e, we may separate fun
tions, 
hainsof method appli
ations, and general windowing, where a 
hain of method appli-
ations is applied to ea
h window.De�nition 6 (Chain) A 
hain 
onsists of an arbitrary number of transforma-tions and a fun
tion at the end.A fun
tion is a 
hain with no transformations. It has the length 1. A longer
hain 
onsists of some transformations followed by a fun
tion. In any 
ase, a
hain delivers one value.De�nition 7 (Method tree) A method tree is a general windowing whose 
hil-dren build a 
hain. If the 
hain entails a windowing, this be
omes the root of anew, embedded method tree. 6
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Fig. 5. A method tree for feature extra
tion built of elementary methods. Dashedarrows show the data 
ow, solid lines de�ne the tree stru
ture.The methods whi
h are performed on ea
h window 
an be seen as 
hildren ofthe windowing operator. Together they output a value series. The tree stru
tureemerges from the nesting of windowing operators.An example of a method tree is shown in Figure 5, where the root identi�esthe element within the sear
h spa
e. Its four 
hildren are exponential smoothing,a �ltering, another method tree 
onsisting of the 
hain just des
ribed (Fouriertransformation with peaks applied to windows), and the average of the peaks.This last 
hild returns the desired features.Before the geneti
 programming approa
h is te
hni
ally des
ribed, Figure 4presents the pro
ess of automati
ally extra
ting features for a given 
lassi�
ationtask and data set. The pi
ture details on the �rst box of Figure 1 above whi
hshows the overall pro
ess. The sear
h spa
e within whi
h the best method tree isto be found is 
alled the universe of method trees. A population is a set of methodtrees. The navigation within the universe of method trees is a 
y
le of sele
tinga population, applying the method trees to the raw data, evaluating the �tnessof the population, and enhan
ing the �ttest method trees further to be
omea new population. This 
y
le 
orresponds to the standard pro
ess of geneti
programming. What di�ers from the standard is that method trees instead ofbinary ve
tors form the sear
h spa
e, that the sear
h spa
e is stru
tured, andthat the �tness evaluation is not merely a fun
tion but the result of runninganother learning algorithm.Geneti
 programming 
onstru
ts �nite automata. Here, method trees are tobe 
onstru
ted. They are represented by XML expressions. Figure 6 shows therepresentation of the method tree from Figure 5. The Yale system exe
utessu
h trees and takes 
are of the synta
ti
 well-formedness.The restri
tion that 
hains are 
on
luded by a fun
tion implies a level-wisestru
ture of all possible method trees. The lowest level 1 entails only fun
tions.These are 
hains of length 1. The next level, 2, 
overs 
hains with a 
on
ludingfun
tion. Levels 3 and above entail windowing. Method trees are 
onstru
teda

ording to their levels. The level-wise growing means small 
hanges to a 
urrentmethod tree. On the one hand, this redu
es the probability of missing the optimal7



<operator name="Root" 
lass="ValueSeriesPrepro
essing"><operator name="Chain 1" 
lass="OperatorChain"><operator name="ExpSm" 
lass="ExponentialSmoothing" /><operator name="Filter" 
lass="FilterTransformation" /><operator name="Windowing" 
lass="Windowing"><parameter key="overlap" value="2"/><operator name="Chain 2" 
lass="OperatorChain"><operator name="FFT" 
lass="FastFourierTransform" /><operator name="MaxIndex" 
lass="MaxIndexPoint" /></operator></operator><operator name="Avg" 
lass="AverageFun
tion" /></operator></operator> Fig. 6. XML method tree representation for Yale.method tree. On the other hand, it may slow down the sear
h, if the �tness ofthe lower levels does not distinguish between good and bad method trees.The operations of geneti
 programming are mutation and 
rossover. By ran-dom, mutations insert a new method, delete a method, or repla
e a method byone of the same 
lass, i.e. by a fun
tion or transformation. Crossover repla
es asub-tree from one method tree by a sub-tree from another method tree, regard-ing the well-formedness 
onditions. That means, that the roots of the sub-treesmust be of the same type of methods.For sele
tion purposes, the �tness of all method trees is expressed by a roulettewheel, i.e. �tness proportional parts of a wheel's 360 degrees. The larger theportion, the more likely it be
omes that the parti
ular individual is sele
tedfor the next generation or 
rossover. Sin
e method trees serve 
lassi�
ation inthe end, the quality of 
lassi�
ation is the ultimate 
riterion of �tness. Ea
hindividual method tree is applied to the raw data. This method appli
ationreturns a transformed data set, whi
h is used by 
lassi�er learning. A k-fold
ross validation is exe
uted. The mean a

ura
y, re
all, and/or pre
ision of theresult be
omes the �tness value of the applied feature 
onstru
tion method tree.4 Classi�
ation using learned method treesAutomati
 feature 
onstru
tion aims at good results of a se
ond learning stepwhi
h uses the features, namely 
lassi�er learning. Remember Figure 1 from theintrodu
tion, where geneti
 programming were shown to deliver the input to
lassi�er learning. Now, we des
ribe the se
ond step, namely 
lassi�er learning.Feature 
onstru
tion is already guided by the 
lassi�
ation task in that 
ross-validated learning determines the �tness of method trees (individuals of geneti
programming). Now, also feature sele
tion is performed by a simple evolutionarymethod, namely the (1+1)EA [1℄. Again, the 
lassi�
ation task de
ides upon8



Classi
/pop Te
hno/pop Hiphop/popA

ura
y 100% 92; 89% 82; 38%Pre
ision 100% 94; 00% 84; 15%Re
all 100% 92; 64% 78; 44%Error 0% 7; 11% 17; 62%Table 1. Classi�
ation of genresthe �tness. The feature set is built using a subset of the training data. Thesele
ted method trees are then applied to all the training data. The supportve
tor ma
hine mySVM is applied to these rewritten data and learns a 
lassi�er.4.1 Classifying genresSin
e results are published for the genre 
lassi�
ation task, we have applied ourapproa
h to this task, too. Note, however, that no published ben
hmark datasets exist. Hen
e, the 
omparison 
an only show that feature 
onstru
tion andsele
tion leads to similar performan
e as a
hieved by other approa
hes. For the
lassi�
ation of genres, three data sets have been built.{ Classi
/pop: 100 pie
es for ea
h 
lass were available in Ogg Vorbis format.{ Te
hno/pop: 80 songs for ea
h 
lass from a large variety of artists wereavailable in Ogg Vorbis format.{ Hiphop/pop: 105 songs for ea
h 
lass from few re
ords were available in MP3format with a 
oding of 128 kbits/s.The 
lassi�
ation tasks are of in
reasing diÆ
ulty. Using mySVM with a linearkernel, the performan
e was determined by a 10-fold 
ross validation and isshown in Table 1. Con
erning 
lassi
 vs. pop, 93% a

ura
y, and 
on
erninghiphop vs. pop, 66% a

ura
y has been published [16, 17℄.41 features have been 
onstru
ted for all genre 
lassi�
ation tasks. For thedistin
tion between 
lassi
 and pop, 21 features have been sele
ted for mySVMby the evolutionary approa
h. Most runs sele
ted features referring to the phasespa
e (angle and varian
e). For the separation of te
hno and pop, 18 featureswere sele
ted for mySVM, the most frequently sele
ted ones being the �ltering ofthose positions in the index dimension, where the 
urve 
rosses the zero line. Forthe 
lassi�
ation into hiphop and pop, 22 features were sele
ted with the merevolume being the most frequently sele
ted feature. It starts with the length ofthe songs. Experiments with naive Bayes and k-NN did not 
hange the pi
ture:an a

ura
y of about 75% 
an easily be a
hieved, in
reasing the performan
efurther demands better features.4.2 User preferen
esRe
ommendations of songs to possible 
ustomers are 
urrently based on the 
or-relation of re
ords, user who bought re
ord A frequently also bought re
ord B.9



User1 User2 User3 User4A

ura
y 95; 19% 92; 14% 90; 56% 84; 55%Pre
ision 92; 70% 98; 33% 90; 83% 85; 87%Re
all 99; 00% 84; 67% 93; 00% 83; 74%Error 4; 81% 7; 86% 9; 44% 15; 45%Table 2. Classi�
ation a

ording to user preferen
esThis 
ollaborative �ltering approa
h ignores the 
ontent of the musi
. A high 
or-relation is only a
hieved within genres, be
ause the preferen
es traversing a typeof musi
 are less frequent. The 
ombination of favourite songs into a set is a veryindividual and rare 
lassi�
ation. It is not a generalization of many instan
es.Therefore, the 
lassi�
ation of user preferen
es beyond genres is a 
hallengingtask, where for ea
h user the feature set has to be learned. Of 
ourse, sometimesa user is interested only in pie
es of a parti
ular genre. This does not de
reasethe diÆ
ulty of the 
lassi�
ation task. In 
ontrast, if positive and negative ex-amples stem from the same genre, it is hard to 
onstru
t distinguishing features.Genre 
hara
teristi
s might dominate the user-spe
i�
 features. As has been seenin the diÆ
ulty of the data set for hiphop vs. pop, sampling from few re
ordsalso in
reases the diÆ
ulty of learning. Hen
e, four learning tasks of in
reasingdiÆ
ulty have been investigated.Four users brought 50 to 80 pie
es of their favourite musi
 ranging throughdiverse genres. They also sele
ted the same number of negative examples. User1 sele
ted positive examples from ro
k musi
 with a dominating ele
tri
 guitar.User 2 sele
ted positive as well as negative examples from jazz musi
. User 3sele
ted musi
 from 
lassi
 over latin and soul to ro
k and jazz. User 4 sele
tedpie
es from di�erent genres but only from few re
ords. Using a 10-fold 
rossvalidation, mySVM was applied to the 
onstru
ted and sele
ted features, onefeature set per learning task (user). Table 2 shows the results.The ex
ellent learning result for a set of positive instan
es whi
h are all froma 
ertain style of musi
 
orresponds to our expe
tation (user 1). The expe
tationthat learning performan
e would de
rease if positive and negative examples aretaken from the same genre is not supported (user 2). Surprisingly well is thelearning result for a broad variety of genres among the favourites (user 3). The(negative) e�e
t of sampling from few re
ords 
an be seen 
learly (user 4). Ap-plying the learned de
ision fun
tion to a database of re
ords allowed the users toassess the re
ommendations. They were found very reasonable. No parti
ularlydisliked musi
 was re
ommended, but unknown plays and those, whi
h 
ouldhave been sele
ted as the top 50.Of 
ourse, this method of user preferen
e re
ognition is just the �rst step.There are several ways to improve the results. For instan
e, users 
ould indi
atethose examples that must be 
lassi�ed 
orre
tly, be
ause the person feels thatit is an essential expression of his taste. Weighting examples as a further 
ostfun
tion for learning has been investigated in [9℄. An open question is how to10




ir
umvent or at least de
rease the required number of negative examples, sin
eusers don't like to go through long play lists in order to gather negative examples.5 Con
lusionIn this paper, a geneti
 programming approa
h to learning feature extra
tion fora 
ertain data set and 
lassi�
ation task has been presented. Using elementaryoperators as building blo
ks, method trees are learned under the guidan
e ofthe performan
e of a 
lassi�
ation learner. The 
ru
ial question is whether the
overed methods and their automati
 
onstru
tion are tra
table, feasible, anddeliver good 
lassi�
ation results in the end. Two types of 
lassi�er learningtasks have been tried in order to answer this question: 
lassifying genres anduser preferen
es. The experiments showed en
ouraging results.Further work should investigate the real-time 
lassi�
ation a

ording to userpreferen
es. Genre 
lassi�
ation 
an be done in real-time, be
ause an appropri-ate feature set 
an be learned in advan
e. In 
ontrast, a real-time 
lassi�
ationof the preferen
es of diverse users does not allow to build-up the feature sets be-forehand. Re
ommendation systems address di�erent users, so that they 
annotadjust to a parti
ular one. Real-time re
ommendation would require automati
feature 
onstru
tion while the user 
lassi�es some examples.Finally, an ele
troni
 DJ would be a 
hallenging system to develop. In ad-dition to the 
lassi�
ation of single musi
 plays, appropriate sequen
es of playswould then need to be taken into a

ount. Do the methods deliver features whi
hare well suited for sequen
e learning, as well?A
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