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Learning Feature Extration for Learning fromAudio DataIngo Mierswa, Katharina Morik1University Dortmund, Computer Siene Department, LS VIIIfmierswa,morikg�ls8.s.uni-dortmund.de,http://www-ai.s.uni-dortmund.deAbstrat. Today, large olletions of digital musi plays are available.These audio data are time series whih need to be indexed and lassi-�ed for diverse appliations. Indexing and lassi�ation di�ers from timeseries analysis, in that it generalises several series, whereas time seriesanalysis handles just one series a time. The lassi�ation of audio dataannot use similarity measures de�ned on the raw data, e.g. using timewarping, or generalise the shape of the series. The appropriate similar-ity or generalisation for audio data requires feature extration beforelassi�ation an suessfully be applied to the transformed data. Meth-ods for extrating features that allow to lassify audio data have beendeveloped. However, the development of appropriate feature extrationmethods is a tedious e�ort, partiularly beause every new lassi�ationtask requires to tailor the feature set anew. Hene, we onsider the on-strution of feature extration methods from elementary operators itselfa �rst learning step. We use a geneti programming approah. After thefeature extration, a seond proess learns a lassi�er from the trans-formed data. The pratial use of the methods is shown by two types ofexperiments: lassi�ation of genres and lassi�ation aording to userpreferenes.1 IntrodutionSine musi has beome distributed via the internet and is stored in digital form,there is a need for the management and retrieval of audio data. How an we indexlarge numbers of audio reords? How an we struture musi databases aordingto genre(e.g., lassi, pop, hip hop) or oasions(e.g., dinner, party, wedding)?How an a system automatially reommend users musi reords whih theymight like? Information retrieval has started several e�orts to automati indexing[11℄ and retrieval (e.g., querying by humming [2℄). For lassi�ation, mahinelearning enounters a new hallenge of salability, when onfronted with musidata:{ Musi databases store millions of reords.{ Given a sampling rate of 44100 Hz, a three minute musi reord has thelength of about 8 � 106 values.



Moreover, urrent approahes to time series indexing and similarity measuresrely on a more or less �xed time sale [7, 8℄. Musi plays, however, di�er onsid-erably in length. More general, time series similarity is determined with respetto some (exible and generalized) shape of urves [18, 6℄. However, the shapeof the audio urve does not express the ruial aspet for lassifying genres orpreferenes. The i-th value of a favourite song has no orrespondene to thei-th value of another favourite, even if relaxed to the (i�n)-th value. The dei-sive features for lassi�ation have to be extrated from the original data. Someapproahes extrat features from musi in form of Midi data, i.e. a transrip-tion aording to the 12 tone system [13℄ 1. This allows to inlude bakgroundknowledge from musi theory. The data are given, however, in the form of {possibly ompressed { waves reords, the audio data. Hene, feature extrationfrom audio data has beome a hot topi reently [12, 19, 3, 16℄. Several speial-ized extration methods have shown their performane on some task and dataset. It is now hard to �nd the appropriate feature set for a new task and data set.In partiular, di�erent lassi�ation tasks ask for di�erent feature sets. It is notvery likely that a feature set delivering exellent performane on the separationof lassial and popular musi works well for the separation of tehno and hiphop musi, too. Classifying musi aording to user preferenes even aggravatesthe problem. If there were a onise set of feature extration methods, one ouldadopt the wrapper approah [10℄ in order to selet the subset of features whih iswell suited for the given lassi�ation task. However, suh a onise set does notexist and if it would, it would be extremely large. Therefore, we propose anotherproedure. Given some elementary operators, geneti programming onstrutsmethods whih are (nested) sequenes of operators.In this paper, we illustrate some operators and how they are ombined tobeome extration methods in Setion 2. Setion 3 desribes the geneti program-ming approah to learning the feature extration methods. The searh within theuniverse of methods is guided by a �tness funtion. Here, we embed a lassi�a-tion learner: the better the learning result using the transformed data, the higherthe �tness of the feature set (i.e., the extration method). Geneti programmingputs together the building bloks of feature extration operators aording to thetargeted lassi�ation task and data set. It outputs a feature extration method.Applying the method to the given audio data delivers a transformed data set,i.e., the examples rewritten by the orresponding feature set. This beomes theinput to a seond learning step, namely lassi�er learning. Figure 1 shows theoverall proess with the two learning steps, one using geneti programming, theother using the support vetor mahine mySVM [15℄ for lassi�er learning.The approah is tested on the learning tasks of genre lassi�ation and userpreferenes (Setion 4).1 For an overview, see [14℄. 2
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Fig. 1. The overall proess of automati feature onstrution for lassi�ation2 Operators and methods for feature extrationAudio data are time series, where the y-axis is the urrent amplitude orrespond-ing to a loudspeaker's membrane and the x-axis orresponds to the time. Theyare univariate, �nite, and equidistant. We may generalize the type of series whihwe want to investigate to value series. Eah element xi of the series onsists oftwo omponents. The �rst is the index omponent, whih indiates a position ona straight line (e.g., time). The seond omponent is a m-dimensional vetor ofvalues whih is an element of the value spae.De�nition 1 (Value series) A value series is a mapping x : IN ! IR � ICmwhere we write xn instead of x(n) and (xi)i2f1;:::;ng for a series of length n.This general de�nition overs time series as well as their transformations. Allthe methods under onsideration here refer to value series. They are not onlyappliable to audio data, but to value series in general. All that is required isthe de�niton of a salar produt for the spae.We struture the set of elementary operators as follows:Basis transformations map the data from the given vetor spae into anotherspae, e.g. frequeny spae, funtion spae, phase spae. The most populartransformation is the Fouries analysis.Filters transform elements of a given series to another loation within the samespae. Moving average or exponential smoothing are examples of �lters.Mark-up of intervals orresponds to the mark-up of text fragments in that itannotates segments within a value series.Generalized windowing is required by many methods for feature extration.We separate the windowing from the funtions appliable to values withinthe windows.Funtions alulate a single value for a value series. Typial examples are av-erage, variane, and standard deviation.Let us give some examples of the operators. Sine the group of mark-upoperators is newly introdued, a de�nition is given.3



(a) Series (b) Value intervals
() Index intervals (d) ResultFig. 2. The proess of �nding intervals in a series (a), �rst in the value dimension (b),then projeted on the index dimension (), delivering (d).De�nition 2 (Mark-up) A mark-up M : S ! C assigns a harateristi C toa segment S.De�nition 3 (Interval) An interval I : S ! C is a mark-up within one di-mension. The segment S = (d; s; e) is given by the dimension d, the startingpoint s, and the end point e. The harateristi E = (t; %) indiates a type t anda density %.Operators �nding intervals in the value dimension of a value series an be om-bined with the mark-up of intervals in the time (i.e. indexing) dimension. Forinstane, whenever a interval hange in the value dimension has been found, theurrent interval in the index dimension is losed and a new one is started. Figure2 illustrates this ombination.Many known operators on times series involve windowing. Separating thenotion of windows over the index dimension from the funtions applied to thevalues within the window segment allows to onstrut many operators of thekind.De�nition 4 (Windowing) Given the series (xi)i2f1;:::;ng, a transformationis alled windowing, if it shifts a window of width w using a step size of s andalulates in eah window the funtion F :yj = F ((xi)i2fj�s;:::;j�s+wg)All yj together form again a series (yj)j2f1;:::;(n�w)=s+1g.De�nition 5 (General windowing) A windowing whih performs an arbi-trary number of transformations in addition to the funtion F is alled a generalwindowing. 4



The funtion F summarizes values within a window and thus prevents generalwindowing from enlarging the data set too muh. Sine the size of audio datais already rather large, it is neessary to onsider arefully the number of datapoints whih is handled more than one. The overlap of a general windowingwith step size s and width w is de�ned as g = w=s. Only for windowings withoverlap g = 1 the funtion an be omitted. Suh a windowing only performstransformations for eah windows and is alled pieewise �ltering. Combininggeneral windowing with the mark-up of intervals allows to onsider eah intervalbeing a window. This results in an adaptive window width w and no overlap. Ofourse, this speeds up proessing onsiderably.The elementary operators an be ombined so that methods of feature extra-tion are expressed. For audio data, the spetral atness measure or the spetralrest fator an be expressed as an arithmeti ombination of simple funtions[5℄. The mel-frequeny epstral oeÆients an be onstruted as a general win-dowing, where the frequeny spetrum of the window is alulated, its logarithmis determined, a psyhoaousti �ltering is performed, and the inverse Fouriertransformation is applied to the result. Figure 3 shows how the operators forfeature extration are put together to form the epstral oeÆients. From theseoeÆients additional features an be extrated. It is seen how easily new, sim-ilar methods an be generated, e.g., replaing the frequeny spetrum and itslogarithm by the gradient of a regression line.
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Fig. 3. Construting the epstral method from elementary extration operators
3 Automati onstrution of method treesThe elementary operators desribed above are ombined in order to onstrutmethods that extrat features for lassi�ation tasks. Figure 3 already showedhow elementary operators an be used for the reonstrution of known omplexfeature extration methods. In addition, an example of a similar method om-bining di�erent elements was given. There are many omplex feature extrationmethods whih an be built using the operators. For instane, the general win-dowing may apply a Fourier transformation so that the peaks of the transformed5



an be related with windows in time:yj = maxindex(FT (fxigi2fj�s;:::;j�s+wg)))The result is a value series, where the value of yj denotes the highest frequenyfor eah window. From this series, the average and variane is built, yielding agood feature for the separation of tehno and pop musi { the variane is greaterin pop musi.
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Fig. 4. Automati feature extration using geneti programming.It is rather umbersome to �nd suh ombinations that perform well for alassi�ation task. We are looking for hains of method appliations. Moreover,there might be some windowing within whih suh hains are applied. Thissearh spae is too large to be inspeted manually. Hene, geneti programmingis applied in order to look for the best ombination of methods [4℄. The result isa omplex method. Its use for the lassi�er learning will be shown in Setion 4.In order to struture the huge searh spae, we may separate funtions, hainsof method appliations, and general windowing, where a hain of method appli-ations is applied to eah window.De�nition 6 (Chain) A hain onsists of an arbitrary number of transforma-tions and a funtion at the end.A funtion is a hain with no transformations. It has the length 1. A longerhain onsists of some transformations followed by a funtion. In any ase, ahain delivers one value.De�nition 7 (Method tree) A method tree is a general windowing whose hil-dren build a hain. If the hain entails a windowing, this beomes the root of anew, embedded method tree. 6
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Fig. 5. A method tree for feature extration built of elementary methods. Dashedarrows show the data ow, solid lines de�ne the tree struture.The methods whih are performed on eah window an be seen as hildren ofthe windowing operator. Together they output a value series. The tree strutureemerges from the nesting of windowing operators.An example of a method tree is shown in Figure 5, where the root identi�esthe element within the searh spae. Its four hildren are exponential smoothing,a �ltering, another method tree onsisting of the hain just desribed (Fouriertransformation with peaks applied to windows), and the average of the peaks.This last hild returns the desired features.Before the geneti programming approah is tehnially desribed, Figure 4presents the proess of automatially extrating features for a given lassi�ationtask and data set. The piture details on the �rst box of Figure 1 above whihshows the overall proess. The searh spae within whih the best method tree isto be found is alled the universe of method trees. A population is a set of methodtrees. The navigation within the universe of method trees is a yle of seletinga population, applying the method trees to the raw data, evaluating the �tnessof the population, and enhaning the �ttest method trees further to beomea new population. This yle orresponds to the standard proess of genetiprogramming. What di�ers from the standard is that method trees instead ofbinary vetors form the searh spae, that the searh spae is strutured, andthat the �tness evaluation is not merely a funtion but the result of runninganother learning algorithm.Geneti programming onstruts �nite automata. Here, method trees are tobe onstruted. They are represented by XML expressions. Figure 6 shows therepresentation of the method tree from Figure 5. The Yale system exeutessuh trees and takes are of the syntati well-formedness.The restrition that hains are onluded by a funtion implies a level-wisestruture of all possible method trees. The lowest level 1 entails only funtions.These are hains of length 1. The next level, 2, overs hains with a onludingfuntion. Levels 3 and above entail windowing. Method trees are onstrutedaording to their levels. The level-wise growing means small hanges to a urrentmethod tree. On the one hand, this redues the probability of missing the optimal7



<operator name="Root" lass="ValueSeriesPreproessing"><operator name="Chain 1" lass="OperatorChain"><operator name="ExpSm" lass="ExponentialSmoothing" /><operator name="Filter" lass="FilterTransformation" /><operator name="Windowing" lass="Windowing"><parameter key="overlap" value="2"/><operator name="Chain 2" lass="OperatorChain"><operator name="FFT" lass="FastFourierTransform" /><operator name="MaxIndex" lass="MaxIndexPoint" /></operator></operator><operator name="Avg" lass="AverageFuntion" /></operator></operator> Fig. 6. XML method tree representation for Yale.method tree. On the other hand, it may slow down the searh, if the �tness ofthe lower levels does not distinguish between good and bad method trees.The operations of geneti programming are mutation and rossover. By ran-dom, mutations insert a new method, delete a method, or replae a method byone of the same lass, i.e. by a funtion or transformation. Crossover replaes asub-tree from one method tree by a sub-tree from another method tree, regard-ing the well-formedness onditions. That means, that the roots of the sub-treesmust be of the same type of methods.For seletion purposes, the �tness of all method trees is expressed by a roulettewheel, i.e. �tness proportional parts of a wheel's 360 degrees. The larger theportion, the more likely it beomes that the partiular individual is seletedfor the next generation or rossover. Sine method trees serve lassi�ation inthe end, the quality of lassi�ation is the ultimate riterion of �tness. Eahindividual method tree is applied to the raw data. This method appliationreturns a transformed data set, whih is used by lassi�er learning. A k-foldross validation is exeuted. The mean auray, reall, and/or preision of theresult beomes the �tness value of the applied feature onstrution method tree.4 Classi�ation using learned method treesAutomati feature onstrution aims at good results of a seond learning stepwhih uses the features, namely lassi�er learning. Remember Figure 1 from theintrodution, where geneti programming were shown to deliver the input tolassi�er learning. Now, we desribe the seond step, namely lassi�er learning.Feature onstrution is already guided by the lassi�ation task in that ross-validated learning determines the �tness of method trees (individuals of genetiprogramming). Now, also feature seletion is performed by a simple evolutionarymethod, namely the (1+1)EA [1℄. Again, the lassi�ation task deides upon8



Classi/pop Tehno/pop Hiphop/popAuray 100% 92; 89% 82; 38%Preision 100% 94; 00% 84; 15%Reall 100% 92; 64% 78; 44%Error 0% 7; 11% 17; 62%Table 1. Classi�ation of genresthe �tness. The feature set is built using a subset of the training data. Theseleted method trees are then applied to all the training data. The supportvetor mahine mySVM is applied to these rewritten data and learns a lassi�er.4.1 Classifying genresSine results are published for the genre lassi�ation task, we have applied ourapproah to this task, too. Note, however, that no published benhmark datasets exist. Hene, the omparison an only show that feature onstrution andseletion leads to similar performane as ahieved by other approahes. For thelassi�ation of genres, three data sets have been built.{ Classi/pop: 100 piees for eah lass were available in Ogg Vorbis format.{ Tehno/pop: 80 songs for eah lass from a large variety of artists wereavailable in Ogg Vorbis format.{ Hiphop/pop: 105 songs for eah lass from few reords were available in MP3format with a oding of 128 kbits/s.The lassi�ation tasks are of inreasing diÆulty. Using mySVM with a linearkernel, the performane was determined by a 10-fold ross validation and isshown in Table 1. Conerning lassi vs. pop, 93% auray, and onerninghiphop vs. pop, 66% auray has been published [16, 17℄.41 features have been onstruted for all genre lassi�ation tasks. For thedistintion between lassi and pop, 21 features have been seleted for mySVMby the evolutionary approah. Most runs seleted features referring to the phasespae (angle and variane). For the separation of tehno and pop, 18 featureswere seleted for mySVM, the most frequently seleted ones being the �ltering ofthose positions in the index dimension, where the urve rosses the zero line. Forthe lassi�ation into hiphop and pop, 22 features were seleted with the merevolume being the most frequently seleted feature. It starts with the length ofthe songs. Experiments with naive Bayes and k-NN did not hange the piture:an auray of about 75% an easily be ahieved, inreasing the performanefurther demands better features.4.2 User preferenesReommendations of songs to possible ustomers are urrently based on the or-relation of reords, user who bought reord A frequently also bought reord B.9



User1 User2 User3 User4Auray 95; 19% 92; 14% 90; 56% 84; 55%Preision 92; 70% 98; 33% 90; 83% 85; 87%Reall 99; 00% 84; 67% 93; 00% 83; 74%Error 4; 81% 7; 86% 9; 44% 15; 45%Table 2. Classi�ation aording to user preferenesThis ollaborative �ltering approah ignores the ontent of the musi. A high or-relation is only ahieved within genres, beause the preferenes traversing a typeof musi are less frequent. The ombination of favourite songs into a set is a veryindividual and rare lassi�ation. It is not a generalization of many instanes.Therefore, the lassi�ation of user preferenes beyond genres is a hallengingtask, where for eah user the feature set has to be learned. Of ourse, sometimesa user is interested only in piees of a partiular genre. This does not dereasethe diÆulty of the lassi�ation task. In ontrast, if positive and negative ex-amples stem from the same genre, it is hard to onstrut distinguishing features.Genre harateristis might dominate the user-spei� features. As has been seenin the diÆulty of the data set for hiphop vs. pop, sampling from few reordsalso inreases the diÆulty of learning. Hene, four learning tasks of inreasingdiÆulty have been investigated.Four users brought 50 to 80 piees of their favourite musi ranging throughdiverse genres. They also seleted the same number of negative examples. User1 seleted positive examples from rok musi with a dominating eletri guitar.User 2 seleted positive as well as negative examples from jazz musi. User 3seleted musi from lassi over latin and soul to rok and jazz. User 4 seletedpiees from di�erent genres but only from few reords. Using a 10-fold rossvalidation, mySVM was applied to the onstruted and seleted features, onefeature set per learning task (user). Table 2 shows the results.The exellent learning result for a set of positive instanes whih are all froma ertain style of musi orresponds to our expetation (user 1). The expetationthat learning performane would derease if positive and negative examples aretaken from the same genre is not supported (user 2). Surprisingly well is thelearning result for a broad variety of genres among the favourites (user 3). The(negative) e�et of sampling from few reords an be seen learly (user 4). Ap-plying the learned deision funtion to a database of reords allowed the users toassess the reommendations. They were found very reasonable. No partiularlydisliked musi was reommended, but unknown plays and those, whih ouldhave been seleted as the top 50.Of ourse, this method of user preferene reognition is just the �rst step.There are several ways to improve the results. For instane, users ould indiatethose examples that must be lassi�ed orretly, beause the person feels thatit is an essential expression of his taste. Weighting examples as a further ostfuntion for learning has been investigated in [9℄. An open question is how to10



irumvent or at least derease the required number of negative examples, sineusers don't like to go through long play lists in order to gather negative examples.5 ConlusionIn this paper, a geneti programming approah to learning feature extration fora ertain data set and lassi�ation task has been presented. Using elementaryoperators as building bloks, method trees are learned under the guidane ofthe performane of a lassi�ation learner. The ruial question is whether theovered methods and their automati onstrution are tratable, feasible, anddeliver good lassi�ation results in the end. Two types of lassi�er learningtasks have been tried in order to answer this question: lassifying genres anduser preferenes. The experiments showed enouraging results.Further work should investigate the real-time lassi�ation aording to userpreferenes. Genre lassi�ation an be done in real-time, beause an appropri-ate feature set an be learned in advane. In ontrast, a real-time lassi�ationof the preferenes of diverse users does not allow to build-up the feature sets be-forehand. Reommendation systems address di�erent users, so that they annotadjust to a partiular one. Real-time reommendation would require automatifeature onstrution while the user lassi�es some examples.Finally, an eletroni DJ would be a hallenging system to develop. In ad-dition to the lassi�ation of single musi plays, appropriate sequenes of playswould then need to be taken into aount. Do the methods deliver features whihare well suited for sequene learning, as well?AknowledgmentsThe support of the Deutshe Forshungsgemeinshaft (SFB 475, "Redution ofComplexity for Multivariate Data Strutures") is gratefully aknowledged.Referenes1. T. B�ak, U. Hammel, and H.-P. Shwefel. Evolutionary omputation: Comments onthe history and urrent state. IEEE Transations on Evolutionary Computation,1(1):3{17, 1997.2. Asif. Ghias, Jonathan Logan, David Chamberlin, and Brian C. Smith. Query byHumming: Musial Information Retrieval in an Audio Database. In Pro. of ACMMultimedia, pages 231{236, 1995.3. G. Guo and S. Z. Li. Content-Based Audio Classi�ation and Retrieval by SupportVetor Mahines. IEEE Transation on Neural Networks, 14(1):209{215, January2003.4. J. H. Holland. Esaping brittleness: The possibilities of general{purpose learningalgorithms applied to parallel rule{based systems. In R. S. Mihalski, J. G. Car-bonell, and T. M. Mithell, editors, Mahine Learning { An Arti�ial IntelligeneApproah, volume 2, hapter 20, pages 593{624. Morgan Kaufmann, Palo Alto,CA, 1986. 11
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